
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

12-2008

Simulation Modeling of Karst Aquifer Conduit
Evolution and Relations to Climate
John D. Broome
Western Kentucky University, john.broome@wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Geology Commons, Other Physical Sciences and Mathematics Commons, and the
Physical and Environmental Geography Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Broome, John D., "Simulation Modeling of Karst Aquifer Conduit Evolution and Relations to Climate" (2008). Masters Theses &
Specialist Projects. Paper 36.
http://digitalcommons.wku.edu/theses/36

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.wku.edu%2Ftheses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/216?utm_source=digitalcommons.wku.edu%2Ftheses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=digitalcommons.wku.edu%2Ftheses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages

SIMULATION MODELING OF KARST AQUIFER CONDUIT EVOLUTION AND
RELATIONS TO CLIMATE

A Thesis
Presented to

The Faculty of the Department of Geography and Geology
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
John Broome

December, 2008

SIMULATION MODELING OF KARST AQUIFER CONDUIT EVOLUTION AND
RELATIONS TO CLIMATE

 Date Recommended October 1st, 2008 ______

 Dr. Chris Groves _______________________
 Director of Thesis

 Dr. Stuart Foster _______________________

 Dr. Stephen Kenworthy__________________

 Kevin Cary ___________________________

__
Dean, Graduate Studies and Research Date

i

ACKNOWLEDGEMENTS

At the completion of this thesis, I have a debt of gratitude to many parties. I

would like to begin by thanking Almighty God for giving me both the opportunity and

ambition to reach this personal milestone. I am also appreciative of the love and

encouragement of my parents, David and Monica. Their faithful support of my decisions

and goals has been a tremendous source of strength to me throughout my life.

Without the guidance of my thesis advisor, Dr. Chris Groves, I would not have

had the stimulus for this research, nor the advantage of his wealth of geological expertise

and experience. It is he who encouraged me to proceed during times when the purpose of

our efforts seemed elusive. I would like to thank Dr. Groves for his friendship, and for

the pleasure of many enlightening conversations about the intriguing world of karst and

the essence of scientific research. Additionally, the original field data, which was an

essential component of this project, came from the research of Dr. Groves and Joe

Meiman (Mammoth Cave National Park).

In a similar vein, I would like to state my indebtedness to the other capable and

professional members of my thesis committee (Dr. Stuart Foster, Dr. Stephen Kenworthy,

and Kevin Cary). Their guidance and input was extremely valuable and appreciated

greatly.

The logistical headaches of being a full-time employee, husband and father, a

part-time grad student, and seemingly a full time commuter were partially mitigated by

the help of my supervisors at the Planning Department in Nashville, and by Wendy

DeCroix and Pat Kambesis at WKU. The financial burden was lessened by some funding

received from the Hoffman Environmental Research Institute.

ii

Finally, I would like to thank my wife, Stella, and my children, Patricia, Joseph,

and Isaac, who make all my struggles worthwhile. During the pursuit of my academic

goals, they have had to contend with my short temper, and the frustration of sharing my

time and energy with my research. I sincerely thank them for their personal sacrifices

that have made this thesis possible. It is to Stella, Patricia, Joseph, and Isaac that I

dedicate this thesis.

iii

FOREWORD

 This note concerns the format of this Master’s Thesis. Through time, MS level

research projects conducted under the auspices of the Hoffman Environmental Research

Institute in the Department of Geography and Geology have been more regularly

published in professional journals, as is appropriate for high-quality environmental

research. Mr. Broome’s research described herein makes new contributions to the

understanding of karst landscape evolution using a simulation modeling approach, and is

indeed at such a level. With this in mind, and recognizing that publication of research

results in peer-reviewed journals is the most appropriate method to disseminate research

results, we are simultaneously evolving to a thesis format that is closer to that which is

submitted for publication review, and we anticipate that this manuscript will be submitted

for publication to the peer-reviewer journal Geomorphology. This thesis makes a stride

in this evolution, at my suggestion and approval as the advisor of this research.

Chris Groves, PhD
Thesis Research Advisor

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS... i

FOREWORD ... iii

TABLE OF CONTENTS... iv

LIST OF FIGURES ...v

ABSTRACT... vi

INTRODUCTION ...3

METHODOLOGY ..6

RESULTS ..24

DISCUSSION..28

CONCLUSION..36

REFERENCE LIST ...39

APPENDIX I: CAVEGROWTH APPLICATION CODE..41

APPENDIX II: S-PLUS GAMMA FUNCTION CODE...86

APPENDIX III: SIMULATION DATA GENERATION CODE88

v

LIST OF FIGURES

 Page

Figure 1a – Karst landscape in Southern China...4

Figure 1b – Karst landscape in Southern Kentucky...4

Figure 2 – Cave Growth application GUI..8

Figure 3 – Initial passage geometries...9

Figure 4 – Direction of vertex movement in Cave Growth ...13

Figure 5 – Formula chart to deduce angles of vertex movement.......................................14

Figure 6 – Vertex movement closeup in Cave Growth..15

Figure 7 – Study site at Logsdon River ...16

Figure 8a – Discharge distribution for gamma dataset α = 0.06 β = 119

Figure 8b – Discharge distribution for gamma dataset α = 0.1 β = 120

Figure 8c – Discharge distribution for gamma dataset α = 1 β = 120

Figure 8d – Discharge distribution for gamma dataset α = 1000 β = 120

Figure 9 – Dissolution rate versus discharge in the Logsdon River field dataset..............21

Figure 10a – Bankfull stage in a surface stream..23

Figure 10b – Pipefull stage in a karst conduit..23

Figure 11 – Configuration options used in simulation runs...24

Figure 12 – Graph of cave growth by annual flow distribution...26

Figure 13 – Graph of vertex events by annual flow distribution27

Figure 14 – Graph of dissolution rate by annual flow distribution....................................28

Figure 15 – Example of a well developed cave passage..38

vi

SIMULATION MODELING OF KARST AQUIFER CONDUIT EVOLUTION

Name: John Broome Date: December, 2008 Pages: 92

Directed by: Chris Groves, Stuart Foster, Kevin Cary, and Stephen Kenworthy

Department of Geography and Geology Western Kentucky University

ABSTRACT

Karst regions of the world that receive relatively similar amounts of precipitation

display a wide variety of landscapes. It has been suggested (Groves and Meiman, 2005)

that climates exhibiting larger discrete storm events have more dissolving power and

consequently higher rates of conduit growth than climates with more uniform

precipitation distributions. To study this concept, a computer program “Cave Growth”

was developed that modeled the growth of a cross-section of a cave passage under

dynamic flow and chemical conditions. A series of 46 simulation datasets were created

to represent different climatic conditions. These simulations had the same total annual

discharge, but demonstrated a range of flow distributions quantified by use of a gamma

distribution index, along with two special theoretical cases.

After simulating a year of conduit growth for each of the various flow

distributions in a series of model runs, and repeating these sets of simulations for three

different passage cross-section geometries, it was evident that the annual temporal

distribution of flow did indeed impact the amount of cave growth. However, an increase

in the “storminess” of the climate did not simply equate to more dissolution and thus

conduit growth. Rather, the quantity and duration of surface contact between water and

the conduit walls combined with dissolution rates to affect the total growth. The amount

of wetted perimeter (contact between fluid and passage floor/walls) generated by specific

vii

flow levels depended upon the shape of the passage. Flow conditions that filled the

conduit to capacity were shown to be very effective at growing the cave. Above this

level, the dissolving power of additional water was essentially wasted. This investigation

suggests that the maximum amount of passage growth occurs under flow conditions that

result in the most wetted perimeter for the longest period of time at the highest

dissolution rate.

3

INTRODUCTION

One of the quintessential tasks assumed by the discipline of Geoscience has been

that of explaining the regional variation in the natural phenomena that are encountered

across the globe. An example of this effort is the research that has been conducted in

order to understand the unique scenery and subterranean features that characterize karst

environments. Indeed, geologists and physical geographers have studied the processes

and underlying conditions affecting the evolution of karst aquifers and their associated

surface landscapes in great depth. This research has included the examination of many

aspects of the relationships between the growth of the subsurface drainage networks that

define these aquifers and the availability of groundwater. It has been shown that the total

amount of groundwater that flows through a karst system each year has a direct impact on

the rate of overall karst landscape denudation that occurs (White, 1988; Smith and

Atkinson, 1976; Kiefer, 1990; Groves and Meiman, 2005). However, the influence of the

annual temporal distribution of that flow, closely related to precipitation input rates, has

been considered less carefully.

The rate of discharge in a system throughout the year is largely a reflection of the

distribution of precipitation occurring at the surface. Precipitation quickly becomes

recharge to the karst aquifer as well developed karst flow systems are characterized by

low resistance and very rapid response to storm recharge events (White, 1988; Palmer,

1991; Ford and Williams, 2007). Based on analysis of one year of high resolution flow

and chemical data from Logsdon River in Kentucky’s Mammoth Cave System, Groves

and Meiman (2005) suggested that flow distributions (and by inference, climates)

exhibiting larger discrete storm events, that is, with less uniform rainfall distributions,

4

have more dissolving power and consequently higher rates of conduit growth than

climates with more uniform annual flow distributions. If it is generally true that the

temporal distribution of discharge can affect the rate of cave passage expansion in an

aquifer, this knowledge may help geoscientists to better understand the variety of

landscapes found throughout the world’s karst regions.

For example, a region such as the Guangxi Autonomous Region in Southern

China, that annually recieves about the same amount of precipitation as Southern

Kentucky and is in some ways geologically similar, displays a quite different karst

landscape. Its impressive karst towers (Figure 1a) and huge underground river passages

(Yuan, 1988, 1991), in some places with widths in excess of 100m, contrast sharply with

Southern Kentucky’s gently rolling sinkhole plains (Palmer, 1981, White et al., 1970)

(Figure 1b). While the factors that contribute to the evolution of these disparate karst

landscapes are complex and multifaceted, and potentially involve differences in tectonic

settings, an interesting distinction is that the annual precipitation in this region of China is

Figure 1a (left). High-relief karst towers developed in Paleozoic limestones of the
Guangxi Autonomous Region, China.
Figure 1b (right). Low relief sinkhole plain developed on Paleozoic limestones of
Kentucky.
Photos by Chris Groves.

5

concentrated into a short summer monsoon season (Ding, 1994), whereas Southern

Kentucky experiences a comparatively uniform distribution of annual precipitation.

Different recharge and discharge patterns in these landscape/aquifer systems may be an

influential factor in the evolution of these two karst environments.

Any processes that influence an increase in the capacity of the underground

drainage network to accept drainage consequently affect the speed at which the connected

surface geography undergoes a transition from a fluvial to a karst landscape. As regions

with soluble bedrock evolve, their surface topography shifts from landscapes defined by

fluvial processes to those shaped primarily by subterranean drainage. Once most or all of

a region’s drainage has been diverted underground, non-fluvial landscape forming

processes subsequently dominate surface forms. As more water is diverted underground

through ever-enlarging conduits, surface streams become intermittent, and swallets

eventually form. This can result in intermittent streams or dry valleys at the surface.

Other karst features including sinkholes and fractures further disrupt surface drainage

patterns and redefine a region’s landscape. Ultimately, the rate of landscape denudation

occurring in a karst region is shaped by factors that influence the growth of caves and

conduits.

This research strives to explore the relations between one of these factors, the

annual variability of discharge flowing through a karst aquifer, and evolution of the

primary conduits carrying that water. To accomplish this task, a computer program

“Cave Growth” was developed and simulation discharge datasets representing a series of

varying climatic conditions, quantified by varying the temporal distribution of a fixed

total annual quantity of water draining through the system (considered to be equal to

6

precipitation minus evapotranspiration), were created and processed. Through this

application, the growth of a specific cross-section of a karst conduit was analyzed under

varying flow distributions in an attempt to gain insight into the relationship between these

flow/precipitation distributions and conduit growth, and thus karst landscape evolution.

METHODOLOGY

 Computer simulations and environmental models provide investigators with a

means of analyzing conditions and processes that would otherwise be too large or small,

too complex, or too time consuming to study in the real world (McCuen, 2002). The

influence of climate on conduit growth within a karst aquifer is a good example of a

subject that is difficult to study in the field. Underground sites are difficult to access and

precise measurement of factors affecting conduit growth requires the undisturbed use of

remotely implemented equipment over an extensive period of time. Thus, the purpose of

the “Cave Growth” application developed for this research was to provide a method of

exploring scenarios and conditions that affect this phenomenon that could be used to

compliment real field studies.

While benefits such as those described are significant, there are caveats to

simulating the real world environment that must be recognized when using them to make

interpretations and draw conclusions. The most obvious problem with predictive

modeling is that the simulation cannot hope to fully account for the complex conditions

that exist in the real world. Additionally, the structure and design of the program can

itself have impacts on the results that it generates. For example, the choice of grid cell

size in a Geographic Information Systems (GIS) process that models surface drainage can

7

affect the delineation of a drainage basin (Usery et al., 2004). Therefore, this discussion

of the methodology utilized in this research attempts to clarify both the assumptions that

were made and the logic of the programming code behind the Cave Growth application.

The code itself is written in Microsoft’s object oriented and event driven Visual Basic 6.0

programming language, and is listed in Appendix I.

Cave Growth was developed for this research project as an effort to create a

computer model that could simulate the growth of cave conduits under dynamic flow and

chemical conditions and also serve as a means of visually analyzing that growth. In an

effort to isolate and study certain manageable facets of this highly complex phenomenon,

the program represents conduit growth as the expansion in area of a two-dimensional

cross-section of a cave passage that contains a flowing stream of potentially varying

discharge. The rate and shape of that expansion are determined by evaluating the

geometry of the cross-section in conjunction with the dissolution rate and the portion of

the conduit that is underwater during each of a given series of time steps. The total

change in the cross-sectional area of the cave over the course of a simulation run is

considered a measure of growth associated with a particular combination of input

parameters and simulation duration. By holding those parameters constant, while

processing a series of simulation datasets demonstrating a broad spectrum of flow

conditions, the Cave Growth application was utilized to examine the influence of flow

distributions, and thus this aspect of climate on the rate of conduit growth.

The program’s graphical user interface consists of a display grid (Figure 2-A), a

toolbar (Figure 2-B), a message panel (Figure 2-C), and a configuration panel (Figure 2-

D). These features allow the user to configure a simulation run and also to examine the

8

Figure 2. Graphical user interface (GUI) for the Cave Growth application.

results of that run. The display grid dominates the screen and is used to view the conduit

cross-section and the accompanying reference grid. The tools that accompany the grid

provide the user with simple navigational functionality allowing them to zoom in and out

and pan around the viewing area and also provides them with the ability to identify

vertices, which are specific points that together when connected define the passage cross-

section. The change in a passage cross-section depends on the movement of the

individual vertices. The message panel reports the location of the mouse cursor relative

to the grid, the current cross-sectional area of the cave passage, the amount of growth

recorded during a simulation, and the average dissolution rate and number of “vertex

events” (described in more detail below) for the run. Among other things, the

9

configuration panel of the application allows the user to set up the display grid, establish

the geometric parameters, select a data source, specify processing time, and begin a

simulation.

The initial shape of the conduit cross-section is one of the geometric parameters

that must be established for a simulation run. Cave Growth has been designed to work

with basic symmetrical profiles. In the configuration panel one can choose from a

circular, rectangular, or user-defined initial shape. Once the geometry has been defined it

can be stored and reloaded for efficiency across multiple runs. For this experiment, a

21m2 trapezoid representing the Logsdon River study site on which much of this research

is based, a 21m2 circle, and a 21m2 (2m x 10.5m) rectangle were defined and reloaded for

each run. These initial passage geometries are shown below in Figure 3. The shape

chosen influences the amount of wetted perimeter that exists under given flow conditions

and therefore affects the evolution of the passage and ultimately the amount of growth

that occurs in a simulation run.

Although the cross-section is presented in the display grid as a polygon, within

the application code, the cave walls are actually represented as a dynamic array of

vertices. These vertices are individually evaluated and moved in accordance with

shifting environmental conditions to reflect the retreat of the passage wall resulting from

Figure 3. Passage geometries used in simulation runs

10

limestone dissolution. For every time step, each vertex is assessed to determine if it is

underwater based on the current flow conditions and passage geometry. Only those

vertices that are determined to be underwater are subject to dissolution in this model.

The proximity of the vertices to one another is a configuration setting that was developed

to allow the researcher to control the “geometric granularity” of the study (how many

vertices are used to represent the passage wall). This setting establishes a maximum

distance allowed between vertices, which is maintained after each time step by the

insertion of a new vertex between any adjacent vertices that have strayed beyond the

ascribed tolerance. A finer grained analysis can obviously be achieved by requiring

vertices to be closer, but this has the cost of slower computational speed as more cave

vertex objects have to be processed by the program. In the simulation runs for this

experiment the maximum distance between vertices was set to 100 mm.

In the Cave Growth application, the continuous process of dissolution is

represented as a series of discrete events, the temporal frequency of which can be varied,

again at the cost of additional computer processing time for finer temporal resolution.

The user is provided the means to determine this temporal resolution of the simulation

run. While the program was designed to be able to utilize data containing varied time

intervals, in the simulations reported here it processes those data in equal time steps, the

length of which are defined by the user. This allows the user to examine the cumulative

effect of multiple small-scale events that could be lost in a series of larger generalized

events. For instance, the impact of shorter storm surges that bring the cave roof into

contact with water would be averaged out with large processing steps. To evaluate the

data in equal time intervals through the program code, dissolution rates and discharge

11

information are multiplied by their corresponding duration and accumulated until the

user-defined increment is met at which point average values for that increment can be

determined. The datasets created to consider the question posed by this research were

generated with uniform time intervals to make this task simpler. The time step value was

set to one hour and the “years to process” was set to one year for the comparative

simulation runs in this research.

As described, continuous variables such as the surface of the cave and the passage

of time are simplified into discrete objects in this program. Furthermore, in order to

model the complex subject of conduit growth in a karst aquifer, Cave Growth’s

processing structure is based on certain assumptions outlined below.

1) Zero permeability exists outside the conduit (all water flows through the conduit).

2) All conduit growth is by limestone dissolution, and abrasion by through-flowing

sediments is negligible.

3) Limestone dissolution rates (in this work expressed as mm/yr of wall retreat) are

assumed to be a function of bulk water chemistry, quantified by the Plummer et al.

(1978) rate equation, and independent of fluid velocity at the conduit wall. Plummer

et al. (1978) assumed reaction-limited dissolution kinetics by conducting stirred tank

experiments, increasing velocities until dissolution rates became independent of stir

velocity.

4) Limestone composition in these simulations is assumed to be homogenous.

5) All conduit walls are bare rock and no impacts of sediment barriers are considered in

the current runs, though the program could be readily modified to explore this in

future investigations.

12

The program affords two processing modes: a simulation mode in which static

conditions (water flow rates and chemistry) are set and processed for a given number of

events; and a data mode in which dynamic environmental conditions are read from an

Excel spreadsheet. Regardless of the mode, for each time step, the water level that

corresponds to a given cross-sectional area of water must be established in order to

identify which vertices are underwater and therefore subject to dissolution.

If the wetted area from the spreadsheet (flow cross-section) is greater than that of

the cave cross-section, all vertices are automatically classified as being underwater.

Otherwise a vertex is picked and grouped with its equivalent from the opposite wall (one

is created if necessary) and with all other vertices that are below this pair. The area of the

polygon formed by these vertices is compared to that of the flow cross-section. If the

polygon is larger than the flow cross-section, the water level is dropped to the next lower

vertex and the process is repeated incrementally until the area formed by the group of

vertices matches or is less than the flow cross-section area. The same approach is used in

reverse if the wetted area is initially larger than the vertices being examined. Through

this iterative process, the vertices that are underwater based on a specific flow and

passage geometry can be deduced even though the precise water level has not been

determined. Those vertices with y elevations at or beneath the vertex pair marking the

approximate water level are flagged as being underwater and are passed to a function that

moves them based on the dissolution rate and their position relative to their neighbors.

Cave Growth assumes that the solutional retreat of any vertex on the passage wall

is perpendicular to the line segment formed between its immediate neighbors. To

determine the direction in which to move a vertex (blue arrow in Figure 4), the slope of

13

the line connecting its neighbors (red line in Figure 4) is calculated. The slope is entered

into one of four equations, depending upon which quadrant the angle of the connecting

line falls within (Figure 5). The angle returned is always perpendicular to the connecting

line and external to the conduit polygon. In Figure 4, the angle of the red line joining

vertices 25 and 27 is between 270° and 360°, thus, according to the chart in Figure 5, its

slope is entered into the Arctan function, multiplied by 180/pi (to convert radians to

degrees), multiplied by negative one, and finally added to 180° to arrive at the correct

angle in which vertex 26 will travel (blue arrow).

 The x coordinate value of the new position of the vertex is ascertained by

multiplying the dissolution distance (mm) with the sine of the bearing and adding that

value to the existing x. Similarly, a vertex’s new y position is determined by multiplying

the dissolution distance with the bearing’s cosine and adding it to the existing y. The

effect of this process is visible in Figure 6, in which the display grid is focused on a

section of a cave that has experienced an exaggerated amount of growth to illustrate this

point.

In this manner, each underwater vertex is moved perpendicular to the existing

Figure 4. Direction of vertex movement in the Cave Growth Application

14

cave wall at that location for each time step. The movement of an individual vertex is

termed a “Vertex Event” in the Cave Growth application and the number of these events

that occur over a simulation run is tracked and recorded in the message panel.

Accumulating the distances traveled in each vertex event during a simulation run and

dividing this value by the total number of events yields an average dissolution rate for the

events that is also displayed in the message panel.

 In addition to the application structure, this analysis was dependent upon the

construction of a set of simulation datasets with realistic properties. Relationships that

existed within a field generated dataset (Groves and Meiman, 2005) were used to develop

a series of simulation datasets demonstrating a range of flow distributions. In turn, these

flow distributions, based on a discharge-stage relationship specific to that field dataset,

Figure 5. Formulas used in Cave Growth to deduce the angle of vertex growth (blue
arrows) from the angle connecting a vertex’s neighbors (red arrows).

15

are presumed to result from a range of precipitation distributions varying from

completely uniform to one in which almost all flow for the year came as a result of a few

stormy hours. Manipulating climatic conditions in this manner, while holding total

annual flow constant, allowed their impact on the amount of cave growth to be measured.

 To generate the field data used as the basis for this investigation, Groves and

Meiman (2000, 2001, 2005) conducted high-resolution hydrochemical monitoring at a

study site in Logsdon River, a major underground stream within the Mammoth Cave

System that drains the 25 km2 Cave City groundwater basin. At this site (shown in

Figure 7), there are two 145 m deep observation wells, one for collecting water samples

Figure 6. Insertion and movement of vertices by Cave Growth application

16

from the surface with a pump while the other contains electronic probes that collect data

on stage, velocity, temperature, and specific conductance. A Campbell CR10 multi-

channel data logger queried the four probes every two minutes and recorded changes in

their values. Over one year, between May 5th 1995 and May 4th 1996, 21,473

observations were made in this manner. Throughout the year and under a variety of flow

conditions pH, calcium, and bicarbonate were physically measured from water samples

taken at the site. Regression analysis determined a linear relationship between these three

factors and specific conductance. As specific conductance was measured every two

minutes, these relationships combined with temperature values allowed a dissolution rate

to be calculated for each time step using the rate law of Plummer et al. (1978), where

Figure 7. Observation wells at the Logsdon River study site, Mammoth Cave, KY
Photo: Chris Groves

17

]][[][*][][324233221

−++ −++= HCOCakOHkCOHkHkRate (1)

with Rate expressed in mass of mineral lost per time per surface area of fluid/mineral

contact, and where the k's are temperature dependent kinetic rate constants (Plummer et

al., 1978). For input into the Cave Growth program used in the current research,

dissolution rates were expressed as the rate of conduit wall retreat (mm/yr) following the

example of Palmer (1991), assuming a constant calcite density of 2.7 g/cm3.

A spreadsheet was derived from this detailed field data that contained columns for

time (Julian days), flow cross-section area (m2), a rate of passage wall retreat (mm/yr),

and mean velocity (ft/s). The flow cross-section area had been determined by comparing

the water level recorded by the stage probe with a detailed chart mapping out the actual

cross-section of the Logsdon River conduit at the study site. From these data, discharge

values were determined for each observation. Subsequently, the discharge units were

converted into liters per second and multiplied by the interval in seconds that the record

represented to arrive at a measurement of flow in liters for each record. Using this

approach, it was determined that an estimated 12,255,649,896 liters of water had passed

through the conduit over the course of a year. It was decided that for the “virtual”

datasets created for this project the total annual flow would be held constant at this

realistic level for each scenario. By controlling total flow, but varying its temporal

distribution throughout the year in each dataset, it was possible to isolate the impact of

this variable.

Each simulation dataset generated for this research contained a year’s worth of

data broken into 8,760 discrete records representing equal time increments of one hour.

The challenge was to apportion the total annual flow across these time steps in patterns

18

that satisfactorily represented different flow distributions. Furthermore, a timestamp in

Julian years, a dissolution rate, and a wetted cross-sectional area had to be calculated for

each record in these datasets.

As it has been shown to model precipitation distribution and other climatic

variables effectively (Mooley, 1973; Ison et al., 1971; Thom, 1958), the “Gamma

Distribution” was selected as the method for allocating the hourly flow values. The

gamma distribution is a non-symmetric, continuous probability distribution with one-

parameter (shape), two-parameter (shape and scale), and three-parameter (shape, scale,

and location) versions (Aksoy, 2000). In this research, the statistical analysis software

“S-Plus” was used to generate random flow values. A simple S-Plus script (Appendix II)

was written based on that application’s “rgamma” function. This function follows the

two-parameter form of the gamma distribution and requires as inputs an alpha (shape)

value, a beta (scale) value, and a total number of values to generate (8,760 in this case).

By holding beta constant with a value of one and increasing the alpha parameter

exponentially, it was possible to generate a series of flow distributions ranging from

almost uniform to extremely concentrated. The script then scaled these random values to

sum up to the required total flow. Holding beta at one and not including a location value

effectively reduced the gamma probability distribution function to its simpler one-

parameter form, also known as the standard gamma distribution (Nastos and Zerefos,

2007) that can be expressed as:

0;
)(

1
)(1 ≥

Γ
= −− xexxf xα

α
 (2)

where α is the shape parameter and Γ(α) is the gamma function defined by the following

19

integral:

∫
∞

−− >=Γ
0

1 0;)(αα α
dxex

x (3)

In this manner, the shape could be isolated and manipulated for each simulation dataset.

 To further tie the simulations to the Logsdon River data, distributions were

limited to those producing hourly discharge rates that did not exceed 30,000 l/s, a ceiling

derived from the approximated highest hour of flow found in the measured field data.

Flow values were sorted in ascending order to facilitate the visual comparison of the

associated discharge distributions. A selection of these distributions is displayed in

figures 8a-8d demonstrating a broad range of flow patterns. Due to the extremely small

magnitude of the conduit growth occurring over one year, it was assumed for this project

that the influence of the order of these discrete dissolving events was negligible.

 Figure 8a

20

Figure 8c

Figure 8d

Figure 8b

21

A Visual Basic program (Appendix III) was written to generate Excel

spreadsheets from these flow distributions and populate the three fields required by the

Cave Growth application (Julian time, dissolution rate, and wetted cross-sectional area)

using relationships found in the field data. First, discharge was obtained by dividing

hourly flow values by 3,600 to produce a rate in liters per second. Regression analysis

conducted on the Logsdon River data using the “Exponential rise to maximum” curve

fitting method in the SigmaPlot software package produced the following formula that

related “y” the dissolution rate (mm/yr) to “x” discharge (l/s).

)1(3412.0
410*168.1 x

ey
−−−= (5)

A scatter plot demonstrating this relationship in the original field data is shown in Figure

9. The r2 value of 0.65 confirms a relationship between the dissolution rates and

discharge that makes physical sense as higher discharges tend to produce waters more

undersaturated with respect to calcite. There is noise in the relationship however,

Figure 9. Dissolution rate versus discharge in the Logsdon River field dataset

22

primarily because water chemistry, on which dissolution rates are based, is not a unique

function of discharge.

Further analysis of the field data established a two-part relationship between

wetted cross-sectional area and the discharge rate. This relationship, developed from the

inverted trapezoid passage at Logsdon River was applied to each of the three passage

geometries in the simulation sets considered in this research. It was determined that

discharge rates above 3,500 l/s would completely fill any of these 21 m2 conduit

geometries with water. Therefore, the program generating the virtual datasets simply

ascribed a constant wetted cross-sectional area representing a full conduit to records with

discharge rates at or above this limit. Below that threshold, the cross-sectional area could

be described as a function of discharge using the formula below, which again was

generated using SigmaPlot’s regression analysis tools. This formula defined a

relationship with an r2 value of 0.781.

867.110*284.9 3 += −
xy (6)

Based on a wide spectrum of alpha inputs to the gamma function, forty-four

datasets were created in this manner exhibiting a broad range of flow distributions. Two

special simulation sets were also created to represent unique theoretical circumstances.

The first, named “Even” in this discussion, contained a completely uniform distribution

of flow representing a climate in which precipitation and the resultant discharge through

the karst aquifer were non-varying throughout the year, with a total equal to the annual

Logsdon River flow discussed above. The second dataset, referred to here as “Pipefull”,

was one in which full-passage conditions (Figure 10b) were met, but not exceeded, for

23

the greatest length of time possible given the total amount of flow. The term “pipefull”

in this research refers to flow conditions that fill the conduit exactly. This idea borrows

from the conceptually similar “bankfull” stage in surface stream modeling in which a

stream is full to the brim of its banks without actually overflowing them (Figure 10a). In

fluvial geomorphology, this stage has been described as the discharge level “at which

channel maintenance is most effective, that is, the discharge at which moving sediment,

forming or removing bars, forming or changing bends and meanders, and generally doing

work that results in the average morphologic characteristics of channels" (Dunne and

Leopold, 1978, p608-609). While these surface processes are mechanical, the “pipefull”

dataset was included in this study to consider if this “exactly full” discharge level had an

influence on the effectiveness of work conducted in karst conduits by chemical

dissolution.

To create the “Pipefull” distribution, the amount of flow required to fill the 21m2

inverted-trapezoid for one hour was determined. The total annual flow was then divided

by this value to calculate the number of records that would be given this “pipefull” hourly

flow value of 7,515,000 liters. After the annual flow was allocated in this manner, the

remaining flow was assigned to one record and all other time steps did not receive any

Figure 10a Bankfull stage in a surface
stream.

Figure 10b Pipefull stage in a karst
conduit

24

flow.

Following the creation of the datasets, the simulation runs were configured and

executed within the Cave Growth application. Three separate runs were generated from

each of the 46 simulation datasets; one for each initial passage shape examined (a 21m2

trapezoid, circle, and rectangle.) In each run reported here, the configuration options

were held constant (Figure 11). The maximum distance between vertices was set to 100

mm, and the time step was set to 60 minutes. At the completion of each run, the name of

the data file, the initial geometry, and the measure of flow distribution (alpha input into

the gamma function used to generate that dataset) were recorded in a spreadsheet.

Corresponding values for total 2D passage growth, the average dissolution rate, and the

number of “vertex events” were also recorded.

RESULTS

The results presented in this section are an effort to display the output from the

138 simulation runs (three runs for each of the 46 datasets) in a manner that addresses the

question of whether the “storminess” of a climate’s precipitation distribution has an effect

on the evolution of karst aquifers. To accomplish this task, it is necessary to compare the

Conduit Geometry Vertex Spacing Time Step Data

21m2 Trapezoid 100mm 60 minutes 46 Simulation datasets:
Pipefull, Even, and 44
Γ distributions

21m2 Circle 100mm 60 minutes 46 Simulation datasets:
Pipefull, Even, and 44
Γ distributions

21m2 Rectangle 100mm 60 minutes 46 Simulation datasets:
Pipefull, Even, and 44
Γ distributions

Figure 11. Configuration options used in the simulation runs

25

amount of cave growth that occurred during each simulation run with a measure of

climatic variability for that run. Climatic variation in this analysis is represented by the

annual temporal distribution of flow within the aquifer and can be viewed in the form of

discharge distribution graphs such as those in Figures 8a-8d. It is assumed, for the sake

of this study, that the distribution of flow is directly related to the patterns of recharge

producing precipitation occurring at the surface. It is understood that factors such as the

delayed release of precipitation held in snow accumulation can confound this assumption

in the real world.

The variability of discharge distributions within the simulation runs discussed

here is related to the alpha (shape) parameter input into the gamma distribution formula

from which the underlying datasets were derived (beta being held constant). Datasets

with lower alpha input values reflect climates in which the distribution of precipitation is

increasingly more discrete storm-driven and thus less uniform. Accordingly, the alpha

input values were recorded for each dataset and used as a measure of climatic variability

in the following graphs. As the pipefull and even datasets were not created from the

gamma formula, faux alpha values of 0.225 and 20,000 respectively were generated for

them so that they could be displayed on the graphs. A relationship between the alpha

values and the standard deviation of the flow distributions in the gamma datasets

provided a method to derive these coarse values.

The following graph (Figure 12) shows the two dimensional growth of the cave

passage as a function of flow variability, or how storm-driven the climate is. The x-axis

uses a logarithmic scale to display the input alpha values in a meaningful manner. Runs

based on the three different initial passage geometries are identified by different symbols.

26

Another quantity that was recorded was the number of “vertex events” that

transpired during each simulation run. A “vertex event”, in this research, is each

occurrence of a vertex being moved as part of the Cave Growth application’s modeling of

passage wall retreat. For each time step in the simulation run, every vertex that is in

contact with dissolving water, and is consequently moved, is counted and added to the

total number of “vertex events”. This measure can be considered an expression of the

amount of wetted perimeter in the conduit multiplied by time over the course of a

simulation run. On the graph below (Figure 13), the number of vertex events for each

simulation run are plotted against climatic variability for the three different geometries

considered.

An average dissolution rate, measured in mm/year was also recorded for every

Figure 12. Cave growth vs. annual flow distribution.

27

simulation run processed by the Cave Growth application. For every vertex that the

program moved during a simulation run, the dissolution rate associated with that

particular vertex event was accumulated. At the end of the run, this total was divided by

the number of vertex events to generate the average dissolution rate. Once calculated, the

average dissolution rate for each run was plotted against the non-uniformity of a

climate’s precipitation distribution, in the same manner described for generating the

previous graph. The resulting graph of the relationship between average dissolution rate

and climate is displayed below in Figure 14.

Figure 13. Vertex events vs. annual flow distribution.

28

DISCUSSION

Before discussing the specific details of this research, it is worthwhile reiterating

that a computer model, such as that presented here, allows researchers to isolate and

study certain aspects of a system. It is understood that this model does not consider all

the factors that affect the amount of cave growth that takes place within a karst system in

the real world. For instance, in a real karst conduit the bedrock is not uniform and

fractures in the limestone are exploited by water in ways that are not currently considered

by the Cave Growth application. Similarly, conduits may contain a sediment layer across

their floor that can act as a barrier to dissolution. If required, the application could be

modified to consider these and other aspects of the physical world.

Figure 14. Dissolution rate vs. annual flow variation.

29

Another acknowledgment is that using annual discharge distributions to

differentiate climates assumes a direct relationship between recharge producing

precipitation on the surface and discharge rates within the aquifer. While

evapotranspiration, snow accumulation, overland flow, and other factors can distort this

relationship over different time scales, this approach remains a useful tool by which to

represent climate. However, if discharge data were collected from field studies across a

range of climates and normalized for total flow a more comprehensive analysis could be

conducted.

A relationship between the amount of two dimensional cave passage growth and

the “storminess” of the climate is clearly discernable from the graph of Cave Growth by

Annual Flow Distribution (Figure 12). Indeed, a similar pattern is visible for all three

sets of runs that are each based on different original passage geometries. From a starting

point at the “even” simulation run, the observed amount of cave growth steadily declines

as the climate represented by the simulation runs becomes progressively more storm-

driven. This continues until an inflection point is reached, after which, observed cave

growth increases as precipitation is concentrated into fewer, more intense, intervals until

an apparent peak is reached. Beyond this, growth levels off and begins to decline

slightly. For all three sets of runs, the passage growth generated by the pipefull dataset

exceeds that of the even and gamma distribution runs by more than one third. It does not

align with the other sets of results because its flow values do not follow the same type of

distribution pattern. To graph the variability of flow distributions that are unrelated to the

gamma formula, a different measure could be developed.

Based on the evidence visible in this graph, the relationship between climate and

30

conduit growth in karst aquifers cannot be explained as one in which either 1) conduit

growth is independent of rainfall and groundwater flow distributions, or in which 2)

stormier climates simply equate to more conduit growth occurring. To better

comprehend the inflections of the data exhibited on the graph described above, it is

necessary to consider factors that are influenced by climate that impact the dissolution of

the walls of a karst conduit. In the virtual environment discussed here, it should be

possible to derive an explanation of the observed pattern from a closer examination of the

limited number of variables that are considered by the Cave Growth application.

Therefore, the average amount of wetted perimeter and the average dissolution rate

(mm/yr) observed in each simulation run were studied in greater detail.

 To consider the amount of passage wall exposed to the effects of dissolution,

under different climatic conditions, the total number of vertex events for each run was

graphed against the non-uniformity of flow distributions in Figure 13. It is apparent from

this graph that climates in this study with more uniform annual precipitation distributions

actually generated the most vertex events, except when compared to the results for the

pipefull scenario. For each of the three sets of simulation runs, the average amount of

wetted perimeter measured begins to decline as flow distributions becomes more

concentrated. After a turning point is reached, the number of vertex events generated in a

run increase as the simulated climates and associated patterns of flow become more

storm-driven. Finally, a peak is reached and is then followed by a gradual decline.

 To attempt to understand the nature of this relationship, it is useful to focus on the

influence of the passage geometry on the amount of wetted perimeter that exists under

given flow conditions. For instance, a very small amount of water flowing through a

31

conduit with a wide level floor can contact a comparatively large amount of rock surface.

As flow increases, the wetted perimeter will increase in relation to the geometry of the

cave. If the passage widens as the water’s depth increases, there will be a diminishing

rate of return in terms of vertex events compared to any increase in flow as more of the

underground river surface is exposed to the air rather than being in contact with the cave

walls. Conversely, if the passage narrows as the depth increases, each additional unit of

flow will generate progressively more wetted perimeter. After pipefull conditions are

met, and the entire passage is in contact with the river, any increase in flow will just be

converted to greater velocity in this model, as there is nowhere for the extra water to go.

The wetted perimeter generating capacity of this additional water in the system is

essentially “wasted” for discharges above that level.

Logically, more vertex events will be generated by a simulation run with flow

conditions that maximize the proportion of wetted perimeter to the amount of flow cross-

section area, for the greatest length of time. This situation is essentially a description of

the pipefull simulation dataset explained earlier in this research. Depending upon the

geometric details of their passages, changes in flow conditions across the study datasets

induce different responses from the three simulation sets. However, once flow conditions

are such that the entire passage is full, the excess water flowing during those stormy

hours is wasted equally for each scenario.

 The initial decline in the number of vertex events as the climates become more

storm-driven is caused by more time in the simulation runs being spent in conditions that

are geometrically inefficient at generating vertex events. Interestingly, the point on the

graph where this decline ends, and the number of vertex events begin to increase with the

32

non-uniformity of flow conditions, closely coincides with the first occurrence of the

pipefull stage being met within the simulation datasets. The gamma dataset with an input

alpha value of two is the first with time steps that contain enough flow to completely fill

the conduit with water. The impact of the vertices along the cave roof being brought into

contact with water varies according to the shape of the passage. Due to its wide level

roof, the trapezoidal passage is affected most by this event. Consequently, the number of

vertex events generated by the trapezoidal runs shifts from being the least to the most

productive of the three simulation sets after the appearance of the pipefull events.

Those runs based on a rectangular passage generated significantly greater

numbers of vertex events under the more stable of the simulated climates compared to the

corresponding trapezoidal and circular runs. For example, 762,120 vertex events were

observed for the simulation run based on the rectangular passage and the gamma dataset

created with an alpha input of 1,000 and a beta input of one. The same dataset produced

only 639,480 vertex events when the circular geometry was processed and just 630,720

when the initial geometry was the trapezoid (a reduction of more than 17%). The shape

of the tall narrow rectangular passage meant that it did not lose much of its vertex event

generating ability at these steady flow rates that filled only about a quarter of the passage.

Comparatively, the circular and trapezoidal passage geometries resulted in much wider

exposed water surfaces at these flow levels and, as a result, generated less wetted

perimeter per unit of flow.

 For all three sets of runs, as the number of time steps meeting or surpassing

pipefull conditions rises with progressively stormier climates, the amount of vertex

events also increases. It is important to remember that because all the simulations carry

33

the same amount of total flow, higher flow conditions in these datasets are counteracted

by more time also being spent under lower flow conditions. It is the interaction between

the full spectrum of flow conditions in a simulation run and a specific passage geometry

that culminate in the total number of vertex event produced. As the precipitation

distribution within a dataset becomes more extreme, all three sets of runs eventually

reach a second inflection point after which the average amount of wetted perimeter

begins to level off. This is interpreted to mean that, after this point, any gains from

meeting pipefull conditions are more than offset by wastage of vertex-event productivity

during extreme storm events as discharge continues to increase above the exactly pipefull

stage.

The average dissolution rate for the vertex events that took place in a simulation

run is the other variable that warrants further exploration in this effort to understand the

relationship between cave growth and climate in this study. Accordingly, this rate,

measured in mm/yr was graphed against the non-uniformity of flow distributions in

Figure 14. The relationship between the variables on this graph begins with an almost

imperceptible decline in the average dissolution rate for all three simulation sets as the

flow distributions contain more concentrated discharge events until a low point is

reached. Subsequently, average dissolution rates increase sharply in response to higher

dissolution rates associated with augmented flow conditions combined with greater

numbers of vertex events occurring during those high flow events. Eventually, this

increase levels off and a gradual decline ensues which is interpreted to be a result of the

wasting of vertex events at higher flow levels described above. This would help explain

why the pipefull scenario, which fills the passage to capacity with the least wastage of

34

water, generated noticeably higher average dissolution rates for the vertex events than

those produced by any of the gamma runs.

 It is apparent from this discussion that the total number of vertex events and the

average dissolution rates generated by a simulation run are closely connected. The

combination of these factors helps explain the relationship between cave growth and the

intensity of the annual flow distribution exhibited in the graph in Figure 12. At first,

despite high rates of contact between water and the cave walls, the dissolution rates are

comparatively low resulting in low levels of annual cave growth. Cave growth declines

further as flow distributions tend toward those that are less efficient at generating wetted

perimeter and still exhibit low average dissolution rates. The point of inflection on the

graph where cave growth begins to rise with progressively more storm driven climates is

that at which both average dissolution rates and the number of vertex events begin to

increase. Annual cave growth eventually tapers off and begins to decline because the

amount of wetted perimeter again starts to decrease as flow becomes too concentrated

and pipefull stage is surpassed, wasting more of the dissolving power of the annual flow

budget.

The different ranges of growth exhibited by the three simulation sets appear to be

related to differences in the perimeters of their passage geometries. While all three

conduit cross-sections in this investigation encompass the same 21m2 area, each has a

different perimeter and ultimately a different degree of exposure to the dissolving effects

of water when filled to capacity. The rectangular conduit has the largest perimeter at

25m and it also has the largest maximum cave growth (342mm2/yr). In comparison, the

trapezoidal cave has a smaller perimeter of roughly 22.5m and lower maximum growth

35

values. The circular passage generated the least amount of wetted perimeter under

pipefull conditions having a circumference of only about 16.25m. Indeed, the simulation

runs for the circular passage generated both the smallest range of growth values and the

lowest maximum cave growth of only 223mm2/yr, more than a third less than the

maximum for the rectangular simulation runs.

 After examining the graphs, it is clear that the amount of cave growth occurring in

a passage is affected by the intensity of precipitation events throughout a year. It is the

interrelationship between the annual temporal distribution of discharge, the geometry of

the passage, and the dissolution rate that influences the amount of dissolution that takes

place. Climates that generate the most wetted perimeter per unit of flow at higher

average dissolution rates appear to be those that conduct the greatest amount of

“geomorphic work” in terms of conduit growth. In the case of a specific cross-section of

a karst conduit, discharge distributions filling that passage to the brim for extended

periods prove to be most effective at dissolving its walls.

It is important to realize that the flow conditions required to fill a particular

section of an individual conduit with water does not represent pipefull conditions for the

entire, three-dimensional, underground river basin. However, it could be conjectured that

the same principals would apply to an entire system. Those climates with precipitation

distributions that generate the highest combination of wetted perimeter and dissolution

rates throughout the entire system would be most efficient at developing the drainage

network.

The amount of flow required to meet these “network-full” conditions would

depend on the volume and geometry of connected void space within the vadose zone of

36

the aquifer. Logically, a younger system with a less developed drainage network would

be less able to accommodate the amount of flow generated by storms. Therefore, much

of the dissolving power of this water would be lost to overland flow or simply higher

velocities of water passing through the cave passages. In contrast, based on the

observations made in this analysis, it may be inferred that cave growth in mature systems

with well-developed passages would respond more quickly to a precipitation distribution

concentrated into storm events large enough to fill the passages to capacity.

CONCLUSION

 Clearly, in an aquifer characterized by its soluble rock, the total amount of flow

passing through the system affects the amount of dissolution that takes place. Therefore,

climates that experience more precipitation and generate more groundwater flow will

tend to give rise to more rapid development of underground drainage networks. Less

obvious is the idea suggested by this research, that the temporal distribution of that flow,

combined with the geometric configuration of the conduit network, can also have an

important effect on the amount of geomorphic work (passage expansion) conducted in

these subterranean drainage basins. Specifically, more dissolution occurs under

precipitation conditions that result in more wetted perimeter for longer periods of time at

higher dissolution rates. The results of this research suggest that climates exhibiting

moderate storm events are more “efficient” at growing karst aquifer conduits than those

in which precipitation and consequently flow are more evenly distributed.

Ultimately, understanding the impact of the temporal distribution of flow on the

growth of karst conduits provides geoscientists with another tool to help interpret the rate

37

of development of underground drainage networks, surface karst landscapes, and indeed

overall landscape denudation. At a more specific level, knowing the frequency and

“dissolving efficiency” of different flow levels as they relate to an individual cave may

help explain its particular growth rate. Further refinement of the Cave Growth program

could provide a more accurate understanding of these factors by including additional

variables that affect the development of caves. Much would also be gained by ground

truthing the findings presented here through analysis of field data on flow distributions

and conduit growth collected from karst regions around the globe.

38

Figure 15. Very large river cave passage in Da Long Dong (Big Dragon Cave) in
western Hunan Province, southwest China. In some places the width of this passage

exceeds 100 meters. Photo: Kevin Downey

39

REFERENCE LIST

Aksoy H., 2000, Use of Gamma Distribution in Hydrological Analysis. Turkish Journal

of Engineering and Environmental Sciences 24: 419-428.

Ding Y., 1993. Monsoons Over China. Kluwer Academic Publishers, Netherlands

Dunne T, Leopold LB. 1978. Water in Environmental Planning. W.H. Freeman Co.: San
Francisco

Ford DC, Williams PW. 2007. Karst Hydrogeology and Geomorphology. Wiley: New
York

Groves C, Meiman J. 2000. Regional atmospheric carbon sink within the south central
Kentucky karst. In Proceedings of the 8

th
 Mammoth Cave Science Conference.

National Park Service: Mammoth Cave, KY; 131-141.

Groves C, Meiman J. 2001. Inorganic carbon flux and aquifer evolution in the south
central Kentucky karst. U.S. Geological Survey Water-Resources Investigations

Report 01-4011. 99-105.

Groves C, Meiman J. 2005. Weathering, geomorphic work, and karst landscape evolution
in the Cave City groundwater basin, Mammoth Cave, Kentucky. Geomorphology 67:
115-126.

Ison NT, Feyerherm AM, Bark LD. 1971. Wet Period Precipitation and the Gamma
Distribution. Journal of Applied Meteorology 10: 658-665.

Kiefer RL. 1990. Carbon Dioxide Concentrations and Climate in a Humid Subtropical
Environment. Professional Geographer 42: 182-194.

Mooley DA. 1973. Gamma Distribution Probability Model for Asian Summer Monsoon
Monthly Rainfall. Monthly Weather Review 101: 160–176.

McCuen R. 2002. Modeling Hydrologic Change: Statistical Methods. Lewis Publishers:
Boca Raton

Nastos PT, Zerefos CS. 2007. On Extreme Daily Precipitation Totals at Athens, Greece,
Advances in Geoscience 10: 59-66.

Palmer AN. 1981, A Geological Guide to Mammoth Cave National Park. Zephyrus
Press: Teaneck, NJ

Palmer AN. 1991. The origin and morphology of limestone caves. The Geological

Society of America Bulletin 103: 1-21.

Plummer LN, Wigley TML, Parkhurst DL. 1978. The kinetics of calcite dissolution in
CO2-water systems at 5 to 60oC and 0.0 to 1.0 atm CO2. American Journal of Science
278: 179-216.

40

Smith DI, Atkinson TC. 1976. Processes, landforms, and climate in limestone regions. In
Geomorphology and Climate, Derbyshire E (ed.). Wiley: Chichester, UK; 367-409.

Thom, HCS. 1958. A Note on the Gamma Distribution. Monthly Weather Review 86:
117–122

Usery EL, Finn MP, Scheidt DJ, Ruhl S, Beard T, Bearden M. 2004. Geospatial data
resampling and resolution effects on watershed modeling: A case study using the
agricultural non-point source pollution model. Journal of Geographical Systems 6:
289-306.

White WB. 1988. Geomorphology and Hydrology of Karst Terrains. Oxford University
Press: New York

White WB, Watson RA, Pohl ER, Brucker R. 1970. The Central Kentucky Karst.
Geographical Review 60: 88-115.

Yuan D. 1988. Environmental and engineering problems of karst geology in China.
Environmental Geology and Water Sciences. 12: 79-87.

Yuan D. 1991. Karst of China. Geological Publishing House: Beijing

41

APPENDIX I

Cave Growth Application Code

42

VB6 Project: prjCaveGrowth

Form: FrmCaveGrowth

Option Explicit
Private WaterArea As Double
Private WaterLevel As Long
Private Pi As Double
Private TErosionDist As Double
Private CenterX As Double
Private CenterY As Double
Private Radius As Double
Private CurX As Single
Private CurY As Single
Private TimerX As Single
Private TimerY As Single
Private DataFile As String
Private NumRecs As Long
Private oConn As ADODB.Connection
Private oRS As ADODB.Recordset

43

Private ActiveTool As Integer
Private ExtX As Double
Private ExtY As Double
Private OldX As Double
Private OldY As Double
Private InitArea As Double
Private TotalVertices As Long
Private TotalDistance As Double

Private Sub cmdDefs_Click()
 On Error GoTo ErrHandler
 txtDimensions.Text = 10000
 txtCenX.Text = 0
 txtCenY.Text = 0
 txtGridInc.Text = 1000

 picDisplay.ScaleTop = Val(txtCenY.Text) + Val(txtDimensions.Text) / 2
 picDisplay.ScaleLeft = Val(txtCenX.Text) - Val(txtDimensions.Text) / 2
 picDisplay.ScaleHeight = Val(txtDimensions.Text) * -1
 picDisplay.ScaleWidth = Val(txtDimensions.Text)
 'Calculate position for cave center
 CenterX = picDisplay.ScaleLeft + picDisplay.ScaleWidth / 2
 CenterY = picDisplay.ScaleTop + (-1 * picDisplay.ScaleHeight / 2)

 'Calculate Grid
 picDisplay.Cls
 DispGrid.XDiv = Val(txtGridInc.Text)
 DispGrid.YDiv = Val(txtGridInc.Text)
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 DrawCaveWalls
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdDefs_Click: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub cmdEnterVertices_Click()
 On Error GoTo ErrHandler
 picDisplay.Cls
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 NumVertices = 0
 Erase Vertice()
 Erase CaveWall()
 Erase CaveWalls()
 CaveExists = False

44

 frmEnterVertices.Show vbModal
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdAddVertex_Click: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Private Sub cmdFullExtent_Click()
 On Error GoTo ErrHandler
 Dim i As Long
 Dim lX As Double
 Dim hX As Double
 Dim lY As Double
 Dim hY As Double

 If CaveExists Then
 lX = Vertice(0).X
 hX = Vertice(0).X
 lY = Vertice(0).Y
 hY = Vertice(0).Y
 For i = 1 To NumVertices - 1
 If Vertice(i).X < lX Then lX = Vertice(i).X
 If Vertice(i).X > hX Then hX = Vertice(i).X
 If Vertice(i).Y < lY Then lY = Vertice(i).Y
 If Vertice(i).Y > hY Then hY = Vertice(i).Y
 Next i
 If hX - lX > hY - lY Then
 txtDimensions.Text = (hX - lX) * 1.1
 Else
 txtDimensions.Text = (hY - lY) * 1.1
 End If
 txtCenX.Text = lX + (hX - lX) / 2
 txtCenY.Text = lY + (hY - lY) / 2
 picDisplay.ScaleTop = txtCenY.Text + txtDimensions.Text / 2
 picDisplay.ScaleLeft = txtCenX.Text - txtDimensions.Text / 2
 picDisplay.ScaleHeight = txtDimensions.Text * -1
 picDisplay.ScaleWidth = txtDimensions.Text
 'Calculate Grid
 picDisplay.Cls
 DispGrid.XDiv = Val(txtGridInc.Text)
 DispGrid.YDiv = Val(txtGridInc.Text)
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 DrawCaveWalls
 Else
 MsgBox "No Cave Exists Yet", , "Undefined Cave"

45

 End If
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdFullExtent_Click: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Private Sub cmdLoad_Click()
 On Error GoTo ErrHandler
 Dim CGWname As String
 Dim FileNum As Integer
 Dim NumCaves As Long
 Dim NumVs As Long
 Dim InX As Double
 Dim InY As Double
 Dim i As Long
 Dim j As Long

 picDisplay.Cls
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 NumVertices = 0
 Erase Vertice()
 Erase CaveWall()
 Erase CaveWalls()
 CaveExists = False
 cdg1.DialogTitle = "Load Cave File"
 cdg1.Filter = "*.cgw|*.cgw"
 cdg1.FileName = ""
 cdg1.ShowOpen
 CGWname = cdg1.FileName
 FileNum = FreeFile
 If CGWname = "" Then Exit Sub
 Open CGWname For Input As #FileNum
 Input #FileNum, NumCaves, NumVs
 ReDim CaveWalls(0 To NumCaves)
 NumVertices = NumVs
 Do While Not EOF(FileNum) ' Check for end of file.
 For i = 0 To NumCaves - 1
 ReDim CaveWall(0 To NumVs - 1, 1 To 2)
 For j = 0 To NumVs - 1
 Input #FileNum, InX, InY
 CaveWall(j, 1) = InX
 CaveWall(j, 2) = InY
 Next j
 CaveWalls(i) = CaveWall

46

 Next
 Loop
 Close #FileNum

 ReDim Vertice(0 To NumVertices - 1)
 For i = 0 To NumVertices - 1
 Set Vertice(i) = New CaveVertex
 Vertice(i).X = CaveWalls(0)(i, 1)
 Vertice(i).Y = CaveWalls(0)(i, 2)
 Next
 InitArea = PolyArea(Vertice())
 ReDim Vertice(0 To NumVertices - 1)
 For i = 0 To NumVertices - 1
 Set Vertice(i) = New CaveVertex
 Vertice(i).X = CaveWalls(UBound(CaveWalls) - 1)(i, 1)
 Vertice(i).Y = CaveWalls(UBound(CaveWalls) - 1)(i, 2)
 Next
 CaveExists = True
 DrawCaveWalls
 txtArea.Text = "Area: " & FormatNumber(PolyArea(Vertice()) / 1000000, 3) & " m2"
 txtDiffArea.Text = "Growth: " & FormatNumber((PolyArea(Vertice()) - InitArea) /
1000000, 6) & " m2"
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdLoad_Click: " & Err.Number & vbNewLine & Err.Description
 Close #FileNum
End Sub

Private Sub cmdProcess_Click()
 On Error GoTo ErrHandler
 Dim i As Long
 Dim j As Long
 Dim JDay As Double 'current julian date in decimal days
 Dim JDay1 As Double 'initial record's julian date stored so that intervals are right from
the start of each loop (may not start at zero)
 Dim PreviousJDay As Double 'variable to store the last julian date processed
 Dim JYrs As Double 'accumulated interval of time that has been processed in decimal
days
 Dim dInterval As Double 'interval of time the current record represents
 Dim JInterval As Double 'inteval of time in decimal days since the last record(s)
were/was processed
 Dim WallNum As Integer
 Dim TempWaterArea As Double
 Dim TempDist As Double
 Dim IntervalCounter As Long
 Dim DRate As Double

47

 Dim WArea As Double
 Const MinsInDay As Double = 1440

 TotalVertices = 0
 TotalDistance = 0
 If tabShape.SelectedItem.Index = 1 Or tabShape.SelectedItem.Index = 2 Then 'if circle
or rectangle are chosen
 If txtNumVertices(tabShape.SelectedItem.Index - 1).Text < 4 Then
 MsgBox "A minimum of four vertices must be specified for this program to run.",
vbCritical, "Insufficient Number of Vertices"
 Exit Sub
 End If
 End If

 ReDim CaveWalls(0 To 100 / Val(cbxDraw.Text)) 'set up array to store cave walls
dependent on how many are to be drawn

 tbr1.Buttons(5).Enabled = False 'disable the add vertex button
 frmCaveGrowth.MousePointer = vbHourglass
 txtArea.Text = ""
 txtArea.Refresh
 txtDiffArea.Text = ""
 txtDiffArea.Refresh
 txtTotals.Text = ""
 txtTotals.Refresh
 pbr1.Visible = True
 pbr1.Value = 0
 WaterLevel = 0

 'Display Grid
 picDisplay.Cls
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC

 'Calculate and display cave center
 CenterX = picDisplay.ScaleLeft + picDisplay.ScaleWidth / 2
 CenterY = picDisplay.ScaleTop + picDisplay.ScaleHeight / 2
 'picDisplay.PSet (CenterX, CenterY), vbGreen

 'Generate cave vertices
 Select Case tabShape.SelectedItem.Index
 Case 1
 VerticesFromCircle
 Case 2
 VerticesFromRect
 Case 3
 End Select

48

 'store first cave wall
 ReDim CaveWall(0 To NumVertices - 1, 1 To 2) 'set up array to hold X,Y pairs
 For j = 0 To NumVertices - 1 'store vertice locations
 CaveWall(j, 1) = Vertice(j).X
 CaveWall(j, 2) = Vertice(j).Y
 Next j
 CaveWalls(0) = CaveWall 'store the cave wall into an array

 'Display initial cave
 DrawVertices
 picDisplay.Refresh
 InitArea = PolyArea(Vertice())

 If fraInput(0).Visible Then 'simulation
 'Simulate dissolution events
 WaterArea = txtWaterLevel.Text
 For i = 0 To txtNumEvents.Text - 1
 TErosionDist = txtDistance 'distance to move vertices
 'determine which vertices are underwater and thus get more erosion
 'Debug.Print "Event # " & i
 CalcWaterLevel
' SelectUnderWater
 'move vertices to new positions
 CalcCoords

 AddNewVertices (txtMaxDist.Text)

 If i <> 0 Then
 If (txtNumEvents.Text - 1) / (100 / cbxDraw.Text) >= 1 Then
 If i Mod (txtNumEvents.Text - 1) / (100 / cbxDraw.Text) = 0 Then
 DrawVertices
 WallNum = i / ((txtNumEvents.Text - 1) / (100 / cbxDraw.Text))
 ReDim CaveWall(0 To NumVertices - 1, 1 To 2)
 For j = 0 To NumVertices - 1
 CaveWall(j, 1) = Vertice(j).X
 CaveWall(j, 2) = Vertice(j).Y
 Next j
 CaveWalls(WallNum) = CaveWall
' DrawUnderWater
 picDisplay.Refresh
 If i <> 0 Then
 pbr1.Value = i / (txtNumEvents.Text - 1) * 100
 pbr1.Refresh
 End If
 End If

49

 End If
 End If
 Next

 Else 'real data
 If Not oRS Is Nothing Then 'make sure the recordset exists
 NumRecs = oRS.RecordCount
 'oRS.MoveFirst 'move to start of recordset
 'initialize counters
 i = 0
 JYrs = 0
 JInterval = 0
 Do While Round(JYrs, 8) < Val(txtYrs.Text) * 365 'repeat for the number of years
specified by the user
 oRS.MoveFirst 'move to start of recordset
 Do While Not oRS.EOF And (Round(JYrs, 8) <= Val(txtYrs.Text) * 365) 'read in
data until end of file
 'exit if a null record is encountered - user needs to fix data
 If IsNull(oRS.Fields(0).Value) Or IsNull(oRS.Fields(1).Value) Or
IsNull(oRS.Fields(2).Value) Or IsEmpty(oRS.Fields(0).Value) Or
IsEmpty(oRS.Fields(1).Value) Or IsEmpty(oRS.Fields(2).Value) Then
 MsgBox "Missing or null value encountered in data file at record " & i + 1 &
vbNewLine & "Please correct and process again", vbCritical, "Errors Occurred"
 Exit Sub
 Else
 'read values from current dataset
 JDay = oRS.Fields(0).Value 'Decimal Julian Date
 DRate = oRS.Fields(1).Value 'mm/yr
 WArea = oRS.Fields(2).Value * 1000000 'm2 (therefore convert to mm2)
 If i = 0 Then 'if the first record in the file
 PreviousJDay = JDay
 AddNewVertices (txtMaxDist.Text) 'Fill gaps with new vertices
 JDay1 = JDay 'record of start date in file (may not be zero)
 End If
 'due to the following line the first record is not evaluated so must be a row of
zeros
 dInterval = JDay - PreviousJDay 'interval represented by the record being read
 'next line seems odd - idea of multiplying area by time is to later divide by time to
determine an average and then determine area for the interval being processed
 TempWaterArea = TempWaterArea + (WArea * dInterval) 'units of area*time =
mm2*days
 TempDist = TempDist + (DRate * dInterval / 365) '(mm/yr)*(days/365)=mm

 JYrs = JYrs + dInterval 'Julian Years Counter stored in decimal days used to
know when to stop running

50

 JInterval = JInterval + dInterval 'keep tally of Julian time interval until it reaches
user specified interval
 If Round(JInterval, 8) >= Round((txtTimeInterval.Text / MinsInDay), 8) Then
'only process if time passed is greater than user defined interval
 Do While Round(JInterval, 8) >= Round((txtTimeInterval.Text / MinsInDay), 8)
'repeat as last record added may represent time greater than one user defined interval
 WaterArea = (TempWaterArea / JInterval) 'average area over interval
 TErosionDist = TempDist * ((txtTimeInterval.Text / MinsInDay) / JInterval)
'avg distance rate over interval multiplied by time =mm
 'Need to reduce TempWaterArea, TempDist, and JInterval to carry over unused
portions of both into the next equation
 TempWaterArea = TempWaterArea - (WaterArea * (txtTimeInterval.Text /
MinsInDay))
 TempDist = TempDist - TErosionDist
 JInterval = JInterval - (txtTimeInterval.Text / MinsInDay)
 'Calculate Water Levels
 CalcWaterLevel
 'select underwater
 SelectUnderWater
 'move vertices
 CalcCoords
 'add new vertices
 AddNewVertices (txtMaxDist.Text)
 Loop
 Else 'user defined interval was not yet reached so don't process - accumulate
values
 End If

 'determine if it is necessary to draw the cave walls
 If i <> 0 Then
 If NumRecs / (100 / cbxDraw.Text) >= 1 Then
 If i Mod NumRecs / (100 / cbxDraw.Text) = 0 Then
 DrawVertices
 WallNum = i / (NumRecs / (100 / cbxDraw.Text))
 ReDim CaveWall(0 To NumVertices - 1, 1 To 2)
 For j = 0 To NumVertices - 1
 CaveWall(j, 1) = Vertice(j).X
 CaveWall(j, 2) = Vertice(j).Y
 Next j
 CaveWalls(WallNum) = CaveWall
' DrawUnderWater
 picDisplay.Refresh
 If i <> 0 Then
 pbr1.Value = (i / NumRecs * 100) Mod 100
 pbr1.Refresh
 End If

51

 End If
 End If
 End If
 End If
 PreviousJDay = JDay 'previous record's timestamp is incremented to the current
record's timestamp (processing complete)
 oRS.MoveNext 'move cursor to next record
 If Not oRS.EOF Then
 i = i + 1 'increment record counter
 txtRec.Text = i '+ 1 'display record number
 txtRec.Refresh
 Else
 i = i
 End If
 Loop
 PreviousJDay = JDay1 'reset previous each loop to make sure that intervals are
correct
 lblYrs.Caption = FormatNumber(JYrs / 365, 1) & " Year(s)" 'display number of
years that have passed
 frmCaveGrowth.Refresh 'refresh the form
 Loop

 'Process any left over portion of time smaller than the specified increment
 If Round(JInterval, 8) > 0 Then
 WaterArea = TempWaterArea / JInterval
 TErosionDist = TempDist / JInterval
 CalcWaterLevel 'Calculate Water Levels
 SelectUnderWater 'select underwater
 CalcCoords 'move vertices
 AddNewVertices (txtMaxDist.Text) 'add new vertices
 End If
 txtRec.Text = ""
 lblYrs.Caption = "-"
 Else
 MsgBox "Please select a data file", vbOKOnly, "No Data Selected"
 End If
 End If

 'Display final cave shape and water level
 DrawVertices

 txtArea.Text = "Area: " & FormatNumber(PolyArea(Vertice()) / 1000000, 3) & " m2"
 txtDiffArea.Text = "Growth: " & FormatNumber((PolyArea(Vertice()) - InitArea) /
1000000, 6) & " m2"
 txtTotals.Text = TotalVertices & " V Events, Avg Dis Rate = " & TotalDistance /
TotalVertices * txtYrs * 525600 / txtTimeInterval.Text

52

 frmCaveGrowth.MousePointer = vbDefault
 pbr1.Visible = False
 CaveExists = True
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdProcess_Click: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub cmdSave_Click()
 On Error GoTo ErrHandler
 Dim CGWname As String
 Dim FileNum As Integer
 Dim OutX As Double
 Dim OutY As Double
 Dim i As Long
 Dim j As Long

 cdg1.DialogTitle = "Save Cave File"
 cdg1.Filter = "*.cgw|*.cgw"
 cdg1.ShowSave
 CGWname = cdg1.FileName
 FileNum = FreeFile
 Open CGWname For Output As #FileNum
 Write #FileNum, UBound(CaveWalls), NumVertices
 For i = 0 To UBound(CaveWalls) - 1
 On Error Resume Next 'this accounts for earlier caves having less vertices
 For j = 0 To NumVertices - 1
 OutX = CaveWalls(i)(j, 1)
 OutY = CaveWalls(i)(j, 2)
 Write #FileNum, OutX, OutY
 Next j
 On Error GoTo ErrHandler
 Next
 Close #FileNum
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdSave_Click: " & Err.Number & vbNewLine & Err.Description
 Close #FileNum
End Sub

Private Sub cmdSelectData_Click()
 On Error GoTo ErrHandler
 Dim cat As New ADOX.Catalog
 If Not oRS Is Nothing Then
 oRS.Close

53

 oConn.Close
 DataFile = ""
 txtDataFile.Text = ""
 End If
 picDisplay.Cls
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC

 cdg1.DialogTitle = "Select Input Data"
 cdg1.FileName = ""
 cdg1.Filter = "*.xls|*.xls"
 cdg1.ShowOpen
 DataFile = cdg1.FileName
 If DataFile = "" Then Exit Sub
 Set oConn = New ADODB.Connection
 Set oRS = New ADODB.Recordset
 oConn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & DataFile &
";" & _
 "Extended Properties=""Excel 8.0;HDR=YES;"""

 Set cat.ActiveConnection = oConn
 'oRS.Open "[Sheet1$]", oConn, adOpenStatic, adLockOptimistic
 'oRS.Open "[" & cat.Tables(0).Name & "]", oConn, adOpenStatic, adLockOptimistic
 oRS.Open "[SimData$]", oConn, adOpenStatic, adLockOptimistic
 txtDataFile.Text = DataFile
 txtDataFile.SetFocus
 txtDataFile.SelStart = 0
 txtDataFile.SelLength = Len(txtDataFile)
 Set cat = Nothing
 Exit Sub
ErrHandler:
 Set cat = Nothing
 MsgBox "Error in cmdSelectData_Click: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Private Sub cmdSet_Click()
 On Error GoTo ErrHandler
 picDisplay.ScaleTop = Val(txtCenY.Text) + Val(txtDimensions.Text) / 2
 picDisplay.ScaleLeft = Val(txtCenX.Text) - Val(txtDimensions.Text) / 2
 picDisplay.ScaleHeight = Val(txtDimensions.Text) * -1
 picDisplay.ScaleWidth = Val(txtDimensions.Text)
 'Calculate position for cave center
 CenterX = picDisplay.ScaleLeft + picDisplay.ScaleWidth / 2
 CenterY = picDisplay.ScaleTop + (-1 * picDisplay.ScaleHeight / 2)

54

 'Calculate Grid
 picDisplay.Cls
 DispGrid.XDiv = Val(txtGridInc.Text)
 DispGrid.YDiv = Val(txtGridInc.Text)
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 DrawCaveWalls
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdSet_Click: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub Command1_Click()
 AddNewVertices (txtDistance.Text)
End Sub

Private Sub cmdCLS_Click()
 On Error GoTo ErrHandler
 picDisplay.Cls
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 Exit Sub
ErrHandler:
 MsgBox "Error in cmdCLS_Click: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub Form_Load()
 On Error GoTo ErrHandler
 'Pi = 3.141596
 ActiveTool = "1"
 Pi = 4 * Atn(1)
 picDisplay.ScaleTop = Val(txtCenY.Text) + Val(txtDimensions.Text) / 2
 picDisplay.ScaleLeft = txtCenX - Val(txtDimensions.Text) / 2
 picDisplay.ScaleHeight = Val(txtDimensions.Text) * -1
 picDisplay.ScaleWidth = Val(txtDimensions.Text)
 Set DispGrid = New GridLines
 DispGrid.XDiv = Val(txtGridInc.Text)
 DispGrid.YDiv = Val(txtGridInc.Text)
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 cbxDraw.AddItem 1
 cbxDraw.AddItem 5
 cbxDraw.AddItem 10
 cbxDraw.AddItem 20
 cbxDraw.AddItem 25
 cbxDraw.AddItem 50
 cbxDraw.AddItem 100

55

 cbxDraw.Text = 5
 CaveExists = False
 Exit Sub
ErrHandler:
 MsgBox "Error in Form_Load: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub picDisplay_MouseDown(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 On Error GoTo ErrHandler
 If ActiveTool = 1 Or ActiveTool = 2 Or ActiveTool = 3 Then
 ExtX = X
 ExtY = Y
 picDisplay.DrawMode = vbInvert
 End If
 Exit Sub
ErrHandler:
 MsgBox "Error in picDisplay_MouseDown: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Private Sub picDisplay_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 On Error GoTo ErrHandler
 txtXY.Text = X & "," & Y
 CurX = X
 CurY = Y
 tmrDisp.Enabled = True
 tmrTip.Enabled = False
 lblMapTip.Visible = False
 If picDisplay.DrawMode = vbInvert Then
 If ActiveTool = 3 Then 'Pan
 picDisplay.Line (ExtX, ExtY)-(OldX, OldY)
 picDisplay.Line (ExtX, ExtY)-(X, Y)
 Else
 If ActiveTool = 1 Or ActiveTool = 2 Then
 picDisplay.Line (ExtX, ExtY)-(OldX, OldY), , B
 picDisplay.Line (ExtX, ExtY)-(X, Y), , B
 End If
 End If
 End If
 OldX = X
 OldY = Y
 Exit Sub

56

ErrHandler:
 MsgBox "Error in picDisplay_MouseMove: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Private Sub picDisplay_MouseUp(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 On Error GoTo ErrHandler
 Dim IDList() As String
 Dim i As Long
 Dim Message As String
 Dim lX As Single
 Dim hX As Single
 Dim lY As Single
 Dim hY As Single
 Dim g_Dim As Single
 Dim PanX As Single
 Dim PanY As Single

 Select Case ActiveTool
 Case 1 'Zoom In
 picDisplay.DrawMode = vbCopyPen
 If ExtY > Y Then
 hY = ExtY
 lY = Y
 Else
 lY = ExtY
 hY = Y
 End If
 If ExtX > X Then
 hX = ExtX
 lX = X
 Else
 lX = ExtX
 hX = X
 End If
 If hY - lY > hX - lX Then 'height of zoombox greater than its width
 g_Dim = hY - lY
 picDisplay.ScaleTop = hY
 picDisplay.ScaleLeft = (lX + hX) / 2 - g_Dim / 2
 Else 'width of zoombox greater than its height
 g_Dim = hX - lX
 picDisplay.ScaleLeft = lX
 picDisplay.ScaleTop = (lY + hY) / 2 + g_Dim / 2
 End If

57

 If g_Dim > 0 Then 'make sure the user did not just click on the map without dragging
 picDisplay.ScaleHeight = g_Dim * -1
 picDisplay.ScaleWidth = g_Dim

 'Calculate Grid
 picDisplay.Cls
 DispGrid.XDiv = Val(txtGridInc.Text)
 DispGrid.YDiv = Val(txtGridInc.Text)
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 DrawCaveWalls
 'DrawVertices
 txtDimensions.Text = g_Dim
 txtCenX.Text = picDisplay.ScaleLeft + g_Dim / 2
 txtCenY.Text = picDisplay.ScaleTop - g_Dim / 2
 End If

 Case 2 'Zoom Out
 picDisplay.DrawMode = vbCopyPen
 If ExtY > Y Then
 hY = ExtY
 lY = Y
 Else
 lY = ExtY
 hY = Y
 End If
 If ExtX > X Then
 hX = ExtX
 lX = X
 Else
 lX = ExtX
 hX = X
 End If
 If hY - lY <> 0 Or hX - lX <> 0 Then
 If (hY - lY) > (hX - lX) Then
 'diff between zoombox height and the extent height is smallest (short wide zbox)
 g_Dim = picDisplay.ScaleHeight / (hY - lY) * picDisplay.ScaleHeight
 Else
 'diff between zoombox width and the extent width is smallest (short wide zbox)
 g_Dim = picDisplay.ScaleWidth / (hX - lX) * picDisplay.ScaleWidth
 End If
 picDisplay.ScaleTop = lY + (hY - lY) / 2 + g_Dim / 2 'centerY of zbox - half the
new extent
 picDisplay.ScaleLeft = lX + (hX - lX) / 2 - g_Dim / 2 'centerX of zbox - half the
new extent
 If g_Dim > 0 Then 'make sure the user did not just click on the map without
dragging

58

 picDisplay.ScaleHeight = g_Dim * -1
 picDisplay.ScaleWidth = g_Dim

 'Calculate Grid
 picDisplay.Cls
 DispGrid.XDiv = Val(txtGridInc.Text)
 DispGrid.YDiv = Val(txtGridInc.Text)
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 DrawCaveWalls
 txtDimensions.Text = g_Dim
 txtCenX.Text = picDisplay.ScaleLeft + g_Dim / 2
 txtCenY.Text = picDisplay.ScaleTop - g_Dim / 2
 End If
 End If

 Case 3 'Pan
 picDisplay.DrawMode = vbCopyPen
 PanX = picDisplay.ScaleLeft + ExtX - X
 PanY = picDisplay.ScaleTop + ExtY - Y
 picDisplay.ScaleTop = PanY
 picDisplay.ScaleLeft = PanX
 txtCenX.Text = PanX
 txtCenY.Text = PanY

 'Calculate Grid
 picDisplay.Cls
 DispGrid.XDiv = Val(txtGridInc.Text)
 DispGrid.YDiv = Val(txtGridInc.Text)
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 DrawCaveWalls
 Case 4 'ID
 If SelectVertex(X, Y) <> "" Then
 IDList = Split(SelectVertex(X, Y), ",")
 For i = 0 To UBound(IDList)
 Message = Message & "Vertex: " & IDList(i) & vbNewLine
 Message = Message & "X: " & Vertice(Val(IDList(i))).X & vbNewLine
 Message = Message & "Y: " & Vertice(Val(IDList(i))).Y & vbNewLine
 Message = Message & "Underwater: " & Vertice(Val(IDList(i))).Underwater &
vbNewLine
 Message = Message & vbNewLine
 Next i
 MsgBox Message, vbOKOnly, "Vertex Info"
 End If

 Case 5 'Add Vertex
 If fraShape(2).Visible Then

59

 picDisplay.Cls
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 ReDim Preserve Vertice(0 To NumVertices)
 Set Vertice(NumVertices) = New CaveVertex
 Vertice(NumVertices).X = X
 Vertice(NumVertices).Y = Y
 NumVertices = NumVertices + 1
 DrawVertices
 End If
 Case Else
 End Select
 Exit Sub
ErrHandler:
 MsgBox "Error in picDisplay_MouseUp: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Public Sub DrawVertices()
 Dim i As Long

 For i = 0 To NumVertices - 1
 picDisplay.PSet (Vertice(i).X, Vertice(i).Y), vbRed
 'picDisplay.Print Vertice(i).X & ", " & Vertice(i).Y
 picDisplay.DrawWidth = 1
 If i > 0 Then
 picDisplay.Line (Vertice(i - 1).X, Vertice(i - 1).Y)-(Vertice(i).X, Vertice(i).Y)
 End If
 If i = NumVertices - 1 Then picDisplay.Line (Vertice(0).X, Vertice(0).Y)-
(Vertice(i).X, Vertice(i).Y)
 picDisplay.DrawWidth = 3
 Next i
 Exit Sub
ErrHandler:
 MsgBox "Error in DrawVertices: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub DrawWaterLevel()
 On Error GoTo ErrHandler
 picDisplay.DrawWidth = 4
 picDisplay.Line (picDisplay.ScaleLeft, Vertice(WaterLevel).Y)-(picDisplay.ScaleLeft +
picDisplay.ScaleWidth, Vertice(WaterLevel).Y), vbCyan
 picDisplay.DrawWidth = 3
 Exit Sub
ErrHandler:

60

 MsgBox "Error in DrawWaterLevel: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub DrawUnderWater()
 On Error GoTo ErrHandler
 Dim i As Long
 For i = 0 To NumVertices - 1
 If Vertice(i).Underwater = True Then
 picDisplay.PSet (Vertice(i).X, Vertice(i).Y), vbBlue
 End If
 Next
 Exit Sub
ErrHandler:
 MsgBox "Error in DrawUnderWater: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Function SelectUnderWater() As String
 On Error GoTo ErrHandler
 Dim i As Long
 Dim VList As String

 VList = ""
 For i = 0 To NumVertices - 1
 'If Vertice(i).Y <= Vertice(WaterLevel).Y Then
 If Round(Vertice(i).Y, 6) <= Round(Vertice(WaterLevel).Y, 6) Then
 Vertice(i).Underwater = True
 If VList = "" Then
 VList = i
 Else
 VList = VList & "," & i
 End If
 Else
 Vertice(i).Underwater = False
 End If
 Next
 SelectUnderWater = VList
 Exit Function
ErrHandler:
 MsgBox "Error in SelectUnderWater: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Function

Private Function PolyArea(Point() As CaveVertex) As Double
' On Error GoTo ErrHandler

61

 Dim i As Long
 Dim s1 As Double, s2 As Double
 Dim Area As Double
 Dim VCount As Integer

 VCount = UBound(Point)
 s1 = 0
 s2 = 0
 For i = 0 To (VCount - 1)
 s1 = s1 + (Point(i).X * Point(i + 1).Y)
 s2 = s2 + (Point(i).Y * Point(i + 1).X)
 Next
 s1 = s1 + Point(VCount).X * Point(0).Y
 s2 = s2 + Point(VCount).Y * Point(0).X
 PolyArea = 0.5 * Abs(s1 - s2)
 Exit Function
ErrHandler:
 MsgBox "Error in PolyArea: " & Err.Number & vbNewLine & Err.Description
End Function

Private Sub CalcCoords()
 Dim i As Long
 Dim Slope As Double
 Dim Bearing As Double
 Dim PosX As Boolean
 Dim PosY As Boolean
 Dim Max As Integer
 Dim Distance As Double
 Dim Undefined As Boolean
 Dim Xarray() As Double 'arrays to hold values while originals are being use in
calculations
 Dim Yarray() As Double

 ReDim Xarray(0 To NumVertices - 1)
 ReDim Yarray(0 To NumVertices - 1)
 Max = NumVertices - 1
 For i = 0 To Max
 Undefined = False
 If Not i = 0 Then
 If Not i = Max Then
 If Round(Vertice(i + 1).X, 6) <> Round(Vertice(i - 1).X, 6) Then
 Slope = (Vertice(i + 1).Y - Vertice(i - 1).Y) / (Vertice(i + 1).X - Vertice(i - 1).X)
 Else
 Undefined = True
 End If
 'PosX = IIf(Vertice(i + 1).X >= Vertice(i - 1).X, True, False)

62

 PosX = IIf(Round(Vertice(i + 1).X, 6) >= Round(Vertice(i - 1).X, 6), True, False)
 Else
 If Round(Vertice(0).X, 6) <> Round(Vertice(Max - 1).X, 6) Then
 Slope = (Vertice(0).Y - Vertice(Max - 1).Y) / (Vertice(0).X - Vertice(Max - 1).X)
 Else
 Undefined = True
 End If
 'PosX = IIf(Vertice(0).X >= Vertice(Max - 1).X, True, False)
 PosX = IIf(Round(Vertice(0).X, 6) >= Round(Vertice(Max - 1).X, 6), True, False)
 End If
 Else
 If Round(Vertice(1).X, 6) <> Round(Vertice(Max).X, 6) Then
 Slope = (Vertice(1).Y - Vertice(Max).Y) / (Vertice(1).X - Vertice(Max).X)
 Else
 Undefined = True
 End If
 'PosX = IIf(Vertice(1).X >= Vertice(Max).X, True, False)
 PosX = IIf(Round(Vertice(1).X, 6) >= Round(Vertice(Max).X, 6), True, False)
 End If
 If Undefined = False Then
 Bearing = Atn(Slope) * 180 / Pi
 If Bearing < 0 Then
 If PosX = True Then
 Bearing = Bearing * -1
 Else
 Bearing = Bearing * -1 + 180
 End If
 Else
 If PosX = True Then
 Bearing = 360 - Bearing
 Else
 Bearing = 180 - Bearing
 End If
 End If
 Else
 If i = 0 Then
 'PosY = IIf(Vertice(1).Y >= Vertice(Max).Y, True, False)
 PosY = IIf(Round(Vertice(1).Y, 6) >= Round(Vertice(Max).Y, 6), True, False)
 ElseIf i = Max Then
 'PosY = IIf(Vertice(0).Y >= Vertice(Max - 1).Y, True, False)
 PosY = IIf(Round(Vertice(0).Y, 6) >= Round(Vertice(Max - 1).Y, 6), True, False)
 Else
 'PosY = IIf(Vertice(i + 1).Y >= Vertice(i - 1).Y, True, False)
 PosY = IIf(Round(Vertice(i + 1).Y, 6) >= Round(Vertice(i - 1).Y, 6), True, False)
 End If
 If PosY = True Then

63

 Bearing = 270
 Else
 Bearing = 90
 End If
 End If
 If Vertice(i).Underwater = True Then
 Distance = TErosionDist '+ WErosion
 TotalVertices = TotalVertices + 1 'keep track of how many vertices are moved
 TotalDistance = TotalDistance + TErosionDist 'keep track of the total combined
distance moved
 Else
 Distance = 0 'TErosionDist
 End If
 Xarray(i) = Vertice(i).X + Distance * Sin(Pi / 180 * Bearing)
 Yarray(i) = Vertice(i).Y + Distance * Cos(Pi / 180 * Bearing)
 Next
 For i = 0 To NumVertices - 1
 Vertice(i).X = Xarray(i)
 Vertice(i).Y = Yarray(i)
 Next i
 Exit Sub
ErrHandler:
 MsgBox "Error in CalcCoords: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub CalcWaterLevel()
 On Error GoTo ErrHandler
 Dim i As Long
 Dim UW() As String
 Dim UWVertex() As CaveVertex
 Dim Increasing As Boolean
 Dim ChangeDir As Boolean
 Dim UWArea As Double
 Dim sUWList As String
 Dim dCaveArea As Double

 dCaveArea = PolyArea(Vertice())
 If WaterArea > dCaveArea Then
 'all vertices are wet
 For i = 0 To NumVertices - 1
 If Round(Vertice(i).Y, 6) > Round(Vertice(WaterLevel).Y, 6) Then WaterLevel = i
 Next i
 SelectUnderWater
 DrawPoly Vertice()
 Else

64

 ChangeDir = False
 Do While ChangeDir = False
 sUWList = SelectUnderWater
 If sUWList <> "" Then
 UW = Split(sUWList, ",")
 'could check for consecutive here
 ReDim UWVertex(0 To UBound(UW))
 For i = 0 To UBound(UW)
 Set UWVertex(i) = Vertice(Val(UW(i)))
 Next
 If UniqueVertexY Then
 If NextHighest <> -1 And NextLowest <> -1 Then
 'another vertex needs to be added as this one does not have a pair
 ReDim Preserve UWVertex(0 To UBound(UW) + 1)
 Set UWVertex(UBound(UWVertex)) = New CaveVertex
 UWVertex(UBound(UWVertex)).Y = Vertice(WaterLevel).Y
 UWVertex(UBound(UWVertex)).X = GetIntersectX
 End If
 End If

 UWArea = PolyArea(UWVertex())
 If WaterArea > UWArea Then
 'raise level - find next vertex with a greater y value
 If Increasing = False Then
 ChangeDir = True
 Else
 Increasing = True
 If NextHighest <> -1 Then
 WaterLevel = NextHighest
 Else
 ChangeDir = True
 End If
 End If
 ElseIf WaterArea = UWArea Then
 ChangeDir = True
 Else
 'drop level
 If Increasing = True Then ChangeDir = True
 Increasing = False
 If NextLowest <> -1 Then
 WaterLevel = NextLowest
 Else
 ChangeDir = True
 End If
 End If
 End If

65

 Loop

 'Debug.Print "Water Level: " & WaterLevel

 DrawPoly UWVertex() 'draw the water level
 End If
 Exit Sub
ErrHandler:
 MsgBox "Error in CalcWaterLevel: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub TabInput_Click()
 On Error GoTo ErrHandler
 Dim i As Integer
 For i = 1 To 2
 If TabInput.SelectedItem.Index = i Then
 fraInput(i - 1).Visible = True
 Else
 fraInput(i - 1).Visible = False
 End If
 Next
 Exit Sub
ErrHandler:
 MsgBox "Error in TabInput_Click: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub tabShape_Click()
 On Error GoTo ErrHandler
 Dim i As Integer
 For i = 1 To 4
 If tabShape.SelectedItem.Index = i Then
 fraShape(i - 1).Visible = True
 Else
 fraShape(i - 1).Visible = False
 End If
 Next
 Exit Sub
ErrHandler:
 MsgBox "Error in tabShape_Click: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub tbr1_ButtonClick(ByVal Button As MSComctlLib.Button)
 On Error GoTo ErrHandler

66

 If ActiveTool > 0 Then
 tbr1.Buttons(ActiveTool).Value = tbrUnpressed
 End If
 Button.Value = tbrPressed
 ActiveTool = Button.Index
 tbr1.Refresh
 Exit Sub
ErrHandler:
 MsgBox "Error in tbr1_ButtonClick: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub tmrDisp_Timer()
 On Error GoTo ErrHandler
 Dim IDList() As String
 Dim i As Long
 Dim Message As String

 If TimerX = CurX And TimerY = CurY Then 'no movement
 If SelectVertex(CurX, CurY) <> "" Then
 IDList = Split(SelectVertex(CurX, CurY), ",")
 For i = 0 To UBound(IDList)
 Message = Message & "Vertex: " & IDList(i) & vbNewLine
 Message = Message & "X: " & Vertice(Val(IDList(i))).X & vbNewLine
 Message = Message & "Y: " & Vertice(Val(IDList(i))).Y & vbNewLine
 Message = Message & "Underwater: " & Vertice(Val(IDList(i))).Underwater &
vbNewLine
 Next i
 lblMapTip.Caption = Message
 If CurX - lblMapTip.Width < picDisplay.ScaleLeft Then
 lblMapTip.Left = picDisplay.ScaleLeft
 Else
 lblMapTip.Left = CurX - lblMapTip.Width
 End If
 If CurY + lblMapTip.Height > picDisplay.ScaleTop Then
 lblMapTip.Top = picDisplay.ScaleTop
 Else
 lblMapTip.Top = CurY + lblMapTip.Height
 End If
 lblMapTip.Visible = True
 tmrTip.Enabled = True
 End If
 End If
 TimerX = CurX
 TimerY = CurY
 Exit Sub

67

ErrHandler:
 MsgBox "Error in tmrDisp_Timer: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub tmrTip_Timer()
 On Error GoTo ErrHandler
 lblMapTip.Visible = False
 tmrDisp.Enabled = False
 Exit Sub
ErrHandler:
 MsgBox "Error: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub txtDimensions_Change()
 On Error GoTo ErrHandler
 lblDimensions2.Caption = "x " & FormatNumber(txtDimensions.Text, 2)
 Exit Sub
ErrHandler:
 MsgBox "Error in txtDimensions_Change: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Private Sub MaxDistCirc()
 On Error GoTo ErrHandler
 Dim Bearing As Double
 Dim Hypot As Double
 Dim Vertex1 As CaveVertex
 Dim Vertex2 As CaveVertex
 Dim NumVerts As Long

 If Not IsNumeric(txtNumVertices(0).Text) Then Exit Sub

 Radius = txtRadius.Text
 NumVerts = txtNumVertices(0).Text
 Bearing = 360 / NumVerts * 0
 Set Vertex1 = New CaveVertex
 Vertex1.X = CenterX + Radius * Sin(Pi / 180 * Bearing)
 Vertex1.Y = CenterY + Radius * Cos(Pi / 180 * Bearing)
 Bearing = 360 / NumVerts * 1
 Set Vertex2 = New CaveVertex
 Vertex2.X = CenterX + Radius * Sin(Pi / 180 * Bearing)
 Vertex2.Y = CenterY + Radius * Cos(Pi / 180 * Bearing)

68

 Hypot = Sqr((Vertex1.Y - Vertex2.Y) ^ 2 + (Vertex1.X - Vertex2.X) ^ 2)

 Set Vertex1 = Nothing
 Set Vertex2 = Nothing
 txtMaxDist.Text = Round(Hypot, 1)
 Exit Sub
ErrHandler:
 MsgBox "Error: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub VerticesFromCircle()
 On Error GoTo ErrHandler
 Dim Bearing As Double
 Dim i As Long

 Radius = txtRadius.Text
 NumVertices = txtNumVertices(0).Text
 ReDim Vertice(0 To NumVertices - 1)
 For i = 0 To NumVertices - 1
 Bearing = 360 / NumVertices * i
 Set Vertice(i) = New CaveVertex
 Vertice(i).X = CenterX + Radius * Sin(Pi / 180 * Bearing)
 Vertice(i).Y = CenterY + Radius * Cos(Pi / 180 * Bearing)
 Next
 Exit Sub
ErrHandler:
 MsgBox "Error: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Sub cmdAddVertex_Click()
 On Error GoTo ErrHandler
 picDisplay.Cls
 DispGrid.DrawGrid picDisplay, chkShowGrid, chkShowLabels, &HDCDCDC
 NumVertices = 0
 Erase Vertice()
 Erase CaveWall()
 Erase CaveWalls()
 CaveExists = False
 tbr1.Buttons(ActiveTool).Value = tbrUnpressed
 tbr1.Buttons(5).Value = tbrPressed
 tbr1.Buttons(5).Enabled = True
 ActiveTool = 5
 MsgBox "Add vertices by clicking on the display in a clockwise order.", vbOKOnly,
"Add Vertices"

69

 Exit Sub
ErrHandler:
 MsgBox "Error in cmdAddVertex_Click: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Function NextHighest() As Integer
 On Error GoTo ErrHandler
 Dim i As Long
 Dim gap As Double
 Dim NextNum As Integer

 gap = -1
 For i = 0 To NumVertices - 1
 If Round(Vertice(i).Y, 6) > Round(Vertice(WaterLevel).Y, 6) Then
 If gap = -1 Then
 gap = Vertice(i).Y - Vertice(WaterLevel).Y
 NextNum = i
 Else
 If Round(Vertice(i).Y - Vertice(WaterLevel).Y, 6) < Round(gap, 6) Then
 gap = Vertice(i).Y - Vertice(WaterLevel).Y
 NextNum = i
 End If
 End If
 End If
 Next i
 If gap = -1 Then NextNum = -1
 NextHighest = NextNum
 Exit Function
ErrHandler:
 MsgBox "Error in NextHighest: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Function

Function NextLowest() As Integer
 On Error GoTo ErrHandler
 Dim i As Long
 Dim gap As Double
 Dim NextNum As Integer

 gap = -1
 For i = 0 To NumVertices - 1
 If Round(Vertice(i).Y, 6) < Round(Vertice(WaterLevel).Y, 6) Then
 If gap = -1 Then
 gap = Vertice(WaterLevel).Y - Vertice(i).Y

70

 NextNum = i
 Else
 If Round(Vertice(WaterLevel).Y - Vertice(i).Y, 6) < Round(gap, 6) Then
 gap = Vertice(WaterLevel).Y - Vertice(i).Y
 NextNum = i
 End If
 End If
 End If
 Next i
 If gap = -1 Then NextNum = -1
 NextLowest = NextNum
 Exit Function
ErrHandler:
 MsgBox "Error in NextLowest: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Function

Private Function SelectVertex(X As Single, Y As Single) As String
 On Error GoTo ErrHandler
 Dim i As Long
 Dim tolerance As Double
 Dim ReturnString As String
 Dim ExtMinX As Double
 Dim ExtMaxX As Double
 Dim ExtMinY As Double
 Dim ExtMaxY As Double

 tolerance = picDisplay.ScaleX(3, vbPixels, vbUser)
 ExtMinX = X - tolerance
 ExtMaxX = X + tolerance
 ExtMinY = Y - tolerance
 ExtMaxY = Y + tolerance
 For i = 0 To NumVertices - 1
 If Vertice(i).X < ExtMaxX And Vertice(i).X > ExtMinX And Vertice(i).Y < ExtMaxY
And Vertice(i).Y > ExtMinY Then
 If ReturnString = "" Then
 ReturnString = i
 Else
 ReturnString = ReturnString & "," & i
 End If
 End If
 Next i
 SelectVertex = ReturnString
 Exit Function
ErrHandler:
 MsgBox "Error in SelectVertex: " & Err.Number & vbNewLine & Err.Description

71

End Function

Private Function LargeGapList(Dist As Double) As String
 On Error GoTo ErrHandler
 Dim i As Long
 Dim Hypot As Double
 Dim SpaceList As String

 For i = 0 To NumVertices - 2
 Hypot = Sqr((Vertice(i).Y - Vertice(i + 1).Y) ^ 2 + (Vertice(i).X - Vertice(i + 1).X) ^
2)
 If Hypot > Dist Then
 SpaceList = SpaceList & i + 1 & ","
 End If
 Next i
 Hypot = Sqr((Vertice(NumVertices - 1).Y - Vertice(0).Y) ^ 2 + (Vertice(NumVertices -
1).X - Vertice(0).X) ^ 2)
 If Hypot > Dist Then
 SpaceList = SpaceList & NumVertices & ","
 End If
 LargeGapList = SpaceList
 Exit Function
ErrHandler:
 MsgBox "Error in LargeGapList: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Function

Private Sub DrawCaveWalls()
 On Error GoTo ErrHandler
 Dim i As Long
 Dim j As Long

 If CaveExists Then
 For j = 0 To UBound(CaveWalls) - 1
 For i = 0 To UBound(CaveWalls(j))
 picDisplay.PSet (CaveWalls(j)(i, 1), CaveWalls(j)(i, 2)), vbRed
 picDisplay.DrawWidth = 1
 If i > 0 Then
 picDisplay.Line (CaveWalls(j)(i - 1, 1), CaveWalls(j)(i - 1, 2))-(CaveWalls(j)(i, 1),
CaveWalls(j)(i, 2))
 End If
 If i = UBound(CaveWalls(j)) Then picDisplay.Line (CaveWalls(j)(0, 1),
CaveWalls(j)(0, 2))-(CaveWalls(j)(i, 1), CaveWalls(j)(i, 2))
 picDisplay.DrawWidth = 3
 Next i
 Next j

72

 End If
 Exit Sub
ErrHandler:
 MsgBox "Error in DrawCaveWalls: " & Err.Number & vbNewLine & Err.Description
' Resume Next
End Sub

Private Sub DrawPoly(Point() As CaveVertex)
 Dim i As Long

 For i = 0 To UBound(Point)
 picDisplay.DrawWidth = 6
 picDisplay.PSet (Point(i).X, Point(i).Y), vbCyan
 picDisplay.DrawWidth = 1
 If i > 0 Then
 picDisplay.Line (Point(i - 1).X, Point(i - 1).Y)-(Point(i).X, Point(i).Y), vbBlue
 End If
 If i = UBound(Point) Then picDisplay.Line (Point(0).X, Point(0).Y)-(Point(i).X,
Point(i).Y), vbBlue
 picDisplay.DrawWidth = 3
 Next i
 Exit Sub
ErrHandler:
 MsgBox "Error in DrawPoly: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Sub

Private Function UniqueVertexY() As Boolean
 On Error GoTo ErrHandler

 Dim i As Long
 Dim VCount As Long
 Dim WL As Double

 WL = Vertice(WaterLevel).Y
 For i = 0 To NumVertices - 1
 If Vertice(i).Y = WL Then VCount = VCount + 1
 Next i
 If VCount > 1 Then
 UniqueVertexY = False
 Else
 UniqueVertexY = True
 End If
 Exit Function
ErrHandler:
 MsgBox "Error in UniqueVertexY: " & Err.Number & vbNewLine & Err.Description

73

 Resume Next
End Function

Private Function GetIntersectX()
' On Error GoTo ErrHandler

 Dim i As Long
 Dim WL As Double
 Dim Vs As String
 Dim V() As String
 Dim Slope As Double
 Dim X As Double
 Dim P() As String

 Vs = ""
 WL = Vertice(WaterLevel).Y

 'Find vertice pairs containing the waterlevel Y value
 If WaterLevel <> 0 And WaterLevel <> NumVertices - 1 Then
 If Vertice(0).Y <= WL And Vertice(NumVertices - 1).Y >= WL Or _
 Vertice(0).Y >= WL And Vertice(NumVertices - 1).Y <= WL Then
 Vs = NumVertices - 1 & ",0 "
 End If
 End If
 For i = 0 To NumVertices - 2
 If i <> WaterLevel And i + 1 <> WaterLevel Then
 If Round(Vertice(i).Y, 6) <= Round(WL, 6) And Round(Vertice(i + 1).Y, 6) >=
Round(WL, 6) Or _
 Round(Vertice(i).Y, 6) >= Round(WL, 6) And Round(Vertice(i + 1).Y, 6) <=
Round(WL, 6) Then
 Vs = Vs & i & "," & i + 1 & " "
 End If
 End If
 Next i
 Vs = Trim(Vs)
 If Vs <> "" Then
 V = Split(Vs, " ")
 For i = 0 To UBound(V)
 P = Split(V(i), ",")
 'Point Slope Formula..... y-y1 = m(x-x1)
 If Round(Vertice(P(0)).X, 6) = Round(Vertice(P(1)).X, 6) Then
 X = Vertice(P(0)).X
 Else
 Slope = (Vertice(P(0)).Y - Vertice(P(1)).Y) / (Vertice(P(0)).X - Vertice(P(1)).X)
 X = (Vertice(WaterLevel).Y - Vertice(P(1)).Y) / Slope + Vertice(P(1)).X
 End If

74

 Next i
 End If
 GetIntersectX = X
 Exit Function
ErrHandler:
 MsgBox "Error in GetIntersectX: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Function

Private Sub AddNewVertex(Position As Long)
 Dim i As Long

 ReDim TempVertice(NumVertices)
 If Position = 0 Then
 TempVertice(Position) = New CaveVertex
 'Populate new vertex
 For i = 1 To NumVertices - 1
 Set TempVertice(i) = Vertice(i - 1)
 Next i
 ElseIf Position > 0 Then
 For i = 0 To Position - 1
 Set TempVertice(i) = Vertice(i)
 Next i
 Set TempVertice(Position) = New CaveVertex
 'Populate new vertex
 TempVertice(Position).X = (Vertice(Position - 1).X + Vertice(Position).X) / 2
 TempVertice(Position).Y = (Vertice(Position - 1).Y + Vertice(Position).Y) / 2
 For i = Position + 1 To NumVertices
 Set TempVertice(i) = Vertice(i - 1)
 Next i
 Else
 MsgBox "Error - new vertex position cannot be negative", vbCritical, "Error in
AddNewVertex"
 End If
 Vertice = TempVertice
 Erase TempVertice
 DrawVertices
End Sub

Private Function AddNewVertices(MaxDist As Double)
 On Error GoTo ErrHandler
 Dim i As Long
 Dim j As Long
 Dim Hypot As Double
 Dim NumVs As Long
 Dim PosDist As Double

75

 Dim NewVertex As CaveVertex
 Dim NumNewVs As Long

 'Debug.Print "START"
 NumNewVs = 0
 For i = 0 To NumVertices - 2

 ReDim Preserve TempVertice(i + NumNewVs) 'increment the temparray appropriately

 Set TempVertice(i + NumNewVs) = Vertice(i)
 Hypot = Sqr((Vertice(i).Y - Vertice(i + 1).Y) ^ 2 + (Vertice(i).X - Vertice(i + 1).X) ^
2)
 'Debug.Print Hypot
 If Hypot > MaxDist Then 'if the distance is greater than the maximum then split it by
adding vertices
 NumVs = Int(Hypot / MaxDist) 'divide the distance by the max distance to determine
the number of vertices to add

 For j = 1 To NumVs
 NumNewVs = NumNewVs + 1 'increment number of new vertices
 ReDim Preserve TempVertice(i + NumNewVs)
 Set NewVertex = New CaveVertex
 NewVertex.X = Vertice(i).X + ((Vertice(i + 1).X - Vertice(i).X) / (NumVs + 1)) * j
 NewVertex.Y = Vertice(i).Y + ((Vertice(i + 1).Y - Vertice(i).Y) / (NumVs + 1)) * j
 Set TempVertice(i + NumNewVs) = NewVertex
 Next j
 End If
 Next i
 'deal with distance between penultimate and last vertex
 ReDim Preserve TempVertice(i + NumNewVs)
 Set TempVertice(i + NumNewVs) = Vertice(i)
 Hypot = Sqr((Vertice(i).Y - Vertice(0).Y) ^ 2 + (Vertice(i).X - Vertice(0).X) ^ 2)
 If Hypot > MaxDist Then
 NumVs = Int(Hypot / MaxDist) 'divide the distance by the max distance to determine
the number of vertices to add
 For j = 1 To NumVs
 NumNewVs = NumNewVs + 1 'increment number of new vertices
 ReDim Preserve TempVertice(i + NumNewVs)
 Set NewVertex = New CaveVertex
 NewVertex.X = Vertice(i).X + ((Vertice(0).X - Vertice(i).X) / (NumVs + 1)) * j
 NewVertex.Y = Vertice(i).Y + ((Vertice(0).Y - Vertice(i).Y) / (NumVs + 1)) * j
 Set TempVertice(i + NumNewVs) = NewVertex
 Next j
 End If
 Vertice = TempVertice
 NumVertices = UBound(Vertice) + 1

76

 Erase TempVertice
 DrawVertices
 'Debug.Print "END"
 Exit Function
ErrHandler:
 MsgBox "Error in AddNewVertices: " & Err.Number & vbNewLine & Err.Description
 Resume Next
End Function

Private Sub txtNumVertices_Change(Index As Integer)
 If Index = 0 Then
 MaxDistCirc
 Else
 MaxDistRect
 End If
End Sub

Private Sub VerticesFromRect()
 On Error GoTo ErrHandler
 Dim Bearing As Double
 Dim i As Long
 Dim RectWidth As Double
 Dim RectHeight As Double
 Dim Perimiter As Double
 Dim AvSpace As Double
 Dim VSpace As Double
 Dim HSpace As Double
 Dim VNum As Long
 Dim HNum As Long
 Dim MinX As Double
 Dim MinY As Double
 Dim MaxX As Double
 Dim MaxY As Double
 Dim OddFlag As Boolean
 Dim OddSpace As Double

 OddFlag = False
 RectWidth = txtWidth.Text
 RectHeight = txtHeight.Text
 NumVertices = txtNumVertices(1).Text
 ReDim Vertice(0 To NumVertices - 1)
 If NumVertices Mod 2 = 1 Then OddFlag = True 'is the number of vertices odd?

 Perimiter = RectWidth * 2 + RectHeight * 2
 If OddFlag = False Then
 AvSpace = Perimiter / NumVertices

77

 Else
 AvSpace = Perimiter / (NumVertices - 1) 'extra vertice will be added to the bottom
 End If
 'HNum and Vnum represent the number of spaces
 If Int(RectHeight / AvSpace) < RectHeight / AvSpace Then
 If Int(RectWidth / AvSpace) > 0 Then 'width smaller than average spacing
 'If Int(RectWidth / AvSpace) Mod 2 > 0 Then
 VNum = Int(RectHeight / AvSpace) + 1 'height gets extra vertices
 Else
 VNum = Int(RectHeight / AvSpace) 'detract one for the width
 End If
 Else 'evenly divisible by the average spacing
 If Int(RectWidth / AvSpace) > 0 Then
 VNum = Int(RectHeight / AvSpace)
 End If
 End If
 HNum = Int(RectWidth / AvSpace)

 If VNum = 0 Then '(height is less than an average space)
 VSpace = RectHeight
 Else
 VSpace = RectHeight / VNum
 End If
 If HNum = 0 Then '(width is less than an average space)
 HSpace = RectWidth
 OddSpace = RectWidth / 2 'if odd, the base needs to accomodate an extra vertice
 Else
 HSpace = RectWidth / HNum
 OddSpace = RectWidth / (HNum + 1) 'if odd, the base needs to accomodate an extra
vertice
 End If

 'determine rectangle bounds
 MinX = CenterX - RectWidth / 2
 MinY = CenterY - RectHeight / 2
 MaxX = CenterX + RectWidth / 2
 MaxY = CenterY + RectHeight / 2

 Set Vertice(0) = New CaveVertex
 Vertice(0).X = MinX
 Vertice(0).Y = MaxY
 For i = 1 To NumVertices - 1
 Set Vertice(i) = New CaveVertex
 If Round(Vertice(i - 1).X, 6) = Round(MinX, 6) Then 'Left side
 If Round(Vertice(i - 1).Y, 6) < Round(MaxY, 6) Then
 Vertice(i).X = MinX

78

 Vertice(i).Y = Vertice(i - 1).Y + VSpace
 Else 'Start along top
 Vertice(i).X = MinX + HSpace
 Vertice(i).Y = MaxY
 End If
 ElseIf Round(Vertice(i - 1).Y, 6) = Round(MinY, 6) Then 'Bottom
 If OddFlag = False Then
 If Round(Vertice(i - 1).X, 6) > Round(MinX, 6) Then
 Vertice(i).X = Vertice(i - 1).X - HSpace
 Vertice(i).Y = MinY
 End If
 Else 'odd number of vertices so add one to bottom
 If Round(Vertice(i - 1).X, 6) > Round(MinX, 6) Then
 Vertice(i).X = Vertice(i - 1).X - OddSpace
 Vertice(i).Y = MinY
 End If
 End If
 ElseIf Round(Vertice(i - 1).X, 6) = Round(MaxX, 6) Then 'Right side
 If Round(Vertice(i - 1).Y, 6) > Round(MinY, 6) Then
 Vertice(i).X = MaxX
 Vertice(i).Y = Vertice(i - 1).Y - VSpace
 Else 'Start along bottom
 Vertice(i).X = Vertice(i - 1).X - HSpace
 Vertice(i).Y = MinY
 End If
 ElseIf Round(Vertice(i - 1).Y, 6) = Round(MaxY, 6) Then 'Top
 If Round(Vertice(i - 1).X, 6) < Round(MaxX, 6) Then
 Vertice(i).X = Vertice(i - 1).X + HSpace
 Vertice(i).Y = MaxY
 End If
 End If
 Next
 Exit Sub
ErrHandler:
 MsgBox "Error in VerticesFromCircle: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

79

VB6 Project: prjCaveGrowth

Form: frmEnterVertices

Option Explicit

Private Sub cmdAdd_Click()
 frmCaveGrowth.picDisplay.Cls
 DispGrid.DrawGrid frmCaveGrowth.picDisplay, frmCaveGrowth.chkShowGrid,
frmCaveGrowth.chkShowLabels, &HDCDCDC
 ReDim Preserve Vertice(0 To NumVertices)
 Set Vertice(NumVertices) = New CaveVertex
 Vertice(NumVertices).X = txtXCoord
 Vertice(NumVertices).Y = txtYCoord
 'lstVertices.AddItem "Vertice " & NumVertices & ": " & Vertice(NumVertices).X & ",
" & Vertice(NumVertices).Y
 flx1.AddItem NumVertices + 1 & vbTab & Vertice(NumVertices).X & vbTab &
Vertice(NumVertices).Y
 NumVertices = NumVertices + 1
 frmCaveGrowth.DrawVertices
End Sub

Private Sub cmdDelete_Click()
 Dim SelRow As Long
 Dim i As Long
 Dim NewVertex As CaveVertex

80

 SelRow = flx1.RowSel
 flx1.Row = SelRow
 ReDim TempVertice(UBound(Vertice) - 1) 'increment the temparray appropriately
 If SelRow > 1 Then
 For i = 0 To SelRow - 2 'vertice() is zero based and row number includes title
 Set TempVertice(i) = Vertice(i)
 Next i
 For i = SelRow - 1 To UBound(TempVertice)
 Set TempVertice(i) = Vertice(i + 1)
 Next i
 Else
 For i = 0 To UBound(TempVertice)
 Set TempVertice(i) = Vertice(i + 1)
 Next i
 End If
 Vertice = TempVertice
 NumVertices = UBound(Vertice) + 1
 Erase TempVertice
 PopulateFlexGrid
 frmCaveGrowth.picDisplay.Cls
 DispGrid.DrawGrid frmCaveGrowth.picDisplay, frmCaveGrowth.chkShowGrid,
frmCaveGrowth.chkShowLabels, &HDCDCDC
 frmCaveGrowth.DrawVertices
End Sub

Private Sub cmdOK_Click()
 Dim l As Long
 ReDim CaveWalls(0 To 1)
 'store first cave wall
 ReDim CaveWall(0 To NumVertices - 1, 1 To 2)
 For l = 0 To NumVertices - 1
 CaveWall(l, 1) = Vertice(l).X
 CaveWall(l, 2) = Vertice(l).Y
 Next l
 CaveWalls(0) = CaveWall
 CaveExists = True

 Unload Me
End Sub

Private Sub Form_Load()
 flx1.Row = 0
 flx1.Col = 0
 flx1.Text = "Vertex"
 flx1.Col = 1

81

 flx1.Text = "X"
 flx1.Col = 2
 flx1.Text = "Y"
 flx1.ColWidth(0) = 700
 flx1.ColWidth(1) = 2500
 flx1.ColWidth(2) = 2500
End Sub

Private Sub PopulateFlexGrid()
 Dim l As Long
 flx1.Rows = 1
 For l = 0 To UBound(Vertice)
 flx1.AddItem l + 1 & vbTab & Vertice(l).X & vbTab & Vertice(l).Y, l + 1
 Next l
End Sub

82

VB6 Project: prjCaveGrowth

Module: basGlobals

Option Explicit

Public Vertice() As CaveVertex
Public TempVertice() As CaveVertex
Public NumVertices As Long
Public DispGrid As GridLines

Public CaveExists As Boolean
Public CaveWalls() As Variant 'array of CaveWall arrays
Public CaveWall() As Double '2 dimensional array of cave vertices (X,Y)

83

VB6 Project: prjCaveGrowth

Class Module: CaveVertex

Option Explicit
Private m_X As Double
Private m_Y As Double
Private m_UnderWater As Boolean

Public Property Get X() As Double
 X = m_X
End Property

Public Property Let X(ByVal NewX As Double)
 m_X = NewX
End Property

Public Property Get Y() As Double
 Y = m_Y
End Property

Public Property Let Y(ByVal NewY As Double)
 m_Y = NewY
End Property

Public Property Get Underwater() As Boolean
 Underwater = m_UnderWater
End Property

Public Property Let Underwater(ByVal NewUnderwater As Boolean)
 m_UnderWater = NewUnderwater
End Property

Private Sub Class_Initialize()
End Sub

84

VB6 Project: prjCaveGrowth

Class Module: GridLines

Option Explicit
Private m_Xmin As Double
Private m_Xmax As Double
Private m_Ymin As Double
Private m_Ymax As Double
Private m_XDiv As Double
Private m_YDiv As Double

Public Property Get XDiv() As Double
 XDiv = m_XDiv
End Property

Public Property Let XDiv(ByVal Div As Double)
 m_XDiv = Div
End Property

Public Property Get YDiv() As Double
 YDiv = m_YDiv
End Property

Public Property Let YDiv(ByVal Div As Double)
 m_YDiv = Div
End Property

Public Sub DrawGrid(PicBox As PictureBox, grid As Boolean, labels As Boolean,
LineColor As Long)
 Dim Xmin As Double
 Dim Xmax As Double
 Dim Ymin As Double
 Dim Ymax As Double
 Dim startX As Double
 Dim startY As Double
 Dim CurrentX As Double
 Dim CurrentY As Double
 Dim OldWidth As Integer

 If m_XDiv = 0 Then
 MsgBox "XDiv is zero", vbCritical, "Invalid Grid Increment Value"
 Exit Sub
 End If
 OldWidth = PicBox.DrawWidth
 PicBox.DrawWidth = 1
 Xmin = PicBox.ScaleLeft

85

 Xmax = PicBox.ScaleLeft + PicBox.ScaleWidth
 Ymin = PicBox.ScaleTop + PicBox.ScaleHeight
 Ymax = PicBox.ScaleTop

 'PicBox.ForeColor = vbBlack
 startX = (Xmin \ m_XDiv) * m_XDiv '\ returns an integer
 CurrentX = startX
 Do While CurrentX < Xmax
 If grid Then
 PicBox.Line (CurrentX, Ymin)-(CurrentX, Ymax), LineColor
 Else
 PicBox.CurrentX = CurrentX
 PicBox.CurrentY = Ymax
 End If
 If labels Then PicBox.Print CurrentX
 CurrentX = CurrentX + XDiv
 Loop
 startY = (Ymin \ m_YDiv) * m_YDiv '\ returns an integer
 CurrentY = startY
 Do While CurrentY < Ymax
 If grid Then
 PicBox.Line (Xmax, CurrentY)-(Xmin, CurrentY), LineColor
 Else
 PicBox.CurrentX = Xmin
 PicBox.CurrentY = CurrentY
 End If
 If labels Then PicBox.Print CurrentY
 CurrentY = CurrentY + YDiv
 Loop

 PicBox.DrawWidth = OldWidth
End Sub

86

APPENDIX II

S-PLUS Gamma Function Code

87

SPLUS Script: CaveDataGamma.ssc

Function:
CaveDataGamma<-function(numrecs, alpha, beta){
 df1<-data.frame()
 df1$FLOW<-rgamma(numrecs,alpha,beta)
 df1$FLOW2<-df1$FLOW*(12255649896/sum(df1$FLOW))
 df1
 }

Commands Window Usage Example:
GA001B1 <- CaveDataGamma(8760, 0.01, 1)

88

APPENDIX IIII

Simulation Data Generation Code

89

VB6 Project: prjSimData

Form: FrmSimData

Option Explicit

Private oConn As ADODB.Connection
Private oRS As ADODB.Recordset
Private DataFile As String

Private Sub cmdGenerate_Click()
 Dim FileName As String
 Dim i As Long
 Dim JDay As Double 'Julian Days
 Dim Flow As Double 'Flow in Liters
 Dim Disch As Double 'Discharge in Liters per Second
 Dim Diss As Double 'Dissolution Rate in mm per year
 Dim XArea As Double
 Const FullPassage = 25 'Full Passage is about 24.75

 cdg1.DialogTitle = "Save Output Textfile"
 cdg1.FileName = Mid(DataFile, InStrRev(DataFile, "\") + 1, Len(DataFile) -
InStrRev(DataFile, "\") - 4) & ".txt"
 cdg1.InitDir = App.Path
 cdg1.Filter = "Text (*.txt)|*.txt"
 cdg1.ShowSave
 FileName = cdg1.FileName

 Open FileName For Output As #1
 i = 0
 If Not oRS Is Nothing Then 'make sure the recordset exists
 Print #1, "Julian Day, Dissolution Rate (mm/yr), Wetted X-Secton (m2), Flow (L),
Discharge (L/s)"
 Print #1, "0, 0, 0, 0" 'Line of zeros so that the first real time increment is not ignored in
the program

90

 oRS.MoveFirst 'move to start of recordset
 Do While Not oRS.EOF 'read in data until end of file
 i = i + 1
 JDay = i / 24 'decimal days - presumes records are in hours
 Flow = oRS.Fields(1).Value 'l
 Disch = Flow / 3600 'assumption that # of records is in hours
 Diss = 0.3412 * (1 - Exp(-0.0001168 * Disch))
 XArea = IIf(Disch <= 3500, 0.009284 * Disch + 1.867, FullPassage)
 Print #1, JDay & ", " & Diss & ", " & XArea & ", " & Flow & ", " & Disch
 oRS.MoveNext
 Loop
 Close #1
 End If
End Sub

Private Sub cmdSelect_Click()
 On Error GoTo ErrHandler
 Dim cat As New ADOX.Catalog

 If Not oRS Is Nothing Then
 oRS.Close
 oConn.Close
 DataFile = ""
 txtDataFile.Text = ""
 End If

 cdg1.DialogTitle = "Select Input Data"
 cdg1.FileName = ""
 cdg1.Filter = "*.xls|*.xls"
 cdg1.ShowOpen
 DataFile = cdg1.FileName
 If DataFile = "" Then Exit Sub
 Set oConn = New ADODB.Connection
 Set oRS = New ADODB.Recordset
 oConn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & DataFile &
";" & _
 "Extended Properties=""Excel 8.0;HDR=YES;"""

 Set cat.ActiveConnection = oConn

 oRS.Open "[" & cat.Tables(0).Name & "]", oConn, adOpenStatic, adLockOptimistic
 txtDataFile.Text = DataFile
 Set cat = Nothing
 Exit Sub
ErrHandler:

91

 MsgBox "Error in cmdSelectData_Click: " & Err.Number & vbNewLine &
Err.Description
 Resume Next
End Sub

Private Sub cmdXLS_Click()

 Dim NewRS As ADODB.Recordset
 Dim cat As New ADOX.Catalog
 Dim NewTable As ADOX.Table
 Dim NewCol As ADOX.Column
 Dim i As Long
 Dim JDay As Double 'Julian Days
 Dim Flow As Double 'Flow in Liters
 Dim Disch As Double 'Discharge in Liters per Second
 Dim Diss As Double 'Dissolution Rate in mm per year
 Dim XArea As Double
 Const FullPassage = 25 'Full Passage is about 24.75

'"Julian Day (Days), Dissolution Rate (mm/yr), Wetted X-Secton (m2), Flow (L),
Discharge (L/s)"
 i = 0
 If DataFile = "" Then Exit Sub
 cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" &
DataFile & ";Extended Properties=""Excel 8.0;HDR=YES;"""
 Set NewTable = New ADOX.Table
 NewTable.Name = "SimData"
 Set NewCol = New ADOX.Column
 NewCol.Name = "Julian Day (Days)"
 NewCol.Type = adDouble
 NewTable.Columns.Append NewCol
 Set NewCol = Nothing
 Set NewCol = New ADOX.Column
 NewCol.Name = "Dissolution Rate (mm/yr)"
 NewCol.Type = adDouble
 NewTable.Columns.Append NewCol
 Set NewCol = Nothing
 Set NewCol = New ADOX.Column
 NewCol.Name = "Wetted X-Secton (m2)"
 NewCol.Type = adDouble
 NewTable.Columns.Append NewCol
 Set NewCol = Nothing
 Set NewCol = New ADOX.Column
 NewCol.Name = "Flow (L)"
 NewCol.Type = adDouble
 NewTable.Columns.Append NewCol

92

 Set NewCol = Nothing
 Set NewCol = New ADOX.Column
 NewCol.Name = "Discharge (L/s)"
 NewCol.Type = adDouble
 NewTable.Columns.Append NewCol
 Set NewCol = Nothing
 cat.Tables.Append NewTable
 Set NewRS = New ADODB.Recordset
 NewRS.Open "[SimData]", oConn, adOpenStatic, adLockOptimistic
 If Not oRS Is Nothing Then 'make sure the recordset exists
 oRS.MoveFirst 'move to start of recordset
 NewRS.AddNew 'Line of zeros so that the first real time increment is not ignored in
the program
 NewRS.Fields(0).Value = 0
 NewRS.Fields(1).Value = 0
 NewRS.Fields(2).Value = 0
 NewRS.Fields(3).Value = 0
 NewRS.Fields(4).Value = 0
 NewRS.Update 'save record
 Do While Not oRS.EOF 'read in data until end of file
 i = i + 1
 JDay = i / 24 'decimal days - presumes records are in hours
 Flow = oRS.Fields(1).Value 'l
 Disch = Flow / 3600 'assumption that # of records is in hours
 Diss = 0.3412 * (1 - Exp(-0.0001168 * Disch))
 XArea = IIf(Disch <= 3500, 0.009284 * Disch + 1.867, FullPassage)
 NewRS.AddNew
 NewRS.Fields(0).Value = JDay
 NewRS.Fields(1).Value = Diss
 NewRS.Fields(2).Value = XArea
 NewRS.Fields(3).Value = Flow
 NewRS.Fields(4).Value = Disch
 NewRS.Update 'save record

 oRS.MoveNext
 Loop
 MsgBox "Done"
 Set oRS = Nothing
 Set oConn = Nothing
 Set cat = Nothing
 Set NewRS = Nothing
 End If
End Sub

	Western Kentucky University
	TopSCHOLAR®
	12-2008

	Simulation Modeling of Karst Aquifer Conduit Evolution and Relations to Climate
	John D. Broome
	Recommended Citation

	Microsoft Word - 148000-text.native.1228774808.doc

