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Chapter 1: Finding Difficult Distances

MATH 117: Trigonometry

1.1 Introduction

In many instances, we can find distances just by using the Pythagorean theorem, which
says that in a right triangle, the sum of the squares of the lengths of the legs is equal to the
sum of the square of the length of the hypotenuse.

c2 = a2 + b2
c

a

b

Figure 1

Example: Ann drives 8 blocks east and 6 blocks north (see Figure 2).

d

Figure 2

How far is she from her starting point, in miles? (1 block ≈ 0.1 mi)

Since the city blocks are arranged at right angles, Ann’s path forms the legs of a right
triangle. We need to convert the distances to miles, using unit conversion (affectionately
known as the ol’ “multiply-by-one trick”).

8 blocks · 0.1 mi

1 block
= 0.8 mi 6 blocks · 0.1 mi

1 block
= 0.6 mi
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Then, using the Pythagorean theorem,

d2 = (0.8)2 + (0.6)2,

d2 = 0.64 + 0.36 = 1, and

d = 1 mile.

(I should point out that this is not the only valid answer. This is the Euclidean, or “as-
the-crow-flies,” distance between the two points. Realistically, Ann could not get to her
destination by traveling 1 mile. She has basically taken the shortest path to her destination,
traveling 8 + 6 = 14 blocks, or 1.4 miles. This is called the “taxicab” distance between the
two points.)

Now suppose that the right angles are removed from the problem.

Example: Ann walk 0.8 miles east, and then turns 75◦ to the north and walks another 0.6
miles (see Figure 3).

d

0.8

0.6

75◦

Figure 3

How far is she from her starting point, in miles?

Because the inside angle is larger than a right angle, we can be sure that d is greater
than it was in the last problem, but how much greater? Finding the answer to this question
will require the development of several different identities based on the angles present in a
triangle.
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1.1 Exercises

Find the exact length of the missing sides of each diagram.

1) 2)

6

3
x

53

x

3) 4)

8 m

7 m

x

y

1

1

1

1

x
yz

5) Suppose that you are measuring a distance along the ground with a tape measure, but
you are too lazy to bend over and hold the tape to the ground. Instead, you hold the end of
the tape measure at your waist, 3 ft above the ground. (Figure 4) If the horizontal distance
is actually 14 ft, at least how much is your measurement off?

14 ft
3 ft

Figure 4

6) Suppose the same situation as in problem 5), except that the actual horizontal distance
is 24 ft. At least how much is your measurement off now? Is the error more or less than in
problem 5)? Is the percentage error more or less than in problem 5)? What other factors
would affect the accuracy of your measure?
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7) Suppose that you are trying to measure the distance between two points on the ground,
but there is a curb in the way. (Figure 5) The curb is a hexagon, with dimensions shown
at the bottom in Figure 5. If the actual measurements are as shown on the top in Figure 5,
then at least how much would a measurement over the curb be off? Assuming that the tape
is read correctly but not pulled tight at all, what would be the upper bound on the error?

2 in 2 in 2 in

6 in
4 in 4 in

10 ft 14.5 ftQQs

Figure 5

8) What is the taxicab distance from point A to point B in Figure 6? Is the distance
independent from the path taken?

A

B

Figure 6
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1.2 Finding Distances Based on Angles

The Sine of an Angle θ

The sine of an angle 0 < θ < 90◦, denoted sin θ, can be defined as the ratio of the length
of the leg of a right triangle opposite the angle to the length of the hypotenuse of the right
triangle (see Figure 7 below). Loosely, we say that

hyp

adj

opp

θ

Figure 7

sin θ =
opp

hyp
for 0 < θ < 90◦.

Most of the time, we will be dependent upon our calculators to give us the sine of an
angle, but for certain angles, we can calculate their sine explicitly. Since the sum of the
angles in a triangle is 180◦, a right triangle with a 45◦ angle will actually have two 45◦

angles, and will be an isosceles triangle. If the hypotenuse has length 2 and the legs are of
equal length, then we can solve for their length using the Pythagorean theorem.

22 = a2 + a2

2a2 = 4

a2 = 2

a =
√

2

Then sin 45◦ =
opp

hyp
=

√
2

2
. (see Figure 8.) Also, if we cut an equilateral triangle of side

length 2 in half along a line of symmetry, then we have a right triangle. The length of the
hypotenuse is 2, and the length of one leg is 1, so we can solve for the length of the other
leg.

22 = a2 + 12

a2 = 3

a =
√

3

5



45◦

45◦

60◦

30◦

2
2

√
2

√
2

1

√
3

Figure 8 – Reference Triangles

Then sin 30◦ =
opp

hyp
=

1

2
and sin 60◦ =

opp

hyp
=

√
3

2
(see Figure 8.)

We can extend this concept to any angle θ by drawing the angle on coordinate axes, with
the angle starting on the positive x-axis, and ending at a ray drawn from the origin. If, as
in Figure 9, we let (x, y) be a point on the ray but not the origin, and let r =

√
x2 + y2,

then we can think about the sine of an angle θ as the ratio of y to the distance r from the
origin; that is

sin θ =
y

r
.

This means that sin 0◦ = sin 180◦ = 0, sin 90◦ = 1, and sin 270◦ = −1. It also means that

(x, y)

r =
√
x2 + y2

y

Figure 9

we can use our reference triangles to calculate certain angles. See Figure 10 for the diagram
showing the calculation of sin 135◦ and sin(−60◦).

Notice that, because of the definition, that sin(−θ) = − sin θ for all angles θ.

The Cosine of an Angle θ

The cosine of an angle 0 < θ < 90◦, denoted cos θ, can be defined as the ratio of the length
of the leg of a right triangle adjacent to the angle to the length of the hypotenuse of the
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2

2

135◦

−60◦

√
2

−
√

3

sin 135◦ =

√
2

2

sin(−60◦) = −
√

3

2

Figure 10

right triangle (see Figure 7 again.) Loosely, we say that

cos θ =
adj

hyp
for 0 < θ < 90◦.

Then, using the reference triangles in Figure 8, we see that cos 45◦ =

√
2

2
, cos 30◦ =

√
3

2
,

and cos 60◦ =
1

2
.

We can extend this concept to any angle θ in a similar fashion used for calculating the
sine of any angle. If, as in Figure 11, we let (x, y) be a point on the ray but not the origin,
and let r =

√
x2 + y2, then we can think about the cosine of an angle θ as the ratio of x to

the distance r from the origin; that is

cos θ =
x

r
.

This means that cos 90◦ = cos 270◦ = 0, cos 0◦ = 1, and cos 180◦ = −1. As before, we can
use our reference triangles to calculate the cosine of certain angles. See Figure 12 for the
diagram showing the calculation of cos 135◦ and cos(−60◦).

Notice that, because of the definition, that cos(−θ) = cos θ for all θ.

How Are They Related?

Consider the point (x, y) on the terminal ray of the angle θ, and let r =
√
x2 + y2. Then,

from above,

sin θ =
y

r
and cos θ =

x

r
.
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(x, y)

r =
√
x2 + y2

x

Figure 11

2

2

135◦

−60◦−
√

2

1

cos 135◦ = −
√

2

2

cos(−60◦) =
1

2

Figure 12

That means that

sin2 θ + cos2 θ =
y2

r2
+
x2

r2
=
x2 + y2

r2
=
r2

r2
= 1 (1)

for all values of θ. Since the above statement is basically a restatement of the Pythagorean
theorem, we call the relationship in (1) a Pythagorean Identity. (It turns out that there are
a couple more that we will find later.)

The right triangle diagram shown below in Figure 13 holds the key to another relationship
between the sine and the cosine.

sin θ =
opp

hyp
= cos(90◦ − θ) and cos θ =

adj

hyp
= sin(90◦ − θ) (2)

The sine and cosine are said to be cofunctions of each other, and while the above diagram
only holds for 0◦ < θ < 90◦, the relationships in (2) actually hold for all θ. To see this,
consider the diagram in Figure 14. Let (a, b) be a point on the terminal ray of the angle θ.
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hyp

adj

opp

θ

90◦ − θ

Figure 13

Then the terminal ray for the angle 90◦ − θ is the above ray reflected across the line y = x,
and so the reflected point will have coordinants (b, a). Again,

sin θ =
b

r
= cos(90◦ − θ) and cos θ =

a

r
= sin(90◦ − θ).

y = x

(a, b)

(b, a)

θ 90◦ − θ

Figure 14

Finding Right-Angle Distances

We are now able to find the horizontal and vertical component of any distance traveled based
on that distance and the direction of travel.

Example: Ann travels 1 mile in a direction that is 37◦ north of east. How far north of her
starting point is she? How far east?

9



1

x

yy

37◦

Figure 15

Let y denote the distance traveled north, and let x denote the distance traveled east.

sin 37◦ =
y

1
cos 37◦ =

x

1

y = sin 37◦ x = cos 37◦

y ≈ 0.60 mi x ≈ 0.80 mi

Ann has traveled roughly 0.6 miles north and 0.8 miles east.

10



1.2 Exercises

Find the length of the missing sides of each diagram, accurate to two decimal places.

1) 2)

x

y
8

25◦

zy

5

50◦

3) 4)

8 m

75◦

x

y
1

x

yz

45◦
30◦

20◦ a

b

c

Give the final location in terms of north/south, east/west of the starting point after traveling
the following distances at the given angles.

5) 15 steps at 30◦ north of due east 6) 60 m at 45◦ north of due east, then
100 m at 30◦ west of due north

7) 3 miles at 20◦ south of due east, then
1 mile due north

8) 8 m at 40◦ north of due east, then 2 m
due west, then 6 m at 40◦ north of due
west

9) While on a geological study abroad trip, you view a mountain range. (Figure 16) Using a
range-finder, you determine that the top of the mountain is 4500 ft away. Using a protractor
and a paper-clip on a string, you determine that the angle above horizontal from your position
to the top of the mountain is 23◦. You are 6 ft tall, and your eyes are 4 inches below the top
of your head. How tall is the mountain in relation to ground level where you are standing?

11



4500 ft

23◦

Figure 16

10) Suppose that you are a NASA scientist and you are calculating the angle of trajectory
needed for a deep-space probe to reach a point in space 3.6 billion miles away, roughly the
distance between Earth and the planet/asteriod (depends on who you talk to) Pluto. If the
trajectory is off by 0.5◦, how badly will the probe miss the planet?

12



1.3 Law of Cosines

This all started with Ann traveling at non-right angles, so let’s return to that problem.
Let’s not just solve that problem, but find a general solution for the length of the third side
of a triangle where the opposite angle has measure θ.

The Theory

Let’s suppose that we know the lengths of two sides, a and b, and the measure θ of the angle
formed by the two sides. We want to find the length c of the third side. If θ = 90◦, then we
can just use the Pythagorean theorem. Let’s break the problem up into two cases: where θ
is acute, and where θ is obtuse.

Case 1: 0◦ < θ < 90◦

θ

a

b

c

x

y

b− x

Figure 17

We are looking for the length c, but we will start with some other lengths. Drop an
altitude from one end of the third side, as shown in Figure 17, and consider the lengths x
and y. From our work above, we know that

x = a cos θ and y = a sin θ.

Note that x2 + y2 = a2 by the Pythagorean theorem. Also, by the Pythagorean theorem, we
know that

c2 = (b− x)2 + y2.

Then
c2 = b2 − 2bx+ x2 + y2

c2 = b2 − 2b(a cos θ) + a2

c2 = a2 + b2 − 2ab cos θ.

Case 2: 90◦ < θ < 180◦

Again, consider the lengths x and y formed by dropping an altitude as in Figure 18. It
is perhaps easier to calculate the lengths by looking at the top and right side of the dashed
red rectangle, respectively.

x = a sin(θ − 90◦) = −a sin(90◦ − θ) = −a cos θ

13



θ

a

b

c

x

x

y y

Figure 18

y = a cos(θ − 90◦) = a cos(90◦ − θ) = a sin θ

Note that x2 + y2 = a2 by the Pythagorean theorem, and also

c2 = (b+ x)2 + y2.

Then
c2 = b2 + 2bx+ x2 + y2

c2 = b2 + 2b(−a cos θ) + a2

c2 = a2 + b2 − 2ab cos θ.

Therefore, . . .

Notice that if θ = 90◦, then cos θ = 0, and the formula simplifies to the Pythagorean
theorem. Therefore, we can say without reservation that in a triangle with two sides of
lengths a and b, the length of the third side c is given by the formula

c2 = a2 + b2 − 2ab cos θ, (3)

where θ is the angle between the two known sides. We call this formula in (3) the Law of
Cosines. To solve for c, we take the positive square root of the righthand side.

Finding Ann’s Distance Traveled

Recall the problem.

Example: Ann walk 0.8 miles east, and then turns 75◦ to the north and walks another 0.6
miles (see Figure 19.) How far is she from her starting point, in miles?

The angle between the two sides of known length in this problem is θ = 180◦−75◦ = 105◦.
Thus,

d2 = 0.82 + 0.62 − 2(0.8)(0.6) cos 105◦

d2 = 0.64 + 0.36− 0.96 cos 105◦

d2 = 1− 0.96 cos 105◦

14



d

0.8

0.6

75◦

Figure 19

d =
√

1− 0.96 cos 105◦

d ≈
√

1− 0.96(−0.2588) ≈ 1.1 miles.

Here we are depending on our calculator to tell us the cosine of 105◦.

Solving for Other Unknowns in the Problem

Once we have this result, we can solve for other unknowns in the problem. For example, (see
Figure 20) if Ann had wanted to walk directly to her current location, at what angle above
due east would she have set out?

≈ 1.1

0.8

0.6

θ

Figure 20

Letting a = 0.8, b ≈ 1.1, and c = 0.6, we can solve (approximately) for θ.

0.62 ≈ 0.82 + 1.12 − 2(0.8)(1.1) cos θ

1.76 cos θ ≈ 0.64 + 1.21− 0.36

1.76 cos θ ≈ 1.49

cos θ ≈ 0.8466

The inverse of the cosine function is found on our calculators as well, denoted either “cos−1”
or “arccos.” Then

θ ≈ cos−1 0.8466 ≈ 32.2◦.

I am a little concerned about using our approximation from the first problem to solve
this one. It would be better (and possibly more accurate) to solve the problem directly.

15



1.3 Exercises

Solve for the missing value in each diagram, exact answer first, then an approximation
accurate to four decimal places.

1) 2)

7

4

x

45◦
5

3 x

30◦

3) 4)

4 m

89◦

3 m

x 4 m

91◦

3 m

x

Give the distance from the starting point after traveling the following distances at the given
angles.

5) 15 steps, turning 120◦ to the left, and
then 15 steps

6) 60 m, turning 45◦ to the right, and then
100 m

7) 3 miles, turn 135◦ to the left, and then
1 mile

8) 8 m, turn 110◦ to the left, then 2 m,
turn 110◦ to the right, and then 8 m

9) Suppose that you want to build a decorative wooden lamppost for your parent’s back-
yard, based on the design shown below in Figure 21. Calculate the minimum lengths of the
wooden beams needed to cut the two pieces (yellow and orange) put in at angles for support.

16



24 in

24 in

30◦

6

30◦

Figure 21

10) A sonar operator receives a “ping” from a “friendly” 700 yards away. After rotating
10◦, they receive another “ping”, a suspected “hostile”, at a range of 1050 yards. How far
apart are the “friendly” and the “hostile”?

11) A surveyor wants to measure the distance between points A and B, but there is a major
geological structure between the two points. (Figure 22) The surveyor walks to a point C
around the structure where both points A and B are in sight, and measures the range to
each point, 559 yards and 774 yards, respectively. Given that the angle between the points
at point C is 126◦, what is the distance between A and B?

559 yds 774 yds

����
126◦

A B

C

Figure 22

12) Find the measure of the least angle in a triangle of side lengths n, n+ 1, and n+ 2, for
a general positive integer n. Then find the measure for n = 1 and n = 1, 000, 000.

17



1.4 Other Relationships with Sines and Cosines

This is just an observation. Suppose that two angles of triangle have measures A and B,
and the sides opposite the two angles have lengths a and b, respectively (see Figure 23.) Let

A B

ab
y y yb

A B

a

Figure 23

y be the length of the altitude drawn from the third angle. Then I have two different ways
of calculating the length y:

y = b sinA and y = a sinB.

Then
b sinA = a sinB

and
sinA

a
=

sinB

b
.

This relationship still works even if one of the angles is obtuse (see Figure 23 again):

y = b cos(A− 90◦) = b cos(90◦ − A) = b sinA and y = a sinB,

so the relationship still holds. The formula

sinA

a
=

sinB

b
. (4)

where A and B are angles of a triangle and a and b are the lengths of their opposite sides,
respectively, is called the Law of Sines.

Back to the Problem

How does that help us in finding the angle of her direct route? Recall all of the known
information (shown in Figure 24.) Let θ be the measure of the angle that we wish to find,
and since the sum of the measures of θ and the angle at the end of her route is 75◦, then we
let 75◦ − θ be the measure of that angle. Then, by the Law of Sines, we have

sin θ

0.6
=

sin(75◦ − θ)
0.8

4

3
sin θ = sin(75◦ − θ).

The question is: what do we do with sin(75◦ − θ)?

18



d

0.8

0.6

75◦105◦θ

75◦ − θ

Figure 24

Sum and Difference Formulas

Let’s approach this as generally as possible. Consider the measurements as shown in Fig-
ure 25. Then the following are certainly true for x and y:

α
β

a b

x y90◦ − α 90◦ − β

Figure 25

x = a sinα and y = b sin β. (5)

Also, by the Law of Sines, we have that

sin(90◦ − α)

b
=

sin(90◦ − β)

a
.

Then because of the cofunction properties of sines and cosines (equation (2)),

cosα

b
=

cos β

a
.

Solving for a, we get

a =
b cos β

cosα
. (6)

Now let’s consider the sine of α + β. Once again by the Law of Sines, we have

sin(α + β)

x+ y
=

sin(90◦ − α)

b
.

Substituting x and y from equation (5) and solving for sin(α + β), we get

sin(α + β) =
cosα

b
(a sinα + b sin β).

19



Using the distributive law and substituting for a from equation (6), we get

sin(α + β) =
cosα sinα

b

(
b cos β

cosα

)
+

cosα

b
(b sin β),

and finally
sin(α + β) = sinα cos β + cosα sin β. (7)

The difference is no problem, since

sin(α− β) = sin(α + (−β)).

Using equation (7) above, we get

sin(α− β) = sinα cos(−β) + cosα sin(−β).

Then, using the fact that sin(−θ) = − sin θ and cos(−θ) = cos θ, we have the identity

sin(α− β) = sinα cos β − cosα sin β. (8)

While we are at it, we might as well go ahead and get the sum and difference formulas
for cosine. Using the cofunction properties of the cosine, we know that

cos(α + β) = sin(90◦ − (α + β)),

and so
cos(α + β) = sin((90◦ − α)− β)).

Then using the identity from equation (8) above, we have

cos(α + β) = sin(90◦ − α) cos β − cos(90◦ − α) sin β.

Again, using the cofunction properties, we have the identity

cos(α + β) = cosα cos β − sinα sin β. (9)

And since cos(α− β) = cos(α + (−β)), we can use equation (9) to get

cos(α− β) = cosα cos(−β)− sinα sin(−β)

and the identity
cos(α− β) = cosα cos β + sinα sin β. (10)

Back to our Problem

We had reduced to the problem to solving the trigonometric equation

4

3
sin θ = sin(75◦ − θ).

20



Using the difference formula for sines in equation (8), we have

4

3
sin θ = sin 75◦ cos θ − cos 75◦ sin θ.

Then, by combining the sin θ terms, we get(
4

3
+ cos 75◦

)
sin θ = sin 75◦ cos θ

and
4 + 3 cos 75◦

3
sin θ = sin 75◦ cos θ.

The big question is: what do we do now to solve for θ?

1.4 Exercises

Solve for the missing value in each diagram, exact answer first, then an approximation
accurate to four decimal places.

1) 2)

34◦

4

x

45◦
5

3
θ

30◦

3) 4)

2 m

59◦

1 m

θ

2 m

61◦

1 m

θ

21



Express each of the following exactly, in terms of sin θ and cos θ.

5) sin(θ + 60◦) 6) cos(θ + 45◦)

7) cos(θ − 150◦) 8) sin(θ − 30◦)

9) A 15-foot tall telephone pole is set on a hillside. The afternoon sun causes the pole to
cast a shadow down the hill that is 18 feet long. We determine using a protractor and a
paper clip on a string that the angle from horizontal from the end of the shadow up to the
top of the telephone pole is 50◦. (Figure 26) What is the angle of elevation of the hill?

18 ft

15 ft

50◦ − θ
θ

Figure 26

10) Suppose that we are trying to find the distance between two points A and B, as shown
in Figure 27, but there is a small hill between the points. The peak of Mt. Kessler is visible
from both point A and B, with angles of elevation of 38◦ and 58◦, respectively. If we know
that the height of Mt. Kessler is 3000 ft, then how far apart are points A and B?

@@R

38◦

58◦

��
��

3000 ft

A B

Figure 27
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1.5 The Tangent of Angle θ

The tangent of an angle 0 < θ < 90◦, denoted tan θ, can be defined as the ratio of the
length of the leg of a right triangle opposite the angle to the length of the leg of the right
triangle adjacent to the angle (see Figure 7.) Loosely, we say that

tan θ =
opp

adj
for 0 < θ < 90◦.

Then, using the reference triangles in Figure 8, we see that tan 45◦ = 1, tan 30◦ =
1√
3

, and

tan 60◦ =
√

3.
We can extend this concept to any angle θ in a similar fashion used for defining the sine

and cosine of any angle. If, as in Figure 28, we let (x, y) be a point on the ray but not the
origin, then we can think about the tangent of an angle θ as the ratio of y to x; that is

tan θ =
y

x
,

which is exactly the slope of the ray. This means that tan 0◦ = tan 180◦ = 0, and both tan 90◦

(x, y)

y

x

Figure 28

and tan 270◦ are undefined. As before, we can use our reference triangles to calculate the
cosine of certain angles. See Figure 29 for the diagram showing the calculation of tan 135◦

and tan(−60◦).
Notice that, because of this definition of the tangent of θ, that tan(−θ) = − tan θ.

How is tangent related to sine and cosine?

Consider the point (x, y) on the terminal ray of the angle θ, and let r =
√
x2 + y2. Then,

from above,

sin θ =
y

r
and cos θ =

x

r
.

That means that
sin θ

cos θ
=

y
r
x
r

=
y

r
· r
x

=
y

x
= tan θ

23



√
2

−
√

3

135◦

−60◦−
√

2

1

tan 135◦ = −1

tan(−60◦) = −
√

3

Figure 29

for all values of θ 6= 90◦ + k · 180◦ for integer k (where x would equal 0).
The right triangle diagram shown below in Figure 30 holds the key to another relationship

involving the tangent.

hyp

adj

opp

θ

90◦ − θ

Figure 30

tan(90◦ − θ) =
adj

opp
=

1
opp
adj

=
1

tan θ

Since
1

tan θ
is the cofunction of tan θ (at least for 0 < θ < 90◦) and is a bit tedious to write

as a fraction, we define a new trigonometric function, the cotangent of θ, as

cot θ =
1

tan θ
for 0 < θ < 90◦. (11)

It is easy to see that, with this definition, the tangent will also be the cofunction of cotangent:

cot(90◦ − θ) =
1

tan(90◦ − θ)
=

1

adj
opp

=
opp

adj
= tan θ. (12)
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While the above diagram only holds for 0◦ < θ < 90◦, the relationship in (11) motivates
the definition of cotangent. Consider the diagram in Figure 31, and let (x, y) be a point on
the terminal ray of the angle θ, with y 6= 0. Then we can think about the cotangent of an
angle θ as the ratio of x to y; that is

cot θ =
x

y
.

This definition will satisfy the cofunction identities wherever both tangent and cotangent
are defined. The terminal ray for the angle 90◦ − θ is the above ray reflected across the line
y = x, and so the reflected point will have coordinants (y, x). If we assume that both x 6= 0
and y 6= 0, then

cot θ =
1

tan θ
=

1
b
a

=
a

b
= tan(90◦ − θ)

and

tan θ =
b

a
=

1
a
b

=
1

tan(90◦ − θ)
= cot(90◦ − θ)

y = x

(a, b)

(b, a)

θ 90◦ − θ

Figure 31

Back to our Problem

Recall the problem of finding the angle of her direct route, shown in Figure 32. We had
reduced to the problem to solving the trigonometric equation

4 + 3 cos 75◦

3
sin θ = sin 75◦ cos θ.
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d

0.8

0.6

75◦105◦θ

75◦ − θ

Figure 32

Get both the sine and cosine to the lefthand side of the equation:

(4 + 3 cos 75◦) sin θ = 3 sin 75◦ cos θ,

sin θ

cos θ
=

3 sin 75◦

4 + 3 cos 75◦
.

Then

tan θ =
3 sin 75◦

4 + 3 cos 75◦
≈ 0.606679,

and so, from the inverse tangent function “tan−1” or “arctan” on our calculator, we have
that

θ ≈ tan−1 0.606679 = 31.2443◦.

This means that our previous answer of 32.2◦ found by using an approximate distance from
the Law of Cosines was off by roughly 1 degree.

1.5 Exercises

Solve for the missing value in each diagram, exact answer first, then an approximation
accurate to four decimal places.

1) 2)

θ

4

5 1

x
27◦
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Solve the following trigonometric equations (exactly if possible) for solutions in the range
(−180◦, 180◦].

3) sin (θ + 45◦) + sin (θ − 45◦) = 1 4) cos (θ + 60◦)− cos (θ − 60◦) = 1

5) tan(θ + 180◦)− 2 sin(θ − 180◦) = 0 6) sin (θ + 90◦)− cos (θ + 270◦) = 0

7) Suppose that you are one city-block (0.1 mile) away from a building with a billboard
set up on top. (Figure 33) You determine with a protractor and paper clip on a string that
the angle of inclination from your head to the top of the building is 12◦, while the angle of
inclination to the top of the billboard is 14◦. If you are 5 feet, 6 inches tall, how tall is the
billboard (in feet)?

12◦14◦

0.1 mile

Figure 33

8) Develop a sum-and-difference formula for both tan(α + β) and tan(α − β) in terms of
tanα and tan β.

9) Any expression of the form
a sin θ + b cos θ

can be rewritten in the form
A sin(θ +B).

a) Use the sum formula for sine to express A sin(θ + B) in terms of sin θ and cos θ. Set
this equal to a sin θ + b cos θ and solve for A and B in terms of a and b.

b) Check your formula by finding the equivalent form for 2 sin θ + cos θ, and checking
several values of θ into both expressions.

c) Recheck your formula by finding the equivalent form for 3 sin θ+ 4 cos θ, and checking
several values of θ into both expressions.
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1.6 Review: What have we learned (or relearned)?

Theorem: Pythagorean Theorem Let a and b be the lengths of two legs of a right triangle.
Then the length of the hypotenuse c is given by

c2 = a2 + b2.
c

a

b

Definition: Sine of an Acute Angle The sine of an acute angle θ in a right triangle is
the ratio of the length of the side opposite θ to the length of the hypotenuse,

sin θ =
opp
hyp

.

θ

opphyp

Definition: Sine of Any Angle Let (a, b) be a point on a ray starting at (0, 0) that forms
the angle θ with the positive x-axis, and let r =

√
a2 + b2. The sine of an angle θ is the ratio

(a, b)

b
r =
√
a2 + b2 sin θ =

b

r
.

Definition: Cosine of an Acute Angle The cosine of an acute angle θ in a right triangle
is the ratio of the length of the side adjacent to θ to the length of the hypotenuse,

cos θ =
adj
hyp

.

θ
adj

hyp
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Definition: Cosine of Any Angle Let (a, b) be a point on a ray starting at (0, 0) that
forms the angle θ with the positive x-axis, and let r =

√
a2 + b2. The cosine of an angle θ is

the ratio

(a, b)

a

r =
√
a2 + b2 cos θ =

a

r
.

Theorem: Law of Cosines Let a and b be the lengths of two sides of a triangle and let θ
be the measure of the angle formed by those two sides. Then the length of the third side c is
given by

c
a

b

θ

c2 = a2 + b2 − 2ab cos θ.

Theorem: Law of Sines Let a and b be the lengths of two sides of a triangle and let A and
B be the measures of the angles opposite of those two sides, respectively. Then the length of
the sides and the angle measures obey the proportion

B

a

b
A

sinA

a
=

sinB

b
.

Theorem: Sum and Difference Identities

sin(α + β) = sinα cos β + cosα sin β

sin(α− β) = sinα cos β − cosα sin β

cos(α + β) = cosα cos β − sinα sin β

cos(α− β) = cosα cos β + sinα sin β
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Definition: Tangent of an Acute Angle The tangent of an acute angle θ in a right
triangle is the ratio of the length of the side opposite θ to the length of the side adjacent to
the angle,

tan θ =
opp
adj

=
sin θ

cos θ
.

θ

opp

adj

Definition: Tangent of θ 6= 90◦ + 180◦k, k integer Let (a, b), a 6= 0, be a point on a ray
starting at (0, 0) that forms the angle θ with the positive x-axis, and let r =

√
a2 + b2. The

tangent of an angle θ is the ratio

(a, b)

a

b
tan θ =

b

a
.

Definition: Cotangent of an Acute Angle The cotangent of an acute angle θ in a right
triangle is the ratio of the length of the side adjacent to θ to the length of the side opposite
the angle,

tan θ =
adj
opp =

cos θ

sin θ
.

θ

opp

adj
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Definition: Cotangent of θ 6= 180◦k, k integer Let (a, b), b 6= 0, be a point on a ray
starting at (0, 0) that forms the angle θ with the positive x-axis, and let r =

√
a2 + b2. The

cotangent of an angle θ is the ratio

(a, b)

a

b
cot θ =

a

b
.

Theorem: Negative Angle Identities

sin(−θ) = − sin θ cos(−θ) = cos θ

tan(−θ) = − tan θ cot(−θ) = − cot θ

Theorem: Cofunction Identities

sin(90◦ − θ) = cos θ cos(90◦ − θ) = sin θ (for all θ)

tan(90◦ − θ) = cot θ cot(90◦ − θ) = tan θ (when θ 6= 90◦k, k integer)

Theorem: Relational Identities

tan θ =
sin θ

cos θ
(when θ 6= 90◦ + 180◦k, k integer)

cot θ =
cos θ

sin θ
(when θ 6= 180◦k, k integer)

tan θ =
1

cot θ
cot θ =

1

tan θ
(when θ 6= 90◦k, k integer)
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Review Exercises

1) Suppose that you are measuring a distance along the ground with a tape measure, but
you are too lazy to bend over and hold the tape to the ground. Instead, you hold the end of
the tape measure at your waist, 3 ft above the ground. (Figure 34) If your measure is 19 ft
3-1/4 inches, what would we expect the actual horizontal measure to be? If that amount is
in error, would we expect it to be longer or shorter than the actual horizontal distance?

19 ft, 31
4

in

3 ft

Figure 34

2) Suppose that you are trying to measure the distance between two points on the ground,
but there is a curb in the way. (Figure 35) The curb is a hexagon, with dimensions shown at
the bottom in Figure 35. If the measurements are as shown on the top in Figure 35 and we
assume the tape is pulled as tight as possible, then what can we expect the actual distance
to be?

2.5 in 1 in 2.5 in

5 in
2 in 2 in

6 ft, 83
4

in 10 ft, 51
2

in

QQs

Figure 35

3) Give the final location in terms of north/south, east/west of the starting point after
traveling 12 mi at 45◦ north of east, and then 10 mi at 30◦ north of east.

4) Suppose that you are 25 ft away from the base of a tree on level ground, and with
a protractor and a paper clip on a string, you are able to determine that the angle from
horizontal is 67◦. (Figure 36) If you are 6 ft tall and we assume your eyes are 4 inches below
the top of your head, then how tall is the tree?
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25 ft
67◦

Figure 36

5) Give the distance from the starting point after traveling 12 mi, turning to the left 105◦,
and then traveling another 10 mi.

6) A submarine sonar operator picks up an enemy ship at 13◦ east of north at a range of
1200 m. They also pick up a known friendly ship at 2◦ west of north at a range of 1000 m.
How far apart are the friendly and enemy ships?

7) Suppose that you are 27.5 ft away from the base of a tree on inclined ground, and with
a protractor and a paper clip on a string, you are able to determine that the angle from
horizontal to the top of the tree is 66◦ and the angle from horizontal to the base of the tree
is −6◦. (Figure 37) If you are 5 ft, 6 in tall and we assume your eyes are 4 inches below the
top of your head, then

a) what is the angle θ of incline (or decline) of the hill, and

b) how tall is the tree?

27.5 ft

66◦-6◦
���:θ

Figure 37

33



8) Two fire-spotting stations are located 5 miles north and south of each other. The south
station spots a fire at 45◦ north of east. The north station spots the same fire at 33.7◦ south
of east.

5 mi

33.7◦

45◦

a) Find the distance of the fire from each station.

b) Find the position of the fire in miles north/south and miles east/west of the south
station.

9) Suppose that you are visiting the observation deck (up at the top) of the St. Louis arch
at a time of day when the shadow cast by the arch on the west lawn is exactly half as long
as the arch is wide. (The arch has the same height and width.)

a) Given that the sun rose that morning at 6:00 am and that the noon sun produces a
shadow right under the arch, what time of day are you there?

b) Given the same conditions, except that the shadow length is one-quarter the width
of the arch, what time of day are you there?
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10) Any expression of the form
a sin θ + b cos θ

can be rewritten in the form
A cos(θ −B).

a) Use the difference formula for cosine to express A cos(θ − B) in terms of sin θ and
cos θ. Set this equal to a sin θ + b cos θ and solve for A and B in terms of a and b.

b) Check your formula by finding the equivalent form for 2 sin θ + cos θ, and checking
several values of θ into both expressions.

c) Recheck your formula by finding the equivalent form for 3 sin θ+ 4 cos θ, and checking
several values of θ into both expressions.
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Chapter 2: Targeting a Projectile Launcher

MATH 117: Trigonometry

2.1 Introduction

Here is the set-up:

h

θ

(a, b)

y

x

Figure 1

We would like to be able to set a projectile launcher to hit a target at (a, b). We have the
following parameters:

h – height of the launcher (given, in feet)

a – distance of the target from the launcher (given, in feet)

b – height of the target (given, in feet)

v – velocity of the projectile (constant, but not given,) and

θ – angle to the horizontal that the projectile is launched.

We will not be able to adjust the velocity v, but we will have to calculate it. We are going to
assume that the projectile is very aerodynamic, so that we can ignore wind resistance. (You
can factor in wind resistance if you like, but you will have to take MATH 331: Differential
Equations before you can solve for the path.)
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2.2 Describing the Path of the Projectile

We generally think about curves like this as a function (it looks remarkably parabolic,)
with x as the independent variable and y as the dependent variable. However, in this case,
both are changing with respect to a variable that we really don’t seem to care much about
– time. So, at least initially, I recommend that we think about the horizontal and vertical
components as separate (but linked) dependent variables, both with the independent variable
t, time in seconds after the launch of the projectile. So, . . .

t x(t) y(t)
0 0 h
...

...
...

? a b

In order to find formulas for both x(t) and y(t), we are going to have to determine how
fast the projectile is going both horizontally and vertically. Let vx be the horizontal velocity
of the projectile, and let vy be the vertical velocity of the dart.

v

vx

vy vy

θ

Figure 2

We use our knowledge of right triangle trigonometry to solve for vx and vy, we find that:

cos θ =
adj
hyp

=
vx

v
sin θ =

opp
hyp

=
vy

v
vx = v cos θ vy = v sin θ.

The Horizontal Component x(t)

For objects moving at a constant rate of speed, the relationship between the rate r (in a
unit of length per unit of time,) the distance traveled d (in the same unit of length,) and the
time t spent at that rate (in the same unit of time) is simple:

d = rt
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– the dreaded “dirt” problem. In our case, the horizontal distance traveled is x(t) feet, the
horizontal rate is vx feet per second, and the time is t seconds, so

x(t) = vxt = vt cos θ. (1)

The Vertical Component y(t)

The vertical component has the same basic properties, so

y(t) = vyt+ . . . = vt sin θ + . . . .

However, there are two major differences. First, the projectile starts at height h feet. The
formula for y(t) is easily adjusted –

y(t) = vt sin θ + h+ . . . .

The second difference is pretty obvious, but not so easy to explain algebraically. Gravity,
while it is not pulling the projectile left or right, is pulling it downward. The effect of gravity

on the position is described by −1

2
gt2 (provable once you have had some integral calculus,)

where g is the downward velocity per unit of time due to gravity, which, for feet and seconds,

is g = 32 ft
s2 . Therefore, the formula for the vertical component is

y(t) = −16t2 + vt sin θ + h. (2)

Can we get rid of the t?

The presence of the variable t for time is problematic, especially since we are looking at the
path of the projectile with x,y - axes. We are used to having y be a function of x. Is there
any way to remove the t from our calculations?

We could evoke an old algebra trick: solve for t in one equation and substitute it into the
other. Since the y-equation in (2) is quadratic in t and the x-equation in (1) is only linear,
it makes sense to solve for t in the x-equation (1):

x = vt cos θ

t =
x

v cos θ
.

Substituting this into the y-equation (2) gives us

y = −16
( x

v cos θ

)2

+ v
( x

v cos θ

)
sin θ + h

y =

(
− 16

v2 cos2 θ

)
x2 + (tan θ)x+ h. (3)

Notice that the equation is still quadratic and the coefficient of the squared term is negative,
so the path of the projectile is a parabola that opens downward.
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Whoa, Nelly!

We just divided by an unknown like it was no big deal! If θ = 90◦, then cos 90◦ = 0, and
so, x = 0 no matter what. In that case, we can not solve for t in the x equation and our
equation for y in terms of x no longer makes sense. So, we should be more careful, and say
that

y =

(
− 16

v2 cos2 θ

)
x2 + (tan θ)x+ h for − 90◦ < θ < 90◦.

Also, the expression
1

cos θ
is kind of messy. We will clean this up in the next section by

defining a new trigonometric function.

2.2 Exercises

Exercises 1) through 3) will require the use of either a graphing calculator in FUNCTION
mode or the Plot command in MathematicaTM.

1) Graph the trajectory equation (3) with θ = 40◦, v = 40 ft/s, and with h = 0, 5, 10, . . . , 40. As
h increases, what is the effect on the horizontal distance the projectile travels before it hits the
ground (y = 0)?

2) Graph the trajectory equation (3) with θ = 30◦, h = 1 ft, and with v = 5, 10, . . . , 50 ft/s. As
v increases, what is the effect on the horizontal distance the projectile travels before it hits the
ground?

3) Graph the trajectory equation (3) with h = 3 ft, v = 25 ft/s, and with θ = 0◦, 5◦, . . . , 60◦.
As θ increases, what is the effect on the horizontal distance the projectile travels before it hits the
ground?

4) Equation (3) is the result of removing the time variable t from the y-equation (2) using equation
(1). If we want to consider the amount of time t that the projectile is in the air before it hits the
ground, then we need to refer back to the original equation (2).

a) Solve equation (2) for t in terms of y, v, h, and θ.

b) Using the result of part a) above, calculate the amount of time t in seconds that the projectile
is in the air when h = 3 ft, v = 25 ft/s, and with θ = 0◦, 5◦, . . . , 60◦. As θ increases, what is the
effect on the time in the air of the projectile before it hits the ground?

5) Suppose that you want to adjust the formula in (3) to allow for the variables x, y, and h to
be measured in meters. If the acceleration due to gravity is g = 9.8 m/s2, rewrite the formula
accordingly.

6) Suppose that you wanted to find the initial velocity v using a law enforcement radar gun,
in miles-per-hour. Adjust the formula in (3) so that x, y, and h are measured in miles and t is
measured in hours.
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2.3 The Secant of Angle θ

The secant of an angle 0 < θ < 90◦, denoted sec θ, can be defined as the ratio of the length of
the hypotenuse of a right triangle to the length of the leg of the right triangle adjacent to the angle
(see Figure 3.) Loosely, we say that

hyp

adj

opp

θ

Figure 3

sec θ =
hyp
adj

for 0 < θ < 90◦.

Then, using our reference triangles, we see that sec 45◦ =
√

2, sec 30◦ = 2√
3
, and sec 60◦ = 2.

We can extend this concept to any angle θ in a similar fashion used for defining the sine and
cosine of any angle. If, as in Figure 4, we let (x, y), x 6= 0, be a point on the ray but not the origin,
and we let r =

√
x2 + y2, then we can think about the secant of an angle θ as the ratio of r to x;

that is
sec θ =

r

x
.

This means that sec 0◦ = sec 180◦ = 1, and both sec 90◦ and sec 270◦ are undefined. As before,

(x, y)

r =
√
x2 + y2

x

Figure 4

we can use our reference triangles to calculate the secant of certain angles. See Figure 5 for the
diagram showing the calculation of sec 135◦ and sec(−60◦).

Notice that, because of this definition of the secant of θ, that sec(−θ) = sec θ.
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2

2

135◦

−60◦−
√

2

1

sec 135◦ =
2

−
√

2
= −
√

2

sec(−60◦) = 2

Figure 5

How is secant related to cosine?

Consider the point (x, y) on the terminal ray of the angle θ, and let r =
√
x2 + y2, as in Figure 4.

Then, since cos θ =
x

r
, then

1
cos θ

=
1
x
r

=
r

x
= sec θ

for all values of θ 6= 90◦ + k · 180◦ for integer k (where x would equal 0).
The right triangle diagram shown below in Figure 6 holds the key to another relationship

involving the secant.

hyp

adj

opp

θ

90◦ − θ

Figure 6

sec(90◦ − θ) =
hyp
opp

=
1

opp
hyp

=
1

sin θ

Since
1

sin θ
is the cofunction of sec θ (at least for 0 < θ < 90◦) and is a bit tedious to write as a
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fraction, we define a new trigonometric function, the cosecant of θ, as

csc θ =
1

sin θ
for 0 < θ < 90◦. (4)

It is easy to see that, with this definition, the secant will also be the cofunction of the cosecant:

csc(90◦ − θ) =
1

sin(90◦ − θ)
=

1
adj
hyp

=
hyp
adj

= sec θ. (5)

While the above diagram only holds for 0◦ < θ < 90◦, the relationship in (4) motivates the
definition of cosecant. Consider the diagram in Figure 7, and let (a, b) be a point on the terminal
ray of the angle θ, with b 6= 0, and let r =

√
a2 + b2. Then we can think about the cosecant of an

angle θ as the ratio of r to b; that is
csc θ =

r

b
.

This definition will satisfy the cofunction identities wherever both sine and cosine are defined. The
terminal ray for the angle 90◦ − θ is the above ray reflected across the line y = x, and so the
reflected point will have coordinants (b, a). If we assume that both b 6= 0 and a 6= 0, then

csc θ =
r

b
= sec(90◦ − θ)

and
sec θ =

r

a
= csc(90◦ − θ)

y = x

(a, b)

(b, a)

θ 90◦ − θ

Figure 7
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Back to our problem . . .

When we last considered our projectile launcher problem in equation (3), we had removed the time
variable t from the two equations to get the one position equation

y =
(
− 16
v2 cos2 θ

)
x2 + (tan θ)x+ h for − 90◦ < θ < 90◦.

Using our new trigonometric function, we can now state this cleaner:

y =
(
−16
v2

sec2 θ

)
x2 + (tan θ)x+ h for − 90◦ < θ < 90◦. (6)

2.3 Exercises

For each of the following angles θ, draw the necessary reference triangles and find sin θ, cos θ, tan θ,
cot θ, sec θ, and csc θ exactly, if they exist.

1) θ = 45◦ 2) θ = 60◦ 3) θ = −30◦ 4) θ = 150◦

5) θ = 90◦ 6) θ = −90◦ 7) θ = 180◦ 8) θ = −45◦

9) θ = 135◦ 10) θ = 225◦ 11) θ = 240◦ 12) θ = −120◦
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2.4 Finding the Velocity v of the Projectile Launcher

I’m assuming here that we do not have a radar gun (most classrooms do not.) That would
make it too easy!

Do We Have To?

We could just fire our projectile launcher several times at different angles and fit the plotted data
with a curve. Let’s try this approach. With my projectile launcher, I fire the projectile at angles
from horizontal ranging from 0◦ to 85◦, increasing the angle in 5◦ increments. Each time, I keep the
initial height of the launcher barrel constant, at 1 ft, and I measure the distance from the launcher
(x = 0) to the place where the projectile lands on the ground. Here is some sample data (taken
from the Virtual Launcher in Virtual Launcher.nb):

Angle (◦) Distance (ft) Angle (◦) Distance (ft) Angle (◦) Distance (ft)
0 7.5 30 26.7 60 24.9
5 10.4 35 27.2 65 21.4
10 13.4 40 28.8 70 18.4
15 17.0 45 29.4 75 14.3
20 20.3 50 28.8 80 9.7
25 23.6 55 26.5 85 5.1

We could also include the point (90, 0), since if the projectile is launched straight up, it would not
travel horizontally. The data points are graphed below.

20 40 60 80

5

10

15

20

25

30

Figure 8

The question is: How do we model this data? Is it quadratic? It looks a little bit like a parabola,
but if we use our calculators to get a least-squares quadratic fit to the data, it does not seem to
match very well, particularly on the left part of the graph (see Figure 9.)

There are other problems, too. What if we want to change the initial firing height h? What if
we want to hit a target that is not on the ground? In those cases, this data is completely useless
to us. To be completely general, we are going to have to solve for v, and that will require some
algebra and trigonometry.
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20 40 60 80

5

10

15

20

25

30

Figure 9

Solving Algebraically

Let’s set the angle and take a few shots to determine the point that the launcher will hit at that
angle. (In a perfect world, one shot would be enough, but since our launcher is not perfect, we will
take a few shots and average the results.) Launching four projectiles (with the Virtual Launcher)
with θ set to 30◦ and the firing height h set to 1, we get the distances 25.8 ft, 25.9 ft, 25.7 ft, and
25.8 ft (just a sample, your answers may vary.) The mean of these values is

x̄ =
25.8 + 25.9 + 25.7 + 25.8

4
= 25.8 ft,

so we will assume that the trajectory has the point (25.8, 0) on it.
Now, let’s fill in the parts of our model from equation (6),

y =
(
−16
v2

sec2 θ

)
x2 + (tan θ)x+ h.

h = 1
θ = 30◦

x = 25.8
y = 0

 =⇒ 0 =
(
−16
v2

sec2 30◦
)

(25.8)2 + (tan 30◦)(25.8) + 1

Note that sin 30◦ =
1
2

and cos 30◦ =
√

3
2

, so sec 30◦ =
2√
3

and tan 30◦ =
1√
3

. Then our equation

becomes

0 =

(
−16
v2

(
2√
3

)2
)

(665.64) +
(

1√
3

)
(25.8) + 1, and

42600.96
3v2

=
25.8 +

√
3√

3
.

Solving for v2 first, we get

v2 =
42600.96

25.8
√

3 + 3
.

Then, taking the square root of both sides, we get

v =

√
42600.96

25.8 +
√

3
≈ 29.9

ft
s
.
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We will use this value for v in all of our subsequent calculations with this example in the next
section.

2.4 Exercises

All of the homework problems from this section are generated using the MathematicaTM file Vir-
tual Launcher.nb. Enter the first non-text cell to initialize the value of the velocity variable.
Enter the next non-text cell for a given angle of launch θ and a given height of launch h. Once you
have finished your calculation of the velocity v, you may check your answer by entering the last
non-text cell. The might be some slight variation in the two answers since the Virtual Launcher
includes some built-in variation of the launch velocity. Set θ and h to the following values:

1) θ = 30◦, h = 1 foot 2) θ = 60◦, h = 1 foot

3) θ = 45◦, h = 3 feet 4) θ = 0◦, h = 10 feet

5) θ = 20◦, h = 5 feet 6) θ = −5◦, h = 12 feet

7) θ = 10◦, h = 6.2 feet 8) θ = 25◦, h = 3.55 feet
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2.5 Setting the Angle θ to Hit a Target

Let’s continue the example that we started in the last section. We had found the velocity of
the projectile launcher to be v ≈ 29.9ft/sec. Substituting this into equation (6), we get

y =
(
− 16

894.01
sec2 θ

)
x2 + (tan θ)x+ h for 0◦ ≤ θ < 90◦.

Suppose that we want to hit a target 16 ft away on the ground with the launcher 1 ft off of the
ground. At what angle do we need to set the launcher?

We solve for θ by substituting our known values into our model in equation (6):

h = 1
x = 16
y = 0

 =⇒ 0 =
(
− 16

894.01
sec2 θ

)
(16)2 + (tan θ)(16) + 1

− 4096
894.01

sec2 θ + 16 tan θ + 1 = 0.

Uh, oh. Now what?

Pythagorean Identities

Recall our definitions of sines and cosines using a right triangle and refer to Figure 10. We know

hyp

adj

opp

θ

Figure 10

that
sin θ = opp

hyp , cos θ = adj
hyp ,

tan θ =
sin θ
cos θ

=
opp
adj

, cot θ =
cos θ
sin θ

=
adj
opp

,

sec θ =
1

cos θ
=

hyp
adj

, and csc θ =
1

sin θ
=

hyp
opp

.

We also know from elementary geometry that since we are working with a right triangle,

opp2 + adj2 = hyp2,
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called the Pythagorean theorem.
If we divide each term by hyp2, then we have

opp2

hyp2 +
adj2

hyp2 =
hyp2

hyp2 ,

(
opp
hyp

)2

+
(

adj
hyp

)2

= 1, and

sin2 θ + cos2 θ = 1.

If we divide each term by adj2, then we have

opp2

adj2
+

adj2

adj2
=

hyp2

adj2
,

(
opp
adj

)2

+ 1 =
(

hyp
adj

)2

, and

tan2 θ + 1 = sec2 θ.

If we divide each term by opp2, then we have

opp2

opp2
+

adj2

opp2
=

hyp2

opp2
,

1 +
(

adj
opp

)2

=
(

hyp
opp

)2

, and

1 + cot2 θ = csc2 θ.

These three formulas hold for all values of θ, and are called the Pythogorean Identities. They may
be of use to us in dealing with the sec2 θ that we encountered when solving for θ above.

And now, back to our equation . . .

When we last saw our equation, we had it down to

− 4096
894.01

sec2 θ + 16 tan θ + 1 = 0.

The difficulty, of course, is that we have apples and oranges in the equation, or, in this case, secants
and tangents. However, using the Pythagorean identities, we can replace sec2 θ with tan2 θ + 1:

− 4096
894.01

(tan2 θ + 1) + 16 tan θ + 1 = 0,

− 4096
894.01

tan2 θ + 16 tan θ +
(

1− 4096
894.01

)
= 0,

− 4096
894.01

tan2 θ + 16 tan θ − 3201.99
894.01

= 0, and

− 4096
894.01

(tan θ)2 + 16(tan θ)− 3201.99
894.01

= 0
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This may not seem better than what we started with, but it is. Any equation of the form
ax2 + bx+ c = 0 can be solved using the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

We can actually solve for tan θ by using the quadratic formula:

tan θ =

−16±

√
(16)2 − 4

(
− 4096

894.01

)(
−3201.99

894.01

)
2
(
− 4096

894.01

) ,

tan θ =
16∓

√
(16)2(894.01)2 − 4(4096)(3201.99)

894.01
8192

894.01

,

tan θ =
16(894.01)∓

√
(16)2(894.01)2 − 4(4096)(3201.99)

8192
,

tan θ ≈ 0.2404, 3.2518.

Then, using the inverse tangent, we have

θ ≈ 13.5◦, 72.9◦.

Both trajectories are shown in Figure 11. The solutions can also be tested using the Virtual
Tar-getter in Virtual Tar-getter.nb.
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Figure 11

In practice, we would probably use the shallow trajectory, practically because our ceiling may
not allow for the higher trajectory, but mostly because that the projectile is in the air longer with
the higher trajectory, adding to the possible wind resistance, which we have ignored in our model.
Note that both solutions are consistent with the data collected in Section 2.4 and shown in Figures 8
and 9.
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In general, . . .

I know what you are thinking: “By the time I do all of that paperwork, my target will be long
gone.” True enough. That’s why we do all of the algebra and trigonometry ahead of time. In
general, the (shallow) angle θ at which to set our launcher with velocity v from a firing height of h
in order to hit a target a feet away at a height of b feet is

θ = tan−1

(
v2 −

√
v4 − 64(16a2 + v2(b− h))

32a

)
. (7)

The derivation of this formula is left as an exercise.

Example: Find the angle of inclination needed to hit a target 15.5 ft away and 6.5 ft off of the
ground using a launcher with velocity 25 ft/sec that is 3 ft off of the ground.

Using equation (7), we have

θ = tan−1

(
(25)2 −

√
(25)4 − 64(16(15.5)2 + (25)2(6.5− 3))

32(15.5)

)
,

θ = tan−1

(
625−

√
390625− 64(3844 + 625(3.5))

496

)
,

θ = tan−1

(
625−

√
4609

496

)
,

θ ≈ tan−1(1.1232) ≈ 48.3◦.

We can use the Virtual Tar-Getter to check our answer. The graph of the trajectory is shown in
Figure 12.

2.5 5 7.5 10 12.5 15

2

4

6

8

Figure 12

Equation (7) is provided only to show that this can be programmed into a calculator or computer
and calculated instantly – please do not commit that horrible formula to memory! In the following
homework exercises, we will find answers by solving equations for tan θ and then θ, as we did earlier
in this section.
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2.5 Exercises

Verify the following identities by manipulating one side of the identity to look like the other side.

1) (sec θ + tan θ)(sec θ − tan θ) = 1 2) (csc θ + cot θ)(csc θ − cot θ) = 1

3)
tan θ + cot θ

tan θ
= csc2 θ 4)

tan θ + cot θ
cot θ

= sec2 θ

Solve for the firing angle(s) in the following situations with the given height h, velocity v, and
position (a, b) of the target, using (6). Verify your solution (if it exists) by using the Virtual
Tar-Getter.

5) h = 3 ft, v = 28.5 ft/s, target at (24, 4) 6) h = 16 ft, v = 30 ft/s, target at (30, 0)

7) h = 5 ft, v = 25 ft/s, target at (20.5, 4) 8) h = 0.5 ft, v = 28 ft/s, target at (40, 0)

9) Derive equation (7) by solving equation (6) for θ when (x, y) = (a, b).

10) Adjust equation (7) to allow for units measured in meters (and meters per second) instead of
feet. (See problem #5 in section 2.2.)
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2.6 Review: What have we learned (or relearned)?

Theorem: The horizontal and vertical components vx and vy of a vector v in the direction θ above
horizontal is given by

vx = v cos θ and vy = v sin θ.

v

vx

vy vy

θ

Definition: Secant of an Acute Angle The secant of an acute angle θ in a right triangle is the
ratio of the length of the hypotenuse to the length of the side adjacent to θ,

hyp

adj

opp

θ

sec θ =
hyp
adj

for 0 < θ < 90◦.

Definition: Secant of Any Angle Let (a, b) be a point on a ray starting at (0, 0) that forms the
angle θ with the positive x-axis, and let r =

√
a2 + b2. The secant of an angle θ is the ratio

(a, b)

r =
√
a2 + b2

sec θ =
r

a
.

a
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Definition: Cosecant of an Acute Angle The cosecant of an acute angle θ in a right triangle
is the ratio of the length of the hypotenuse to the length of the side opposite from θ,

hyp

adj

opp

θ

csc θ =
hyp
opp

for 0 < θ < 90◦.

Definition: Cosecant of Any Angle Let (a, b) be a point on a ray starting at (0, 0) that forms
the angle θ with the positive x-axis, and let r =

√
a2 + b2. The cosecant of an angle θ is the ratio

(a, b)

r =
√
a2 + b2

csc θ =
r

b
.

b

Theorem: Cofunction Identities for Secant and Cosecant

sec(90◦ − θ) = csc θ and csc(90◦ − θ) = sec θ

Theorem: Relational Identities

sec θ =
1

cos θ
(when θ 6= 90◦ + 180◦k, k integer)

csc θ =
1

sin θ
(when θ 6= 180◦k, k integer)

Theorem: Formula for the Trajectory of a Projectile The height y of a projectile fired from
initial height h at velocity v at an angle θ above horizontal is given by

y =
(
−16
v2

sec2 θ

)
x2 + (tan θ)x+ h for − 90◦ < θ < 90◦.
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Theorem: Pythagorean Identities

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

1 + cot2 θ = csc2 θ

Review Exercises

The following projectile problems use the basic formula for the trajectory of the projectile given in
equation (6) in section 2.3:

y =
(
−16
v2

sec2 θ

)
x2 + (tan θ)x+ h for − 90◦ < θ < 90◦.

1) Use the Virtual Launcher to fire six darts at a fixed angle of 45◦ from a height of 2 ft. Based
on the average of the distances from the launcher of where the darts hit the ground, calculate the
launcher’s firing velocity. Check your answer by evaluating the variable “vreal”.

2) Using the firing velocity found in problem 1) above, calculate the angle(s) θ needed to hit a
target 18 ft away at a height 3 ft if the projectile is fired from a height of 3 ft. Check your answer
using the Virtual Tar-getter.

3) Use the Virtual Launcher to fire six darts at a fixed angle of 30◦ from a height of 5 ft. Based
on the average of the distances from the launcher of where the darts hit the ground, calculate the
launcher’s firing velocity. Check your answer by evaluating the variable “vreal”.

4) Using the firing velocity found in problem 3) above, calculate the angle(s) θ needed to hit a
target 6 ft away on the ground if the projectile is fired from a height of 1 ft. Check your answer
using the Virtual Tar-getter.

5) Suppose that θ, x = a, y = b, and h are given amounts. Solve the trajectory formula for v.

6) Suppose that the projectile is fired straight up into the air (θ = 90◦, see sections 2.3 and 2.4)
from a height of 1.5 ft, and it takes 3 seconds to hit the ground.

a) Calculate the firing velocity of the launcher.

b) Calculate the angle(s) θ needed to hit a target 20 ft away on the ground, fired from a height
of 1 ft. Check your answer using the Virtual Tar-getter.

c) Suppose that we miss the exact time of the dart in the air by ±0.25 seconds. How far off
could the measured firing velocity be? Using the shallow targeting angle, how far off could the
landing spot of the dart be from the intended target?

d) Repeat the analysis from (c) for a time error of ±0.1 seconds.
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7) Verify the following identities.

a)
1

1− sin θ
+

1
1 + sin θ

= 2 sec2 θ b)
(
tan2 θ + 1

) (
1− cos2 θ

)
= tan2 θ

c) tan θ + cot θ = sec θ csc θ d) sec θ + tan θ =
cos θ

1− sin θ

e) cos2 θ − sin2 θ = 2 cos2 θ − 1 f) cot2 θ
(
sec2 θ − 1

)
= 1
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Chapter 3: Circular Arc Length and Angular Velocity

MATH 117: Trigonometry

3.1 Arc Length Using Degree Measure

You may recall from your Geometry class that the ratio of the length around a circle,
called the circumference, to the diameter of the circle is always the same constant, which we
denote as π. If C denotes the circumference of a circle, and d denotes its diameter, then we
say that

π =
C

d
or π =

C

2r
, (1)

where r denotes the radius of the circle. We know that π is an irrational number (in spite
of being defined as a fraction! What’s up with that?!), roughly equal to

π ≈ 3.14159265358979323846264338328 . . . .

Given the definition of π in equation (1), it is easy to derive the formula for the circum-
ference of a circle:

C = πd or C = 2πr.

The question is, what if we want to calculate the length of only part of the way around the
circle?

The Measure of Arcs

In geometry, it is customary to denote an interval of a circle, called an arc, by either the
endpoints of the arc (if they are on the same half of the circle) or by three points in order
along the arc, topped by a small curve. See Figure 1 for an example of the notation. The
measure of the arc, denoted m(·) is the angle measure of the central angle (vertex at the
center of the circle) that circumscribes the arc. Again, see Figure 1 for an example of the
notation.

Notice that the measure of the arc does not directly provide us with the length of the
arc, although it does give us crucial information needed to find the length. If the radius of
the circle is r and the measure of the arc is φ degrees, then since the circle is equidistant
from the center, we have that the circular arc length s is given by

s = 2πr

Ç
φ

360◦

å
=

π

180◦
φr. (2)
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O

A

B

C

D
80◦280◦

Figure 1: The red arc is denoted ĀC, C̄A, ȦBC, or ĊBA. The blue arc is denoted ȦDC or

ĊDA. The measure of ĀC is m(ĀC) = 80◦ and the measure of ȦDC is m(ȦDC) = 280◦.

For example, if we assume that the radius of the circle in Figure 1 is 4 inches, then the length
of arc ĀC is

s =
π

180◦
(80◦)(4) =

16

9
π inches,

and the length of arc ȦDC is

s =
π

180◦
(280◦)(4) =

56

9
π inches.

Notice that the sum of the two lengths is 8π inches, the circumference of the circle.
While the formula for arc length in equation (2) is not that messy, we can certainly make

it easier by changing our unit of measure for measuring angles.
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3.1 Exercises

Use the following diagram in problems 1) through 6).

O

A

B

C

D

1) Given that OA = 3 in and m(ȦBC) = 120◦, find the arc length s of ȦBC.

2) Given that OA = 5 m and m(ȦBC) = 50◦, find the arc length s of ȦDC.

3) Given that OA = 8 ft and the arc length s of ȦBC is 8 ft, then find m(ȦBC).

4) Given that OA = 12 cm and the arc length s of ȦDC is 20 cm, then find m(ȦBC).

5) Given that m(ȦBC) = 75◦ and the arc length s is 4 in, then find the radius of the circle.

6) Given that m(ȦBC) = 250◦ and the arc length s is 10 m, then find the radius of the
circle.

7) Suppose that a ribbon is wrapped around the world at the equator. If the diameter
of the earth at the equator is 7,926 miles, and we decide to wrap a second ribbon around
the world which will be 1 ft off the ground all the way around, how much longer would the
second ribbon be than the first one?

8) Suppose that the space shuttle, in geosynchronous orbit 200 miles above Bowling Green,
leaves that position and travels 300 miles, still in its 200-mile-high orbit. If the shuttle is
now directly above point A on the surface of the earth, how far along the earth’s surface is
point A from Bowling Green? (The average diameter of the earth is 7,918 miles.)

Bowling Green

200 miles

A

300 miles
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3.2 Radian Measure

Let’s restate equation (2) for the arc length of a circular arc with radius r and degree
measure φ:

s =
π

180◦
φr =

Å π

180◦
φ
ã
r.

If we replace the expression
π

180◦
φ with a single value θ, then we have several nice conse-

quences. First, our formula for the circular arc length s of an arc with radius r and measure
θ in this new unit of measure is given will be given by

s = θr. (3)

Second, if we consider the unit circle where r = 1 unit, then the measure of the angle and the
circular arc length are the same (s = θ), except, of course, for the unit of measure. (There
are more nice consequences that we will merely foreshadow in this course, but will become
immediately evident when you take calculus.)

Therefore, we define the radian measure θ of an angle to be

θ =
π

180◦
φ, (4)

where φ is the degree measure of the angle. The circular arc length of an arc with radian
measure θ and radius r is given in equation (3). The radian measure of many angles that
we know the trigonometric values for are shown in the table below.

Angle Measure Radian Measure Angle Measure Radian Measure

0◦
π

180◦
(0◦) = 0 rad 90◦

π

180◦
(90◦) =

π

2
rad

30◦
π

180◦
(30◦) =

π

6
rad 180◦

π

180◦
(180◦) = π rad

45◦
π

180◦
(45◦) =

π

4
rad 270◦

π

180◦
(270◦) =

3π

2
rad

60◦
π

180◦
(60◦) =

π

3
rad 360◦

π

180◦
(360◦) = 2π rad

Since 180◦ = π rad, we can think of the conversion from degrees to radians, and likewise the
conversion from radians to degrees, as a unit cancellation problem using the ole’ “multiply-
by-one” trick, where we multiply by a fraction equal to 1 arranged so that the appropriate
units cancel.

Example: Convert 58◦ to radians.

58◦ = 58◦ · π rad

180◦
=

29π

90
rad ≈ 1.0123 rad
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Example: Convert 1 radian to degrees.

1 rad = 1 rad · 180◦

π rad
=

180

π

◦
≈ 57.2958◦

This example and Figure 2 illustrate the size of an angle with measure 1 radian.

1 rad

1 rad

1 rad

1 rad

1 rad
1 rad (2π − 6) radXXXXy

Figure 2

In spite of the fact that we just used radians as a unit in our unit cancellation trick, it
is important to note that, because of the way we defined the radian, it is really more of a
“non-unit”. Note that in the formula for arc length using degrees,

s =
π

180◦
φr,

we end up dividing the “degrees” out of the problem, leaving only a unit of length. In our
formula for arc length using radians, s = θr, we never divide out the unit “radians”, leading
one to think that the arc length should be given in “radians×(unit of length)”. In practice,
the radian is just an amount, although it is customary to put the notation “rad” or “radians”
if the context makes it clear that we are talking about the measure of an angle.

If we use radians as a measure of the arc, then the length of the arc is much more
straight-forward.

Example: Find the arc length of the arc with measure
4π

9
in a circle of radius 4.

Using equation (3) with θ =
4π

9
and r = 4, we have

s =

Ç
4π

9

å
(4) =

16

9
π.

Note that
4π

9
rad = 80◦, and that this solution is consistent with the example from the

previous section.
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3.2 Exercises

Convert the following degree measures to radians, exactly if possible, and then accurate to
three decimal places.

1) 35◦ 2) 150◦ 3) 240◦ 4) 200◦

Convert the following radian measures to degrees, exactly if possible, and then accurate to
two decimal places.

5) 5π
4

rad 6) 2 rad 7) 7π
12

rad 8) 1.3 rad

Use the following diagram in problems 9) through 14).

O

A

B

C

D

9) Given that OA = 3 in and m(ȦBC) =
2π

3
, find the arc length s of ȦBC.

10) Given that OA = 5 m and m(ȦBC) =
5π

18
, find the arc length s of ȦDC.

11) Given that OA = 8 ft and the arc length s of ȦBC is 8 ft, then find m(ȦBC) in
radians.

12) Given that OA = 12 cm and the arc length s of ȦDC is 20 cm, then find m(ȦBC) in
radians.

13) Given that m(ȦBC) =
5π

12
and the arc length s is 4 in, then find the radius of the

circle.

14) Given that m(ȦBC) =
25π

18
and the arc length s is 10 m, then find the radius of the

circle.
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3.3 Building a SpirographTM

You may have had a SpirographTM when you were a child. The idea is that you have one
large circle with gear cogs that you lay over a piece of paper, and smaller circular gears that
roll around against the large circle. The smaller gears have holes that you insert a pencil
or pen through, resulting in a very nice design that would be nearly impossible to draw
otherwise. See Figure 3 for an illustration of the gears and some of the designs that can be
drawn using the SpirographTM.

Figure 3: Top left, the gear design of the SpirographTM; all others, designs that could be
drawn using the SpirographTM.

The question we would like to look at is, how can we describe and draw curves like this
mathematically instead of mechanically? The curves are definitely not functions in the usual
sense of the word (that is, they do not pass the vertical line test). How can our knowledge
of circular arc length help with this problem?

The Theory

Let’s model the situation as accurately, but as simply, as possible. The SpirographTM gears
are necessary to keep the inside gear from slipping as the design is being drawn, but in an
abstract setting, we could certainly use circles, as illustrated in Figure 4, and simply not
allow the circles to slip. Also, the SpirographTM gears only have a finite number of holes
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Figure 4: Replacing the gears with circles.

to put your pen into to construct a curve. We can allow for the pen to be inserted at any
distance from the center of the small, inner circle.

Without loss of generality, let the outer circle have radius 1 unit, and let the inner circle
have radius r, with 0 ≤ r < 1. Let k denote the distance from the center of the small circle
that we insert our pen, so that 0 ≤ k < r. The one guiding principle in our model is that,

θ φ

k

r

1
θ

θ

Figure 5

as we rotate the inner circle along the outer circle, the arc length covered by both must be
equal. Let θ be the radian measure of the arc on the outer circle from the starting point to
some arbitrary point where we have rotated the inner circle, and let φ be the radian measure
of the arc on the inner circle. Then the arc length on the outer circle, s = θ(1) = θ, will
equal the arc length on the inner circle, so that

s = φr = θ.

Thus, we know immediately that

φ =
θ

r
.
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Let’s roll the small circle in Figure 5 up to the other end of the arc on the large circle,
as shown in Figure 6. For any chosen values for r and k, we want to be able to describe

θ

k

r

1

θ

r

Figure 6

the location of the “pen point” in terms of the angle θ. The easiest way to do this is by
developing formulas for both the x and y components of the position, called parametric
equations, similar to the way that we developed the formula for a projectile in motion in
Chapter 2. And since there are two circles to consider in the problem, we will consider the
x and y contributions from each of them separately.

Let’s consider the position of the center of the small circle, which is 1 − r units away
from the center of the big circle, as shown in Figure 7. Let x1 and y1 be the horizontal

θ

y1

r

x1

θ

r

1− r

Figure 7

and vertical components of the center of the small SpirographTM. Then, based on the right
triangle definitions of sine and cosine, we know that the center of the small circle is located
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at (x1, y1), where

x1(t) = (1− r) cos θ and y1(t) = (1− r) sin θ.

Notice that the small circle does not get rotated the full φ =
θ

r
radians, and that it is

actually spun in a clockwise direction, which we would consider a negative angle. Thus, the

θ

θ

PPPi
k

r

1

θ

r
− θ

x2

y2

Figure 8

horizontal and vertical components x2 and y2, respectively, from the center of the small circle
to the pen point are

x2(t) = k cos

Ç
−
Ç
θ

r
− θ
åå

= k cos

Ç
1− r
r

θ

å
and

y2(t) = k sin

Ç
−
Ç
θ

r
− θ
åå

= −k sin

Ç
1− r
r

θ

å
,

respectively.
So adding both the horizontal components x1 and x2 and then the vertical components

y1 and y2 gives us the parametric equations for (x(t), y(t)), the position of the pen point,

x(t) = (1− r) cos θ + k cos

Ç
1− r
r

θ

å
and y(t) = (1− r) sin θ − k sin

Ç
1− r
r

θ

å
. (5)

The following examples show the result of using the parametric equations in (5) to design
SpirographTM curves.

Example: Draw the SpirographTM curve where the radius of the small gear is one-third
that of the big circle and the pen point is 7

30
the big radius from the center of the small gear.

In this case, we let r = 1
3

and k = 7
30

. Using the equations in (5), the parametric equations
for the curve will be

x(t) =

Ç
1− 1

3

å
cos θ +

7

30
cos

(
1− 1

3
1
3

θ

)
=

2

3
cos θ +

7

30
cos(2θ)
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and

y(t) =

Ç
1− 1

3

å
sin θ − 7

30
sin

(
1− 1

3
1
3

θ

)
=

2

3
sin θ − 7

30
sin(2θ).

Letting t run from 0 to 2π, we get the curve shown in Figure 9.

Figure 9

We may graph the curve on a graphing calculator or by using symbolic manipulation
software. On a TI graphing calculator, we will need to go into PAR mode (for “parametric”)
and RADIAN mode. We may have to set the minimum and maximum values of both x
and y in the viewing window, as well as the minimum and maximum values of t used in
generating the graph. The MathematicaTMfile spirograph.nb on the course webpage contains
code to generate the curve, as well as an animation of the curve being drawn with a SpirographTM.
(The movie file spirograph.mov on the course webpage, which shows the curve at the bottom-right
of Figure 3 being drawn, was made using this code.)

Example: Draw the SpirographTM curve where the radius of the small gear is 6
11 that of the big

circle and the pen point is 4
11 the big radius from the center of the small gear.

In this case, we let r = 6
11 and k = 4

11 . Using the equations in (5), the parametric equations for
the curve will be

x(t) =
Å

1− 6
11

ã
cos θ +

4
11

cos
Ç

1− 6
11

6
11

θ

å
=

5
11

cos θ +
4
11

cos
Å5

6
θ

ã
and

y(t) =
Å

1− 6
11

ã
sin θ − 4

11
sin
Ç

1− 6
11

6
11

θ

å
=

5
11

sin θ − 4
11

sin
Å5

6
θ

ã
.

Letting t run from 0 to 2π, we get the curve shown on the left in Figure 10. To complete the
figure, we need to spin it around 5 more times, so we let t run from 0 to 12π. The completed curve
is shown on the right in Figure 10. Can you develop a general rule for how many times around
the circle we have to spin the small gear in order to complete the curve? (See problem 7) in the
homework.)

It is important to point out that if we wanted to scale the whole process to a larger circle, say
of radius 2 instead of 1, then we only need to multiply x(t) and y(t) in equation (5) by the radius
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Figure 10

of the new circle. The values r and k would become the ratios of the gear ratio and distance to the
pen-point, respectively, to the new outer gear radius.

3.3 Exercises

In exercises 1) through 6), give the parametric equations that would draw SpirographTM curves
inside a circle of radius 1 with a smaller, inner gear of radius r using the pin-point at distance
k from the center of the gear. Then graph each curve using a graphing calculator, your own
MathematicaTMcode, or the code in the file spirograph.nb. Determine the value p needed so that
0 ≤ θ ≤ p gives the complete curve.

1) r =
1
2

, k =
1
4

2) r =
3
7

, k =
1
5

3) r =
5
7

, k =
3
7

4) r =
2
3

, k =
1
3

5) r =
13
23

, k =
1
2

6) r =
25
47

, k =
1
4

7) Graph the curves as above with r =
n

5
, n = 1, 2, 3, 4, and k = 1

8 .

a) Speculate as to a formula for the smallest value p such that θ in the range 0 ≤ θ ≤ p gives
the complete graph.

b) Repeat the experiment with r = n
6 , n = 1, 2, 3, 4, 5, with k any value so that 0 ≤ k < r.

Revise your formula for p if necessary.
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8) The requirement that k is strictly less than r comes from the fact that, in a real SpirographTM,
the pen-point cannot be on the outer edge of the inner gear. However, in our model, we can set
k = r.

a) Graph the SpirographTM (sort of) curves with r = 1
n , n = 2, 3, 4, 5, and k = r. Describe the

types of curves created.

b) Graph the SpirographTM (sort of) curves with r = 1
n and then r = n−1

n , each time with
k = r, for n = 3, 4, 5, 6. For each value of n, describe the two curves and compare them to each
other.

9) Graph SpirographTM curves with rational r, 1
2 < r < 1 (you pick the values), and with k = 1−r.

Describe the types of curves created. How are the graphs dependent upon your choice of r?

10) Graph SpirographTM curves with irrational r, 0 < r < 1 (you pick the values), and with any
value k, 0 ≤ k ≤ r. What is the value p (if it exists) such that 0 ≤ θ ≤ p renders the entire graph?
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3.4 Angular Velocity

Now that we have connected the ideas of angle/arc measure and the length of the circular arc,
it only makes sense to connect the ideas of speed of angle change and the speed of the arc length
change. Linear velocity is defined as

linear velocity =
change in distance or length

change in time
.

Note that we do not necessarily have to be moving in a line to have a change in distance or length,
so linear velocity could be velocity along a curve or arc. An analogous definition of angular velocity
would be

angular velocity =
change in measure of an angle

change in time
.

In circles, each point is equidistant from the center, so the radius r will not change. However,
a change in the angle will cause a change in the arc length; that is, using the radian formula for
arc measure in (3), if

s1 = θ1r and s2 = θ2r,

then
s2 − s1 = θ2r − θ1r = (θ2 − θ1)r, or 4s = (4θ)r.

Then
linear velocity =

4s
4t

=
(4θ)r
4t

=
4θ
4t

r = angular velocity× r.

Although our formula is dependent upon measuring the angle in radians, we are typically less
interested in measuring radians per unit of time or even degrees per unit of time than in measuring
revolutions per unit of time. This will usually cause us to have to perform a unit conversion
somewhere in our work, with 1 rev = 2π rad.

Example: A mechanically-inclined person decides to build a go-cart, using an old lawnmower
engine for the go-cart engine. The engine is designed to turn its shaft at a maximum of 600 rpm
(revolutions per minute). Assuming that the crankshaft to axle ratio is 1:1 (geared to turn at the
same speed) and that the tires powered by the engine are 9 inches in diameter (and that the engine
has enough power to turn the wheels – another topic altogether), what will be the top speed of the
go-cart in mph?

Let’s start by converting 600 rpm to radians-per-minute:

600 rpm =
600 rev

min
· 2π rad

1 rev
= 1200π

rad
min.

This is the angular velocity of the crankshaft, which will equal the angular velocity of the axle.

The radius of the tires attached to that axle is
9
2

= 4.5 inches, so the linear velocity of the tire is

1200π
min

(4.5 in) = 5400π
in

min.

Lastly, we convert this into miles-per-hour:

5400π
in

min
=

5400π in
min

· 60 min
1 hr

· 1 mile
5280 ft

· 1 ft
12 in

=
225π
44

miles
hr
≈ 16.06 mph.
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Example: The wheels on a small car are 15 inches in diameter. If the car is moving at 60 mph,
what is the angular velocity of the wheels in revolutions-per-minute?

We have two units of length being used in the statement of the problem, so we need to convert
our amounts to one of those two units of length. Since we are wanting to end up with revolutions
per minute, it makes sense to convert miles-per-hour to inches-per-minute, to help avoid some very
large numbers:

60 mph =
60 miles

hr
· 1 hr

60 min
· 5280 ft

1 mile
· 12 in

1 ft
= 63360

in
min.

Also, since the diameter is 15 inches, then the radius r = 7.5 inches. Then we solve the following
equation for the angular velocity, which I will denote with ω:

63360
in

min
= ω · 7.5 in

ω =
63360 in

min
· 1

7.5 in
=

8448
min

.

Lastly, we need to convert our radians-per-minute answer to a revolutions-per-minute answer:

ω =
8448
min

· 1 rev
2π

=
4224
π

rev
min

≈ 1344.54 rpm.

3.4 Exercises

1) Suppose that a fly-wheel with radius r attached to a small motor is spinning at ω revolutions-
per-minute (rpm). In each of the following cases, find the linear velocity v in the given units of a
point on the outer edge of the fly-wheel.

a) r = 4 cm, ω = 200 rpm; m/s b) r = 3.5 in, ω = 400 rpm; ft/s

c) r = 2 in, ω = 360 rpm; ft/s d) r = 55 mm, ω = 600 rpm; m/s

2) Suppose that a car or truck with a front-left tire of diameter d is traveling at v mph. In each
of the following cases, find the angular velocity ω in rpm’s of the front-left tire.

a) d = 19 in, v = 55 mph b) d = 20 in, v = 70 mph

c) d = 15 in, v = 65 mph d) d = 24 in, v = 35 mph
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3) Have you ever wondered why space shuttle launches take place in the southern part of the
United States, and why after an initial vertical launch, they turn and track to the east? Given that
the earth has a diameter of 7,926 miles at the equator, find the linear velocity in mph of an object
at the equator due to the rotation of the earth.

-

N

S

4) Let’s assume that the earth is in a circular orbit around the sun with radius 93 million miles.
(This is blatantly false – the earth is in an elliptical orbit around the sun – but the ellipse is nearly
circular, with the radius at the major and minor axes only differing by 3% of the average radius.)
Remember that one year is approximately 365.25 days, taking into account leap years. How fast
is the earth moving in mph in its orbit around the sun? (The illustration below is not drawn to
scale.)

93,000,000 miles
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3.5 The Tricked-Out Truck

A middle-aged mathematician, in an effort to seem cool, decided to trick-out his truck, by
painting it with flames down the sides, installing neon lights under the chassis, adding a taller
suspension package, and replacing his old 24-inch tires with new 36-inch whitewalls. It didn’t work,
and even worse, now his speedometer is incorrect, due to the larger wheels. Rather than spend
even more money getting the speedometer fixed, can we figure out how to find his actual speed
based on the speed his speedometer is telling him?

What a sad situation. The only bright side is that he is a mathematician, so all is not lost. Let
v be the actual speed of the truck, and let ṽ be the reading on the speedometer. Before messing
with the size of his tires, these amounts were the same, v = ṽ. Now, even though the angular
velocity for a certain speed has stayed the same according to the speedometer, since the radius is
larger, the linear speed is larger, too. The question is, how much larger? Is the amount constant,
as shown in Figure 11? This seems unlikely, since when the speedometer is reading 0 mph, his

ṽ

v

Figure 11

actual speed would be some positive amount, and we would expect any positive linear velocity to
have a positive angular velocity for the tires, hence a positive reading on the speedometer. Most
likely, both the speedometer reading and the actual speed would be equal to 0 when the truck was
not moving, and then become different as the truck started to move. But how will they differ?
Will the difference increase at a constant rate, as on the left in Figure 12, or will the difference in
reported speed and actual speed grow exponentially, as on the right in Figure 12?

Modelling the Tricked-Out Truck

Suppose the speedometer is reading ṽ mph, and let ω be the angular velocity needed to get that
reading. Then first we must realize that the radius

12 in = 12 in · 1 mile
5280 ft

· 1 ft
12 in

=
1

5280
mile.

Then we can solve for ω:
ṽ = ω · 1

5280
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ṽ

v

ṽ

v

Figure 12

ω = 5280ṽ.

Then, we perform the same unit conversion on the new tire radius

18 in = 18 in · 1 mile
5280 ft

· 1 ft
12 in

=
1

3520
mile,

and substitute both into the linear velocity formula:

v = ωr = 5280ṽ
1

3520
=

3
2
ṽ.

Therefore, to know his actual speed, he just needs to divide by 2, and then multiply by 3. The
actual graph of the actual speed in terms of the speedometer reading is shown in Figure 13.
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ṽ

v

Figure 13
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3.5 Exercises

1) Rework the “tricked-out truck” problem with the old tire diameter being 20 inches, and the
new tires being 30 inches in diameter. Find the formula for converting the speedometer speed to
the actual speed.

2) Rework the “tricked-out truck” problem with the old tire diameter being 19 inches, and the
new tires being 24 inches in diameter. Find the formula for converting the speedometer speed to
the actual speed.

3) You may be noticing a pattern with the example in the section and the two previous problems.
Rework the “tricked-out truck” problem with the old tire diameter being a inches, and the new
tires being b inches in diameter. Find the general formula for converting the speedometer speed to
the actual speed.
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3.6 Review: What have we learned (or relearned)?

Theorem: Circular Arc Length (Degrees) The arc length s with measure φ degrees along a
circle of radius r is given by

s =
π

180◦
φr.

Definition: Radians The radian measure θ of an angle with degree measure φ is given by

θ =
π

180◦
φ.

Theorem: Circular Arc Length (Radians) The arc length s with measure θ radians along a
circle of radius r is given by

s = θr.

Theorem: SpirographTM Curves The parametric equations for SpirographTM curves where the
inner gear has radius r that of the outer gear, 0 < r < 1, and the distance of the pen point from
the center of the small gear is k the radius of the outer gear, k ≤ r, are

x(t) = (1− r) cos θ + k cos
Å1− r

r
θ

ã
and y(t) = (1− r) sin θ − k sin

Å1− r
r

θ

ã
.

θ φ

k

r

1
θ

θ

Definition: Linear Velocity Linear velocity v is the ratio of the change in distance 4d to the
change in time 4t,

v =
4d
4t

.

Definition: Angular Velocity Angular velocity ω is the ratio of the change in angle 4θ to the
change in time 4t,

v =
4θ
4t

.
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Theorem: Linear Velocity of a Spinning Wheel The linear velocity v of a circle of radius r
spinning at angular velocity ω radians per unit of time is given by

v = ωr.

Review Exercises

1) A communications satellite is in geosynchronous orbit 250 miles above the earth. If we assume
that the satellite is 2500 miles from the earth’s axis of rotation, how many miles will the satellite
travel each day relative to the earth?

2) Recall that the earth is in a (roughly) circular orbit around the sun, with radius 93 million
miles, and that a year is approximately 365.25 days. Light from the sun takes 8 minutes, 19 seconds
to reach the earth.

a) Find both the degree and radian measure of the angle the earth moves in its orbit around
the sun during the time that light travels from the sun to the earth.

b) How many miles does the earth travel around the sun during that time?

3) Recall that 1 radian ≈ 57.30◦. If we start to travel around a circle in increments of 1 radian,
will we ever land at our starting point? If so, give the number of radians needed. If not, explain
why.

4) Given that the angle measure of an arc is k radians and the length of that arc is 2k feet, what
is the radius of the circle that contains the arc?

5) Find the parametric equations that will draw a SpirographTM curve with an inner gear of
radius two-thirds that of the outer gear, and pen-point radius on the small gear that is one-third
that of the outer gear. Graph the curve using either your graphing calculator or MathematicaTM.

6) Find parametric equations that will draw a 12-petal rose where all of the petals meet in the
center of the graph, along with the range of θ needed to draw the complete graph. Graph the curve
using either your graphing calculator or MathematicaTM.
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7) Suppose that you want to draw a five-pointed “throwing” star, with arcs connecting the points
as shown below.

-0.5 0.5 1.0

-0.5

0.5

a) Find the parametric equations and the appropriate range of θ that will draw the star in a
counterclockwise direction.

b) Find the parametric equations and the appropriate range of θ that will draw the same star
in a clockwise direction.

8) If a tractor with 52-inch diameter back tires is moving at 25 mph, how many rpm’s are the
back tires turning?

9) The moon has a diameter of 2,159 miles, while the earth has a diameter of 7,918 miles. The
average center-to-center distance between the earth and the moon is 238,863 miles. The moon
makes a complete orbit around the earth every 27.3 days. How fast is the moon moving in its orbit
around the earth (in mph)?

10) Suppose that you buy a “tricked out” truck, like the one built in Section 3.5, and you want to
put the original size tires back on the truck. You take the truck out on the interstate, and drive it
at a constant “60 mph” according to the speedometer, but it only takes 45 seconds to drive between
two mile markers. If the truck has 32-inch diameter wheels on it now, what was the truck’s original
tire size to which the speedometer is still set?
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Chapter 4: Trigonometric Functions as Functions

MATH 117: Trigonometry

4.1 Introduction

We have previously defined and discussed all of the trigonometric functions without
making light of one simple fact: they are functions! That is, for every angle we plug in to
one of these things, we get one value out of them. In algebra, when we were given a function
f(x), we were able to evaluate it at any value x that we wanted, and then graph it. We only

know the values for the trigonometric functions at very select values: multiples of 30◦ (or
π

6
radians), and at multiples of 45◦ (or

π

4
radians). See the table below with the values of the

trigonometric functions for the acute angles and π
2
. (The other non-acute angles would be

plus/minus versions of these values, correct?)

θ sin θ cos θ tan θ cot θ sec θ csc θ

0 = 0◦ 0 1 0 undef. 1 undef.

π
6

= 30◦ 1
2

= 0.5
√

3
2
≈ 0.886 1√

3
≈ 0.557

√
3 ≈ 1.732 2√

3
≈ 1.155 2

π
4

= 45◦ 1√
2
≈ 0.707 1√

2
≈ 0.707 1 1

√
2 ≈ 1.414

√
2 ≈ 1.414

π
3

= 60◦
√

3
2
≈ 0.886 1

2
= 0.5

√
3 ≈ 1.732 1√

3
≈ 0.557 2 2√

3
≈ 1.155

π
2

= 90◦ 1 0 undef. 0 undef. 1

We can improve this to multiples of π
12

= 15◦ by using the sum and difference formulas
from Chapter 1. Note that π

4
− π

6
= π

12
, and recall that

sin(α− β) = sinα cos β − cosα sin β and cos(α− β) = cosα cos β + sinα sin β.

Then
sin

π

12
= sin

(π
4
− π

6

)
= sin

π

4
cos

π

6
− cos

π

4
sin

π

6

sin
π

12
=

1√
2
·
√

3

2
− 1√

2
· 1

2
=

√
3− 1

2
√

2

sin
π

12
=

√
3− 1

2
√

2
·
√

2√
2

=

√
6−
√

2

4
≈ 0.259,
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and also
cos

π

12
= cos

(π
4
− π

6

)
= cos

π

4
cos

π

6
+ sin

π

4
sin

π

6

cos
π

12
=

1√
2
·
√

3

2
+

1√
2
· 1

2
=

√
3 + 1

2
√

2

cos
π

12
=

√
3 + 1

2
√

2
·
√

2√
2

=

√
6 +
√

2

4
≈ 0.966.

Then using the cofunction identities

sin θ = cos
(π

2
− θ
)

and cos θ = sin
(π

2
− θ
)
,

we have that

sin
5π

12
= sin

(π
2
− π

12

)
= cos

π

12
=

√
6 +
√

2

4
≈ 0.966

and

cos
5π

12
= cos

(π
2
− π

12

)
= sin

π

12
=

√
6−
√

2

4
≈ 0.259.

The rest of the trigonometric function values for these angles can be deduced from the sine
and cosine values (left as an exercise). These values are plotted in Figure 1. They give a

Π

4

Π

2

3 Π

4
Π

5 Π

4

3 Π

2

7 Π

4
2 Π
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-0.5

0.5

1.0

Π

4

Π

2

3 Π

4
Π

5 Π

4

3 Π

2

7 Π

4
2 Π

-1.0

-0.5

0.5

1.0

sine values

cosine values

Figure 1

pretty good indication as to what the graphs of sine and cosine look like.
So we are left with a couple of questions. Can we calculate the values of things like sin 5◦

exactly? And what do the graphs of all of the trigonometric values look like? We will try to
tackle these questions in the following sections.
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4.1 Exercises

1) Verify again that sin
π

12
= sin 15◦ =

√
6−
√

2

4
using the difference formula for sine and

the fact that
π

12
=
π

3
− π

4
.

2) Verify again that cos
π

12
= cos 15◦ =

√
6 +
√

2

4
using the difference formula for cosine

and the fact that
π

12
=
π

3
− π

4
.

3) Verify again that sin
5π

12
= sin 75◦ =

√
6 +
√

2

4
using the sum formula for sine and the

fact that
5π

12
=
π

4
+
π

6
.

4) Verify again that cos
5π

12
= cos 75◦ =

√
6−
√

2

4
using the sum formula for cosine and the

fact that
5π

12
=
π

4
+
π

6
.

5) Given the sine and cosine values for
π

12
and

5π

12
(equivalently, 15◦ and 75◦), find the

sine and cosine values for
7π

12
,

11π

12
,

13π

12
,

17π

12
,

19π

12
, and

23π

12
(equivalently, 105◦, 165◦, 195◦,

255◦, 285◦, and 345◦.

6) In order to find the value that is kth, 0 ≤ k ≤ 1, of the way from a to c, we use the
formula

a(1− k) + ck. (1)

a c

�
��	

kth

(Notice that, for k = 0, the formula gives a, that for k = 1, the formula gives c, and that, for

k = 1
2
, the formula gives

a+ c

2
, the average of a and c.) Use formula (1) to find the following

values.

a)
2

3
of the way from 0 to

π

12
b)

1

3
of the way from

5π

12
to

π

2

80



7) We may generalize the formula in (1) to points. In order to find the value that is kth,
0 ≤ k ≤ 1, of the way along the line segment from (a, b) to (c, d), we use the formula

(a(1− k) + ck, b(1− k) + dk) . (2)

Use formula (2) to find the following values. In each case, plot the points on a graph to
visually verify the results.

a)
2

3
of the way from (0, 0) to (3, 6) b)

1

2
of the way from

(
π

6
,
1

2

)
to
(π

2
, 1
)

8) We may use formula (2) to approximate a function between known points on its graph.

(a(1− k) + ck, b(1− k) + dk)

(a, b)

(c, d)

A
A
A
A
A
AU

kth

error
A
A
A
A
A
AK

a) Since sin 0 = 0 and sin
π

12
=

√
6−
√

2

4
, we can approximate the value of sin

π

18

(or sin 10◦) by finding the point on the line segment that is
2

3
of the way from (0, 0) to(

π

12
,

√
6−
√

2

4

)
, using equation (2). (You verified that

π

18
was

2

3
of the way from 0 to

π

12

in problem 6a) above.) Compare the y-coordinate of your answer to your calculator’s value

for sin
π

18
, and calculate the absolute value of the difference in the two results, rounded to

four decimal places.

b) Since cos 0 = 1 and cos
π

12
=

√
6 +
√

2

4
, we can approximate the value of cos

π

18

(or cos 10◦) by finding the point on the line segment that is
2

3
of the way from (0, 1) to(

π

12
,

√
6 +
√

2

4

)
, using equation (2). Compare the y-coordinate of your answer to your

calculator’s value for cos
π

18
, and calculate the absolute value of the difference in the two

results, rounded to four decimal places.
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c) Since sin
5π

12
=

√
6 +
√

2

4
and sin

π

2
= 1, we can approximate the value of sin

4π

9
(or

sin 80◦) by finding the point on the line segment that is
1

3
of the way from

(
5π

12
,

√
6 +
√

2

4

)
to
(π

2
, 1
)

, using equation (2). (You verified that
4π

9
was

1

3
of the way from

5π

12
to

π

2
in

problem 6b) above.) Compare the y-coordinate of your answer to your calculator’s value for

sin
4π

9
, and calculate the absolute value of the difference in the two results, rounded to four

decimal places.

d) Since cos
5π

12
=

√
6−
√

2

4
and cos

π

2
= 0, we can approximate the value of cos

4π

9
(or

cos 80◦) by finding the point on the line segment that is
1

3
of the way from

(
5π

12
,

√
6−
√

2

4

)
to
(π

2
, 0
)

, using equation (2). Compare the y-coordinate of your answer to your calculator’s

value for cos
4π

9
, and calculate the absolute value of the difference in the two results, rounded

to four decimal places.
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4.2 Sines, Cosines, and Tangents from the Unit Circle

In a previous chapter, we correctly defined the sine and cosine by taking a point (x, y)

on the terminal ray of the angle θ at a distance of r =
√
x2 + y2 from the origin, and let

sin θ =
y

r
and cos θ =

x

r
.

This allowed us to use our reference triangles to calculate the different values for the sine
and cosine. However, we can simplify this process by fixing the radius of all of our points to
r = 1, so that all of our points fall on the unit circle. If we fix r = 1, then

sin θ = y and cos θ = x.

The Unit Circle

If we fix the radius to 1, then the x- and y- coordinates of points on the unit circle become
the cosine and sine, respectively, of the angles whose terminal rays intersect the points, as
shown in Figure 2.

θ

θ
(cos θ, sin θ)

Figure 2

This is a great tool for helping to remember when the sine and cosine are positive or
negative – we just have to remember in which quadrant the angle falls! Also, we just have
to remember a few coordinates from the first quadrant (really just 0 ≤ θ ≤ π

4
), and we can

find the other points by reflecting across the axes and diagonals. The complete unit circle,
showing the coordinates for all points on the circle at integer multiples of π

12
= 15◦, appears

in Figure 3. The animations unitcircle.nb and unitcircle.mov give the decimal x- and
y-coordinates for points on the unit circle at integer degree increments.

Lastly, defining the sine and cosine in terms of the unit circle gives us a useful way of
generating a continuous graph of both the sine and the cosine functions.
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Figure 3 – The Unit Circle

The Sine of an Angle θ

In order to draw the sine function, think about a point moving around the unit circle
that corresponds to the angle (or arc length) θ, and plot the angle on the horizontal axes
versus the y-value of the point on the vertical axes. The process is illustrated in Figure 4,
and a full animation, sine.mov or sine.nb, of the point moving from −π to 2π can be found
on the class webpage. The path follows the footsteps that we plotted in Figure 1.

Notice that the function repeats itself every 2π radians, or every revolution around the
circle. We call a function with this property periodic, and the distance over which it repeats
is called the period. Specifically, we say that a function is periodic with period p if f(x+p) =
f(x) for all x. We will see that, since the trigonometric functions can be modeled with the
unit circle, they are all periodic, although not all have the period 2π. We also notice that the
function fluctuates between −1 and 1. We say that the sine function sin θ has amplitude 1.
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−π −π
2

π
2

π 3π
2

2π

−1

1

Figure 4: The sine function.

The Cosine of an Angle θ

In order to draw the cosine function, think about a point moving around the unit circle
that corresponds to the angle (or arc length) θ, and plot the angle on the horizontal axes
versus the x-value of the point on the vertical axes. The process is illustrated in Figure 5,
and a full animation, cosine.mov or cosine.nb, of the point moving from −π to 2π can be
found on the class webpage.

−π −π
2

π
2

π 3π
2

2π

−1

1

Figure 5: The cosine function.

As with the sine function, we see that the cosine function follows the footprints that we
plotted in Figure 1, and that cos θ is periodic with period 2π and amplitude 1.
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The Tangent of an Angle θ

As mentioned at the beginning of this section, in the unit circle, we have

sin θ = y and cos θ = x.

Therefore, the slope of the line through the origin (0, 0) and through the point (x, y) on the
unit circle is

m =
y − 0

x− 0
=
y

x
=

sin θ

cos θ
= tan θ.

In order to draw the tangent function, think about a point moving around the unit circle
that corresponds to the angle (or arc length) θ, and plot the angle on the horizontal axes
versus the slope of the line through the origin and the point on the vertical axes. The process
is illustrated in Figure 6, and a full animation, tan1.mov or tan1.nb, of the point moving
from −π to 2π can be found on the class webpage. Note that the concept of an amplitude is

−π π 2π

−3

3

Figure 6: The tangent function.

no longer valid here, since the tangent ranges from −∞ to ∞. Also note that although the
sine and the cosine have period 2π, the tangent has period π.
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4.2 Exercises

1) The unit circle in Figure 3 gives us the exact sine and cosine values for angles of ra-

dian measure 0,
π

12
, . . . ,

π

2
. Find the exact tangent values for angles of radian measure

0,
π

12
, . . . ,

π

2
, if they exist.

2) Find the exact cotangent values for angles of radian measure 0,
π

12
, . . . ,

π

2
, if they exist.

3) Find the exact secant values for angles of radian measure 0,
π

12
, . . . ,

π

2
, if they exist.

4) Find the exact cosecant values for angles of radian measure 0,
π

12
, . . . ,

π

2
, if they exist.

5) The graphs of the sine and cosine functions in Figures 4 and 5 with respect to θ radians
are drawn to scale, meaning that the distance from 0 to 1 is the same on both axes. A
tangent line is a line at a point of a curve that reflects the general direction of the curve at
that point. We do not know how to calculate the slope of a tangent line, but we do know

how to calculate the slope of a line through the points (x1, y1) and (x2, y2): m =
y2 − y1

x2 − x1

.

a) Estimate the slope of the tangent line to sin θ at θ = 0 radians by finding the slope of
the line through the points (0, 0) and (h, sinh) for h = 10−6 radians. Compare this value to
the value of cos 0.

b) Estimate the slope of the tangent line to sin θ at θ =
π

2
radians by finding the slope of

the line through the points
(π

2
, 1
)

and
(π

2
+ h, sin

(π
2

+ h
))

for h = 10−6 radians. Compare

this value to the value of cos
π

2
.

c) Estimate the slope of the tangent line to sin θ at θ = π radians by finding the slope
of the line through the points (π, 0) and (π + h, sin (π + h)) for h = 10−6 radians. Compare
this value to the value of cos π.

d) Estimate the slope of the tangent line to cos θ at θ = 0 radians by finding the slope
of the line through the points (0, 1) and (h, cosh) for h = 10−6 radians. Compare this value
to the value of sin 0.
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e) Estimate the slope of the tangent line to cos θ at θ =
π

2
radians by finding the slope of

the line through the points
(π

2
, 0
)

and
(π

2
+ h, cos

(π
2

+ h
))

for h = 10−6 radians. Compare

this value to the value of sin
π

2
.

f) Estimate the slope of the tangent line to cos θ at θ = −π
2

radians by finding the slope

of the line through the points
(
−π

2
, 0
)

and
(
−π

2
+ h, cos

(
−π

2
+ h
))

for h = 10−6 radians.

Compare this value to the value of sin
(
−π

2

)
.

6) The graphs of the sine and cosine functions, shown below at top and at bottom, respec-
tively, with respect to φ degrees, are drawn to scale.

-180 -90 90 180 270 360

-180 -90 90 180 270 360

a) Estimate the slope of the tangent line to sinφ, where φ is in degrees, at φ = 0◦ by
finding the slope of the line through the points (0, 0) and (h, sinh) for h = 10−6◦. Compare
this value to the value of cos 0◦.

b) Estimate the slope of the tangent line to cosφ, where φ is in degrees, at φ = 90◦

by finding the slope of the line through the points (90, 0) and (90 + h, cos (90 + h)) for
h = 10−6◦. Compare this value to the value of sin 90◦.
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4.3 Combining the Functions

Curious things begin to happen when we start adding, subtracting, multiplying and
dividing the sine and cosine functions.

Identity for the Sine of a Doubled Angle

Suppose that we multiply the sine and cosine functions, by multiplying the individual func-
tion values at each value of θ. This process is illustrated in Figure 7, and a full animation,
sinecosine.nb or sinecosine.mov, of the process with θ ranging from −π to 2π can be
found on the class webpage. Notice that the resulting function

−π −π
2

π
2

π 3π
2

2π

−1

1

×

=

Figure 7: The values from the sine function at top are multiplied by the values of the
cosine function in the middle, resulting in the periodic function at the bottom.

• is 0 whenever either of the sine or cosine functions is 0,

• has maximums and minimums when the sine and cosine are ± 1√
2

, and
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• follows the sign rules for multiplication; that is, positive when both have the same sign,
and negative when the signs are different.

If the resulting curve looks familiar, it should. It is a sine function, like the one at the
top of Figure 7, although with a period of π instead of 2π, and with amplitude 1

2
instead of

1. In algebra, we learned that the graph of a function

af(cx)

is just the graph of f(x) stretched horizontally by factor of 1
c

and vertically by a factor of
a. Since the amplitude of the new curve is 1

2
, then in this case, a = 1

2
. Also, since the new

period is π, then in this case,

π =
1

c
· 2π,

and so,

c =
2π

π
= 2.

Thus, the formula for our new curve would be

1

2
sin(2θ),

and we have a new identity for the sine of twice an angle:

sin(2θ) = 2 sin θ cos θ. (3)

We can verify equation (3) algebraically, using our sum formula for sine:

sin(2θ) = sin(θ + θ) = sin θ cos θ + cos θ sin θ

sin(2θ) = 2 sin θ cos θ.

Time Out!

The following observation has nothing to do with the above identities, but everything to
do with the sine and cosine functions if you proceed on to calculus. Looking at Figure 7
where the top curve is the sine function and the middle curve is the cosine function, did you
notice that the sine has maximums and minimums at values of θ where the cosine function
is zero, and vice versa? Also, the graphs are given in terms of radians, and drawn to scale.
A tangent line is a line at a point of a curve that reflects the general direction of the curve
at that point. Did you notice that the slope of a tangent line on the sine function is equal
to the value of the cosine function, and that the slope of a tangent line on the cosine is the
opposite of the value of the sine function? This only happens when we consider the sine and
cosine functions in terms of radians, another reason to use them in our work.

Time In!
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Example: Verify that sin
π

3
=

√
3

2
using the double-angle identity for sine.

Since
1

2
· π

3
=
π

6
, then we can use the sine and cosine values of this angle in our formula:

2 sin
π

6
cos

π

6
= 2

(
1

2

)(√
3

2

)
=

√
3

2
.

Example: Verify that sin
4π

3
= −
√

3

2
using the double-angle identity for sine.

Since
1

2
· 4π

3
=

2π

3
, then we can use the sine and cosine values of this angle in our formula:

2 sin
2π

3
cos

2π

3
= 2

(√
3

2

)(
−1

2

)
= −
√

3

2
.

Identity for the Cosine of a Doubled Angle

We can find other combinations of the sine and cosine functions that will yield other periodic
functions. If we take the cosine function values (shown as a dashed curve at top in Figure 8)
and square them, we get the nonnegative curve with period π shown at the top of Figure 8.
Likewise, if we square the sine function values (shown as a dashed curve in the middle
in Figure 8), we get a similar nonnegative curve with period π shown in the middle of
Figure 8. The bottom curve shows the top values minus the middle values. A full animation,
squaresdiff.nb or squaresdiff.mov, of the process is available on the class webpage.

Again, this curve should look familiar. It is a cosine function with amplitude 1, but with
period π, or cos(2θ). We have basically shown graphically that cos(2θ) is the difference of
cos2 θ and sin2 θ, although we can prove it algebraically using the sum identity for cosines:

cos(2θ) = cos(θ + θ) = cos θ cos θ − sin θ sin θ

cos(2θ) = cos2 θ − sin2 θ. (4)

Using the Pythagorean identities, we can get a couple of other variations of this double-angle
identity. Since

sin2 θ + cos2 θ = 1

for all θ, then
cos2 θ = 1− sin2 θ and sin2 θ = 1− cos2 θ,

so
cos(2θ) = (1− sin2 θ)− sin2 θ = 1− 2 sin2 θ (5)

and
cos(2θ) = cos2 θ − (1− cos2 θ) = 2 cos2 θ − 1. (6)
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Figure 8: The values from the cosine function at top are squared, as are the sine function
values in the middle. The top values minus the middle values give the resulting periodic

curve at bottom.

The equations in (3), (4), (5), and (6) are known as the double-angle identities for sine and
cosine.

Example: Verify that cos
π

3
=

1

2
using all of the versions of the double-angle identity for

cosine.

Since
1

2
· π

3
=
π

6
, then we can use the sine and cosine values of this angle in our formulas:

(
cos

π

6

)2

−
(

sin
π

6

)2

=

(√
3

2

)2

−
(

1

2

)2

=
3

4
− 1

4
=

1

2
,

2
(

cos
π

6

)2

− 1 = 2

(√
3

2

)2

− 1 = 2

(
3

4

)
− 1 =

3

2
− 1 =

1

2
, and
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1− 2
(

sin
π

6

)2

= 1− 2

(
1

2

)2

= 1− 2

(
1

4

)
= 1− 1

2
=

1

2
.

Example: Verify that cos
4π

3
= −1

2
using all of the versions of the double-angle identity for

cosine.

Since
1

2
· 4π

3
=

2π

3
, then we can use the sine and cosine values of this angle in our formulas:

(
cos

2π

3

)2

−
(

sin
2π

3

)2

=

(
−1

2

)2

−

(√
3

2

)2

=
1

4
− 3

4
= −1

2
,

2

(
cos

2π

3

)2

− 1 = 2

(
−1

2

)2

− 1 = 2

(
1

4

)
− 1 =

1

2
− 1 = −1

2
, and

1− 2

(
sin

2π

3

)2

= 1− 2

(√
3

2

)2

= 1− 2

(
3

4

)
= 1− 3

2
= −1

2
.

We can use equations (5) and (6) to develop half-angle identities for sine and cosine.
Solving equation (5) for sin2 θ, we get

sin2 θ =
1− cos(2θ)

2
,

or equivalently,

sin2 θ

2
=

1− cos θ

2
. (7)

Solving equation (6) for cos2 θ, we get

cos2 θ =
1 + cos(2θ)

2
,

or equivalently,

cos2 θ

2
=

1 + cos θ

2
. (8)

The identities in (7) and (8) are also sometimes called the power-reducing identities, since we
can replace the squared trigonometric functions with non-squared cosines. When actually
solving for sin θ

2
or cos θ

2
, taking the square root of each side will generate both a positive

and negative answer. We must take care to select the answer with the correct sign based
upon which quadrant the angle lies.

Example: Find the sine and cosine values of
π

8
= 22.5◦.

Since 2
(π

8

)
=
π

4
, then we can use the cosine value of this angle in our formulas. Using the

half-angle identity for sine, we get

sin2 π

8
=

1− cos π
4

2
=

1−
√

2
2

2
=

2−
√

2

2
· 1

2
=

2−
√

2

4
.
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Since π
8

is in the first quadrant, then

sin
π

8
=

√
2−
√

2

2
≈ 0.3827.

Using the half-angle identity for cosine, we get

cos2 π

8
=

1 + cos π
4

2
=

1 +
√

2
2

2
=

2 +
√

2

2
· 1

2
=

2 +
√

2

4
.

Since π
8

is in the first quadrant, then

cos
π

8
=

√
2 +
√

2

2
≈ 0.9239.

You may verify both of these exact solutions using your calculator’s values for sin π
8

and
cos π

8
.

4.3 Exercises

1) Verify that sin
π

2
= sin 90◦ = 1 using the double-angle identity for sine, and the sine and

cosine function values for
π

4
= 45◦.

2) Verify that cos
π

2
= cos 90◦ = 0 using all of the double-angle identities for cosine, and

the sine and cosine function values for
π

4
= 45◦.

3) Verify that sin
π

4
= sin 45◦ =

√
2

2
using the half-angle identity for sine, and the cosine

of
π

2
= 90◦.

4) Verify that cos
π

4
= cos 45◦ =

√
2

2
using the half-angle identity for cosine, and the cosine

of
π

2
= 90◦.

5) Verify that sin
π

12
= sin 15◦ =

√
6−
√

2

4
using the half-angle identity for sine, and the

cosine of
π

6
= 30◦.

6) Verify that cos
π

12
= cos 15◦ =

√
6 +
√

2

4
using the half-angle identity for cosine, and

the cosine of
π

6
= 30◦.

7) Verify that sin
π

6
= sin 30◦ =

1

2
using the double-angle identity for sine, and the sine

and cosine function values for
π

12
= 15◦.
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8) Verify that cos
π

6
= cos 30◦ =

√
3

2
using all of the double-angle identities for cosine, and

the sine and cosine function values for
π

12
= 15◦.

9) Verify that sin
5π

12
= sin 75◦ =

√
6 +
√

2

4
using the half-angle identity for sine, and the

cosine of
5π

6
= 150◦.

10) Verify that cos
5π

12
= cos 75◦ =

√
6−
√

2

4
using the half-angle identity for cosine, and

the cosine of
5π

6
= 150◦.

11) Use the double-angle identities for sine and cosine to develop a double-angle identity
for tan(2θ) in terms of tan θ.

12) Use the half-angle identities for sine and cosine to develop a half-angle identity for

tan2 θ

2
in terms of cos θ.

13) Find the amplitude and period (in radians) of the following sine and cosine functions.
Verify your answers graphically.

a) 3 sin(5θ) b)
cos(4θ)

2

c) cos

(
3

2
θ

)
d) 2 sin

(
4θ

5

)
14) Find the period (in radians) of the following tangent functions. Verify your answers
graphically.

a) 3 tan(4θ) b) tan

(
θ

6

)
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4.4 Graphs of the Tangent and Cotangent Functions

Since the tangent is the ratio of the sine to the cosine – that is,

tan θ =
sin θ

cos θ

for all values of θ where cos θ 6= 0 – we can actually use the graphs of the sine function and
cosine function to generate the graph of the tangent function. Likewise with the cotangent,
since the cotangent is the ratio of the cosine to the sine – that is,

cot θ =
cos θ

sin θ

for all values of θ where sin θ 6= 0.

The Tangent from the Sine and Cosine

We have already generated the graph of the tangent function (see Figure 6) using the
unit circle. If we take the function values for the sine function and divide them by the
function values for the cosine function, then the resulting curve is again the graph of the
tangent function. This process is illustrated in Figure 9, and a full animation, tan2.nb or
tan2.mov, is available on the class website. Notice that the resulting function

• is 0 wherever the sine function is 0,

• is undefined wherever the cosine function is 0, and

• obeys the sign rules; that is, it is positive where the sine and cosine functions have the
same sign, and is negative when the signs are different.

The tangent function is a completely different brand of trigonometric function. While the
sine and cosine are continuous and defined for all values of θ, the tangent is discontinuous
and even undefined in places. Also, while the sine and cosine are each 2π-periodic, the
tangent function is π-periodic. The sine and cosine functions increase and decrease in value,
while the tangent function is always increasing from left to right. And finally, there is no
use talking about the “amplitude” of the tangent function, since it shoots off to both ∞
and −∞.

The Cotangent from the Sine and Cosine

If we reverse the numerator and denominator from the previous example, and take the
function values for the cosine function and divide them by the function values for the sine
function, then the resulting curve is the graph of the cotangent function. This process is
illustrated in Figure 10, and a full animation, cot.nb or cot.mov, is available on the class
website. Notice that the resulting function
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Figure 9: The values from the sine function at top are divided by the values from the
cosine function in the middle to generate the graph of the tangent function.

• is 0 wherever the cosine function is 0,

• is undefined wherever the sine function is 0, and

• obeys the sign rules; that is, it is positive where the top and middle functions have the
same sign, and is negative when the signs are different.

The cotangent function is like the tangent function, with some notable differences. It is,
like the tangent, π-periodic and unbounded in value, but instead of always increasing like
the tangent, the cotangent is always decreasing. When graphing the cotangent function on
a graphing calculator, it is important to note that most graphing calculators do not have a
“COT” button. We have two options:
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Figure 10: The values from the cosine function at top are divided by the values from the
sine function in the middle to generate the graph of the cotangent function.

• the “COT” function is available in the catalog of the calculator, or

• remember that cot θ =
1

tan θ
where defined.
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4.4 Exercises

In problems 1) through 10), graph each pair of curves, with θ measured in radians, and
determine whether the functions are identically equal. If you determine that f(θ) = g(θ),
then verify the identity algebraically by making the one function look like the other one.

1) f(θ) = tan(−θ), g(θ) = − tan θ 2) f(θ) = cot(−θ), g(θ) = cot θ

3) f(θ) = tan θ, g(θ) =
1

tan
(
π
2
− θ
) 4) f(θ) = cot θ, g(θ) =

1

tan θ

5) f(θ) = tan(2θ), g(θ) =
2 tan θ

1 + tan2 θ
6) f(θ) = 1− tan2 θ, g(θ) =

2 tan θ

tan(2θ)

7) f(θ) = tan2 θ, g(θ) =
1− cos(2θ)

1 + cos(2θ)
8) f(θ) = cot2 θ, g(θ) =

1− sin(2θ)

1 + sin(2θ)

9) f(θ) = tan
(
θ +

π

4

)
, g(θ) =

1 + tan θ

1− tan θ
10) f(θ) = tan

(
θ − π

4

)
, g(θ) =

tan θ − 1

1 + tan θ

11) The graphs of the tangent and cotangent functions in Figures 9 and 10 with respect
to θ radians are drawn to scale, meaning that the distance from 0 to 1 is the same on both
axes.

a) Estimate the slope of the tangent line to the graph of tan θ at θ = 0 radians by finding
the slope of the line through the points (0, 0) and (h, tanh) for h = 10−6 radians.

b) Estimate the slope of the tangent line to the graph of tan θ at θ =
π

4
radians by finding

the slope of the line through the points
(π

4
, 1
)

and
(π

4
+ h, tan

(π
4

+ h
))

for h = 10−6

radians.

c) Estimate the slope of the tangent line to the graph of cot θ at θ =
π

2
radians by finding

the slope of the line through the points
(π

2
, 0
)

and
(π

2
+ h, cot

(π
2

+ h
))

for h = 10−6

radians.

d) Estimate the slope of the tangent line to the graph of cot θ at θ =
π

4
radians by finding

the slope of the line through the points
(π

4
, 1
)

and
(π

4
+ h, cot

(π
4

+ h
))

for h = 10−6

radians.
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4.5 The Graphs of the Secant and Cosecant Functions

The tangent and cotangent functions resembled each other, but looked nothing like the
sine and cosine. Next, we will develop the graphs of the secant and cosecant functions, which,
as we will find, look nothing like any of the previous trigonometric functions (although they
will resemble each other.) Since the secant is the reciprocal of the cosine – that is,

sec θ =
1

cos θ

for all θ such that cos θ 6= 0 – we may generate its graph from the graph of the cosine
function. Likewise, since the cosecant is the reciprocal of the sine – that is,

csc θ =
1

sin θ

for all θ such that sin θ 6= 0 – we may generate its graph from the graph of the sine function.

The Secant from the Cosine Function

If we take the reciprocal of the function values for the cosine function, then the resulting
curve is the graph of the secant function. This process is illustrated in Figure 11, and a full
animation, sec.nb or sec.mov, is available on the class website. Notice that the resulting
function

• is never 0, and is actually never between −1 and 1,

• is undefined wherever the cosine function is 0, and

• is positive where the cosine function is positive, and is negative where the cosine is
negative.

The secant function is 2π-periodic like the cosine function, but while the cosine function is
bounded (by−1 and 1), the secant is unbounded in value. The secant has vertical asymptotes
every π units in the same locations as the tangent, but while the tangent is always increasing,
the secant switches back and forth between increasing and decreasing.

When graphing the secant function on a graphing calculator, it is important to note that
most graphing calculators do not have a “SEC” button. We have two options:

• the “SEC” function is available in the catalog of the calculator, or

• remember that sec θ =
1

cos θ
where defined.
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Figure 11: The red dashed line is the constant function 1. Dividing this function by the
values from the cosine function at top gives the graph of the secant function.

The Cosecant from the Sine

If we take the reciprocal of the function values for the sine function, then the resulting
curve is the graph of the cosecant function. This process is illustrated in Figure 12, and a full
animation, csc.nb or csc.mov, is available on the class website. Notice that the resulting
function

• is never 0, and is actually never between −1 and 1,

• is undefined wherever the sine function is 0, and

• is positive where the sine function is positive, and is negative where the sine is negative.

The cosecant function is 2π-periodic like the sine function, but while the sine function
is bounded (by −1 and 1), the cosecant is unbounded in value. The secant has vertical
asymptotes every π units in the same locations as the cotangent, but while the cotangent is
always decreasing, the cosecant switches back and forth between increasing and decreasing.

When graphing the cosecant function on a graphing calculator, it is important to note
that most graphing calculators do not have a “CSC” button. We have two options:

• the “CSC” function is available in the catalog of the calculator, or
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Figure 12: The red dashed line is the constant function 1. Dividing this function by the
values from the sine function at top gives the graph of the cosecant function.

• remember that csc θ =
1

sin θ
where defined.

4.5 Exercises

In problems 1) through 10), graph each pair of curves, with θ measured in radians, and
determine whether the functions are identically equal. If you determine that f(θ) = g(θ),
then verify the identity algebraically by making the one function look like the other one.

1) f(θ) = sec(−θ), g(θ) = sec θ 2) f(θ) = csc(−θ), g(θ) = csc θ

3) f(θ) = sec θ, g(θ) =
1

sin
(
π
2
− θ
) 4) f(θ) = csc θ, g(θ) =

1

sin θ

5) f(θ) = sec(2θ), g(θ) =
1

cos2 θ − sin2 θ
6) f(θ) = sec θ, g(θ) =

2 csc(2θ)

csc θ

7) f(θ) = sec2 θ, g(θ) = tan2 θ − 1 8) f(θ) = csc2 θ, g(θ) =
2

1− cos(2θ)

9) f(θ) = sec
(
θ +

π

2

)
, g(θ) = csc θ 10) f(θ) = sec

(
θ +

π

2

)
, g(θ) = csc (θ − π)
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11) The graphs of the secant and cosecant functions in Figures 11 and 12 with respect to θ
radians are drawn to scale, meaning that the distance from 0 to 1 is the same on both axes.

a) Estimate the slope of the tangent line to sec θ at θ = 0 radians by finding the slope
of the line through the points (0, 1) and (h, sech) for h = 10−6 radians.

b) Estimate the slope of the tangent line to sec θ at θ =
π

4
radians by finding the slope

of the line through the points
(π

4
,
√

2
)

and
(π

4
+ h, sec

(π
4

+ h
))

for h = 10−6 radians.

c) Estimate the slope of the tangent line to csc θ at θ =
π

2
radians by finding the slope

of the line through the points
(π

2
, 1
)

and
(π

2
+ h, csc

(π
2

+ h
))

for h = 10−6 radians.

d) Estimate the slope of the tangent line to csc θ at θ =
π

4
radians by finding the slope

of the line through the points
(π

4
,
√

2
)

and
(π

4
+ h, csc

(π
4

+ h
))

for h = 10−6 radians.
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4.6 Exact trigonometric values: possible or impossible?

With most of our previous work with functions f(x), we have had the option of evaluating
them for any value of x for which they were defined (polynomials, rational functions, etc.)
Is this possible with trigonometric functions? Since all of them are based upon the sine and
cosine functions, we will just focus on answering the question for these two functions.

Previously in this chapter, we were able to establish exact values of the sine and cosine
functions for every angle π

12
n = 15◦n, where n is an integer. Finding the exact sine or cosine

value of any angle θ seems like a tall order, so let’s start with one that should be easier. Can
we find the exact value of, for example, sin 5◦?

Our sum and difference identities are of no use to us, since the sum or difference of
two integer multiples of 15◦ is also an integer multiple of 15◦. We could use the half-angle
identities to calculate the exact value of sin 7.5◦, but to calculate sin 5◦, we would need a
third-angle identity. Let’s see if we can develop that identity.

To develop the half-angle identities, we started by developing the double-angle identities,
so it makes sense to start here by developing triple-angle identities. Note that

sin(3θ) = sin(2θ + θ) = sin(2θ) cos θ + cos(2θ) sin θ

sin(3θ) = (2 sin θ cos θ) cos θ +
(
2 cos2 θ − 1

)
sin θ

sin(3θ) = 4 sin θ cos2 θ − sin θ.

Using the Pythagorean identity sin2 θ + cos2 θ = 1, we can get sin(3θ) completely in terms
of sin θ:

sin(3θ) = 4 sin θ
(
1− sin2 θ

)
− sin θ

sin(3θ) = 3 sin θ − 4 sin3 θ. (9)

LIkewise, for cos(3θ), we have

cos(3θ) = cos(2θ + θ) = cos(2θ) cos θ − sin(2θ) sin θ

cos(3θ) =
(
1− 2 sin2 θ

)
cos θ − (2 sin θ cos θ) sin θ

cos(3θ) = cos θ − 4 sin2 θ cos θ

cos(3θ) = cos θ − 4
(
1− cos2 θ

)
cos θ

cos(3θ) = 4 cos3 θ − 3 cos θ. (10)

In order to have general formulas for the sine and cosine of one-third of an angle, we
would need to solve equations (9) and (10), respectively, for sin θ and cos θ, respectively.
This is where our method starts to fall apart – although we can solve quadratic equations
every time using the quadratic formula, cubic equations are generally harder to solve. Using
MathematicaTM to solve equation (9) for sin θ, we are able to find three solutions, two of
which are extraneous, and one valid solution involving the imaginary number i:

sin θ =
−1 + i

√
3−

(
1 + i

√
3
)

(− sin(3θ) + i cos(3θ))
2
3

4 (− sin(3θ) + i cos(3θ))
1
3

,
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which is problematic. We do not yet know how to raise complex numbers to rational powers
like 1

3
and 2

3
. Solving for cos θ in equation (10) yields similar results. Even if we substitute

θ = 5◦ = π
36

into equations (9) and (10) and try to get an answer for just one sin 5◦ or cos 5◦,
the situation does not improve.

It would appear that we will not be able to calculate sines and cosines exactly for any
angle. In Chapter 6, after we have discussed the ties between complex numbers and the sine
and cosine, we will discuss how our calculators are able to quickly calculate approximate (up
to as many digits as necessary) values for the sine and cosine functions.

4.6 Exercises

1) Use the half-angle identities to find the exact value of the sine and cosine of π
24

= 7.5◦.
Check your answer by generating a decimal approximation of your answer and comparing to

your calculator’s decimal approximation to sin
π

24
and cos

π

24
.

2) Use the half-angle identities and the solution to problem 1) above to calculate the value
of the sine and cosine of π

48
= 3.75◦, rounded to 8 decimal places. Compare your answer to

your calculator’s decimal approximation of sin
π

48
and cos

π

48
.

3) Use the half-angle identities and the solution to problem 2) above to find the value of
the sine and cosine of π

96
= 1.875◦, rounded to 8 decimal places. Compare your answer to

your calculator’s decimal approximation to sin
π

96
and cos

π

96
.

4) Use the half-angle identities and the solution to problem 3) above to find the value of
the sine and cosine of π

192
= 0.9375◦, rounded to 8 decimal places. Compare your answer to

your calculator’s decimal approximation to sin
π

192
and cos

π

192
.

5) Use the results from problems 1) through 4) above and the sum and difference identities
to find the approximate sine and cosine of the following angles, rounded to 8 decimal places.

a)
π

16
= 11.25◦ b)

π

32
= 5.625◦

c)
5π

96
= 9.375◦ d)

7π

192
= 6.5625◦
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4.7 Inverse Trigonometric Functions

The inverse of a function f(x) is found by exchanging the “x” and “y” in the formula,
and solving (if possible) for the “y” variable. Graphically, the inverse of a function f(x) is
its reflection across the line y = x. See the example in Figure 13. The curve at left is a
function (passes the vertical line test – has exactly one y-value for each x-value). However,
its inverse, the reflection across the line y = x, is not a function.

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

Figure 13: The curve at left is a function, but its inverse shown on the right is not. The
curve at left is not one-to-one.

In order for a function f(x) to have an inverse that is also a function, f(x) must be
a one-to-one function, meaning that not only does x = y imply that f(x) = f(y) (it is a
function), but also f(x) = f(y) implies x = y. A function that is one-to-one has exactly one
x-value for each y-value. In Figure 13, some y-values on the curve at left (like y = 0) have
as many as three x-values associated with them, so it is not one-to-one.

In the case where a function f(x) is one-to-one, we typically use the notation f−1(x)
to indicate its inverse function. The notation is poorly conceived – we typically read the

exponent “−1” to mean the reciprocal, and in general, f−1(x) 6= 1

f(x)
– but widely accepted.

Just be careful, and pay attention to the context in which it is being used. The inverse can
be thought of as “undoing” the original function. In fact, the following are necessarily true
of an inverse function:

f
(
f−1(x)

)
= x and f−1 (f(x)) = x

for all x in which both the original and inverse are defined.

Inverse of the Sine Function

An inspection of the graph of the sine function, shown on the left in Figure 14, reveals that
the sine function is not one-to-one (fails the horizontal line test), so we will not be able to
find a true inverse sine function. However, if we were to define the function

f(θ) = sin θ, −π
2
≤ θ ≤ π

2
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(shown in Figure 14 between the two vertical red dashed lines), then f(θ) would be one-to-
one, and its inverse function f−1(θ) would be the reflection across the diagonal line y = θ,
shown on the right in Figure 14. Many books (and calculators) will use the notation “sin−1 y”
to refer to this function, although it is not really the inverse of the entire sine function. For
this reason, many books abandon the inverse notation altogether, and use the notation
“arcsin y” to refer to this function. I suggest you be familiar with both styles of notation,
just in case, but I will use the notation “arcsin y” from this point on.

-Π -

Π

2

Π

2
Π

-1

1

-1 1

-

Π

2

Π

2

Figure 14: The curve at left is the sine function, with the red dashed lines restricting the

domain to −π
2
≤ θ ≤ π

2
. The curve at right is the inverse function arcsin θ.

Example: Find arcsin

(
−1

2

)
.

arcsin

(
−1

2

)
= −π

6
since − π

2
≤ −π

6
≤ π

2
and sin

(
−π

6

)
= −1

2

Example: Find arcsin
(

sin
π

4

)
.

arcsin
(

sin
π

4

)
= arcsin

(
1√
2

)
=
π

4
since − π

2
≤ π

4
≤ π

2
and sin

(π
4

)
=

1√
2

Notice that for −π
2
≤ θ ≤ π

2
, we have that arcsin(sin θ) = θ.

Example: Find arcsin

(
sin

5π

4

)
.

arcsin

(
sin

5π

4

)
= arcsin

(
− 1√

2

)
= −π

4
since − π

2
≤ −π

4
≤ π

2
and sin

(
−π

4

)
= − 1√

2

Notice that since θ =
5π

4
is not in the range −π

2
≤ θ ≤ π

2
, then arcsin(sin θ) 6= θ. We may

have to make an adjustment if we are actually looking for angles outside the range of the
inverse sine.
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Inverse of the Cosine Function

As before, an inspection of the graph of the cosine function, shown on the left in Figure 15,
reveals that the cosine function is not one-to-one either, so we will not be able to find a true
inverse cosine function. However, if we were to define the function

f(θ) = cos θ, 0 ≤ θ ≤ π

(shown in Figure 15 between the two vertical red dashed lines), then f(θ) would be one-to-
one, and its inverse function f−1(θ) would be the reflection across the diagonal line y = θ,
shown on the right in Figure 15. As before, both notations “cos−1 y” and “arccos y” are
used, but I will tend to use the notation “arccos y” from this point on.

-Π -

Π

2

Π

2
Π

-1

1

-1 1

Π

2

Π

Figure 15: The curve at left is the cosine function, with the red dashed lines restricting the
domain to 0 ≤ θ ≤ π. The curve at right is the inverse function arccos θ.

Example: Find arccos

(
−1

2

)
.

arccos

(
−1

2

)
=

2π

3
since 0 ≤ 2π

3
≤ π and cos

(
2π

3

)
= −1

2

Example: Find arccos
(

cos
π

6

)
.

arccos
(

cos
π

6

)
= arccos

(√
3

2

)
=
π

6
since 0 ≤ π

6
≤ π and cos

(π
6

)
=

√
3

2

Notice that for 0 ≤ θ ≤ π, we have that arccos(cos θ) = θ.

Example: Find arccos
(

cos
(
−π

4

))
.

arccos
(

cos
(
−π

4

))
= arccos

(
1√
2

)
=
π

4
since 0 ≤ π

4
≤ π and cos

(π
4

)
=

1√
2

108



Notice that since θ = −π
4

is not in the range 0 ≤ θ ≤ π, then arccos(cos θ) 6= θ. We may

have to make an adjustment if we are actually looking for angles outside the range of the
inverse cosine.

The Inverse of the Tangent Function

As before, we can look at the graph of the tangent function at left in Figure 16 and tell

that it is not one-to-one. However, if we limit the domain to −π
2
< θ <

π

2
, then the limited

function is one-to-one. The inverse function of the limited function is shown at right in
Figure 16.
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Figure 16: The curve at left is the tangent function, with the red dashed lines restricting

the domain to −π
2
≤ θ ≤ π

2
. The curve at right is the inverse function arctan θ.

Example: Find arctan
(
−
√

3
)

.

arctan
(
−
√

3
)

= −π
3

since − π

2
< −π

3
<
π

2
and tan

(
−π

3

)
= −
√

3

Example: Find arctan
(

tan
π

6

)
.

arctan
(

tan
π

6

)
= arctan

(
1√
3

)
=
π

6
since − π

2
<
π

6
<
π

2
and tan

(π
6

)
=

1√
3

Notice that for −π
2
< θ <

π

2
, we have that arctan(tan θ) = θ.
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Example: Find arctan

(
tan

3π

4

)
.

arctan

(
tan

3π

4

)
= arctan (−1) = −π

4
since − π

2
< −π

4
<
π

2
and tan

(
−π

4

)
= −1

Notice that since θ =
3π

4
is not in the range −π

2
< θ <

π

2
, then arctan(tan θ) 6= θ. We may

have to make an adjustment if we are actually looking for angles outside the range of the
inverse tangent.

The Other Inverse Trigonometric Functions

You may be spotting a pattern – none of the trigonometric functions are one-to-one. In order
to manufacture so-called “inverse” functions, we have to limit the domain of the original
trigonometric function. The remaining trigonometric functions are reciprocals of the other
trigonometric functions,

cot θ =
1

tan θ
sec θ =

1

cos θ
csc θ =

1

sin θ
,

for all values of θ for which they are defined. Therefore, it makes sense to limit the domains
of the cotangent, secant, and cosecant to match the tangent, cosine, and sine, respectively.
The only slight exception is with the cotangent, because the function value ”0” occurs at

both θ = −π
2

and θ =
π

2
, and we need to include it once, but only once. Therefore, we

arbitrarily include θ =
π

2
in the domain of the truncated cotangent, and hence, the range

of the inverse cotangent. It does cause some odd discontinuities with the inverse functions,
but we will see that this is probably the best way to handle the inverses in application. The
curves for the inverse functions of the restricted-domain trigonometric functions are shown
in Figures 17, 18, and 19.

Suppose that we are solving a trigonometric equation, and we end up with something
like

cot θ = blah, blah, blah, . . .

We would usually use the inverse key above our trigonometric function to get a numerical
solution for θ. However, very few calculators have a “COT” button, not to mention an
inverse cotangent button. But if we draw upon the fact that, for θ 6= 0,

cot θ =
1

tan θ
,

then
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Figure 17: The curve at left is the cotangent function, with the red dashed lines restricting

the domain to −π
2
< θ ≤ π

2
. The curve at right is the inverse function arccot y or cot−1 y.
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Figure 18: The curve at left is the secant function, with the red dashed lines restricting the
domain to 0 ≤ θ ≤ π. The curve at right is the inverse function arcsec y or sec−1 y.

1

tan θ
= blah, blah, blah, . . .

tan θ =
1

blah, blah, blah, . . .
, and

θ = arctan

(
1

blah, blah, blah, . . .

)
.

We may summarize this technique in the following theorem.
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Figure 19: The curve at left is the cosecant function, with the red dashed lines restricting

the domain to −π
2
≤ θ ≤ π

2
. The curve at right is the inverse function arccsc y or csc−1 y.

Theorem: For any value of y for which the inverse cotangent, secant, and cosecant, respec-
tively, are defined, we have

arccot y = arctan

(
1

y

)
, arcsec y = arccos

(
1

y

)
, arccsc y = arcsin

(
1

y

)
.

Example: Find arccot
√

3.

arccot
√

3 = arctan

(
1√
3

)
=
π

3

Example: Find arcsec (−
√

2).

arcsec (−
√

2) = arccos

(
− 1√

2

)
=

3π

4
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4.7 Exercises

In problems 1) through 14), calculate the following exactly.

1) arccos

(
−
√

3

2

)
2) arcsin

√
2

2

3) arctan

√
6−
√

2√
6 +
√

2
4) arccot

√
2−
√

6√
2 +
√

6

5) arccsc 2 6) arcsec (−2)

7) arctan
(

tan
π

4

)
8) arctan

(
tan

5π

4

)
9) arccos (cos 1) 10) arccos (cos(−1))

11) arcsin (sin 2) 12) arcsin (sin 4)

13) arctan (tan 2) 14) arctan (tan 4)

In problems 15) through 24), use your calculator to find an approximation to each of the
following, accurate to four decimal places.

15) arccos(−0.8) 16) arcsin 0.15

17) arctan 5 18) arccot (−100)

19) arccsc 4 20) arcsec (−4)

21) arcsec (cos 2) 22) arcsin(sin 4)

23) arccot (tan 2) 24) arccsc(sin 4)

25) Consider the following statement: For all −1 ≤ y ≤ 1, we have sin (arcsin y) = y.
Either explain why this statement is true, or provide a counterexample showing that the
statement is false.

26) Consider the following statement: For all real θ, we have arcsin (sin θ) = θ. Either
explain why this statement is true, or provide a counterexample showing that the statement
is false.
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4.8 Review: What have we learned (or relearned)?

Theorem: In a unit circle, the coordinates of a point on the circle corresponding to the
angle θ (or equivalently, arc length θ) are (cos θ, sin θ).

θ

θ
(cos θ, sin θ)

Exact Values of Sines and Cosines of π
12

n The exact cosines and sines of multiples of
π

12
are shown in the figure below.
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π
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Definition: One-to-one Functions A function f(x) is said to be one-to-one if f(a) = f(b)
implies that a = b. Graphically, a one-to-one function passes a horizontal line test.

Definition: Inverse Function The inverse of a function is the result of exchanging the
dependent and independent variables. If the original function f(x) is one-to-one, then the
inverse is also a function, denoted f−1(x).

The Graph of the Sine Function and Its Inverse At left is the function sin θ, which

is 2π-periodic and has amplitude 1. If we restrict the domain of y = sin θ to −π
2
≤ θ ≤ π

2
,

then that function is one-to-one and has the inverse θ = arcsin y = sin−1 y, shown at right.

-Π -

Π

2

Π

2
Π

-1

1

-1 1

-

Π

2

Π

2

The Graph of the Cosine Function and Its Inverse At left is the function cos θ, which
is 2π-periodic and has amplitude 1. If we restrict the domain of y = cos θ to 0 ≤ θ ≤ π, then
that function is one-to-one and has the inverse θ = arccos y = cos−1 y, shown at right.

-Π -

Π

2

Π

2
Π

-1

1

-1 1

Π

2

Π

Theorem: Double-Angle Identities

sin(2θ) = 2 sin θ cos θ cos(2θ) = cos2 θ − sin2 θ
cos(2θ) = 2 cos2 θ − 1 cos(2θ) = 1− 2 sin2 θ

Theorem: The functions a sin(cθ) and a cos(cθ) are each
2π

c
-periodic with amplitude a.
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Theorem: Half-Angle Identities (or Power-Reducing Identities)

sin2

(
θ

2

)
=

1− cos θ

2
cos2

(
θ

2

)
=

1 + cos θ

2

The Graph of the Tangent Function and Its Inverse At left is the function tan θ,

which is π-periodic. If we restrict the domain of y = tan θ to −π
2
≤ θ ≤ π

2
, then that

function is one-to-one and has the inverse θ = arctan y = tan−1 y, shown at right.
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The Graph of the Cotangent Function and Its Inverse At left is the function cot θ,

which is π-periodic. If we restrict the domain of y = cot θ to −π
2
< θ ≤ π

2
, then that function

is one-to-one and has the inverse θ = arctan y = cot−1 y, shown at right.
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The Graph of the Secant Function and Its Inverse At left is the function sec θ, which
is 2π-periodic. If we restrict the domain of y = sec θ to 0 ≤ θ ≤ π, then that function is
one-to-one and has the inverse θ = arcsec y = sec−1 y, shown at right.
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The Graph of the Cosecant Function and Its Inverse At left is the function csc θ,

which is 2π-periodic. If we restrict the domain of y = csc θ to −π
2
≤ θ ≤ π

2
, then that

function is one-to-one and has the inverse θ = arcsin y = sin−1 y, shown at right.
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Theorem: For any value of y for which the inverse cotangent, secant, and cosecant, respec-
tively, are defined, we have

arccot y = arctan

(
1

y

)
, arcsec y = arccos

(
1

y

)
, arccsc y = arcsin

(
1

y

)
.
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Review Exercises

1) Find the coordinates for the points on the unit circle occurring at 15◦ =
π

12
intervals,

as illustrated below.
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π
12

π
6

π
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π
3

5π
12

π
27π

12

2π
3

3π
4

5π
6

11π
12

π

13π
12

7π
6

5π
4

4π
3

17π
12 3π

2

19π
12

5π
3

7π
4

11π
6

23π
12

2) Verify that sin
5π

12
= sin 75◦ =

√
6 +
√

2

4
using the difference formula for sine and the

fact that
5π

12
=

2π

3
− π

4
.

3) Verify that cos
5π

12
= cos 75◦ =

√
6−
√

2

4
using the difference formula for cosine and the

fact that
5π

12
=

3π

4
− π

3
.

4) Verify that sin
7π

12
= sin 105◦ =

√
6 +
√

2

4
using the sum formula for sine and the fact

that
7π

12
=
π

3
+
π

4
.
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5) Verify that cos
7π

12
= cos 105◦ = −

√
6−
√

2

4
using the sum formula for cosine and the

fact that
7π

12
=

5π

12
+
π

6
.

6) Verify that sin
π

3
= sin 60◦ =

√
3

2
using the double-angle identity for sines, and the sine

and cosine values for
π

6
= 30◦.

7) Verify that sin
π

3
= sin 60◦ =

√
3

2
using the half-angle identity for sines, and the cosine

value for
2π

3
= 120◦.

8) Verify that cos
5π

6
= cos 150◦ = −

√
3

2
using the double-angle identity for cosines, and

the sine and cosine values for
5π

12
= 75◦.

9) Verify that cos
5π

6
= cos 150◦ = −

√
3

2
using the half-angle identity for cosines, and the

cosine value for
5π

3
= 300◦.

10) Find the amplitude and period (in radians) of the following sine and cosine functions.
Verify your answers graphically.

a) 5 sin(3θ) b)
1

4
cos
(π

2
θ
)

c) cos

(
2π

p
θ

)
d) 20 sin(2πθ)

11) Verify the identity tan
θ

2
= csc θ − cot θ graphically, and then algebraically.

12) Verify the identity csc(2θ) =
csc θ

2 cos θ
graphically, and then algebraically.

13) Verify the identity cos4 θ − sin4 θ = cos(2θ) graphically, and then algebraically.

14) Suppose that sin
π

180
= sin 1◦ = k, 0 < k < 1.

a) Find the exact value of cos
π

180
= cos 1◦ in terms of k.

b) Find the exact value of sin
π

90
= sin 2◦ and cos

π

90
= cos 2◦ in terms of k.

c) Find the exact value of sin
π

60
= sin 3◦ and cos

π

60
= cos 3◦ in terms of k.
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15) Find the exact value of each of the following.

a) arcsin

(
−
√

2

2

)
b) arcsin

(
sin

(
−3π

4

))

c) cos

(
arccos

1

2

)
d) arctan

(
−
√

3
)

e) arcsec 2 f) arccsc
2√
3

16) Use your calculator to find an approximation to each of the following, accurate to four
decimal places.

a) arcsin(−0.8) b) arccos 0.15

c) arctan 25 d) arccot
π

4

e) arccsc(−3) f) arcsec π
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Chapter 5: Complex Numbers and Trigonometry

MATH 117: Trigonometry

5.1 Introduction

Most survivors of high-school algebra know about imaginary and complex numbers. We
define the value i to be the (non-real) value such that i2 = −1, or loosely, i =

√
−1. Of

course, the very notion that we can square a number and get a −1 is ridiculous, and since i
can not possibly be real, we say that it is an imaginary number. We typically learn about
imaginary numbers right before we start to solve quadratics of the form ax2 + bx + c = 0
using the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

If the discriminant b2−4ac < 0, then our solutions to the quadratic will contain an imaginary
number. Numbers of the form a + bi, where a and b are real numbers, are called complex
numbers, and can be solutions to quadratic equations. Notice that the set of real numbers
is included in the set of complex numbers (when b = 0).

We can perform all of the basic operations on complex numbers:

Addition: Subtraction:
(1 + 2i) + (3 + 4i) = (1 + 3) + (2 + 4)i (1 + 2i)− (3 + 4i) = (1 + 2i) + (−3− 4i)

= 4 + 6i = (1− 3) + (2− 4)i
= −2− 2i

Multiplication: Division:

(1 + 2i)(3 + 4i) = 3 + 4i+ 6i+ 8i2
1 + 2i

3 + 4i
=

1 + 2i

3 + 4i
· 3− 4i

3− 4i

= (3− 8) + (4 + 6)i =
3− 4i+ 6i− 8i2

9− 12i+ 12i− 16i2

= −5 + 10i =
3 + 8 + (−4 + 6)i

9 + 16

=
11 + 2i

25
=

11

25
+

2

25
i

Notice that in the division problem we multiplied by the same number in the numerator and
denominator. The complex conjugate of a+ bi, denoted a+ bi, is a− bi and the number we
used is the complex conjugate of the denominator, effectively converting the denominator to
a real number. Also, notice that the multiplicative inverse of a complex number is a scaled
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version of its conjugate:

1

a+ bi
=

1

a+ bi
· a− bi
a− bi

=
1

a2 + b2
(a− bi).

Also, we can equate complex numbers to points in a plane by letting the real part of the
complex number be the first coordinate of the point and letting the real coefficient of the
imaginary part be the second coordinate; that is,

a+ bi⇐⇒ (a, b),

as demonstrated in Figure 1.

-4 -2 2 4

-4

-2

2

4

3 + 4i

−4 + i

−3i

Figure 1

If we place the unit circle (that we used to develop the sine and cosine function in
Chapter 4) in the complex plane, then instead of worrying about the point (cos θ, sin θ) on
the circle, we can think of the complex number cos θ + i sin θ, shown in Figure 2. In fact,
if we take any complex number a + bi, and find the angle θ of the ray from the origin that
passes through the point, then we can specify the complex number exactly by giving the
angle θ and the distance from the origin. We call this distance the modulus of a complex
number, given by

|a+ bi| =
√
a2 + b2 or

√
(a+ bi)(a+ bi).

Thus, the complex number a+ bi has a new representation, called the trigonometric form of
the complex number,

r(cos θ + i sin θ)

where r =
√
a2 + b2 is the modulus of the complex number and θ is in the quadrant containing

the number a + bi so that tan θ =
b

a
. We call the original format of the complex number

a+ bi the rectangular form of the complex number.
This new representation has its advantages, one of which we will illustrate in the next

example.
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-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

cos θ + i sin θ

θ

Figure 2

Example: Let u = 1 +
√

3i and v = i. Find the trigonometric form of each number. Find
the product of u and v and find its trigonometric form as well.

For the complex number u, we have

ru =
√

12 + (
√

3)2 and tan θu =
√

3
1

=
√

3

= 2 θu = π
3
,

since u is in the first quadrant. Then

u = 1 +
√

3i = 2
[
cos
(π

3

)
+ i sin

(π
3

)]
.

For the complex number v, we have

rv =
√

02 + 12 and tan θv = 1
0

= undefined
= 1 θv = π

2
,

since v is on the positive imaginary axis. Then

v = i = cos
(π

2

)
+ i sin

(π
2

)
.

The product uv is

uv = (1 +
√

3i)(i) = i+
√

3i2 = −
√

3 + i.

Then

ruv =
√

(−
√

3)2 + 12 and tan θuv = 1
−
√

3

= 2 θuv =
(
−π

6

)
+ π = 5π

6
,

since arctan
(
− π√

3

)
is in the fourth quadrant, and our complex number is in the second

quadrant. Therefore,

uv = 2

[
cos

(
5π

6

)
+ i sin

(
5π

6

)]
.
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Notice that ruv = rurv = 2(1) and that θuv = θu + θv =
π

3
+
π

2
. The solution is illustrated in

Figure 3.
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π

3

π

2

Figure 3

We can, in fact, prove that this will always happen, regardless of the r-values and the
θ’s. Let

u = ru(cos θu + i sin θu) and v = rv(cos θv + i sin θv).

Then
uv = [ru(cos θu + i sin θu)] [rv(cos θv + i sin θv)]

uv = rurv [cos θu cos θv − sin θu sin θv + i (sin θu cos θv + cos θu sin θv)]

uv = rurv [cos(θu + θv) + i sin(θu + θv)] . (1)

Therefore, once we have two complex numbers in trigonometric form, we can multiply them
by multiplying their moduli and adding their angles.

While this is a nice property, writing “cos θ + i sin θ” all of the time is bothersome.
We could create a short-hand function notation for “cos θ + i sin θ”; in fact, many books
will use “cis θ” as short-hand for “cos θ + i sin θ”. However, we can find a more accurate
mathematical statement for “cos θ + i sin θ”, based on the fact that adding the angles when
we multiply is reminiscent of exponents.

5.1 Exercises

1) Perform the following complex number operations.

a) (3− 2i) + (−1 + 3i) b) (−2− 8i)− (−3− 7i)

c) (4− i)−
(

2 +
1

2
i

)
d)

(
5

2
− 4

3
i

)
−
(

3

2
+

2

3
i

)
e) (3 + i)(−2− 5i) f)

(
2− 1

2
i

)(
3

2
+ 4i

)
g)

7− i
1 + 2i

h)
1 + 2i

2− i
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2) Convert the following complex numbers from rectangular form to trigonometric form.

a) 1 + i b)
√

2−
√

2 i

c)
1

4
−
√

3

4
i d) −2

√
3 + 2i

3) Convert the following complex numbers from trigonometric form to rectangular form.

a)
√

2
(

cos
π

4
+ i sin

π

4

)
b) 2

(
cos
(
−π

4

)
+ i sin

(
−π

4

))
c)

1

2

(
cos
(
−π

3

)
+ i sin

(
−π

3

))
d) 4

(
cos

5π

6
+ i sin

5π

6

)
4) Verify that the formula in equation (1) works by multiplying the following pairs of
complex numbers two different ways: first, by multiplying the numbers in rectangular form,
and second, by converting the numbers to trigonometric form, applying equation (1), and
converting back to rectangular form.

a) 1 + i and
√

2−
√

2 i b)
1

4
−
√

3

4
i and −2

√
3 + 2i

5) Let u = 2
(

cos
π

3
+ i sin

π

3

)
and v =

√
2
(

cos
π

4
+ i sin

π

4

)
.

a) Convert both u and v into rectangular form and calculate
1

u
and

1

v
. Convert both of

your answers back into trigonometric form.

b) Speculate as to a formula for the trigonometric form of
1

z
where z = r(cos θ+ i sin θ).

c) Prove that your formula for the trigonometric form of
1

z
where z = r(cos θ+ i sin θ) is

valid for all nonzero z.

d) Use your formula for the trigonometric form of
1

z
and equation (1) to prove that

u

v
=
ru
rv

[cos(θu − θv) + i sin(θu − θv)] ,

where u = ru (cos θu + i sin θu) and v = rv (cos θv + i sin θv).
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5.2 Series Representations of Functions

Most survivors of high-school algebra are familiar with the definition of an for a nonzero
base a and rational number n. If n is a whole number, then

an = a · a · . . . · a (n factors of a),

with the convention that a0 = 1. If the exponent is a negative integer, then

a−n =
1

an
for n > 0.

If the exponent is a rational number, then for integer m and positive integer n,

a
m
n = n

√
am =

(
n
√
a
)m

.

You probably also remember the exponent rules :

aman = am+n

am

an
= am−n

(am)n = amn.

Your high-school teacher may not have made a big deal out of the fact that we really
never define an for all real numbers n (for example, how are we supposed to interpret 2π?).
We can define exponential values for irrational exponents, but it requires a bit of calculus, so
we will pass on the notion for now. However, we can think about a continuous exponential
function

f(x) = ax, for a > 0,

defined explicitly for rational x and taking “in-between” values for irrational x. Figure 4
shows exponential functions with a = 2 and a = 3 on the left and in the middle, respectively.

If we look at the tangent line (that just touches the curve and gives the “slope” of the
curve at that instant – again, some calculus at work here) to y = 2x at (0, 1), shown on
the left in Figure 4, we see that the slope of the tangent line is less than 1, as evidenced
by the fact that it intersects the x-axis to the left of −1. If we look at the tangent line
to y = 3x at (0, 1), shown in the middle in Figure 4, we see that the slope of the tangent
line is more than 1, as evidenced by the fact that it intersects the x-axis to the right of −1.
(See the movie basesandslope.mov on the course webpage for a nice animation of how the
curve and the tangent line change as the base changes.) It stands to reason that there must
be some value between 2 and 3 such that the slope of the tangent line to the exponential
function of that base at (0, 1) would be equal to 1. That magical value is denoted e, after
the Swiss mathematician Leon Euler (pronounced “oiler”) that first introduced the constant.
The constant is irrational, with

e ≈ 2.7182818284590452354 . . .
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y = ex

m < 1 m > 1

m = 1

m = 5

Figure 4

The graph of y = ex is shown on the right in Figure 4. It is interesting to note that the
tangent line at any point on the curve has a slope equal to the y-value of the point.

Perhaps the even cooler property of this curve is that we can add up an infinite number
of terms of the form

anx
n, for n = 0, 1, . . .

to build this curve exactly. We define n factorial, denoted n!, for positive integer n by

n! = n(n− 1) · · · (1),

with 0! defined to be 1. Then

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ . . . (2)

Again, proving this conclusively is a calculus topic, but you can probably be convinced
graphically, by graphing y = ex along with polynomial approximations to the exponential
function with successively more terms. The graph of y = ex along with a degree 4 approx-
imation is shown in Figure 5. A full animation expapprox.mov showing the convergence
of the polynomials to y = ex as we add more terms is on the class webpage. Notice that the
approximation is initially only valid at x = 0, but as we add more terms, the approximation
gets closer to the curve over a larger interval.

We can build some of our old trigonometric functions with infinite series as well. The
sine function can be restated as

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
− x7

5040
+ . . . (3)
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Figure 5: The blue curve is y = ex. The red curve is the degree 4 polynomial
approximation.

The graph of y = sinx along with a degree 7 approximation is shown in Figure 6. A full
animation sinapprox.mov showing the convergence of the polynomials to y = sin x as we
add more terms is on the class webpage. The cosine function can be restated as

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2
+
x4

24
− x6

720
+ . . . (4)

The graph of y = cos x along with a degree 6 approximation is shown in Figure 7. A full
animation cosapprox.mov showing the convergence of the polynomials to y = cosx as we
add more terms is on the class webpage.

-2 Π -Π Π 2 Π

-1

1

Figure 6: The blue curve is y = sinx. The red curve is the degree 7 polynomial
approximation.

As cool as it is to be able to use series to describe exponential, sine, and cosine functions,
the coolest is yet to come.
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Figure 7: The blue curve is y = cosx. The red curve is the degree 6 polynomial
approximation.

5.2 Exercises

1) Use successively higher degree approximations of ex using the formula in equation (2)

to approximate e3. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate the error
in your approximation compared to your calculator’s decimal value of e3.

2) Use successively higher degree approximations of ex using the formula in equation (2) to

approximate e−3. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate the error
in your approximation compared to your calculator’s decimal value of e−3.

3) Use successively higher degree approximations of sin x using the formula in equation (3)

to approximate sin
3π

4
. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate the

error in your approximation compared to your calculator’s decimal value of sin
3π

4
.

4) Use successively higher degree approximations of sin x using the formula in equation (3)

to approximate sin

(
−3π

4

)
. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate

the error in your approximation compared to your calculator’s decimal value of sin

(
−3π

4

)
.

5) Use successively higher degree approximations of cosx using the formula in equation (4)

to approximate cos
5π

6
. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate the

error in your approximation compared to your calculator’s decimal value of cos
5π

6
.

6) Use successively higher degree approximations of cosx using the formula in equation (4)

to approximate cos

(
−5π

6

)
. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate

the error in your approximation compared to your calculator’s decimal value of cos

(
−5π

6

)
.
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5.3 Euler’s Formula

In the homework for the previous section, we substituted values for x in the series rep-
resentations of ex, sinx, and cosx to get approximate function values and to prove some
interesting infinite sum results. Now I want us to try something that may seem like folly
at first – replace sin θ and cos θ in “cos θ + i sin θ” with their series representations from
equations (3) and (4), respectively.

cos θ + i sin θ =

(
1− θ2

2
+
θ4

24
− θ6

720
+ . . .

)
+ i

(
θ − θ3

6
+

θ5

120
− θ7

5040
+ . . .

)

= 1 + iθ − θ2

2
− iθ

3

6
+
θ4

24
+ i

θ5

120
− θ6

720
− i θ7

5040
+ . . .

We would like to remove the imaginary coefficients. Notice that

i0 = 1, i1 = i, i2 = −1, i3 = i2i = −i,
i4 = i2i2 = (−1)(−1) = 1, i5 = i4i = i, i6 = i4i2 = −1, i7 = i4i3 = −i, etc.

Then

cos θ + i sin θ = 1 + iθ + (−1)
θ2

2
+ (−i)θ

3

6
+
θ4

24
+ i

θ5

120
+ (−1)

θ6

720
+ (−i) θ7

5040
+ . . .

= 1 + iθ + i2
θ2

2
+ i3

θ3

6
+ i4

θ4

24
+ i5

θ5

120
+ i6

θ6

720
+ i7

θ7

5040
+ . . .

= 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ . . . = eiθ,

which is just the coolest! Not only do we have a nice, compact way of saying “cos θ+ i sin θ”,
but we did not have to make it up – it’s actually equal! We are also now in a very ironic
situation – we still do not know exactly how to interpret the base e raised to an irrational
number like π, but we do know how to interpret e raised to a complex power like iπ. In fact,

eiπ = cosπ + i sin π = −1 + i(0) = −1.

The equation
eiθ = cos θ + i sin θ (5)

is known as Euler’s formula.
It is important to note that most (if not all) of the trigonometric identities that we

struggled and took pages to prove in earlier chapters are now just a consequence of our
exponent rules and complex number multiplication.

Example: Use Euler’s formula to verify the sum formulas for sine and cosine.

Consider ei(α+β).
ei(α+β) = eiα+iβ = eiαeiβ

cos(α + β) + i sin(α + β) = (cosα + i sinα) (cos β + i sin β)
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cos(α + β) + i sin(α + β) = (cosα cos β − sinα sin β) + i (sinα cos β + cosα sin β)

Then, since the complex numbers are equal only if the real parts are equal and the imaginary
parts are equal, then we have the two results

cos(α + β) = cosα cos β − sinα sin β

and
sin(α + β) = sinα cos β + cosα sin β.

Example: Use Euler’s formula to generate triple-angle identities for sine and cosine.

Consider ei(3θ) =
(
eiθ
)3

. Then

cos(3θ) + i sin(3θ) = (cos θ + i sin θ)3

= (cos θ)3 + 3(cos θ)2(i sin θ) + 3(cos θ)(i sin θ)2 + (i sin θ)3

= cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

= cos3 θ − 3 cos θ sin2 θ + i
(
3 cos2 θ sin θ − sin3 θ

)
Therefore, since the real part on the left must equal the real part on the right, and the same
is true for the imaginary parts, we have

cos(3θ) = cos3 θ − 3 cos θ sin2 θ and sin(3θ) = 3 cos2 θ sin θ − sin3 θ.

Taking Euler’s formula into account, we now have a neat way to write complex numbers
when expressing them in trigonometric form:

r (cos θ + i sin θ) = reiθ.

We will continue to call this format the trigonometric form of the complex number, although
occasionally, to be more specific, we will refer to this format as the complex exponential form
of the complex number.

5.3 Exercises

1) Write the following complex numbers, expressed in the original trigonometric form, in
the new complex exponential form.

a) 4
(

cos
π

4
+ i sin

π

4

)
b)

1

2

(
cos

5π

6
+ i sin

5π

6

)
c) 2

(
cos

7π

3
+ i sin

7π

3

)
d) 20

(
cos

π

12
+ i sin

π

12

)
2) Convert the following complex numbers from rectangular form to trigonometric form
using our new complex exponential format.

a) 1 + i b)
√

2−
√

2 i

c)
1

4
−
√

3

4
i d) −2

√
3 + 2i
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3) Convert the following complex numbers from trigonometric form to rectangular form.

a)
√

2 ei
π
4 b) 2e−i

π
4

c)
1

2
e−i

π
3 d) 4ei

5π
6

4) Verify that the exponent rules work with the complex exponential by multiplying the
following pairs of complex numbers two different ways: first, by multiplying the numbers
in rectangular form, and second, by converting the numbers to complex exponential form,
applying the exponent rules, and converting back to rectangular form.

a) 1 + i and
√

2−
√

2 i b)
1

4
−
√

3

4
i and −2

√
3 + 2i

5) Let u = 2ei
π
3 and v =

√
2 ei

π
4 .

a) Convert both u and v into rectangular form and calculate
1

u
and

1

v
. Convert both of

your answers back into complex exponential form.

b) Speculate as to a formula for the complex exponential form of
1

z
where z = reiθ. Is

the formula consistent with our exponent rules?

c) Prove that your formula for the complex exponential form of
1

z
where z = reiθ is valid

for all nonzero z.

d) Use exponent rules to prove that

u

v
=
ru
rv
ei(θu−θv),

where u = rue
iθu and v = rve

iθv .

6) Using Euler’s Formula, calculate the modulus of eiθ in terms of the angle θ.
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5.4 DeMoivre’s Formula

Euler’s formula has several consequences for the way we do mathematics. It has allowed
us to convert complex-number multiplication problems into real-number multiplication and
real-number addition problems, and visa versa; that is,

if u = rue
iθu and v = rve

iθv , then uv = rurve
i(θu+θv). (6)

But, it can also allow us to solve some rather difficult equations. Consider the equation
x3 = 1. Clearly, x = 1 is a solution, but the Fundamental Theorem of Algebra tells us that
this degree-three equation should have three complex solutions, and x = 1 is only one of
them. What other two numbers, possibly complex, can we raise to the third power and still
get 1?

To answer this question, consider what happens in equation (6) if we let z = reiθ and
replace both u and v with z. Then

z2 = r2ei(2θ),

which is consistent with the exponent rules:

z2 =
(
reiθ
)2

= r2e2(iθ) = r2ei(2θ).

It is not hard to show that for positive integer n and a complex number z = reiθ, we have

zn = rneinθ = rn [cos(nθ) + i sin(nθ)] .

This is called DeMoivre’s Formula, and it provides us with a very quick way of calculating
whole number powers of complex numbers.

Example: Calculate
(

1 +
√

3 i
)5

by direct multiplication and by using DeMoivre’s Formula.

Direct multiplication:(
1 +
√

3 i
)5

=
(

1 +
√

3 i
)(

1 +
√

3 i
)(

1 +
√

3 i
)(

1 +
√

3 i
)(

1 +
√

3 i
)

=
(

1− 3 +
√

3 i+
√

3 i
)(

1− 3 +
√

3 i+
√

3 i
)(

1 +
√

3 i
)

=
(
−2 + 2

√
3 i
)(
−2 + 2

√
3 i
)(

1 +
√

3 i
)

=
(

4− 12− 4
√

3 i− 4
√

3 i
)(

1 +
√

3 i
)

=
(
−8− 8

√
3 i
)(

1 +
√

3 i
)

=−8 + 24− 8
√

3 i− 8
√

3 i

= 16− 16
√

3 i

DeMoivre’s Formula: First, we convert 1 +
√

3 i into its complex exponential form.

r =

√
12 +

(√
3
)2

=
√

4 = 2 and θ =
π

3
since cos

π

3
=

1

2
and sin

π

3
=

√
3

2
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Then 1 +
√

3 i = 2ei
π
3 , and so(

1 +
√

3 i
)5

=
(
2ei

π
3

)5
= 25ei

5π
3 = 32

(
cos

5π

3
+ i sin

5π

3

)
= 32

(
1

2
+ i

(
−
√

3

2

))
= 16− 16

√
3 i

How does this help us solve equations like x3 = 1? First, realize that 1 = ei(2πk) for any
integer k, so if z = reiθ, then

z = z(1) = reiθei(2πk) = rei(θ+2πk).

If we take the nth-root of both sides, for positive integer n, we get

z
1
n =

(
rei(θ+2πk)

) 1
n = r

1
n ei

θ+2πk
n = r

1
n

[
cos

(
θ

n
+

2πk

n

)
+ i sin

(
θ

n
+

2πk

n

)]
.

This result is consistent with DeMoivre’s Formula, since if we raise z
1
n to the nth power, we

get (
z

1
n

)n
=
(
r

1
n

)n [
cosn

(
θ

n
+

2πk

n

)
+ i sinn

(
θ

n
+

2πk

n

)]
= r [cos(θ + 2πk) + i sin(θ + 2πk)]

= r (cos θ + i sin θ) = reiθ = z.

We are able to find distinct nth-roots for k = 0, 1, . . . , n− 1.

Example: Find all of the solutions to the equation x3 = 1.

Taking the 3rd-root of both sides we get

x = 1
1
3

= 1
1
3

[
cos

(
0 +

2πk

3

)
+ i sin

(
0 +

2πk

3

)]
, for k = 0, 1, 2

= cos 0 + i sin 0, cos
2π

3
+ i sin

2π

3
, cos

4π

3
+ i sin

4π

3

= 1, −1

2
+ i

√
3

2
, −1

2
− i
√

3

2
.

The reader may verify by hand that each of the solutions satisfy the given equation. The
solutions, known as the third roots of unity, are graphed in Figure 8. Notice that if you
increase each angle by a factor of 3, you end up back at z = 1. This process is shown in the
animation thirdrootsunity.mov.

We are now able to calculate the nth roots of some very exotic numbers.
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-

1

2

-

3

2

3

2

1

1

1

1

−1
2

+ i
√

3
2

−1
2
− i

√
3

2

Figure 8: The third roots of unity, equally spaced on the unit circle.

Example: Find all of the fourth roots of -4.

First, we put −4 into its complex exponential form.

r =
√

(−4)2 + 02 =
√

16 = 4 and θ = π since cos π =
−4

4
= −1 and sin π =

0

4
= 0

Then −4 = 4eiπ, and so

(−4)
1
4 = 4

1
4

[
cos

(
π

4
+

2πk

4

)
+ i sin

(
π

4
+

2πk

4

)]
, for k = 0, 1, 2, 3

=
√

2
(

cos
π

4
+ i sin

π

4

)
,
√

2

(
cos

3π

4
+ i sin

3π

4

)
,

√
2

(
cos

5π

4
+ i sin

5π

4

)
,
√

2

(
cos

7π

4
+ i sin

7π

4

)
=
√

2

(√
2

2
+ i

√
2

2

)
,
√

2

(
−
√

2

2
+ i

√
2

2

)
,

√
2

(
−
√

2

2
+ i

(
−
√

2

2

))
,
√

2

(√
2

2
+ i

(
−
√

2

2

))
= 1 + i, −1 + i, −1− i, 1− i.

We can quickly verify the validity of these answers:

(1 + i)4 = (1− 1 + 2i)(1− 1 + 2i) = (2i)2 = −4,

(−1 + i)4 = (1− 1− 2i)(1− 1− 2i) = (−2i)2 = −4,

(−1− i)4 = (1− 1 + 2i)(1− 1 + 2i) = (2i)2 = −4,

(1− i)4 = (1− 1− 2i)(1− 1− 2i) = (−2i)2 = −4.
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Figure 9: The four fourth roots of −4, and the rotational paths when raising each to the
fourth power.

The solutions are shown in Figure 9, along with the path the solutions would take if we

raised them to the kth power, for 1 ≤ k ≤ 4.

5.4 Exercises

1) Calculate each of the following exactly using two methods: a) direct multiplication in
rectangular form, and b) converting to trigonometric form, using DeMoivre’s Formula, and
converting back to rectangular form.

a) (1− i)3 b)

(√
2

2
−
√

2

2
i

)6

c) (−2i)8 d)

(√
3

2
+

1

2
i

)4

2) Verify that the three third roots of unity 1, −1

2
+

√
3

2
i, and −1

2
−
√

3

2
i from the first

example all satisfy the equation x3 = 1.

3) Find each solution to the following equations, in rectangular form if complex.

a) x6 = 1 b) x6 = −1

c) x4 = 16 d) x3 = i

4) Use the fact that the roots of unity are equally spaced around the unit circle to find
vertices needed to inscribe a regular dodecagon (equilateral 12-gon) inside a unit circle.
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5.5 CORDIC Algorithm

Back in Chapter 4, we discovered the hard way that we can calculate the sine and cosine
values for only a small portion of the infinite values in the interval [0, 2π). So how is it
that our calculators can give us numerical results for any value that we input? Calculators
use an algorithm to calculate numerical values for sine and cosine, an algorithm based upon
complex numbers, called CORDIC (COordinate Rotation DIgital Computer). The basic
idea was eluded to in the exercises from section 4.6, using the half-angle identities to find
sine and cosine values halfway between the known values and using our sum and difference
identities to calculate the values for more and more inputs. The only difference is that the
CORDIC algorithm is more computationally efficient for binary machines like computers
and calculators. Complex numbers (or, more accurately, two real numbers which serve as
the real and imaginary parts of complex numbers) are used because

1. as shown in Section 5.3, complex number multiplication effectively replaces the need
for the sum and difference identities, and

2. we may calculate both the sine and cosine values, hence all of the trigonometric function
values, at the same time.

This section will illustrate the complex number ideas programmed into computers and
calculators to calculate trigonometric function values for real number radian measures up to a
certain decimal precision. The code used to demonstrate the effectiveness of the algorithms
will be written in MathematicaTM, although the ideas could certainly be translated into any
computer language. First, we will develop the algorithm with complex numbers on the unit circle
in the complex plane. After using that algorithm to develop the basic idea, we will illustrate the
actual CORDIC algorithm.

The Basic Idea

Recall from Section 5.1 that complex numbers of the form cos θ+ i sin θ fall somewhere on the
unit circle in the complex plane, and from Section 5.3 that by Euler’s formula, they are equal to
eiθ. Then each value of θ corresponds to exactly one complex number on the unit circle, where the
real part is the cosine of θ and the imaginary part is the sine of θ. Thus, if we know the sine and
cosine values for θ1 and θ2, then from equation (6), we can quickly use complex multiplication to
calculate the sine and cosine values for θ1 ± θ2:

(cos θ1 + i sin θ1) (cos(±θ2) + i sin(±θ2)) = eiθ1e±iθ2 = ei(θ1±θ2) = cos(θ1 ± θ2) + i sin(θ1 ± θ2).

Notice that
cos(±θ2) + i sin(±θ2) = cos θ2 ± i sin(θ2),

so both adding and subtracting an angle will still involve complex number multiplication. When
subtracting an angle, we will simply multiply by the conjugate.

Complex multiplication is the basic idea that the CORDIC algorithm is built on. We will start
with building our own “unit circle” version.
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Step 1 (Initialization): We will need to generate a table of known sine and cosine values. We

can start with the values for
π

2
and use the half-angle identities to generate numerical values. This

would generally be done initially and then used every time the function is called. We should also
be sure to perform the calculations up to the precision of the machine on which you are working.
The MathematicaTM code for generating the table is

vals = Table[{N[Pi/2ˆ(i + 1), 20], 0, 0}, {i, 0, 39}];
vals[[1, 3]] = 1;
Do[(vals[[i, 2]] = N[Sqrt[(1 + vals[[i − 1, 2]])/2], 40];

vals[[i, 3]] = N[Sqrt[(1 − vals[[i − 1, 2]])/2], 40];),
{i, 2, 40}]

Note the use of the half-angle identities for cosine and sine to calculate the table values “vals[[i, 2]]”
and “vals[[i, 3]]”, respectively. The first 20 rows of values generated, rounded to 15 decimal places,
are shown in Table 1.

Table 1: Approximate Cosine and Sine Values for
π

2

(
2−k
)

Radians, k = 0, . . . , 19

Radians Cosine Sine
1.570796326794897 0.000000000000000 1.000000000000000
0.785398163397448 0.707106781186548 0.707106781186548
0.392699081698724 0.923879532511287 0.382683432365090
0.196349540849362 0.980785280403230 0.195090322016128
0.098174770424681 0.995184726672197 0.098017140329561
0.049087385212341 0.998795456205172 0.049067674327418
0.024543692606170 0.999698818696204 0.024541228522912
0.012271846303085 0.999924701839145 0.012271538285720
0.006135923151543 0.999981175282601 0.006135884649154
0.003067961575771 0.999995293809576 0.003067956762966
0.001533980787886 0.999998823451702 0.001533980186285
0.000766990393943 0.999999705862882 0.000766990318743
0.000383495196971 0.999999926465718 0.000383495187571
0.000191747598486 0.999999981616429 0.000191747597311
0.000095873799243 0.999999995404107 0.000095873799096
0.000047936899621 0.999999998851027 0.000047936899603
0.000023968449811 0.999999999712757 0.000023968449808
0.000011984224905 0.999999999928189 0.000011984224905
0.000005992112453 0.999999999982047 0.000005992112453
0.000002996056226 0.999999999995512 0.000002996056226
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Time out!
There are a couple of interesting things to point out about Table 1.

• Notice that most of the cosine values in Table 1 are approximately 1. This will motivate the
calculations in the real version of the CORDIC algorithm.

• This has no effect on our work here, but is a simple curiousity: notice that the radian measure
of the angles and their sine values are virtually equal for small, positive radian values. This
fact will come in handy later in your mathematical careers.

Time in!

Step 2 (Framing the angle): We start by putting the angle we are working with in the range
−π < θ ≤ π.

• If θ ≤ −π, then add
π

2
until −π < θ ≤ π, keeping track of the number of times it is added.

• If θ > π, then subtract
π

2
until −π < θ ≤ π, keeping track of the number of times it is

subtracted.

The MathematicaTM code for this step is

tmod = N[t, 30]; count = 0;
While[tmod <= − Pi, (count = count − 1; tmod = tmod + Pi/2;)];
While[tmod > Pi, (count = count + 1; tmod = tmod − Pi/2;)];

Example: Suppose that the input angle is
7π
4

. Since this angle is greater than π, then

tmod =
7π
4
− π

2
=

5π
4

and count = 0 + 1 = 1.

Since this new angle is still greater than π, then

tmod =
5π
4
− π

2
=

3π
4

and count = 1 + 1 = 2.

Step 3 (Rotations): Our goal is to progressively accumulate the necessary angle to rotate our
given angle to 0, while simultaneously rotating the point on the unit circle that corresponds to 0
radians, 1+ 0i, the same amount in the other direction. We start with an initial accumulated angle
of 0, and step through each row of our generated table.

• If our angle plus the accumulated angle is greater than or equal to 0, then we multiply by the
first complex number a+ bi in our table and subtract our table angle from the accumulated
angle.

• If our angle plus the accumulated angle is less than 0, then we multiply by the conjugate
of the first complex number a+ bi in our table and add our table angle to the accumulated
angle.

• Repeat these steps for each row of the table.
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The MathematicaTM code for this step is

acc = 0; temp = 1;
Do[(curr = tmod + acc;

If[curr >= 0,
(temp = temp*(vals[[i, 2]] + I*vals[[i, 3]]);
acc = acc − vals[[i, 1]];),
(temp = temp*(vals[[i, 2]] − I*vals[[i, 3]]);
acc = acc + vals[[i, 1]];)]),

{i, 1, 40}];

Example (continued): With the input angle
7π
4

, we actually work with the angle tmod=
3π
4

and set count to 2. With the initial accumulated angle acc= 0 and the current complex number
temp= 1 + 0i, we add our angle to our current accumulated angle:

curr =
3π
4

+ 0 =
3π
4
.

Since curr≥ 0, then we multiply by the cos θ + i sin θ in the first row of Table 1, and subtract the
first row angle from the accumulated angle:

temp = (1 + 0i)(0 + 1i) = i and acc = 0− π

2
= −π

2
.

We then repeat the process for each row of the table. In the second pass, we add our angle to our
current accumulated angle:

curr =
3π
4

+
(
−π

2

)
=
π

4
.

Since curr≥ 0, then we multiply by the cos θ + i sin θ in the second row of Table 1, and subtract
the second row angle from the accumulated angle:

temp ≈ i(0.70710678 + 0.70710678i) = −0.70710678 + 0.70710678i and acc = −π
2
− π

4
= −3π

4
.

It is important to note that although the accumulated angle is now the exact opposite of our
adjusted angle, the algorithm does not stop – it always runs through each row of the table, for
speed reasons. The repeated condition checking to see if the angle has been accumulated would take
longer than just running through the rows, and since we are dealing with decimal approximations,
it would only rarely stop the algorithms mid-run. The next row will over-shoot the given angle

by
π

8
, but the rest of the rows will pull the accumulated angle back to −3π

4
.

Step 4 (Unframing the angle): We just need to multiply by i for each
π

2
we subtracted in

Step 1, or likewise, multiply by −i or, equivalently, divide by i, for each
π

2
we had to add. The

MathematicaTM code for this step is

temp = temp*I ˆ count;
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Example (continued): After going through all of the rows of the table, we would have

temp ≈ −0.70710678 + 0.70710678i.

Since we subtracted
π

2
from our initial angle twice (count= 2), then we need to multiply by i twice

to get the complex number that corresponds to our original angle:

temp ≈ (−0.70710678 + 0.70710678i)i2 = (−0.70710678 + 0.70710678i)(−1)

temp ≈ 0.70710678− 0.70710678i

Step 5 (Output of results): The cosine of the given angle will be the real part of our resulting
complex number and the sine of the given angle will be the imaginary part of the complex number.
The various MathematicaTM print commands are shown below.

s = N[Im[temp], 8];
c = N[Re[temp], 8];
places[x , n ] := (num = Floor[Log[10, Abs[x]]];

Return[N[x, n + num + 1]]);
Print[“The sine of ”, t, “ is ”, places[s, 8], “.”];
Print[“The cosine of ”, t, “ is ”, places[c, 8], “.”];
Print[“The tangent of ”, t, “ is ”, places[s/c, 8], “.”];
Print[“The secant of ”, t, “ is ”, places[1/c, 8], “.”];
Print[“The cosecant of ”, t, “ is ”, places[1/s, 8], “.”];
Print[“The cotangent of ”, t, “ is ”, places[c/s, 8], “.”];

(The places function is there to give us the desired number of decimal places. MathematicaTM

works on significant digits rather than decimal places, so we have to adjust the number of significant
digits we ask for to get the requested number of decimal places.)

Example (continued): Notice that the real part of temp gives the numerical value for cos
7π
4

and that the imaginary part gives the numerical value for sin
7π
4

.

The MathematicaTM file CORDIC.nb on the class webpage contains all of the code that has
been discussed here.

The Real CORDIC Algorithm

While the algorithm we just developed is very efficient itself, the calculations taking place
are not. Computers and calculators work more efficiently when performing operations on decimals
that involve only powers of two. For example. “0.1” is a one-digit decimal number to us, but to a
calculator,

0.1ten = 0.0001100110011 . . .two = 0.00011two,

a repeating, non-terminating decimal, since the positions now are valued at one-half, one-fourth,
one-eighth, etc., all powers of two in the denominator, none of which will be divisible by 5. The
result is that the computer has to truncate the decimal at some level, which introduces some
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rounding error, albeit a very small amount. If we just work with fractions whose denominators are
positive powers of 2, then the binary decimal representation is all zeroes except for the closing digit,
which is one. Also, if we multiply two such numbers, we get another fraction whose denominator
is a positive power of 2. Hence, multiplying two numbers like that is just a shift of the position of
the one.

Also, to a computer, a complex number is really just a pair of real numbers. If your computer
or calculator can do operations with complex numbers, it’s only because someone taught it how to:
given the four numbers a, b, c, d where a and c are real parts of two complex numbers and b and
d are imaginary parts of two complex numbers, then since

(a+ bi)(c+ di) = ac− bd+ (ad+ bc)i,

the real part of the product can be defined as ac− bd and the imaginary part as ad+ bc. If in our
algorithm, we replace all of the cosine values with “1” (most were nearly 1 anyway) and replace the
sine values with fractions with denominators that are positive powers of two, then the real part of
the solution is 1− bd (a shift of the position of the “1” and an addition) and the imaginary part is
d+c (an addition). Thus, no multiplications need to be performed – additions and shifts are carried
out much more efficiently by our binary machines. The table values are no longer on the unit circle,
but on a vertical line through 1 + 0i, as illustrated in Figure 10. The corresponding angles are not
the same, and have to calculated ahead of time. Also, since the moduli of the numbers is no longer
1, we have to divide by the product of the moduli of the complex numbers in the table, called
the CORDIC gain, which is approximately 1.64676026. However, the basic idea is the same as the
unit-circle version we illustrated earlier.

1

0.0625

0.125

0.25

0.5

1

Figure 10: The CORDIC table values that take advantage of binary calculations.
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5.5 Exercises

1) Perform Step 2 of the CORDIC algorithm on the following angles to get an angle θ in the range
−π < θ ≤ π. Give the value of tmod and count at the end of the step for each angle.

a)
7π
6

b)
23π
12

c) −8π
3

d) 3

2) Using exact values for the first three rows of Table 1 (given below), perform Step 3 of our
unit-circle version of the CORDIC algorithm on the following angles, converted to decimals, to find
the third-row CORDIC approximation of tmod. Then perform Step 4 to unframe the angle. Give
the final value of temp, with the real and imaginary parts rounded to 8 decimal places. Compare
to your calculator’s values for the cosine and sine of the angle, respectively.

Radians Cosine Sine
π

2
0 1

π

4

√
2

2

√
2

2
π

8

√
2 +
√

2
2

√
2−
√

2
2

a)
7π
6

b)
23π
12

c) −8π
3

d) 3

3) Using the MathematicaTM file CORDIC.nb on the class webpage, calculate all of the trigono-
metric function values for the following angles. Compare to the computer’s values for the trigono-
metric functions at each angle.

a)
7π
6

b)
23π
12

c) −8π
3

d) 3

4) The numerical precision and the depth of the table used in the CORDIC algorithm become
extremely important as we put in values that are close to the locations of vertical asymptotes with
the tangent, cotangent, secant, or cosecant functions; that is, multiples of

π

2
. Use the Mathemat-

icaTM file CORDIC.nb on the class webpage to calculate all of the trigonometric function values
for the following angles. Compare to the computer’s values for the trigonometric functions at each
angle.

a) π − 0.0001 b)
π

2
+ 0.00001

c) −π
2

+ 0.001 d) 0.000001
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5) While the unit-circle version of CORDIC that we developed uses the half-angle identities to
generate points on the unit circle associated with the angles

π

2

(
2−k
)

radians for integer k ≥ 0,

the actual binary-efficient version of CORDIC uses the point (0, 1) for
π

2
and points 1 + 2−ki for

integer k ≥ 0 for the rest of the table (illustrated in Figure 10). What are the angles associated
with these points for k = 0, . . . , 10, in radians, rounded to six decimal places? Compare each to
the analogous angle in the unit-circle version, given in Table 1.

6) Verify that the CORDIC gain is approximately 1.64676026 by multiplying the moduli of the
complex numbers 1 + 2−ki for k = 0, . . . , 14.
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5.6 Review: What have we learned (or relearned)?

Definition: Complex Conjugate The complex conjugate of a+ bi, denoted a+ bi, is a− bi.

Definition: Modulus of a Complex Number The modulus of a complex number a+bi, denoted
|a+ bi|, is given by

|a+ bi| =
√

(a+ bi)(a+ bi) =
√
a2 + b2.

Definition: Trigonometric Form of a Complex Number The trigonometric form of the
complex number a+ bi is given by

r(cos θ + i sin θ),

where r =
√
a2 + b2 (the modulus of a+bi) and θ is in the quadrant of the complex plane containing

a+ bi so that tan θ =
b

a
.

Theorem: Suppose that we have two complex numbers in trigonometric form,

u = ru(cos θu + i sin θu) and v = rv(cos θv + i sin θv).

Then the trigonometric form of the product uv is given by

uv = rurv [cos(θu + θv) + i sin(θu + θv)] .

Thus, the modulus of the product is the product of the moduli, and the angle in the trigonometric
form of the product is the sum of the two angles.

Definition: Series Representations of Basic Functions

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ . . .

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
− x7

5040
+ . . .

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2
+
x4

24
− x6

720
+ . . .

Theorem: Euler’s Formula For any real number θ, we have

eiθ = cos θ + i sin θ.

Definition: Complex Exponential Form of a Complex Number The complex exponential
form of a complex number with trigonometric form r(cos θ + i sin θ) is reiθ.

Theorem: DeMoivre’s Formula For a complex number z = reiθ = r(cos θ+i sin θ) and positive
integer n, we have

zn = rneinθ = rn [cos(nθ) + i sin(nθ)] .
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Theorem: nth Root of a Complex Number For a complex number z = reiθ = r(cos θ+i sin θ)
and positive integer n, we have

z
1
n = r

1
n ei

θ+2πk
n = r

1
n

[
cos
(
θ

n
+

2πk
n

)
+ i sin

(
θ

n
+

2πk
n

)]
for k = 0, 1, . . . , n− 1.

The CORDIC Algorithm Our calculators and computers use this numerical algorithm based
on complex number multiplication to calculate approximate sine and cosine values quickly and ef-
ficiently. We developed a unit-circle version of the algorithm. The steps of the algorithm are as
follows:

• Step 1 (Initialization): Generate a table of cosine and sine values, starting at
π

2
, using

the half-angle identities.

• Step 2 (Framing the angle): Place the angle θ in the range −π < θ ≤ π by repeatedly

adding or subtracting
π

2
, while keeping track of the number of times this is done.

• Step 3 (Rotations): Rotate the initial angle 0 to the given angle θ by adding and subtracting
table angles φ, while simultaneously multiplying the initial complex number 1 + 0i by the
complex numbers cosφ± i sinφ, respectively.

• Step 4 (Unframe the angle): Multiply by ±i according to the number of times
π

2
was

added or subtracted in Step 2.

• Step 5 (Output the results): The cosine of θ will be the real part of the resulting complex
number, and the sine of θ will be the imaginary part.

The real CORDIC algorithm replaces the cosines and sines of the half-angles in our algorithm with
the complex numbers 1 + 2−ni, n = 0, 1, . . . and the corresponding angles to take advantage of
efficiencies in binary calculations.

Review Exercises

1) Perform the following complex number operations.

a) (4− 2i) + (−1 + 8i) b) (2− 8i)− (3− 7i)

c) (4− i)
(

2 +
1
2
i

)
d)

1 + i

−1 + 3i

2) Convert the following complex numbers from rectangular form to trigonometric form.

a) 1− i b)
√

7 +
√

21 i

c) −1
8
i d) −5− 5i
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3) Convert the following complex numbers from trigonometric form to rectangular form.

a) 2
√

2
(

cos
5π
4

+ i sin
5π
4

)
b) 2

√
2
(

cos
(
−3π

4

)
+ i sin

(
−3π

4

))
4) Verify that the formula in equation (1) works by multiplying the following pairs of complex
numbers two different ways: first, by multiplying the numbers in rectangular form, and second,
by converting the numbers to trigonometric form, applying equation (1), and converting back to
rectangular form.

a)
√

3 + 3i and −i b)
√

2−
√

2 i and
√

2
4

+
√

2
4
i

5) Use successively higher degree approximations of ex using its series representation, given in
equation (2), to approximate e. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate the
error in your approximation compared to your calculator’s decimal value of e.

6) Use successively higher degree approximations of sinx using its series representation, given in
equation (3), to approximate sin 1. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate
the error in your approximation compared to your calculator’s decimal value of sin 1.

7) Use successively higher degree approximations of cosx using its series approximation, given in
equation (4), to approximate cos 1. For the nth term approximation, n = 0, 1, 2, 3, 4, 5, 6, calculate
the error in your approximation compared to your calculator’s decimal value of cos 1.

8) Convert the following complex numbers from rectangular form to complex exponential form.

a) 1− i b)
√

7 +
√

21 i

c) −1
8
i d) −5− 5i

9) Convert the following complex numbers from complex exponential form to rectangular form.

a) 2
√

2ei
5π
4 b) 2

√
2e−i

3π
4

10) Verify that the exponent rules work with the complex exponential by multiplying the following
pairs of complex numbers two different ways: first, by multiplying the numbers in rectangular form,
and second, by converting the numbers to complex exponential form, applying the exponent rules,
and converting back to rectangular form.

a)
√

3 + 3i and −i b)
√

2−
√

2 i and
√

2
4

+
√

2
4
i

11) Calculate each of the following exactly using two methods: a) direct multiplication in rect-
angular form, and b) converting to trigonometric form, using DeMoivre’s Formula, and converting
back to rectangular form.

a) (1 + i)4 b)
(

1−
√

3 i
)3

12) Find each solution to the following equations. In each case, verify that your solutions satisfy
the equation.

a) x4 = −1 b) x6 = 64
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13) Perform Step 2 of the CORDIC algorithm on the following angles to get an angle θ in the
range −π < θ ≤ π. Give the value of tmod and count at the end of the step for each angle.

a)
13π
6

b) −5π

14) Using exact values for the first three rows of Table 1 (given below), perform Step 3 of our
unit-circle version of the CORDIC algorithm on the following angles, converted to decimals, to find
the third-row CORDIC approximation of tmod. Then perform Step 4 to unframe the angle. Give
the final value of temp, with the real and imaginary parts rounded to 8 decimal places. Compare
to your calculator’s values for the cosine and sine of the angle, respectively.

Radians Cosine Sine
π

2
0 1

π

4

√
2

2

√
2

2
π

8

√
2 +
√

2
2

√
2−
√

2
2

a)
5π
6

b) −π
3

148



Chapter 6: Trigonometry and Sound

MATH 117: Trigonometry

6.1 Introduction to Sound

Sound is a pressurized wave through a medium, that is interpreted by our ears as speech,
music, noise, etc. The medium carries the wave – there is no sound in the vacuum of space,
for example, despite what you may have seen in Star Wars and other science-fiction movies.
The medium affects the sound that you hear. Voices sound different underwater, for example,
than above water.

There are two types of waves that occur in nature. A transversal wave occurs in strings
and surfaces, at a right angle to the surface. Examples of transversal waves in nature would
include

• ripples on the surface of a pond after a rock is thrown in,

• a guitar string after it is plucked, and

• the surface of a drum after it is struck.

It should be no surprise that transversal waves are naturally modeled with sine and cosine
functions of various amplitudes and periods. See the animations transversal1.mov and
transversal2.mov on the class webpage to see transversal waves in motion.

The other type of naturally-occuring waves are longitudinal waves. Longitudinal waves
occur through mediums, parallel to the movement of the wave through the medium. Imagine
taking a SlinkyTM and “slink-ing” it from one hand to the other. This is a longitudinal wave.
Examples of longitudinal waves in nature would include

• waves at the beach and

• sound through any medium.

Although the oscillation is parallel to the direction of movement, we can still use sines and
cosines to model longitudinal waves. We simply take the displacement of the medium, and
place it at a right angle to time on a time-vs.-distance graph. See the animation longitudi-
nal.mov to see a longitudinal wave and together.mov to see how it can be modeled with
sines and cosines, both of which are on the class webpage.

When modeling sound waves with sines and cosines, we will have two quantities that
we will measure. The amplitude of the sine or cosine will correspond to the loudness of
the sound. The frequency is the number of oscillations of the sound wave over a period of
time, typically measured in hertz (Hz), or cycles per second. The frequency of a sound wave
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corresponds to the pitch of the sound. The frequency F in hertz of a sound wave is inversely
proportional to the period p of the sine or cosine with seconds as the independent variable:

F =
1

p
.

The number of cycles that a sound wave makes over a period of time T seconds long is the
product of the frequency F in hertz times T , or

number of oscillations = FT =

(
1

p

)
(T ) =

T

p
. (1)

If the two curves shown in Figure 1 represent sounds, then the sound from the curve at left
is louder than the one at right, but at a lower pitch.

Figure 1

Example: Find the amplitude, period, and frequency of the sound wave represented by
1

2
cos (86πt), where t is measured in seconds. How many oscillations will the sound wave

make over 8 seconds?

The amplitude is the leading coefficient a =
1

2
. The period is

p =
2π

86π
=

1

43
seconds.

Therefore, the frequency is

F =
1
1
43

= 43 Hz.

The number of oscillations over 8 seconds would be 43 · 8 = 344. The graph of the function
is shown over 1 second. Notice that the graph oscillates 43 times over 1 second.
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Sound is a natural tool to use when talking about modeling situations with sines and
cosines, since it is so easy to generate and manipulate. The question that we have to answer
is, how do we use trigonometry to analyze, generate, and alter sounds? We start to answer
this question by noting some of the curious properties of regularly-sampled sine and cosine
functions.

6.1 Exercises

1) Find the amplitude and period of the following sine and cosine functions. Assuming the
curves represent sound waves and t is measured in seconds, find the frequency in hertz of
each of the following, and find the number of oscillations over the given time span.

a) sin (3t); 5 seconds b) 5 cos (2πt); 2 seconds

c)
3 cos

(
π
4
t
)

2
; 1.5 seconds d) sin (800πt); 1 minute

e) cos

(
7π

3
t

)
;

1

3
second f) 4 sin (24000πt);

1

12000
second

2) Let sound A be represented by the function f(t), and sound B be represented by the
function g(t). Determine which sound is louder, and which has the higher pitch. Explain
your answer.

a) f(t) = 2 sin (3t) and g(t) = sin (3πt)

b) f(t) = 15 cos (200πt) and g(t) = 20 sin (300πt)

c) f(t) = 5 sin

(
231π

4
t

)
and g(t) = 4 sin (181t) + 4 cos (181t) (See 1.5 #9 and 1.6 #10.)

d) f(t) =

√
3

2
sin
(
πt− π

3

)
and g(t) = sin (3.14t)− cos (3.14t)

3) Develop a formula for the frequency of a sound wave represented by either a sin (bt− c)
or a cos (bt− c).
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4) Missing from our conversation of amplitude and frequency is the constant function.

a) Generally, we say that the period of a function is the smallest nonzero value p such that
f(t + p) = f(t) for all t. Given that definition, what is the period of the constant function
f(t) = 1, if it exists?

b) Given our current definition of frequency based on the period of a function, what is
the frequency of the constant function f(t) = 1, if it exists?

c) To find the actual frequency of f(t) = 1, graph the functions y = cos

(
2π

p
t

)
for

p = 10k, k = 1, 2, . . . , 8, where t measures time in seconds, over the interval [0, 1]. What is
the frequency of each graph? What do the graphs like for very large values of p?

d) Based on the results of part c), what is a more plausible answer for the frequency of the
constant function f(t) = 1? Since cos(0t) = 1, is this answer consistent with your formula
for frequency found in problem 3)? Is this answer consistent with the fact that f(t) = 1 has
no oscillations?

e) Generally, the amplitude, which measures the height of fluctuations, of a cos (bt− c) is
a. What is the amplitude of cos(0t) = 1? Do we need to restate the first sentence of this
problem regarding amplitude?
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6.2 Properties of Sampled Sine and Cosine Values

In order to better understand the curious phenomenon of regularly-sampled sines and
cosines, we need to introduce the concept of vectors and dot products.

n-Vectors and Dot Products

A vector of length n, called a n-vector, is an ordered list of length n, denoted

u = (u1, u2, . . . , un).

If n = 2 or 3, we can interpret vectors graphically, as directed line segments starting at the
origin and ending at the associated line segment. See Figure 2 for examples of vectors when
n = 2 and n = 3.

-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

u = (2, 3)

v = (−4, 1)

w = (1,−4)

3 4

5

(3, 4, 5)

Figure 2

The dot product of two n-vectors u = (u1, . . . , un) and v = (v1, . . . , vn), denoted u · v, is
given by

u · v = u1v1 + . . .+ unvn.

When n = 2, the square root of u ·u = u2
1 + u2

2 gives the length of the vector u. We call this
the norm of the vector, denoted ‖u‖, defined as

‖u‖ =
√

u · u =
√
u2

1 + u2
2.

We extend the concept of the norm as “length” of the vector for all values of n, with

‖u‖| =
√

u · u =
√
u2

1 + u2
2 + . . .+ u2

n.

The real question is, what does the dot product of u and v tell us about u and v? To
investigate this question, let’s look at some examples with n = 2.
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1 2 3 4 5

1

2

3

u = (2, 1)

v = (4, 2)

Figure 3

Example: Let u = (2, 1) and v = (4, 2), as in Figure 3. Find the norm of both u and v,
and then u · v.

‖u‖ =
√

22 + 12 =
√

5 ‖v‖ =
√

42 + 22 =
√

20 = 2
√

5

u · v = 2(4) + 1(2) = 8 + 2 = 10

Notice that, in this case, u · v = ‖u‖‖v‖.

Example: Let u = (2, 1) and v = (−2, 4), as in Figure 4. Find the norm of both u and v,

-3 -2 -1 1 2 3

1

2

3

4

5

u = (2, 1)

v = (−2, 4)

Figure 4

and then u · v.

‖u‖ =
√

22 + 12 =
√

5 ‖v‖ =
√

(−2)2 + 42 =
√

20 = 2
√

5

u · v = 2(−2) + 1(4) = −4 + 4 = 0

Notice that, in this case, u · v = 0.
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1 2 3

1

2

3

4

u = (2, 0)

v = (2, 2
√

3)

Figure 5

Example: Let u = (2, 0) and v = (2, 2
√

3), as in Figure 5. Find the norm of both u and v,
and then u · v.

‖u‖ =
√

22 + 02 =
√

4 = 2 ‖v‖ =

√
(2)2 + (2

√
3)2 =

√
4 + 12 =

√
16 = 4

u · v = 2(2) + 0(2
√

3) = 4

Notice that, in this case, u · v = 1
2
‖u‖‖v‖.

The examples give us a clue as to what the dot product is giving us. Let θ be the angle
between vectors u and v, and suppose that u · v gives us the product ‖u‖‖v‖ times some
function dependent upon θ; that is,

u · v = ‖u‖‖v‖f(θ).

In the first example, when θ = 0, we had

u · v = ‖u‖‖v‖f(0) = ‖u‖‖v‖

so f(0) = 1. In the second example, when θ = π
2
, we had

u · v = ‖u‖‖v‖f
(π

2

)
= 0,

so f(π
2
) = 0. In the last example, when θ = π

3
, we had

u · v = ‖u‖‖v‖f
(π

3

)
=

1

2
‖u‖‖v‖,

so f(π
3
) = 1

2
. Notice that the function f(θ) assumes the same values as the cosine function

for these three values. In fact, it can be shown (in a higher-level course) that

u · v = ‖u‖‖v‖ cos θ
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where θ is the angle between u and v. In fact, we can extend this result for n = 3 and higher
values, although it is hard to visualize for n > 3. Therefore, we can find the angle θ between
the vectors u and v using the formula

cos θ =
u · v
‖u‖‖v‖

.

This means that, if u · v = 0 (and neither vector has length 0), then the vectors u and v
are at right angles to each other (in some sense). In this case, we say that u and v are
orthogonal.

Vectors of Sampled Sine and Cosine Values

Consider the trigonometric functions

sin

(
2πn

N
t

)
and cos

(
2πn

N
t

)
. (2)

The period of sine and cosine functions of the form sin(ct) and cos(ct) is p = 2π
c

, so the
period of the functions in equations (2) is

p =
2π
2πn
N

= 2π · N
2πn

=
N

n
, for n 6= 0.

If we look at the functions over the interval [0, N ], then using the formula for the number of
oscillations given in equation (1), the oscillations over that interval will be

N
N
n

= N · n
N

= n.

Figure 6 shows the functions in equation (2) with N = 4, and then n = 0, 1, 2, 3, each
graphed over the interval [0, 4].

Let un be the vector formed by sampling cos

(
2πn

4
t

)
at the values t = 0, 1, 2, 3, and let

vn be the analogous vector formed by sampling sin

(
2πn

4
t

)
, for n = 0, 1, 2, 3. That means

that
u0 = (1, 1, 1, 1) v0 = (0, 0, 0, 0)

u1 = (1, 0,−1, 0) v1 = (0, 1, 0,−1)
u2 = (1,−1, 1,−1) v2 = (0, 0, 0, 0)
u3 = (1, 0,−1, 0) v3 = (0,−1, 0, 1).

The sampled values are shown in Figure 6. Notice that

• v0 = v2 = 0,

• u1 = u3, while v1 = −v3, and

• any two vectors from the set B = {u0,u1,u2,v1} are orthogonal.
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cos

(
2πn

4
t

)
sin

(
2πn

4
t

)
n = 0

1 2 3 4

-1

1

1 2 3 4

-1

1

n = 1

1 2 3 4

-1

1

1 2 3 4

-1

1

n = 2

1 2 3 4

-1

1

1 2 3 4

-1

1

n = 3

1 2 3 4

-1

1

1 2 3 4

-1

1

Figure 6

Furthermore, I maintain that we can build any 4-vector with the vectors in B, and I can
prove it.
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Consider the 4-vector (a, b, c, d), where a, b, c, and d are real numbers. Then

a+ b+ c+ d

4
u0 +

a− c
2

u1 +
a− b+ c− d

4
u2 +

b− d
2

v1

=
a+ b+ c+ d

4
(1, 1, 1, 1) +

a− c
2

(1, 0,−1, 0)

+
a− b+ c− d

4
(1,−1, 1,−1) +

b− d
2

(0, 1, 0,−1).

The first component is

a+ b+ c+ d

4
+
a− c

2
+
a− b+ c− d

4
=
a+ 2a+ a

4
+
b− b

4
+
c− 2c+ c

4
+
d− d

4
= a.

The second component is

a+ b+ c+ d

4
− a− b+ c− d

4
+
b− d

2
=
a− a

4
+
b+ b+ 2b

4
+
c− c

4
+
d+ d− 2d

4
= b.

The third component is

a+ b+ c+ d

4
− a− c

2
+
a− b+ c− d

4
=
a− 2a+ a

4
+
b− b

4
+
c+ 2c+ c

4
+
d− d

4
= c.

The fourth and last component is

a+ b+ c+ d

4
− a− b+ c− d

4
− b− d

2
=
a− a

4
+
b+ b− 2b

4
+
c− c

4
+
d+ d+ 2d

4
= d.

There is nothing unique about the number “4”. The properties we have demonstrated
above for N = 4 hold for all positive integers N . You will investigate other cases in the
exercises.

6.2 Exercises

1) Find the length of the following vectors.

a)

(
3,

9√
5

)
b) (1,−2, 3)

c)
(√

3,
√

5,
√

7
)

d) (1,−1, 1,−1, 1,−1)

2) Graph each of the following pairs of vectors and determine visually whether they are
orthogonal (at right angles). Make sure that your aspect ratio is set so that units are the
same length in both the horizontal and vertical directions. Then calculate the dot product
of the two vectors to whether or not they are orthogonal.

a)

(
3,

9√
5

)
and

(
3,−
√

5
)

b) (1,−1.1) and (11, 3π)

c)
(√

3,
√

5,
√

7
)

and (−1,−1, 1.5) d) (1,−1, 1) and

(
1

2
, 1,

1

2

)
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3) Find the measure in radians (rounded to two decimal places) of the angle between the
following pairs of vectors.

a) (1, 0) and (1, 1) b) (1, 1) and (1, 2)

c) (1, 2, 3) and (−1, 2,−1) d) (2, 0, 0) and (1, 1, 1)

4) Verify the claim from the N = 4 example in the chapter – that any pair of vectors from
the set B = {u0,u1,u2,v1}, where

u0 = (1, 1, 1, 1), u1 = (1, 0,−1, 0),
u2 = (1,−1, 1,−1), and v1 = (0, 1, 0,−1),

are orthogonal.

5) Let un be the vector formed by sampling cos

(
2πn

3
t

)
at the values t = 0, 1, 2, and let

vn be the analogous vector formed by sampling sin

(
2πn

3
t

)
, for n = 0, 1, 2.

a) Find the exact values of the vectors un and vn for n = 0, 1, 2. Find a set B of three of
these vectors so that any pair of vectors in the set will be orthogonal.

b) Find coefficients for each of the vectors in B so that their sum equals (a, b, c).

6) Let un be the vector formed by sampling cos

(
2πn

6
t

)
at the values t = 0, 1, 2, 3, 4, 5,

and let vn be the analogous vector formed by sampling sin

(
2πn

6
t

)
, for n = 0, 1, 2, 3, 4, 5.

a) Find the exact values of the vectors un and vn for n = 0, 1, 2, 3, 4, 5.

b) Show that any pair of vectors from the set B = {u0,u1,u2,u3,v1,v2} are orthogonal.

c) Let w = (a, b, c, d, e, f), and let

k0 =
w · u0

u0 · u0

, k1 =
w · u1

u1 · u1

, k2 =
w · u2

u2 · u2

,

k3 =
w · u3

u3 · u3

, k4 =
w · v1

v1 · v1

, k5 =
w · v2

v2 · v2

.

Calculate each of these coefficients exactly.

d) Verify component by component that

k0u0 + k1u1 + k2u2 + k3u3 + k4v1 + k5v2 = w.
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6.3 Discrete Fourier Transform

In 1807, French mathematician Baron Jean Baptiste Joseph Fourier (1768–1830) specu-
lated that any function f(x) defined over the interval (c, c+p) could be written as an infinite
series of sine and cosine functions of different frequencies; that is,

f(x) = a0 +
∞∑
n=1

[
an cos

(
2πnx

p

)
+ bn sin

(
2πnx

p

)]
,

for some constants a0, an, and bn for n = 1, 2, . . . . We call this type of infinite trigonometric
series a Fourier series. Figure 7 shows finite sum approximations of the Fourier series for
a particular function, and how it converges to the function as we add more terms. For a
full illustration of this process, see the animation Fourierseries.mov on the class webpage.
The constants a0, an, and bn are easily defined, but can be difficult to calculate in practice.

-1 -0.5 0.5 1

0.5

1

-1 -0.5 0.5 1

0.5

1

-1 -0.5 0.5 1

0.5

1

-1 -0.5 0.5 1

0.5

1

Figure 7: Partial Fourier series of f(x) = |x| on [−1, 1], with 1 term (top left),
2 terms (top right), 3 terms (bottom left), and 4 terms (bottom right).

Calculus is required, and sometimes the calculus problems generated are not explicitly solv-
able. The process of finding these coefficients for the trigonometry functions is called the
Fourier transform. We also have the issue (illustrated in Fourierseries.mov) that in order
to exactly reproduce the function f(x), many times we need the entire infinite number of
terms.
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However, there is a discrete version of the Fourier transform that uses only a finite number
of points, sampled at regular intervals from the different period (hence, different frequency)
sine and cosine functions. Let {yk}N−1

k=0 be a sequence of regularly-spaced y-values. Then

yk = a0 +
N−1∑
n=1

[
an cos

(
2πn

N
k

)
+ bn sin

(
2πn

N
k

)]
, (3)

where

an =
1

N

N−1∑
k=0

yk cos

(
2πk

N
n

)
and bn =

1

N

N−1∑
k=0

yk sin

(
2πk

N
n

)
(4)

for n = 0, 1, . . . , N − 1. (Notice that, by definition, b0 = 0.) If we think of y as a N -vector

of the yk values, and un and vn as N -vectors where the kth component is cos

(
2πk

N
n

)
and

sin

(
2πk

N
n

)
, respectively, then we can think of an and bn defined in equation (4) in terms

of dot products:

an =
1

N
(y · un) and bn =

1

N
(y · vn). (5)

In the next few examples, we will let N = 8, meaning that

u0 = (1, 1, 1, 1, 1, 1, 1, 1), v0 = (0, 0, 0, 0, 0, 0, 0, 0),

u1 =
(

1, 1√
2
, 0,− 1√

2
,−1,− 1√

2
, 0, 1√

2

)
, v1 =

(
0, 1√

2
, 1, 1√

2
, 0,− 1√

2
,−1,− 1√

2

)
,

u2 = (1, 0,−1, 0, 1, 0,−1, 0), v2 = (0, 1, 0,−1, 0, 1, 0,−1),

u3 =
(

1,− 1√
2
, 0, 1√

2
,−1, 1√

2
, 0,− 1√

2

)
, v3 =

(
0, 1√

2
,−1, 1√

2
, 0,− 1√

2
, 1,− 1√

2

)
,

u4 = (1,−1, 1,−1, 1,−1, 1,−1), v4 = (0, 0, 0, 0, 0, 0, 0, 0),

u5 =
(

1,− 1√
2
, 0, 1√

2
,−1, 1√

2
, 0,− 1√

2

)
, v5 =

(
0,− 1√

2
, 1,− 1√

2
, 0, 1√

2
,−1, 1√

2

)
,

u6 = (1, 0,−1, 0, 1, 0,−1, 0), v6 = (0,−1, 0, 1, 0,−1, 0, 1),

u7 =
(

1, 1√
2
, 0,− 1√

2
,−1,− 1√

2
, 0, 1√

2

)
, v7 =

(
0,− 1√

2
,−1,− 1√

2
, 0, 1√

2
, 1, 1√

2

)
.

Notice that

• v0 = v4 = 0,

• u1 = u7, u2 = u6, and u3 = u5, and

• v1 = −v7, v2 = −v6, and v3 = −v5.

It can be verified (see the exercises) that any two distinct elements of the set

B = {u0,u1,u2,u3,u4,v1,v2,v3}

are orthogonal.
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Example: Let y be the vector where the kth entry is yk = 1
4
k(8− k); that is,

y =

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
,

as shown in Figure 8. Calculate the Fourier coefficients a0, an, and bn, n = 1, . . . , 7.

1 2 3 4 5 6 7 8

1

2

3

4

Figure 8: The original data.

a0 =
1

8
(y · u0) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
· (1, 1, 1, 1, 1, 1, 1, 1) =

21

8

1 2 3 4 5 6 7 8

1

2

3

4

Figure 9: Partial reconstruction with n = 0.

a1 =
1

8
(y ·u1) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
·
(

1,
1√
2
, 0,− 1√

2
,−1,− 1√

2
, 0,

1√
2

)
= −2 +

√
2

4

a7 =
1

8
(y · u7) = −2 +

√
2

4

161



b1 =
1

8
(y · v1) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
·
(

0,
1√
2
, 1,

1√
2
, 0,− 1√

2
,−1,− 1√

2

)
= 0

b7 =
1

8
(y · v7) = 0

1 2 3 4 5 6 7 8

1

2

3

4

Figure 10: Partial reconstruction with n = 0, 1, and n = 7.

a2 =
1

8
(y · u2) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
· (1, 0,−1, 0, 1, 0,−1, 0) = −1

4

a6 =
1

8
(y · u6) = −1

4

b2 =
1

8
(y · v2) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
· (0, 1, 0,−1, 0, 1, 0,−1) = 0

b6 =
1

8
(y · v6) = 0

1 2 3 4 5 6 7 8

1

2

3

4

Figure 11: Partial reconstruction with n = 0, 1, 2, and n = 6, 7.
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a3 =
1

8
(y ·u3) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
·
(

1,− 1√
2
, 0,

1√
2
,−1,

1√
2
, 0,− 1√

2

)
=
−2 +

√
2

4

a5 =
1

8
(y · u5) =

−2 +
√

2

4

b3 =
1

8
(y · v2) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
·
(

0,
1√
2
,−1,

1√
2
, 0,− 1√

2
, 1,− 1√

2

)
= 0

b5 =
1

8
(y · v5) = 0

1 2 3 4 5 6 7 8

1

2

3

4

Figure 12: Partial reconstruction with n = 0, 1, 2, 3, and n = 5, 6, 7.

a4 =
1

8
(y · u3) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
· (1,−1, 1,−1, 1,−1, 1,−1) = −1

8

b4 =
1

8
(y · v2) =

1

8

(
0,

7

4
, 3,

15

4
, 4,

15

4
, 3,

7

4

)
· (0, 0, 0, 0, 0, 0, 0, 0) = 0

Figure 13 shows the difference between a continuous match to a curve and a discrete
match to the data.

Example: Let y be the vector where the kth entry is yk = 2
√

2 sin

(
3π

4
k − π

6

)
; that is,

y =
(
−
√

2, 1 +
√

3,−
√

6,−1 +
√

3,
√

2,−1−
√

3,
√

6, 1−
√

3
)
,

as shown in Figure 14. Calculate the Fourier coefficients a0, an, and bn, n = 1, . . . , 7.
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1 2 3 4 5 6 7 8

1

2

3

4

Figure 13: Full reconstruction.

1 2 3 4 5 6 7 8

-3

-2-2

1

2

3

Figure 14: The original data.

a0 =
1

8
(y · u0) =

1

8
y · (1, 1, 1, 1, 1, 1, 1, 1) = 0

a1 =
1

8
(y · u1) =

1

8
y ·
(

1,
1√
2
, 0,− 1√

2
,−1,− 1√

2
, 0,

1√
2

)
= 0

a7 =
1

8
(y · u7) = 0

b1 =
1

8
(y · v1) =

1

8
y ·
(

0,
1√
2
, 1,

1√
2
, 0,− 1√

2
,−1,− 1√

2

)
= 0

b7 =
1

8
(y · v7) = 0

a2 =
1

8
(y · u2) =

1

8
y · (1, 0,−1, 0, 1, 0,−1, 0) = 0

a6 =
1

8
(y · u6) = 0

b2 =
1

8
(y · v2) =

1

8
y · (0, 1, 0,−1, 0, 1, 0,−1) = 0
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b6 =
1

8
(y · v6) = 0

a3 =
1

8
(y · u3) =

1

8
y ·
(

1,− 1√
2
, 0,

1√
2
,−1,

1√
2
, 0,− 1√

2

)
= − 1√

2

a5 =
1

8
(y · u5) = − 1√

2

b3 =
1

8
(y · v2) =

1

8
y ·
(

0,
1√
2
,−1,

1√
2
, 0,− 1√

2
, 1,− 1√

2

)
=

√
3

2

b5 =
1

8
(y · v5) = −

√
3

2

a4 =
1

8
(y · u3) =

1

8
y · (1,−1, 1,−1, 1,−1, 1,−1) = 0

b4 =
1

8
(y · v2) =

1

8
y · (0, 0, 0, 0, 0, 0, 0, 0) = 0

1 2 3 4 5 6 7 8

-3

-2

-1

1

2

3

Figure 15: Full reconstruction.

This is a very interesting case, because, without the dashed line in Figure 14, the data
would look random. However, if we take our Fourier coefficients, consider them as points

(an, bn), n = 0, 1, . . . , 7, and then look at the distances from the origin cn =
√
an2 + bn

2,
n = 0, 1, . . . , 7, we get a data set with only two nonzero values:

{c0, c1, c2, c3, c4, c5, c6, c7} = {0, 0, 0,
√

2, 0,
√

2, 0, 0}.

If we graph this data relative to n, we get the graph shown in Figure 16, called the power
spectrum of the original data. Each value of n ≤ N

2
corresponds to a number of oscillations

that is represented in the data. Since an = aN−n and bn = −bN−n for n = 1, . . . , N − 1, then
the power spectrum (with c0 omitted) is symmetric about n = N

2
. Also, since un = uN−n

and vn = −vN−n, the values at n > N
2

actually correspond to the reflected number of
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1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 16: Power spectrum of the data in the second example.

oscillations below n < N
2

. In our example, we have
√

2 +
√

2 = 2
√

2 in amplitude of sines
and cosines present in the signal that oscillate 3 times over the interval, which corresponds

to the function yk = 2
√

2 sin

(
3π

4
k − π

6

)
that generated the data.

6.3 Exercises

1) Verify that the set B = {u0,u1,u2,u3,u4,v1,v2,v3} from the N = 8 example in this
section is orthogonal. (This involves 28 separate dot products, so you may wish to automate
the process in some way. Either show all of your work if done by hand, or give a print-out
if completed by computer.)

Using the vectors u0, . . . ,u7 and v0, . . . ,v7 from the N = 8 example in this section, perform
the following operations in problems 2) through 5) for the given data vector y.

a) Find the Fourier coefficients a0, . . . , a7 and b0, . . . , b7. (Remember, there are some
redundancies here, so there are less than 16 dot products to calculate.)

b) Generate the power spectrum cn =
√
a2
n + b2n, n = 0, . . . , 7, and graph the values.

2) y = (5, 5, 5, 5, 5, 5, 5, 5)

3) y =

(
0,

√
2−
√

2

2
,

√
2

2
,

√
2 +
√

2

2
, 1,

√
2 +
√

2

2
,

√
2

2
,

√
2−
√

2

2

)

4) y = (0, 7, 8, 5, 0,−5,−8,−7)

5) y = (0, 1, 2, 3, 4, 5, 6, 7)
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6) Let un be the vector formed by sampling cos

(
2πn

6
t

)
at the values t = 0, 1, 2, 3, 4, 5,

and let vn be the analogous vector formed by sampling sin

(
2πn

6
t

)
, for n = 0, 1, 2, 3, 4, 5.

(See problem 6) in section 5.2.) Use the vectors to find the Fourier coefficients and power
spectrum for the data vector

y =

(√
2

2
,

√
6−
√

2

4
,−
√

6 +
√

2

4
,

√
2

2
,

√
6−
√

2

4
,−
√

6 +
√

2

4

)
.

7) Use the same un and vn as in problem 6) to find the Fourier coefficients and power
spectrum for the data vector

y =

(
1

2
,
1

2
,−1,

1

2
,
1

2
,−1

)
.

How does the power spectrum for this set of data compare to the power spectrum to the
data in the previous problem?
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6.4 Finding Frequencies

From the last section, we saw that the presence of nonzero n and N−n Fourier coefficients
from a set of data means that the data, or signal, has components that can be generated by
sampling a sine and/or cosine curves that oscillate n cycles over the length of the sample.
We can use this technology to help us analyze, alter, and filter sound signals.

Let’s demonstrate how this works. On the class webpage, you will find a sound file
dchord.wav and a Mathematicar file frequencies.nb. Download both files to the desktop
of your computer. After entering the initial command to set the correct directory, we can
import the sound file data into Mathematicar using the command

data = Import[“dchord.wav”, “Data”][[1]];

This is a recording of a D-chord that was created in Mathematicar, by sampling the function

f(t) = cos(146.8 ∗ 2πt) + cos(220 ∗ 2πt) + cos(293.7 ∗ 2πt) + cos(370 ∗ 2πt)

at t = 0,
1

44100
, . . . ,

44099

44100
. To hear the chord, use the command

ListPlay[data, SampleRate → 44100, PlayRange → All]

and hit the “play” button. To see the data over the first 0.02 seconds, use the command

ListPlot[data, Joined → True, PlotStyle → {Blue,Thick},
PlotRange → {{1,882},All}, AxesOrigin → {1,0}] .

(Do not put the period – it only marks the end of the sentence.) The graph is shown on the
left in Figure 17.

Figure 17: D-chords (synthesizer on the left, guitar on the right)

Mathematicar has a built-in command that will generate the Fourier coefficients for a
signal:

fcoef = Fourier[data, FourierParameters → {−1,1}]; .

Then, to view the power spectrum (which is shown on the left in Figure 18), use the com-
mands
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pts=Table[{k-1,Abs[fcoef[[k]]]}, {k,44100}];
ListPlot[pts, Joined → True, PlotStyle → {Blue,Thickness[.002]},

PlotRange → {{0, 800},All},
Ticks → {{146.8, 220, 293.7, 370}, Automatic}] .

Figure 18

Notice that the power spectrum of the D-chord signal has peaks located at (or near) 146.8,
220, 293.7, and 370. These are the frequencies (in Hz) of the notes in the chord.

Now, let’s repeat this exercise with the sound file dchord guitar.wav. The raw data
over the first 0.02 seconds is shown on the right in Figure 17, and looks nothing like the
synthesizer D-chord on the left in that same figure. However, when we look at the power
spectrum (shown on the right in Figure 18), we can still see peaks at the same locations,
with some clutter between those peaks, plus some other regularly-spaced peaks of higher
frequencies. These are called overtones, and are frequently (no pun intended) found in tones
produced by stringed instruments. The difference between the two sounds is analogous to
the difference in cartoon images and photographs. The synthesized sound has no overtones
or texture that we find in the sound generated by the guitar.

It is important to point out that, in both of the examples shown above, the peaks occurred
at the frequencies of the notes of the chord because the signal was exactly one second in
duration. Run the same analysis on the sound file dchord twosec.wav and note that the
peaks are now located at 293.6, 440, 587.4, and 740. We have to remember that the discrete
Fourier transform is measuring the number of oscillations over the length of the signal. If
we know the duration of the signal, then we can find the frequency of the notes in the signal
in hertz by dividing the peak locations by the length in seconds of the signal.

There is some additional Mathematicar code provided in the file frequencies.nb to help
find the location of the peaks in the power spectrum. The command hertz[low,high,time]
will locate the greatest value of the power spectrum on the interval [low, high], and will divide
the location of that peak by the length of the sound duration in seconds. The command
tone[htz] will play a 3-second tone at the frequency htz, so you can listen to see if the pitch
is present in the sound file.

To show how these sound signals differ from just standard noise, let’s run the same
example with the sound file noise.wav, which was collected in a noisy classroom. The data
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over a 0.02 second interval in this signal is shown on the left in Figure 19. Notice that the
data really does not look that different from the data for the D-chords shown in Figure 17.
However, if we take the Fourier transform of the data and look at the power spectrum, then
we get the graph shown at right in Figure 19, which has no prominent peaks like the ones
we saw in Figure 18.

Figure 19

Although the raw data for the music and the noise look almost indistinguishable, we
can now look at the power spectrum, and tell immediately which is melodic and which is
not. The homework for this section will ask you to analyze several different sound files using
Mathematicar to determine if the sound is musical in nature, and, if so, which frequencies
are represented in the signal.

6.4 Exercises

Use the code in the file frequencies.nb to analyze the sound samples provided on the class
webpage. Determine if the sample has any dominant frequencies, and if so, what they are.

1) ex1.wav 2) ex2.wav

3) ex3.wav 4) ex4.wav

5) ex5.wav 6) ex6.wav

7) ex7.wav 8) ex8.wav

9) ex9.wav 10) ex10.wav
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6.5 Changing Frequencies

Let’s consider a sampling of length 16 from the function

f(x) = 2−
x
4 cos

(
2π

16
4x

)
,

with x = 0, . . . , 15, shown on the left in Figure 20. The data reflects the decay that you
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Figure 20

would normally see in the loudness of a tone when played on a guitar or a standard piano,
for example. The power spectrum of the signal is shown on the right in Figure 20, and shows
that the signal has a predominant frequency of 4, as indicated by the symmetric (about
n = 8) peaks at n = 4 and n = 16− 4 = 12.

Now, let’s repeat this exercise with a sampling of length 16 from the function

f(x) = 2−
x
4 cos

(
2π

16
4x

)
,

with x = 0, . . . , 15, shown on the left in Figure 21. The power spectrum of this signal is
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shown on the right in Figure 21, and shows that the signal has a predominant frequency of
2, as indicated by the symmetric peaks at n = 2 and n = 16− 2 = 14.
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Notice that the second signal was at roughly half the frequency of first one, and this
halving is demonstrated by halving the n values in the first spectrum on the left of n = 8,
and then producing the reflection across n = 8, to get the second spectrum. If the signals
were sounds, the second signal would be one octave lower than the first one. This gives us
a hint as to how we could take a sound signal and lower the tone by one octave.

Let {an}N−1
n=0 and {bn}N−1

n=1 be the Fourier coefficients for the higher frequency signal of
length N , where N is divisible by 4. Let’s try to construct Fourier coefficients ãn and b̃n for
a one-lower-octave signal by doing the following:

1. let ã0 = a0 (leaves the constant term alone);

2. if √
a2n−1

2 + b2n−1
2 >

√
a2n

2 + b2n
2

then we let ãn = a2n−1 and b̃n = b2n−1, else let ãn = a2n and b̃n = b2n, for n = 1, . . . ,
N

4
(moves the higher of each pair of the non-zero frequency terms over halfway to the
left);

3. let ãn = aN
2

and b̃n = bN
2

for n =
N

4
+ 1, . . . ,

N

2
(fills in with the middle value); and

4. let ãn = ãN−n and b̃n = −b̃N−n for n =
N

2
+ 1, . . . , N − 1 (creates a symmetric right

side of the graph).

We have a sound sample lalala.wav on the class webpage of someone with a high-pitched
voice saying “la” nine times. Using code found in the Mathematicar file lowerfrequency.nb,
we can import this sound and perform a Fourier transform on the sound data. The first 5000
components of the power spectrum for this sample are shown on the left in Figure 22. The

Figure 22

right graph is of the first 5000 components of the new power spectrum created by running
the above algorithm. We can turn the Fourier coefficients back into a sound signal by using
the Mathematicar command

recon = Re[InverseFourier[altered, FourierParameters → {−1,1}]
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When we listen to this reconstructed signal, we have lowered the tone by one octave. How-
ever, we have also lowered the frequency of the “la’s” by one-half as well.

What we have neglected to consider is that words and other intermittent sounds have a
frequency in the signal as well. In order to say exactly the same thing with a lowered octave,
we need to break the signal up into disjoint “windows”. The idea is that over a small window,
there are no words being conveyed, just a tone. Your digital camera uses basically the same
trick, splitting your digital pictures into “pixels”. We can try the same algorithm, just
applying it separately over each window. The Mathematicar code for this repeated looping
through the data, 2000 data values at a time, is included in lowerfrequency.nb. The first
5000 components of the power spectrum for this new signal are shown in Figure 23. The
sound file lowlalala.wav showing the results of applying the algorithm to small windows is
on the class webpage.

Figure 23: Original power spectrum on the left, altered on the right.

6.5 Exercises

Use the code in the file lowerfrequency.nb to lower the sound samples provided on the
class webpage by one octave. Run both the first and second blocks of code and note the
effectiveness of each method.

1) ex1.wav 2) ex3.wav

3) ex6.wav 4) ex7.wav

5) ex8.wav 6) ex11.wav
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6.6 Removing Frequencies

One of the most common uses of the discrete Fourier transform is filtering unwanted noise
out of sound signals, by removing nonzero coefficients that correspond to higher frequencies.
The Mathematicar file filtering.nb on the class webpage contains code that will allow us
to filter sound samples.

Let’s start with the sound file singing.wav, also on the class webpage. We may im-
port that signal into Mathematicar, and generate the power spectrum, which is shown in
Figure 24.

Figure 24

Now let’s load in the sound file singing static.wav, also on the class webpage, which is
identical to the previous file except that a large amount of static has been added. The power
spectrum is shown in Figure 25. Notice the difference in this graph compared to Figure 24.
The static shows up in the spectrum as high frequencies, near the symmetry line of the
graph, lying over the top of the original signal.

Suppose that we did not have the original signal to compare to, and we wanted to remove
as much of the static from the signal as possible. Let’s zero-out all of the Fourier coefficients
from 13001 to its symmetric location on the right of the graph by setting cutoff = 13000;
that is, let

an = bn = 0 for n = 13001, . . . , N − 13001.

The new power spectrum is shown in Figure 26. It is clear that we have not removed all of
the effects of the static, but hopefully we will have removed a great deal of it. Execute the
code in filtering.nb, and hear the effects yourself.

The static in the signal was generated by adding Gaussian white noise to the original
data. Gaussian noise is among the toughest noise to remove from a signal. Let’s try an easier
example. The sound file singing whistle.wav has the same song being sung, but this time
there is a whistle blowing in the background. The power spectrum is shown in Figure 27.
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Figure 25

Figure 26

Figure 27
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The innermost large peak (around n = 17000) and its twin on the right are caused by the
high frequency of the whistle. If we again zero out the high-frequency Fourier coefficients,
we stand a chance of being able to remove the sound of the whistle from the reconstructed
signal. Figure 28 shows the new spectrum with the coefficients zeroed-out from n = 13000
on to its symmetric value on the right side of the graph. Reconstruct the altered Fourier

Figure 28

coefficients to hear the results.

6.6 Exercises

Use the code in the file filtering.nb to analyze the sound samples provided on the class
webpage. Determine the best cutoff level to produce a filtered sound file without noise,
whistles, etc.

1) ex12.wav 2) ex13.wav

3) ex14.wav 4) ex15.wav

5) ex16.wav 6) ex17.wav

7) ex18.wav 8) ex19.wav
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6.7 Review: What have we learned (or relearned)?

Definition: Sound Sound is a pressurized wave through a medium, that is interpreted by
our ears as speech, music, noise, etc.

Definition: Transversal Waves A transversal wave occurs in strings and surfaces, at a
right angle to the surface.

Definition: Longitudinal Waves Longitudinal waves occur through mediums, parallel to
the movement of the wave through the medium.

Definition: Sound Volume The amplitude of the sine or cosine will correspond to the
loudness of the sound.

Definition: Sound Frequency The frequency is the number of oscillations of the sound
wave over a period of time, typically measured in hertz (Hz), or cycles per second. The
frequency of a sound wave corresponds to the pitch of the sound. The frequency F of a sound
wave is inversely proportional to the period p of the sine or cosine; that is

F =
1

p
.

The number of oscillations of a sound wave of frequency F over a time interval of T seconds
is FT .

Definition: n-Vectors A vector of length n, called a n-vector, is an ordered list of length
n, denoted

u = (u1, u2, . . . , un).

Definition: Dot Products The dot product of two n-vectors u = (u1, . . . , un) and v =
((v1, . . . , vn), denoted u · v, is given by

u · v = u1v1 + . . .+ unvn.

Definition: Norm of a Vector The norm of the vector, denoted ‖u‖, is defined as

‖u‖| =
√

u · u =
√
u2

1 + u2
2 + . . .+ u2

n.

Theorem: Angle Between Two Nonzero Vectors The angle θ between the nonzero
vectors u and v is given by

cos θ =
u · v
‖u‖‖v‖

.

Definition: Orthogonal Vectors Two nonzero vectors u and v are said to be orthogonal
if u · v = 0.
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Theorem: Discrete Fourier Transform Let {yk}N−1
k=0 be a sequence of regularly-spaced

y-values. Then

yk = a0 +
N−1∑
n=1

[
an cos

(
2πn

N
k

)
+ bn sin

(
2πn

N
k

)]
,

where

an =
1

N

N−1∑
k=0

yk cos

(
2πk

N
n

)
and bn =

1

N

N−1∑
k=0

yk sin

(
2πk

N
n

)
for n = 0, 1, . . . , N − 1. (Notice that, by definition, b0 = 0.) If we think of y as a N-vector

of the yk values, and un and vn as N-vectors where the kth component is cos

(
2πk

N
n

)
and

sin

(
2πk

N
n

)
, respectively, then we can think of an and bn defined in equation (4) in terms

of dot products:

an =
1

N
(y · un) and bn =

1

N
(y · vn).

The Fourier coefficients are symmetric about n =
N

2
. Converting the an and bn back into yk

is called the inverse Fourier transform.

Definition: Power Spectrum of a Signal After taking the discrete Fourier transform of
a signal {yk}N−1

k=0 (generating the Fourier coefficients an and bn for n = 0, . . . , N − 1, let

cn =
√
an2 + bn

2 for n = 0, . . . , N − 1.

Then the sequence {cn}N−1
n=0 is called the power spectrum of the signal. The graph of the power

spectrum is symmetric about n =
N

2
, and the nth component gives a measure of how much

of the signal is of sines and cosines oscillating n times over the length of the signal.

Review Exercises

1) Find the amplitude and period of the following sine and cosine functions. Assuming the
curves represent sound waves and t is measured in seconds, find the frequency in hertz of
each of the following, and find the number of oscillations over the given time span.

a) 3 sin (6πt); 2 seconds b) cos (20000t); 12 seconds

2) Find the measure in radians (rounded to two decimal places) of the angle between the
following pairs of vectors. Determine whether the vectors are orthogonal.

a)

(
2,

1

2

)
and

(
−2,

1

2

)
b) (2, 1, 3) and (−2, 1, 1)
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3) Let un be the vector formed by sampling cos

(
2πn

6
t

)
at the values t = 0, 1, 2, 3, 4, 5,

and let vn be the analogous vector formed by sampling sin

(
2πn

6
t

)
, for n = 0, 1, 2, 3, 4, 5.

a) Find the exact values of the vectors un and vn for n = 0, 1, 2, 3, 4, 5.

b) Find the Fourier coefficients a0, . . . , a5 and b0, . . . , b5 for the signal y = (0, 1, 2, 3, 2, 1).
(Remember, there are some redundancies here, so there are less than 12 dot products to
calculate.)

c) Generate the power spectrum cn =
√
a2
n + b2n, n = 0, . . . , 5, and graph the values.

4) Use the code in the file frequencies.nb to analyze the sound samples provided on the
class webpage. Determine if the sample has any dominant frequencies, and if so, what they
are.

a) ex20.wav b) ex21.wav

5) Use the code in the file lowerfrequency.nb to lower the sound samples provided on
the class webpage by one octave. Run both the first and second blocks of code and note the
effectiveness of each method.

a) ex22.wav b) ex23.wav

6) Use the code in the file filtering.nb to analyze the sound samples provided on the class
webpage. Determine the best cutoff level to produce a filtered sound file without noise,
whistles, etc.

a) ex24.wav b) ex25.wav
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