
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

7-25-2008

A Study on the Protein Interaction with Different
Platinum Compounds
Nayna Kotadia
Western Kentucky University, nayna.kotadia842@wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Medicinal-Pharmaceutical Chemistry Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Kotadia, Nayna, "A Study on the Protein Interaction with Different Platinum Compounds" (2008). Masters Theses & Specialist Projects.
Paper 8.
http://digitalcommons.wku.edu/theses/8

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/136?utm_source=digitalcommons.wku.edu%2Ftheses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


 

A  STUDY ON THE PROTEIN INTERACTION WITH DIFFERENT 

PLATINUM COMPOUNDS 

 

 

 

 

 

 

 

A Thesis 

Presented to 

The Faculty of the Department of Chemistry 

Western Kentucky University 

Bowling Green, Kentucky 

 

 

 

 

 

 

 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science 

 

 

 

 

 

 

 

 

By 

Nayna Kotadia 

 

August 2008 

 

 

 

 

 

 

 



 

A  STUDY ON THE PROTEIN INTERACTION WITH DIFFERENT 

PLATINUM COMPOUNDS 

 

 

 

 

By 

 

Nayna Kotadia 

 

 

 

 

 

 

 

 

 

                                                         Date recommended__July 25, 2008_____ 

 

 

 

 

                                                      _Kevin Williams__________________ 

                                                            (Director of Thesis) 

 

                                                         _Darwin Dahl_____________________ 

 

 

                                                           _Lester Pesterfield__________________                

 

 

 

 

 

 

 

_________________________________________                

Dean, Graduate Studies and Research            Date

 

 



ACKNOWLEDGEMENTS 

             In India we have a sanskrit saying that if God and teacher are walking together, 

you first pay your respects to your teacher, then the lord. After coming from India to 

Western Kentucky University, I was a bit nervous. But after meeting the faculty and staff 

it all disappeared. In this thesis I would like to acknowledge all the people who helped 

me and shaped me to be the individual I now am. 

            I would first like to thank my advisor Dr. Kevin Williams, first to take me as his 

graduate student, to bear with me every time I panicked, and offer constant support and 

patience in assisting me in my research. I would also like to say my thanks to Dr.  Webb 

for just being there for me, when I needed her, for going out of her way to help me. I also 

want to thank a person I fear, and respect the most, Dr. Lester Pesterfield. I will treasure 

the B in Inorganic chemistry more than my medicine degree. You taught me the need to 

understand a topic in absolute detail, to figure a way to solve a problem without outside 

help. Further I would like to thank Dr. Darwin Dahl; I think there is no other person I 

troubled more with questions related to any and every thing in the world. I would like to 

express a deep sense of gratitude to Dr. Eric Conte, he is the most cool headed person on 

the whole campus, any time I got agitated he is the person I went to , to get back my 

perspective. Dr. Buthelezi for helping me arrange my course schedule. 

                  I would also like to thank Shannon Marble without whom I cannot see our 

chemistry department, for her help in all office/ thesis/ research associated work. Not to 

forget, Annette Carrico for just being there for me, and making my stay at western a fun 

and beautiful experience. And last but not the least Alicia McDaniel who encouraged me 

when I was down, and showed me the right path 

iii 



 

I wish to thank the Office of Graduate Studies for partial funding of this work 

during my graduate studies here at WKU. In short I would like to thank Western 

Kentucky University especially the Chemistry Department and all the people in it. 

I would again like to give a very special thanks to Dr. Williams, Dr. Pesterfield 

and Dr. Dahl who are ready to come and attend my Defense. 

I would like to dedicate this thesis to my parents and all those who supported me. 

iv 



 

 Table of Contents 

Acknowledgments……………………………..……….…………….….…….….iii 

Abstract……………………...……………………….……..………………...….. vi 

List of Figures……………………………………………….…….….………….viii 

I. Introduction to Platinum Compounds..….…....………………...………….…..1 

1) History..…………….…….…….…………………………………..……....1 

2) Synthesis of Cisplatin..…….………….….……………….…………....…..2 

3) Types of compounds.……………………….…………….……..………….3 

4) Physical and Chemical Properties.……..…..………….……………..…….5 

5) Biological reactions of Cisplatin.…….……..………….….……………….6 

6) DNA Damage and Apoptosis…..…………….….…….…………...………8 

7) Structural studies of Cisplatin – DNA Adducts...………………………….9 

8) Alternative Cellular DNA targets.……….……..…………………......…..10 

9) Need to study protein interaction with cisplatin drugs.......…..…….....…..10 

9.1) Introduction…….……..….…….……………..………….….…..…...10 

9.2) Cisplatin toxicity and side effects..……...…….……….…...……......10 

9.3) Cellular resistance to cisplatin…..…….…….……….……...……….11 

9.4) Why study cytochrome C? ………...……………………….…...…..14 

II. Methods and Material..………....……….…………………………………....16 

III. Results………….…………….….….……..…….…………………………....19 

IV. Conclusion……………………….…..………...………………..……………22 
V. Bibliography ………..………………..……………………………………....39 

v 



 

List of Figures 

 

Table                   Page no. 

Figure 1.1:     Structures of cisplatin (1) first-generation drugs: Carboplatin (2); 

          Nedaplatin (3); Oxaliplatin (4), an orally active drug (5, JM-216) 

          and some recently introduced new mononuclear (6, AMD473);  

          dinuclear (7) and trinuclear (8) Pt-antitumor drugs…….………....………3 

 

Figure 1.2:     Structure of  cis-Pt(NH3)2Cl2……………………………..……................5 

 

Figure 3.1:     ICP-AES data from reaction of 3 mg cis-Pt(NH3) 2Cl2 with 

          3 mg Albumin ...........................................................................................24 

 

Figure 3.2:    ICP-AES data from reaction of 1 mg cis-Pt(NH3) 2Cl2 with  

                     3 mg Albumin.............................................................................................24 

 

Figure 3.3:    ICP-AES data from reaction of 1 mg cis-Pt(NH3) 2(NO3)2 with 

               3 mg albumin. ............................................................................................24 

 

Figure 3.4:    ICP-AES data from reaction of Pt(Me4en)(NO3) 2 with 3 mg  

         albumin over time for pH 6  and pH 7........................................................25 

 

Figure 3.5:    ICP-AES data from reaction of cis-Pt(NH3)2Cl2  with 3 mg  

         albumin over time for pH 6  and pH 7........................................................25 

 

Figure 3.6:    ICP-AES data from reaction of cis-Pt(NH3)2(NO3)2 with 3 mg  

         albumin over time for pH 6  and pH 7........................................................25 

 

Figure 3.7:   HPLC data from reaction of cis-Pt(NH3)2Cl2 1 mg + cyto C 1 mg.............26 

Figure 3.8:   HPLC data from reaction of cis-Pt(NH3)2Cl2  4 mg + cyto C 1 mg............27 

 

Figure 3.9:   HPLC data from reaction of cis-Pt(NH3)2(oxalate) 1 mg + cyto C 1 mg....28 

 

Figure 3.10: HPLC data from reaction of cis-Pt(NH3)2(NO3)2 4 mg +cyto C 1 mg....…29 

Figure 3.11: HPLC data from reaction of Pt(en)(NO3)2 4 mg + cyto C 1 mg…….....…30 

 

Figure 3.12: HPLC data from reaction of Pt(en)(oxalate) 1 mg + cyto C 1 mg.….…....31 

 

Figure 3.13: HPLC data from reaction of Pt(Me4en)(NO3)2 4 mg + cyto C 1 mg….......32 

 

Figure 3.14: HPLC data from reaction of Pt(Me4en)(oxalate) 1 mg + cyto C 1 mg........33 

 

Figure 3.15: HPLC data from reaction of Pt(Me4en)(oxalate) 4 mg + cyto C 1 mg..…..34 

 

vi 



 

Figure 3.16: HPLC data from reaction of Pt(en)Cl2 1 mg + cyto C 8 mg....…………..35 

 

Figure 3.17: HPLC data from reaction of Pt(en)(oxalate) 4 mg + cyto C 1 mg..……...36 

 

Figure 3.18: Comparison of HPLC data from reaction of cis-Pt(NH3)2Cl2, 

        cis-Pt(NH3)2(NO3)2, cis-Pt(NH3)2(oxalate) with cyto C …..…….…….…37 

 

Figure 3.19: Comparison of HPLC data from reaction of cis-Pt(NH3)2(NO3)2,   

                     Pt(Me4en)(NO3)2 and Pt(en)( NO3)2 with cyto C……….………..….…..37 

 

Figure 3.20: Comparison of HPLC data for reaction rate of cis-Pt(NH3)2Cl2   

                             concentrations 1 mg and 4 mg…………………..……….…….................38 

 

Figure 3.21: Comparison of HPLC data for reaction rate of cis-Pt(NH3)2(NO3)2 

                             concentrations 1 mg and 4 mg…………………..…..……….....……..….38   

vii 



 

A  STUDY ON THE PROTEIN INTERACTION WITH DIFFERENT PLATINUM 

COMPOUNDS 

Nayna Kotadia     August 2008          39 pages 

 

Directed by: Dr. Kevin Williams 

Department of Chemistry     Western Kentucky University 

                 Since the discovery of anti-tumor activity of cisplatin in 1960, significant 

progress has been made in treating metastatic or advanced cancer with cisplatin and 

platinum compounds. Platinum compounds covalently bind to DNA and disrupt DNA 

function. They are also known to bind with amino acids like methionine, histidine and 

cysteine to form cisplatin-protein adducts which are responsible for most of its 

cytotoxicity and side effects. Recent articles on cisplatin-protein have shown that adding 

bulky adjuncts to cisplatin or using different platinum compounds varies the degree and 

extent of reaction thus possibly reducing cisplatin resistance and side effects. 

One of the proteins to study is cytochrome C, which is an intermediate in 

apoptosis (a controlled form of cell death used to kill cells in the process of development 

or in response to infection or DNA damage). Cytochrome C activates caspase 9, a 

cysteine protease, which in turn goes on to activate caspases 3 and 7, which are 

responsible for destroying the cell from within. 

In this study, we tried to examine how various platinum compounds like cis-

Pt(NH3)2Cl2, cis-Pt(NH3)2(NO3)2, Pt(en)(NO3)2, Pt(Me4en)(NO3)2, Pt(NH3)2 (oxalate), 

Pt(en)(oxalate),Pt(Me4en)(oxalate), which have different ligands/bulk, react with 

cytochrome C in different physiological conditions. This research project subsequently 

focused on three main aspects: 1) to determine whether the concentration of platinum 

compounds made a difference in the reaction rate, 2) to determine whether the pH of the 
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buffer shows any difference in the reaction rate, 3) to determine how the ligands 

coordinated to the platinum affected the rate. We used 1) HPLC with vitamin B12 

(cyanocobalamin) as an internal standard. 2) Separate samples of platinum compounds 

with bovine serum albumin were then subjected to dialysis and were then sent to the 

Materials Characterization Center for analysis by ICP-AES spectroscopy. 

In summary, the following conclusions are stated: 

• The leaving group, pH, bulk and the concentration play a very vital role in 

determining the reaction rate for platinum-cytochrome C interactions.   

• Chlorides form excellent leaving groups followed by oxalates then nitrates. 

• Pt(en) reacts faster than Pt(NH3)2 which reacts faster than Pt(Me4en). 

• Nitrates, Pt(en) and few oxalate form multiple products showing non-specific 

binding. Only cis-Pt(NH3)2Cl2 and Pt(Me4en)(oxalate) formed predominately a 

single product showing target specific binding. 

• cis-Pt(NH3)2Cl2 showed an increased reaction rate at lower pH while cis-

Pt(NH3)2(NO3)2 and Pt(Me4en)(NO3)2 showed higher reactions at higher pH. 

• Despite platinum compound was present in significant molar excess relative to 

cytochrome C, at the end of 21 hrs there was a significant amount of unreacted 

cytochrome C left except in case of cis-Pt(en)Cl2 which reacted with the whole 

cytochrome C in less than ten minutes. 

• We saw the rate of reaction in order of cis-Pt(en)Cl2 > Pt(en)(oxalate) > 

cis-Pt(NH3)2Cl2 > Pt(en)(NO3)2 > cis-Pt(NH3)2(NO3)2 > cis-Pt(NH3)2(oxalate) > 

Pt(Me4en)(oxalate) > Pt(Me4en)(NO3)2

• 
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I.  INTRODUCTION TO PLATINUM COMPOUNDS 

1) History 

As a compound, cisplatin, cis-Pt(NH3)2Cl2, was first described by M. Peyrone in 

1845
1
. He called it the Peyrone's salt. The molecular structural differences between 

cisplatin and transplatin complexes were solved by Werner in 1890; he established thus 

the basis of modern coordination chemistry. In the 1960s, B. Rosenberg found that use of 

a platinum electrode inhibited binary fission in E. coli bacteria when an electric field was 

created. The bacteria grew to 300 times their normal lengths, but cell division failed.  

Rosenberg’s studies of the anti growth factors and his results with sarcoma 180 

and leukemia L1210 cells aroused interest at the National Cancer Institution
2
, and soon 

cisplatin was tested and established as a drug with curative ability in testicular cancers. 

Research was done predominantly at Michigan State University to test the effects of the 

cisplatin along with other platinum complexes, on tumors artificially implanted in rats
2
. 

This study found that cisplatin was the most effective out of this group. Phase I clinical 

trials started in 1971, and Food and Drug Administration approval was obtained in 1978 

under the name Platinol. Carboplatin (C6H14N2O4Pt) followed with Food and Drug 

Administration approval in 1989 under the name Paraplatin, whereas most recently 

oxaliplatin (Eloxatin)
 3
 also was added for routine treatments of colon cancer and others 

are in Phase I and Phase II clinical trials. 

2) Synthesis of Cisplatin
 
     

Cisplatin can be synthesized by many procedures
5
, including: 

1 



  

Heating of tetraammineplatinum(II) chloride at 250°C  

• Reaction of ammonium carbonate with tetrachloroplatinic(II) acid  

The following preparation is a modification of Ramberg and Peyrone respectively, and 

involves a minimum number of side reactions to maximize yield.  

Overall reaction scheme:  

 

2K2 [PtCl6] + N2H4.2HCl  2K2 [PtCl4] + N2 + 6HCl 

 

K2 [PtCl4] + 2NH3  cis-[Pt (NH3)2 Cl2] + 2KCl   

 

 

• Addition of ammonia to ammonium tetrachloroplatinate(II)  

 

 Cisplatin is also commercially available and can be purchased from Sigma-

Aldrich. 

3) Types of compounds 

Platinum has two dominant valence states, + 2 and + 4
1
; the former state forms 

square planar complexes and the latter forms octahedral complexes. The earliest 

2 



  

synthesized anti-tumor drugs were cis-[Pt
II
(NH3)2Cl2] and cis-[Pt

IV
(NH3)2Cl4]. Most of 

the well-known platinum anticancer complexes have the general formula cis-[PtX2 

(NHR2)2], in which R = organic fragment and X = leaving group, such as chloride 

or (chelating bis) carboxylate. Cisplatin showed a 90% curative rate for ovarian and 

testicular cancer. Trans-diamminedichloroplatinum (II) (Trans-DDP, or transplatin), the 

geometric isomer of cisplatin is clinically ineffective. Carboplatin, cis-diammine-1, 1’-

cyclobutane dicarboxylate platinum (II) (Figure 1.1), had reduced toxicity but was cross 

resistant with cisplatin. Oxaliplatin, trans-l-diamino-cyclohexane-oxalatoplatinum (II), 

displayed a lack of cross-resistance and is used to treat colon tumors
3
. Many more oral 

compounds are being synthesized every year, there are over 3000 cisplatin analogs that 

have been tested
3
, with 28 that are awaiting clinical trials. It is estimated that more than 

10,000 compounds need to be screened in order to obtain a new, effective anticancer 

drug. 

 

Figure 1.1. Structures of cisplatin (1) and some first-generation drugs: Carboplatin (2); 

Nedaplatin (3); Oxaliplatin (4), an orally active drug (5, JM-216) and some recently 

3 



  

introduced new mononuclear (6, AMD473); dinuclear (7) and trinuclear (8) Pt-antitumor 

drugs.
 2

 

4) Physical and Chemical Properties 

      I will be discussing cisplatin for the rest of the paper; its physical properties are 

      Table 1: Physical properties of cis-diamminedichloroplatinum (II)
 4

  

Formal Name  

cis-

diamminedichloroplatinum(II)  

Common/Commercial 

Names  

Cisplatin/Platinol  

Agent  Anti-neoplastic  

Molecular Formula  Cl2H6N2Pt  

Molecular Weight  300.1  

Normal State  Crystalline solid  

        

Figure 1.2: cis-

Pt(NH3)2Cl2 

Color  Deep yellow (crystalline solid) & Clear (reconstituted 

solution)  

Structure  Tetragonal (square) planar   

Symmetry  C2V   

Melting Point  Decomposes at 270°C to give chlorine gas and nitrogen 

oxides  

 

• Reactivity
4
  

Cisplatin is incompatible with oxidizing agents and aluminum. Cisplatin reacts 

with aluminum and becomes inactivated permanently. It is therefore, not administered 

4 



  

with aluminum hubbed needles. Cisplatin may react with sodium bisulfite and other 

antioxidants.  

 

• Stability
4
  

• Cisplatin and Water  

NMR and UV spectrophotometric stability screenings indicate that solutions of 

cisplatin in DMSO are stable for less than two hours. It slowly changes to the trans-

isomer in aqueous solution. The Cl ligands are substituted with aqua ligands. The 

resulting di-aqua complex has a half- life of about 5 hours at 30°C at pH 7. A dramatic 

increase in stability is observed when the chloride ion is added. Fresh solutions are 

therefore prepared in saline before use. Cisplatin is stable under normal laboratory 

conditions. 

• Cispatin–DNA Complexes: 

   An important property of the platinum coordination compounds is the fact that the 

Pt–ligand bond, has the thermodynamic strength of a typical coordination bond (~100 

kJ/mol) and is much weaker than (covalent) C—C and C—N or C—O single and double 

bonds (which are between 250 and 500 kJ/mol).
 7
 However, the ligand-exchange behavior 

of Pt compounds is quite slow, which gives them a high kinetic inert and results in 

ligand-exchange reactions of minutes to days, rather than microseconds to seconds for 

many other coordination compounds. 

5) Biological reactions of Cisplatin
  

        Upon administration, a chloride ligand undergoes slow displacement with a water 

(an aqua ligand) molecule, in a process termed aquation. The aqua ligand in the resulting 

5 



  

[PtCl(H2O)(NH3)2]
 +

 is easily displaced, allowing cisplatin to coordinate to a basic site in 

DNA. Subsequently, the platinum cross-links a second base via displacement of the other 

chloride ligand.
1
 Cisplatin cross-links DNA in several different ways, interfering with 

cell division by mitosis. The damaged DNA elicits DNA repair mechanisms, which in 

turn activate apoptosis when repair proves impossible.
 6

 

        Most notable among the DNA changes are the 1, 2-intrastrand cross-links with 

purine bases. These include 1, 2-intrastrand d(GpG) adducts, which form nearly 90% of 

the adducts formed, and the less common 1, 2-intrastrand d(ApG) adducts. 1, 3-

intrastrand d(GpXpG) adducts occur but are readily excised by the nucleotide excision 

repair (NER). Other adducts include inter-strand cross links and nonfunctional adducts 

that have been postulated to contribute to cisplatin's activity. Interaction with cellular 

proteins, particularly HMG domain proteins, has also been advanced as a mechanism of 

interfering with mitosis, although this is probably not its primary method of action 

 

 

Figure 3: Hydrolysis pathways complex of cis-diamminedichloroplatinum (II)
 6 

 

 

Equilibrium processes for cisplatin in cancer cells  

 

Scheme 1: Equilibrium processes for cisplatin in cancer cells 
7 

6 



  

Equilibrium processes for cisplatin in cancer cells  

 

 

Scheme 1: Equilibrium processes for cisplatin in cancer cells 
7 

Cationic platinum complexes, such as [Pt (NH3)2 (OH2) Cl] 
+
, are formed when a water 

molecule attacks the platinum metal center, thus eliminating a chloride ion, which acts as 

a non-coordinating anion. The cell essentially traps the cisplatin by transforming it into a 

cationic component of a neutral molecule. After losing two Cl
-
 ions, hydrolyzed cisplatin 

reacts with DNA, coordinating to nitrogen atoms of the nucleobases. The active species 

in the cell is thus (NH3)2Pt
2+

, not cisplatin
 6
.  The binding of (NH3)2Pt

2+ 
to DNA leads to 

changes in the DNA structure. NMR studies indicate that the Pt
2+

 binds to N7 atoms of a 

pair of guanine bases on adjacent strands of DNA. 

6) DNA Damage and Apoptosis  

Studies showed that cisplatin arrested cell mitosis in the G2 phase by blocking 

transcription. Cells treated with low concentrations of cisplatin recovered from the G2 

7 



  

phase arrested, while cells treated with higher concentrations of the drug had only a 

limited number of survivors. Gel electrophoresis studies identified the mechanism of cell 

apoptosis which showed nucleotides in form of ‘nucleosome ladder’ 
9
.  

    7) Structural studies of Cisplatin – DNA Adducts
  

As noted above, cisplatin – DNA adducts are the cause of the cytotoxicity of the 

drug. These cisplatin DNA adducts cause a distortion of the DNA. Calorimetric studies 

showed cisplatin binding could unwind DNA and, at saturation levels, shorten the duplex 

by up to 50%. This resulted in loss of helix stability. Further calorimetric studies 

experiment with site specific cisplatin DNA adducts revealed a duplex destabilization of 

6.3 kcal/mol association with cis – GG adduct formation.
 7

 

X-ray crystallography revealed the nature of the cis- GG cross link on the 

dinucleotide d(pGpG) and trinucleotide d(CpGpGp)
8
.
 
NMR work combined with 

molecular mechanics calculations on duplex DNA containing a cisplatin 1,2- intrastrand 

d(GpG) adduct showed that the adduct caused the helix to bend approximately 60◦ 

towards the major groove. NMR even helped determine the structure of 1,2 intrastrand 

d(GpG)
 8

.  

Gel electrophoresis studies were also employed to gain structural information 

about various site specific cisplatin DNA adducts. Studies using multimers of a 22 – bp 

oligonucleotide containing a 1,2 interstrand d (GpG) cisplatin cross link showed that the 

DNA bends approximately 40° in the direction of the major groove
8
 and were extended 

to examine the DNA bending and unwinding induced by other adducts of cisplatin and 

Trans – DDP
8
.  
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8) Alternative Cellular DNA targets 

Most research was oriented towards genome DNA (gDNA), but soon an 

alternative cellular DNA target was identified. Mitochondrial DNA (mtDNA),
 9

 which 

lacks histones, has been targeted by DNA-damaging agents such as methylnitrosourea, 

alfatoxin B1 and bleomycin
5
. 

Using dissociation enhanced lanthanide fluoro immunoassay (DELFIA) and 

immunoelectron microscopy, researchers measured the number of cisplatin DNA 

adducts. They found there was a six-fold and four-fold higher proportion of adducts in 

mtDNA, compared to gDNA
6
. The preference for mtDNA was later attributed both to 

higher initial binding and to the lack of removal of the cisplatin DNA adducts. 

9) Need to study protein interaction with cisplatin drugs 

9.1) Introduction 

 Over the past 42 years since the discovery of the biological activity of cisplatin, much 

has been learned about how this drug affects the cell, and the DNA interactions have been 

studied
8
.
 
Despite the fact that DNA adducts are primarily responsible for the anticancer 

activity, up to 75-85% of the covalently bound cell associated cisplatin has been found to 

be bound to protein
5
. Cisplatin toxicity and side effects can be attributed to some of these 

protein interactions. 

9.2) Cisplatin toxicity and side effects:  

 Cisplatin toxicity is thought to be related with competitive protein binding of Pt 

compounds. This toxicity can be seen in the form of nephrotoxicity (kidney damage), 

neurotoxicity (nerve damage), ototoxicity (hearing loss) and other common side effects of 

chemotherapy such as nausea, vomiting, alopecia (hair loss) and electrolyte disturbance. 

9 



  

 On its way to the ultimate destination, platinum complexes interact with many 

other biomolecules because of kinetic and thermodynamic competition in the blood and 

in the tissues, especially those containing S-donor ligands, such as amino acids side chain 

in methionine, and cysteine residues
17

. Pt also binding with lone pairs of nitrogen atoms, 

which can occur in amino acids such as histidine, is seen in the absence of S-donor 

ligands.  

  Also cisplatin can enter the cell with both active and passive mechanisms. Active 

transport requires a channel or transport protein. Platinum can coordinate to the nitrogen 

of DNA and/or oxygen atoms of a peptide backbone, thus forming Pt-DNA-protein 

adducts. Many researchers believe that the DNA protein adducts contribute to high 

toxicity of cisplatin.  

  It has been found that platinum protein complexes containing a thiol group e.g. 

glutathione provides a detoxification pathway and causes resistance. Blood proteins rich 

in thiolates can deactivate cisplatin and these deactivated cisplatin is responsible for more 

side effects as well as resistance. 

9.3) Cellular resistance to cisplatin
 9

 

The efficacy of the chemotherapy drug cisplatin is often limited due to resistance 

of the tumors to the drug, and increasing the potency of cisplatin without increasing its 

concentration could prove beneficial. Resistance to cisplatin can either be intrinsic to the 

cell or acquired through exposure to the compound. Cellular resistance to these drugs is 

multifactorial and consists of complex mechanisms with a wide array of related and 

unrelated pathways. Some of the mechanisms identified to date are: 

10 



  

• Limit the formation of lethal platinum-DNA adducts (altered drug transport, 

inactivation); 
9
 

• Enable and enhance DNA repair, dependent and independent of signal 

transduction pathways; 
9
 

• Enable cells to tolerate platinum-DNA damage once it occurs. This may include 

altered genomes which up regulate bcl-2 and other death antagonists; 
9
 

• Enhance intracellular detoxification such as by an increased reflux or increased 

inactivation by sulfhydryl molecules such as the glutathione (GSH) and metallothionein 

pathways. 
9
 

Thus to avoid this resistance, second generation drugs are coming to the market  

The design and development of these cisplatin analogs have revealed common 

requirements that are necessary for its use as an anticancer drug.  

     These common requirements are:  

• Electro-neutrality, to allow for it to pass through non-polar substances such as cell 

membranes; 
10

 

• Presence of at least two good leaving groups, preferentially cis to one another. 

This allows for DNA and/or protein binding. 
10

 

• Presence of "inert" carrier ligands, usually non-tertiary amine groups which 

increase adduct stabilization through hydrogen bonding with nearby bases
10

.
 
 

11 



  

Using these criteria as bases, present research focuses on 

platinum complexes that are most likely are going to be active. With 

such relatively broad requirements, new platinum based anticancer 

drugs can therefore have totally different structures to cisplatin. 

There have been developments of octahedral platinum (IV) complexes, one of which is in 

clinical use iproplatin (cis-dichloro-trans-dihydroxy-cis-bis (isopropyl amine) platinum 

(IV)) [CHIP], trans-platinum complexes, and even bis-platinum complexes. Even the 

introduction of such aromatic N-containing ligands as pyridine, imidazole and 1,10-

phenanthroline, and their derivatives (whose donor properties are somewhat similar to the 

purine and pyrimidine bases) to anti tumor agents are drawing attention
12

.  

The ability to bind through two metal atoms could lead to a more potent and 

active drug over a larger spectrum of cancers, including cisplatin resistant types.  A study 

of the complex [cis-PtCl2(NH3)]2H2N(CH2)4NH2 showed it to be active against some 

cancer cells by forming covalent bonds with DNA and DNA repair proteins, thus 

separating the two and preventing repair
11

 

Forming new drugs using bulky ligands has also been being studied. It has been 

found that cisplatin & cisplatin analogs containing one bulky amine function reacted 

similarly to form DNA adducts.  Further studies with increase in amine, bulk showed a 

decrease in the formation of methionine adducts, suggesting that the bulk can affect the 

types of adducts formed in protein
13

.  These studies utilized mass spectrometry, which 

detects the platinum binded to protein.  Also 
15

N NMR spectroscopy has been utilized for 

identifying the site of reaction of platinum with protein.  

12 



  

9.4) Why study cytochrome C? 

Cytochrome C, or cyto C (horse heart: PDB 1HRC) is a positively charged small 

heme protein (heme group that allows detection in the visible range—410nm) found 

loosely associated with the inner membrane of the mitochondrion. Unlike other 

cytochromes, it is a soluble protein. Also it is commercially available and easy to use. 

Cytochrome C is also an intermediate in apoptosis, a controlled form of cell death 

used to kill cells in the process of development or in response to infection or DNA 

damage.
14 

This small amount of cytochrome C leads to the endoplasmic reticulum to 

release calcium. The overall increase in calcium triggers a massive release of cytochrome 

C, which then acts in the positive feedback loop to maintain ER calcium release. This 

explains how the ER calcium release can reach cytotoxic levels.  

Also cytochrome C is rapidly released from HNSCC mitochondria treated with 

increasing doses of cisplatin with studies done on mitochondria from cisplatin-sensitive 

head and neck cancer cell line PCI-13. Supernatant from the treated mitochondria was 

collected and assayed for cytochrome C release by Western blot. Cisplatin doses as low 

as 12.5 µmol/L cause significant cytochrome C release. Also it was found that an 

identical dose of the inactive stereoisomer transplatin (TDDP) did not cause significant 

cytochrome c release from mitochondria.
16

 

Also, this release of cytochrome C activates caspase 9, a cysteine protease. 

Caspase 9 can then go on to activate caspases 3 and 7, which are responsible for 

destroying the cell from within. A study was done to find which pathway cisplatin 

resistant and cisplatin sensitive cells take. It showed that cisplatin-induced apoptosis 

proceeds by caspase-3-dependent in cisplatin-resistant and caspase-3-independent 
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pathways for cisplatin sensitive human ovarian cancer cell lines.
15

 Thus proving that 

cytochrome C is one of the many reasons for cisplatin resistance. 

Thus studying recent articles on cisplatin-protein, and the role of cytochrome C in 

apoptosis we see that adding bulky adjuncts to cisplatin or using different platinum 

compounds varies the degree and extent of reaction of cisplatin with cytochrome C.  We 

hope to reach a better understanding of platinum compound reaction to cytochrome C.
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II. METHODS AND MATERIALS 

The aim of the current research is to examine how selected platinum compounds 

with different ligands react with proteins at different physiological conditions 

1. Concentration studies: 

Initially, cis-Pt(NH3)2Cl2, cis-Pt(NH3)2(NO3)2, Pt(en)(NO3)2, and 

Pt(Me4en)(NO3)2 were dissolved in concentrations of 1 mg  and 3 mg  in 3 ml buffer 

reacted each with 3 mg of bovine albumin.  These samples were then subjected to dialysis 

where all unbound cisplatin was removed.  The samples were dried and 20 ml of 

deionized water was added.  The samples were then sent to the Materials Characterization 

Center (MCC) for analysis by ICP-AES spectroscopy.  

Also, HPLC analysis utilized several platinum complexes such as cis-

Pt(NH3)2Cl2, cis-Pt(NH3)2(NO3)2, Pt(en)(NO3)2, Pt(Me4en)(NO3)2, cis-Pt(NH3)2 (oxalate), 

Pt(en)(oxalate), Pt(Me4en)(oxalate) that were reacted with cytochrome C with an internal 

standard of vitamin B12 (cyanocobalamin). Cytochrome C had an elution time between 

15-17 minutes, while vitamin B12 had an elution time between 1.5-2 minutes. The 

products formed where seen around the Cytochrome peak. A cation exchange column 

was used to separate the products that were formed.  A Hitachi Elite LaChrom pump L-

2130 was used with a flow rate of 0.5 mL/min; buffer A was 20 mM phosphate buffer 

(pH 6), buffer B was buffer A + 0.5 M NaCl.  An elution gradient went from 20% B to 

50% B from time = 0 to 30 min. 
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2. pH studies: 

Each platinum compound was dissolved in concentrations of 0.5 mg, 1 mg, 1.5 mg, and 3 

mg in 3 ml buffer reacted each with 3 mg of bovine serum albumin in phosphate buffer at 

a pH of 6 and 7.  These samples were dialyzed and sent to the MCC as described above. 

3. Time studies: 

Each platinum compound was treated with bovine albumin for the time period of 

1 hr, 3 hrs, 6 hrs, 12/24 hrs.  These samples were then run through dialysis where all 

unbound cisplatin was removed.  The samples were dried and 20 ml of deionized water 

was added.  The samples were sent to the MCC for analysis as described above. 

Also, each platinum compound was reacted with cytochrome C in the presence of 

an Internal Standard of Vitamin B12 (cyanocobalamin) for the time period of 0 hr, 3 hrs, 

6 hrs, 9 hrs, 12 hrs, 15 hrs, 18 hrs and 21 hrs.  The samples were studied by HPLC as 

described above. 

Materials used  

Buffers: Phosphate buffer (pH 6 and 7), N, N’- Diisopropylethylamine buffer (pH 4) 

Chemicals: Cisplatin cis-Pt(NH3)2Cl2 99.9+% (Sigma Aldrich),  

Silver nitrate (AgNO3),  

Dichloroethylenediamine platinum (II) 99% (Sigma Aldrich), 

Oxalic acid (C2H2O4) anhydrous p.a (ACROS Organic), 

Potassium tetrachloroplatinate(II) (K2PtCl4) 98% (Sigma Aldrich),  

Cytochrome C from horse heart 98% (Sigma Aldrich),  

Albumin from bovine serum, minimum 98% electrophoresis (Sigma Aldrich),  

Vitamin B12 (cyanocobalamin) 99% purity,  
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Potassium phosphate (KH2PO4) monobasic reagent ACS crystals (ACROS),  

Sodium phosphate dibasic (Na2HPO4) reagent suitable for buffer solution (ACROS), 

Sodium Chloride p.a (NaCl) (ACROS), 

N,N’- Diisopropylethylamine biotech grade solvent 99.5% (Sigma Aldrich)  

 pH for N, N’- Diisopropylethylamine buffer adjusted using concentrated Acetic acid, 

Glacial (Fisher Scientific). 

Pt-Complex synthesis  

Pt(Me4en)Cl2 were synthesized as described previously.
18

   

Silver oxalate was prepared by mixing silver nitrate and oxalic acid in equimolar 

amounts in H2O and stirring in an amber vial overnight; the silver oxalate precipitate was 

collected by vacuum filtration and rinsed with water. 

The nitrate or oxalate forms of each platinum compound were prepared by mixing silver 

nitrate or silver oxalate with the platinum dichloride compound in an aqueous solution at 

a 2:1 molar ratio of Ag:Pt.  The solutions were stirred in an amber vial for one or more 

days, after which they were filtered and evaporated to dryness. 
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III.  RESULTS 

Observations with HPLC 

Comparing  cis-Pt(NH3)2Cl2, cis-Pt(NH3)2(NO3)2 and cis-Pt(NH3)2(oxalate) ,  for 

the effect of leaving groups we found that cis-Pt(NH3)2Cl2 (with 17% of unreacted 

cytochrome C) reacted faster than cis-Pt(NH3)2(NO3)2 (with 71 % of unreacted 

cytochrome C) and cis-Pt(NH3)2(oxalate) (with 71% of unreacted cytochrome C). cis-

Pt(NH3)2(NO3)2 and cis-Pt(NH3)2(oxalate) reacts almost equally with cis-Pt(NH3)2(NO3)2 

being very slightly faster, though at the end their reaction rate is almost equal (Figure 

3.18)  at the same pH, over the time period of 21 hrs at the same concentration. We also 

saw that cis-Pt(NH3)2Cl2 (Figure 3.8) gave one major product when reacted with 

cytochrome C, while cis-Pt(NH3)2(NO3)2 (Figure 3.10) and cis-Pt(NH3)2(oxalate) (Figure 

3.18) gave multiple products. We also noted that the reaction rate was faster when 4 mg 

of cis-Pt(NH3)2Cl2 (Figure 3.8) (with 17% of unreacted cytochrome C), cis-

Pt(NH3)2(NO3)2 (with 71% of unreacted cytochrome C) and cis-Pt(NH3)2(oxalate) (with 

71% of unreacted cytochrome C) (Figures 3.20 and 3.21) were reacted with 1 mg 

Cytochrome C compared to reaction rate for 1 mg cis-Pt(NH3)2Cl2 (Figure 3.9) (with 55% 

of unreacted Cytochrome C), cis-Pt(NH3)2(NO3)2 (with 83% of unreacted cytochrome C) 

and cis-Pt(NH3)2(oxalate) reacting with 1 mg cytochrome C. Also the reaction rate was 

almost negligible at the end of 2
nd

 day for cis-Pt(NH3)2Cl2 and cis-Pt(NH3)2(NO3)2. 

Comparing Pt(en)Cl2 Pt(en)(NO3)2, and Pt(en)(oxalate) for the effect of leaving 

groups we found that cis-Pt(en)Cl2  reacted faster than cis-Pt(en)(oxalate) (Figure 3.17) 
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which in turn was faster than cis-Pt(en)(NO3)2 at the same pH, over the time period of 21 

hrs at the same concentration. In fact cis-Pt(en)Cl2 reacts so fast that with the standard 4 

mg we observed a complete reaction in less than a 10 min period. Hence we did the 

reaction with 8 mg cytochrome C to 1 mg cis-Pt(en)Cl2 which showed multiple products 

(Figure 3.16). While Pt(en)(NO3)2 (Figure3.11)  1 mg tends to give one major product 

which has a very similar elution time to cytochrome C, it also gives a second major 

product after around 15 hrs of reaction. But cytochrome C when reacted with 4 mg 

Pt(en)(oxalate) (Figure 3.17)  gave multiple products which had an earlier elution time 

than cytochrome C. 

Comparing  Pt(Me4en)(NO3)2 and Pt(Me4en)(oxalate) for the effect of leaving 

groups we found that Pt(Me4en)(oxalate) reacted faster than Pt(Me4en)(NO3)2 which was 

not expected at the same pH, over the time period of 21 hrs at the same concentration. 

We also saw that Pt(Me4en)(oxalate) (Figures 3.14 and 3.15)  forms one major product 

which has very similar elution time  to cytochrome C after around 12 hrs of reaction 

while Pt(Me4en)(NO3)2 (Figure 3.13) gave multiple products . Also for Pt(Me4en)(NO3)2 

the reaction rate showed no significant change between the end of the  first day compared 

to that at the end of  the second day. 

Comparing  cis-Pt(NH3)2(NO3)2, Pt(Me4en)(NO3)2, and Pt(en)(NO3)2 (Figure 3.19)  

for the effect of bulk we found that Pt(en)(NO3)2 (with 47 % of unreacted cytochrome C) 

reacted faster than cis-Pt(NH3)2(NO3)2 (with 71% of unreacted cytochrome C) which in 

turn reacted faster than Pt(Me4en)(NO3)2 (with 87% of unreacted cytochrome C) at the 

same pH, over the time period of 21 hrs at the same concentration, each of them gave 

multiple products (Figures 3.10, 3.11, and 3.13). For cis-Pt(NH3)2Cl2 and cis-Pt(en)Cl2, 
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since cis-Pt(en)Cl2 reacts very fast, comparing 0.25mg cis-Pt(en)Cl2 to 4 mg cis-

Pt(NH3)2Cl2 with 1 mg cytochrome C we saw that cis-Pt(en)Cl2 (Figure 3.16) gave 

multiple products while cis-Pt(NH3)2Cl2 (Figure 3.8)  gave one major product. 

 Comparing the cis-Pt(NH3)2(oxalate) (Figure 3.9), Pt(Me4en)(oxalate) (Figure 

3.15), and Pt(en)(oxalate) (Figure3.16) we found that Pt(en)(oxalate) reacted faster than 

both cis-Pt(NH3)2(oxalate), which in turn reacted faster than Pt(Me4en)(oxalate) at the 

same pH, over the time period of 21 hrs at the same concentration, we also saw that cis-

Pt(NH3)2(oxalate) and Pt(en)(oxalate) gave multiple products while Pt(Me4en)(oxalate)  

forms one major product which has a very similar elution time  to cytochrome C after 

around 12 hrs of reaction. Pt(en)(oxalate) (Figure 3.17) was the only compound to have a 

peak with an earlier elution time than cytochrome C. 

Observations with Dialysis and ICP-AES spectroscopy 

 After dialysis (removal of unbound platinum), we found the amount of reacted 

cis-Pt(NH3)2)(NO3)2 was greater than cis-Pt(NH3)2Cl2 (Figures 3.2 and 3.3), which 

comparing the above data seem opposing. However it should be noted that with HPLC 

we are comparing unbound cytochrome C whereas with dialysis we are comparing the 

platinum bound to protein; thus, having more than one platinum bound to the same 

protein would not cause additional decreases to unreacted protein by HPLC. Also for 

HPLC we used cytochrome C, whereas for dialysis we used albumin. 

 We also saw in cis-Pt(NH3)2Cl2 (Figure3.5) and Pt(Me4en)(NO3)2 (Figure3.4)  

with increase in pH (Comparing to pH 6, and pH 7) the amount of platinum bound to 

protein increased, suggesting a higher reaction rate at higher pH for but for 

Pt(NH3)(NO3)2 (Figure3.6) the trend was reversed. 
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IV. CONCLUSIONS 

We used HPLC and ICP-AES spectroscopy for our experiments. ICP-AES 

spectroscopy gives the exact amount of platinum bound to the protein, giving us a more 

accurate rate of reaction. We used albumin to react with platinum because albumin is 

large enough not to pass through the dialysis tube, cheap and easily available. This is a 

good procedure, but as we used phosphate buffer, any delay in forwarding the sample to 

MCC for analysis would result in bacterial growth. Also because each time point sample 

was done individually, the possible mechanical error of getting exactly 3 mg of platinum 

compounds and protein increased. Also because the final amount of analysis was 

sometimes as low as 3 ppm in 20 ml the possibility of error was high, hence we shifted to 

HPLC. Not to mention the cost of analysis was lower than ICP-AES spectroscopy. 

HPLC gives us the amount of unreacted Cyto C; we can see the cyto C peak go 

down over the period of time. As the same sample is used for analysis over 21 hrs period 

the human error of getting exactly 3 mg is greatly reduced. Also by adding an internal 

standard we can compare the internal standard peak and unreacted Cyto C peak at time 0 

hrs of reaction and thus get a percentage of unreacted Cyto C at later time points. The 

only drawback to these is that for compounds that interact at multiple points at a single 

Cyto C molecule, it is difficult to get the reaction rate easily. Also some Pt compounds 

gave peaks with very close elution time of Cyto C which were hard to integrate. 

Comparing the effects of leaving group, we saw that that chloride is an excellent 

leaving group as can be seen in the cases of cis-Pt(en)Cl2  and cis-Pt(NH3)2Cl2. The other 
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leaving group that was fast was oxalate: Pt(en)(oxalate) and Pt(Me4en)(oxalate) had  

faster reaction rates than either Pt(en)(NO3)2 or Pt(Me4en)(NO3)2. Also the reaction rate 

for cis-Pt(NH3)2(oxalate) and cis-Pt(NH3)2(NO3)2  were almost the same. We also see that 

the oxalates, cis-Pt(NH3)2(oxalate) and Pt(en)(oxalate), always give multiple products 

while the nitrate, cis-Pt(NH3)2(NO3)2 and Pt(Me4en)(NO3)2, form multiple products 

Pt(en)(NO3)2 forms more than one product after 15 hrs, suggesting a non-specific binding 

of nitrate and oxalate with Cyto C. Comparing the effects of bulk we also see that 

Pt(en)X2 compounds were faster to react than Pt(NH3)2X2 compounds which were in turn 

faster than Pt(Me4en)X2 compounds. We also noted that Pt(en)X2 compound form 

multiple peaks suggesting a non-specific binding of Pt(en)X2 with Cyto C comparing the 

effects of pH we see that cis- Pt(NH3)2Cl2 react faster as you lower the pH which is 

expected
4
, but Pt(Me4en)(NO3)2and cis-Pt(NH3)2(NO3)2 show an reverse trend, 

suggesting nitrates leave faster at higher pH, while chloride leave faster at lower pH. 

We found that although platinum compound were reacted in significant molar 

excess compared to cyto C, cis-Pt(en)Cl2 was the only compound which when treated 

with 1 mg of cyto C left no unreacted cyto C, closely followed by  Pt(en)(oxalate) which 

left ≈9% unreacted cyto C, while cis-Pt(NH3)2Cl2 left 17% of unreacted cyto C at the end 

of 21 hrs. All the rest left a significant amount of unreacted cyto C from 47% 

(Pt(en)(NO3)2) to 87%(Pt(Me4en)(NO3)2). 

Thus the reaction rate for all platinum compounds according to HPLC:  

cis-Pt(en)Cl2 > Pt(en)(oxalate) > cis-Pt(NH3)2Cl2 > Pt(en)(NO3)2 > cis-

Pt(NH3)2(NO3)2 > cis-Pt(NH3)2(oxalate) > Pt(Me4en)(oxalate) > Pt(Me4en)(NO3)2 

Figures  
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Figure 3.1. ICP-AES data from reaction of 3 mg cis-Pt(NH3) 2Cl2 with 3 mg Albumin 
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Figure 3.2. ICP-AES data from reaction of 1 mg cis-Pt(NH3) 2Cl2 with 3 mg albumin  
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Figure 3.3. ICP-AES data from reaction of 1 mg cis-Pt(NH3) 2(NO3)2 with 3 mg albumin 
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Comparison of Pt(Me4en)(NO3)2 Concentration over time 

pH 6 and pH 7
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Figure 3.4.  ICP-AES data from reaction of Pt(Me4en)(NO3) 2 with 3 mg albumin over    

time for pH 6  and pH 7 
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Figure 3.7. HPLC data from reaction of cis-Pt(NH3)2Cl2 1 mg + cyto C 1 mg 
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Figure 3.8. HPLC data from reaction of cis-Pt(NH3)2Cl2  4 mg + cyto C 1 mg 
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Figure 3.9. HPLC data from reaction of cis-Pt(NH3)2(oxalate) 1 mg + cyto C 1 mg 
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Figure 3.10. HPLC data from reaction of cis-Pt(NH3)2(NO3)2 4 mg + cyto C 1 mg 
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Figure 3.11. HPLC data from reaction of Pt(en)(NO3)2 4 mg + cyto C 1 mg 

 

29 



  

 
0 hrs 

 
3 hrs 

 
9 hrs 

 
18 hrs 

Figure 3.12. HPLC data from reaction of Pt(en)(oxalate) 1 mg + cyto C 1 mg 
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Figure 3.13. HPLC data from reaction of Pt(Me4en)(NO3)2  4 mg + cyto C 1 mg  
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Figure 3.14. HPLC data from reaction of Pt(Me4en)(oxalate) 1 mg +  cyto C 1 mg 
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Figure 3.15. HPLC data from reaction of Pt(Me4en)(oxalate) 4 mg + cyto C 1 mg 
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Figure 3.16. HPLC data from reaction of Pt(en)Cl2 1 mg + cyto C 8 mg 
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Figure 3.17. HPLC data from reaction of Pt(en)(oxalate) 4 mg + cyto C 1 mg 
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Figure 3.18. Comparison of HPLC data from reaction of cis-Pt(NH3)2Cl2,  

cis-Pt(NH3)2(NO3)2, cis-Pt(NH3)2(Oxalate) with cyto C 

 

 
Figure 3.19. Comparison of HPLC data from reaction of cis- Pt(NH3)2(NO3)2, 

Pt(Me4en)(NO3)2 and Pt(en)( NO3)2 with cyto C 
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Figure 3.20. Comparison of HPLC data from reaction of rate cis-Pt(NH3)2Cl2   

                                Concentrations 1 mg and 4 mg 

 

 
Figure 3.21. Comparison of HPLC data from reaction of rate cis-Pt(NH3)2(NO3)2 

concentrations 1 mg and 4 mg 
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