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Motivations: Physics & Technology on Nanoscale

Physics of Crystal Growth and Technology:

Lab growth of high-quality thin solid films and crystals is extremely
challenging since it takes place in very tough environments such as
high temperatures (up to 1000 C and higher) and high local stress

levels (MPa range)

Despite more than 30 years of experimental, theoretical, and
modeling work, the growth mechanisms are not well understood,
and experimental methods are not sufficiently developed, which
prevents the transition of many long-imagined applications from

the growth experiment stage to a nanoscale semiconductor
device-building stage

Example: Formation of single-crystal, defect-free, nanometer-sized
“islands” from the initially continuous grown film

(Stranski-Krastanow heteroepitaxial thin film growth)
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Motivations, continued: Physics & Technology on
Nanoscale

Figure: Flat, single-crystal semiconductor film (Si1−xGex on Si) grown by
MBE or CVD to height h0.

and then, suddenly, ...

Instability and pattern formation
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Motivations, continued: Physics & Technology on
Nanoscale

Figure: AFM images of 10nm-thick Si0.82Ge0.18/Si alloy films. The
images reveal evolving and coarsening surface patterns on samples
annealed at 850 C for (a) 1 min, (b) 5 min, (c) 20 min, and (d) 2 h,
respectively (from [1]).
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Motivations, continued: Physics & Technology on
Nanoscale

The ultimate goal is to grow uniform, defect-free superlattices of
nicely-shaped crystal islands (pyramids, domes, rectangular, etc.).
That is, methods of shape and order control must be perfected.
And, factors influencing pattern formation and
pattern coarsening must be fully understood.

Figure: Computer simulation results of a mathematical model (from [2]).
(a) Stationary hexagonal lattice; (b) Stationary square lattice. This is
MUCH better than the best experiments to-date !
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Motivations, continued: Mathematics

Models of thin films are often formulated in terms of high-order,
heavily nonlinear evolution PDEs that have some unusual
properties, such as unstable and non-differentiable solutions. This
calls for nonstandard methods of analysis and solution that are
interesting in their own right.
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Modeling paradigms

Atomistic, say Molecular Dynamics-type methods: very
computationally expensive, limited to a few thousand atoms
Continuum: explained in this talk, usually provide qualitative
information only
Mixed atomistic-continuum: state-of-the-art multiscale
methods

We use continuum approach as follows

PDE-based initial-boundary value problem for the film height
function is formulated based on available physical information

For a film above x , y : 0 ≤ x ≤ X , 0 ≤ y ≤ Y :
h = h(x , y , t) and the IBVP has the form

ht = F (h, hx , hy , hxx , hyy , ...)

+ the initial condition: h(x , y , 0) = h0(x , y)
+ the boundary conditions, for instance:

h(0, y , t), h(X , y , t), h(x , 0, t) and h(x ,Y , t)

F is nonlinear, complicated
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Physical factors: Epitaxial Stress

1. Compressive or tensile stress generated by lattice mismatch of
the film and the substrate

Figure: A heteroepitaxial thin-film structure. The mismatch between the
lattice parameters of the film and substrate is accommodated by a
(compressive) elastic stress in the film (from [1]).
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Physical factors, continued: Surface diffusion I

2. Diffusive mass transport of adatoms along the film surface.
Owing to the small length scales and high-T environment, diffusive
mass transport along the film surface is very fast and causes the
morphology (= shape) of the film surface to evolve continuously
with time

Figure: Continuum and atomistic view of surface diffusion (from [1]).
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Physical factors, continued: Surface diffusion II

The surface diffusion process is governed by a surface chemical
potential M =Mγ +Me +Mw + ... =M(h, hx , hy , ...), where

γ : surface energy density;

e : elastic energy density; w : wetting energy density

Gradients of M drive the diffusion flux along the surface:
j = −∇M(h, hx , hy , ...) (thermodynamic Fick’s law)

Thus surface height changes above the xy−domain
x , y : 0 ≤ x ≤ X , 0 ≤ y ≤ Y

Planar film is in unstable equilibrium, because:

In equilibrium the diffusion flux vanishes,

j = −∇M(h, hx , hy , ...) = 0→M(h, hx , hy , ...) = const.

Solution of the last (static) PDE gives nontrivial equilibrium
surface shape h(x , y). Here value of const. depends on film volume
and boundary conditions.
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Physical factors, continued: Surface diffusion III

Mγ and Mw are easy to model since they are local quantities
(defined on the film surface)

Me is very difficult to model since it is non-local: must solve the
elasticity problem for deformations and stresses in the bulk of the
film, then take the solution on the film surface h(x , y , t) (which is

itself the problem unknown) → a free-boundary problem

The free-boundary elasticity problem consists of certain PDEs for
deformations and stresses in the film and in the substrate, and the

boundary conditions on all surfaces, including the film-substrate
interface and the (unknown) film surface.

FYI: Mathematical definition of a free-boundary problem: A problem for

certain field variables Z1,Z2, ...Zn on domain D such that the boundary

conditions for Z1,Z2, ...Zn are posed on the boundary of D whose shape

and position are unknown and must be found as part of solution for

Z1,Z2, ...Zn.
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Physical factors, continued: Anisotropy of surface energy
density I

Since the film surface is the geometrical boundary of the crystalline
solid, it inherits some properties of the crystal lattice - most
importantly, the short- and long-range order in the arrangement of
atoms.

Thus a surface is a collection of finite-size atomic planes, called
facets. Each facet has distinct surface energy, which is different
from the surface energy of another facet with different orientation.

3. Thus if γ stands for the surface energy of the entire 3D surface,
then γ = γ(θ(x , y), φ(x , y)), where θ and φ are two angles of the
unit normal to the surface at point (x , y).
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Physical factors, continued: Anisotropy of surface energy
density II

Figure: SEM image of micrometer-sized Pb crystal at room temperature
(from [3]).

Figure: Facetted surface of a film. Facets appear as regions of uniform
color (from [4]).
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Physical factors, continued: Wetting energy

4. Energy of a long-range molecular repulsion or attraction
between the atoms of the film surface and the atoms of the
substrate surface

Long-range ≡ larger than atomic length: 0.1 - 10 nm

For some film-substrate materials interaction is repulsive → film
always covers the substrate everywhere: substrate can’t get
exposed. Example: SiGe alloy on Si

For other film-substrate materials interaction is attractive → film
tries to expose substrate. Example: Si on SiO2

(silicon-on-insulator)

To account for W , the usual approach is to allow surface energy
to be a function of film thickness:
γ = γ(θ(x , y), φ(x , y), h(x , y)). Then

Mw ∼
∂γ

∂h
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A little bit of history

Stages of concept/modeling framework development

Surface energy (including anisotropy), surface diffusion:
1950’s and 1960’s (William Mullins, Conyers Herring)

Stress: 1970’s and 1980’s (Asaro, Tiller, Grinfeld, Srolovitz),
1990’s (Spencer, Voorhees, Tersoff, Freund, Gao, Chiu)

Wetting energy: 2000’s (Ortiz, Golovin)

Also, alloy composition/segregation effects and uninterrupted film
growth effects have been studied since 1990
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Problem: Dewetting of silicon-on-insulator (Si on
amorphous SiO2)

AFM images at t = 1 h after the start of annealing at T = 550C .
(a) h0 = 5 nm; (b) h0 = 20 nm. (from [5]). Pits form in the film !
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Problem: Dewetting of silicon-on-insulator, continued

How is pitting initiated and how it proceeds ? What are the factors
influencing pit width and depth ? More generally, what are the
factors influencing instability of Si surface ?

Great relief #1! Lattice mismatch of Si and SiO2 is zero → there
is no epitaxial stress in the film → Me = 0 → no need to solve
the free-boundary elasticity problem. And, Great relief #2! Alloy
composition/segregation effects are not present

For simplicity let the film surface be one-dimensional →
h = h(x , t) and γ = γ(θ, h)

General Linear Stability Analysis (GSLA): gives information on
surface stability/instability with respect to small
perturbations defined on (−∞,∞)
GLSA is not very helpful in the case of a pit, since pit results
from the evolution of a perturbation which is defined locally
and perhaps is large. Need computer simulations of
nonlinear model.
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Problem: Dewetting of silicon-on-insulator, continued

Plan for GLSA:

(i) Derive the nonlinear evolution PDE for h(x , t) using the
framework

(ii) Perturb the surface about the equilibrium constant height h0

by the perturbation ξ(x , t), obtain PDE for ξ
(iii) Linearize PDE for ξ and obtain linear PDE

ξt = F (ξ, ξx , ξxx , ...)
(iv) Take ξ = eωt cos kx and substitute in PDE → ω(h0, k ,A). A

is the anisotropy strength
(v) Examine for what values of h0, k,A the growth rate is positive

or negative. ω < 0: surface is stable; ω > 0: surface is
unstable
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Problem: Dewetting of silicon-on-insulator, continued

Nonlinear evolution PDE in dimensionless form

ht = B(1 + h2
x)1/2

∂2

∂s2
(Mw +Mγ) ,

∂

∂s
= (cos θ)

∂

∂x

Mw =
∂γ(h, θ)

∂h
cos θ =

(
γ(f )(θ)− G

)
e−h cos θ

To obtain final form of Mw , we used the two-layer exponential
wetting model:

γ(h, θ) = γ(f )(θ) +
(

G − γ(f )(θ)
)

e−h

γ(h, θ)→ γ(f )(θ) as h→∞, γ(h, θ)→ G as h→ 0

Also, for γ(h, θ) as shown above:

Mγ =
(
γ(f )(θ) + γ

(f )
θθ

)(
1− e−h

)
κ+ Ge−hκ,

κ = −hxx/(1 + h2
x)3/2; choose γ(f )(θ) = 1 + A cos 4θ

Finally, cos 4θ = 8
(
cos θ4 − cos θ2

)
+ 1, cos θ = (1 + h2

x)−1/2
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Problem: Dewetting of silicon-on-insulator, continued

Next, perturbation ξ(x , t) of the equilibrium film height h0 is
introduced, the PDE is linearized, and ξ is taken in the form
ξ = eωt cos kx

The perturbation growth rate, as derived:

ω(h0, k,A) = B
[(

Λ− (G + Λ)e−h0
)

k4 − (G − 1− A) e−h0k2 −∆k6
]

Λ = 15A− 1, ∆ > 0 when anisotropy is strong: A > 1/15

Surface-substrate interaction is attractive: G < 1, G − 1− A < 0
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Problem: Dewetting of silicon-on-insulator, continued

If perturbation wavenumber k > max
(

kc , k
(u)
c

)
, where

kc =
√

Λ/∆, k
(u)
c =

√
−(G − 1− A)/(G + Λ),

then film of any thickness is stable

If kc < k < k
(u)
c , then film is stable if h0 > h

(c1)
0 and unstable

otherwise, where

h
(c1)
0 = −ln

Λk2 −∆k4

G − 1− A + (G + Λ)k2
, typically 2− 4nm

If k
(u)
c < k < kc , then the film is stable if h0 < h

(c1)
0 and

unstable otherwise → typically seen in experiments

If k < min
(

kc , k
(u)
c

)
, then the film of any thickness is

unstable
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Problem: Dewetting of silicon-on-insulator, continued

Computer simulations of a pit using the nonlinear evolution PDE
ht = F (h, hx , hxx , ...)

The initial condition:

h(x , 0) = 1− d exp

[
−
(

x − 5

w

)2
]
, 0 ≤ x ≤ 10

d = 0.5 (shallow pit) AND one of the following:

w = 0.15 (narrow pit), or

w = 1 (intermediate pit), or

w = 2 (wide pit)

Periodic b.c.’s at x = 0 and x = 10

G = 0.5, A = 1/12, B = 3.57× 10−3
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Problem: Dewetting of silicon-on-insulator, continued

Numerical method:

PDE is discretized in x using the 2nd-order finite differences,
time is left continuous → large system of coupled ODEs in
time (100 to 5000 ODEs)

Use standard ODE solver to integrate the system in time
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Problem: Dewetting of silicon-on-insulator, continued

Computer simulation results: Pit shapes
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Problem: Dewetting of silicon-on-insulator, continued

Computer simulation results: Pit shapes

Rotate sample, expose different crystallographic orientation:
γ(f )(θ) = 1 + A cos 4(θ + β)
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