
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-2009

Real Time Driver Safety System
Gyuchoon Cho
Western Kentucky University, gyuchoon.cho350@wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Graphics and Human Computer Interfaces Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Cho, Gyuchoon, "Real Time Driver Safety System" (2009). Masters Theses & Specialist Projects. Paper 63.
http://digitalcommons.wku.edu/theses/63

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.wku.edu%2Ftheses%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages


!
!

 
 
 
 
 

REAL TIME DRIVER SAFETY SYSTEM 
 
 
 
 
 
 
 
 
 

A Thesis 
Presented to 

The Faculty of the Department of Mathematics and Computer Science 
Western Kentucky University 

Bowling Green, Kentucky 
 
 
 
 
 
 
 
 
 
 

In Partial Fulfillment 
Of the Requirements for the Degree 

Master of Computer Science 
 
 
 
 
 
 
 
 

By 
Gyuchoon Cho 

 
May 2009   



!
!

 
REAL TIME DRIVER SAFETY SYSTEM 

 
 
 
 
 
 
 
 
 
 
 

      Date Recommended __April 27 / 2009____ 
 
      _Ahmed Emam______________________ 
      Director of Thesis 
 
      _Art Shindhelm______________________ 
 
 
      _Mustafa Atici______________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_____________________________________ 
Dean, Graduate Studies and Research      Date 
  



i!
!

ACKNOWLEDGEMENTS 

 

The first person who I would like to thank is my advisor, Dr. Ahmed Emam.  He 

gave me confidence when I doubted whether I could finish this project and thesis.  

Because he trusted and advised me, I created a new algorithm to find a driver’s drowsy 

eyes.  He has an ability that persuades a student to do the impossible and make it possible.  

I would like to thank my wife, Jungmee Myung, who has supported me to do this thesis 

by taking care of our lovely children, Minseo and Mini, without me.  She helped me 

focused on my thesis.  I also thank many WKU students who participated in this 

experiment.  I needed to collect many eye images when I changed the algorithm.  I 

remember that nobody complained and everybody happily helped me to do this 

experiment.   I would like to thank my committee members, Dr. Art Shindhlem and Dr. 

Mustafa Atici.  They gave me pleasant memories at WKU.  I would like to thank 

Pengpeng Lin for being my best friend.  Special thanks to my parents and siblings in 

Korea.  

! !



ii!
!

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... V 

 

CHAPTER 1: INTRODUCTION ....................................................................................... 3 

1.1 INTRODUCTION TO DRIVER SAFETY SYSTEM ................................................... 3 

1.2 INTRODUCTION TO WEB-CAM PROGRAMMING ................................................ 7 

1.2.1 FUNCTIONS OF VFW .............................................................................................. 8 

1.3 INTRODUCTION TO FACE DETECTION TECHNOLOGY ................................... 22 

 

CHAPTER 2: RESEARCHES ON FACE AND EYE DETECTION .............................. 30 

2.1 INTRODUCTION  ..................................................................................................... 30 

2.2 PRIVIOUS WORKS  .................................................................................................. 30 

2.2.1 BASIC UNDERSTANDING .................................................................................... 32 

2.2.2 HAUSDORFF DISTANCE ...................................................................................... 34 

2.2.3 DEFORMABLE TEMPLATE MATCHING ............................................................ 36 

2.2.4 GEOMETRIC PROPERTIES OF TOPOGRAPHIC MANIFOLD ........................... 40 

2.2.5 EYE LOCATION METHOD USING ORDINAL FEATURES ............................... 42 

2.2.6 SUPPORT VECTOR MACHINES........................................................................... 43 

2.3 FACE DETECTION SOFTWARE DEVELOPMENT KITS ...................................... 45 



iii!
!

2.3.1 OPENCV .................................................................................................................. 45 

2.3.2 VELILOOK SDK ..................................................................................................... 45 

2.3.3 LUXAND FACE SDK ............................................................................................. 51 

2.4 SUMMARY ................................................................................................................ 53 

 

CHAPTER 3: FINDING DROWSY EYES ..................................................................... 31 

3.1 INTRODUCTION ....................................................................................................... 31 

3.2 REAL TIME DRIVER SAFETY SYSTEM ................................................................ 31 

3.2.1 SYSTEM ENVIRONMENT ..................................................................................... 31 

3.2.2 SYSTEM ARCHITECTURE .................................................................................... 56 

3.2.3 FACE DETECTION ................................................................................................. 57 

3.2.4 EXTRACT MODULE .............................................................................................. 62 

3.2.5 PROCESS MODULE ............................................................................................... 64 

3.2.6 SYSTEM INTEGRATION ....................................................................................... 68 

 

CHAPTER 4: EXPERIMENTAL RESULTS .................................................................. 55 

4.1 RESULTS .................................................................................................................... 55 

4.1.1 TIME CONSUMPTION ........................................................................................... 55 

4.1.2 LIGHT INFLUENCE ............................................................................................... 73 



iv!
!

4.1.3 GLASSES INFLUENCE .......................................................................................... 76 

4.1.4 SKIN COLORS ........................................................................................................ 79 

4.1.5 ERROR ON THE SYSTEM ..................................................................................... 82 

 

CHAPTER 5: CONCLUSION AND FUTURE WORK .................................................... 71 

5.1 CONCLUSION ........................................................................................................... 71 

5.2 FUTURE WORK ........................................................................................................ 85 

5.2.1 LIGHT SENSOR ...................................................................................................... 86 

5.2.2 PRE-CALCULATION OF THRESHOLD ............................................................... 87 
 

  



v!
!

 
REAL TIME DRIVER SAFETY SYSTEM 

 
 
Gyuchoon Cho    May, 2009              93 Pages    
 
Directed by: Dr. Ahmed Emam 
 
Department of Computer Science                   Western Kentucky University 
 
 
  

The technology for driver safety has been developed in many fields such as airbag 

system, Anti-lock Braking System or ABS, ultrasonic warning system, and others.   

Recently, some of the automobile companies have introduced a new feature of driver safety 

systems.  This new system is to make the car slower if it finds a driver’s drowsy eyes.  For 

instance, Toyota Motor Corporation announced that it has given its pre-crash safety system 

the ability to determine whether a driver’s eyes are properly open with an eye monitor.  This 

paper is focusing on finding a driver’s drowsy eyes by using face detection technology. 

The human face is a dynamic object and has a high degree of variability; that is why 

face detection is considered a difficult problem in computer vision.  Even with the difficulty 

of this problem, scientists and computer programmers have developed and improved the 

face detection technologies.  This paper also introduces some algorithms to find faces or 

eyes and compares algorithm’s characteristics.   

Once we find a face in a sequence of images, the matter is to find drowsy eyes in 

the driver safety system.  This system can slow a car or alert the user not to sleep; that is 

the purpose of the pre-crash safety system.  This paper introduces the VeriLook SDK, 

which is used for finding a driver’s face in the real time driver safety system.  With 

several experiments, this paper also introduces a new way to find drowsy eyes by AOI, 
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Area of Interest.  This algorithm improves the speed of finding drowsy eyes and the 

consumption of memory use without using any object classification methods or matching 

eye templates.  Moreover, this system has a higher accuracy of classification than others. 
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Chapter 1: INTRODUCTION  

1.1 Introduction to Driver Safety System 

 The technology for driver safety has been developed in many fields such as airbag 

system, Anti-lock Braking System or ABS, ultrasonic warning system, and others.   

Recently, some of automobile companies have introduced another feature of driver safety 

system.  This new system is to find a driver’s drowsy eyes and to make the car slower.  For 

instance, Toyota Motor Corporation announced that it has given its pre-crash safety system 

the ability to determine whether a driver’s eyes are properly open with an eye monitor.  This 

paper is focusing on finding a driver’s drowsy eyes by using face detection technology.   

1.1.1 Driver Safety Technologies 

 Since the car was invented, it brings both advantages and disadvantages.  Not only do 

people travel to another city for a short time but also many companies ship their products 

using an automobile.  As the functions of a car are improved, the progress of civilization is 

elevated and it consequently raises an industrial growth rate as well.  However, people are 

placed in danger by using the car.  The more speed the car has, the more risk comes with it.  

For this reason, scientists have developed driver safety systems.  The technology for driver 

safety has been developed in many fields such as airbag system, ABS, Tire Pressure 

Monitoring System or TPMS, and others.  In this section, several driver safety technologies 

will be introduced.  
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1.1.1.1 Anti-lock Braking System (ABS): 

  An ABS is a safety system which prevents the wheels on a motor vehicle from 

locking while braking. 

  A rotating wheel allows the driver to maintain steering control under heavy braking 

by preventing a skid and allowing the wheel to continue interacting with the road surface as 

directed by driver steering inputs.  While ABS offers improved vehicle control in some 

circumstances, it can also present disadvantages including increased braking distance on 

slippery surfaces such as ice, packed snow, gravel, steel plates and bridges, or anything 

other than dry pavement.  ABS has also been demonstrated to create a false sense of security 

in drivers, who may drive more aggressively as a result.  

  Since initial widespread use in production cars, anti-lock braking systems have 

evolved considerably.  Recent versions not only prevent wheel lock under braking, but also 

electronically control the front-to-rear brake bias.   

1.1.1.2 Air-Bag System: 

  An airbag is a vehicle safety device. It is an occupant restraint consisting of a 

flexible envelope designed to inflate rapidly in an automobile collision to prevent vehicle 

occupants from striking hard interior objects such as steering wheels. 

  The design is conceptually simple; a central ACU or Airbag Control Unit monitors a 

number of related sensors within the vehicle, including accelerometers, impact sensors, side 

pressure sensors, wheel speed sensors, gyroscopes, brake pressure sensors, and seat 

occupancy sensors.  When the requisite “threshold” has been reached or exceeded, the ACU 
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will trigger the ignition of a gas generator propellant to rapidly inflate a nylon fabric bag.  

As the vehicle occupant collides with and squeezes the bag, the gas escapes in a controlled 

manner through small vent holes.  The airbag's volume and the size of the vents in the bag 

are tailored to each vehicle type to spread out the deceleration of the occupant over time and 

over the occupant's body compared to a seat belt alone. 

1.1.1.3 Tire Pressure Monitoring System (TPMS): 

  A Tire Pressure Monitoring System (TPMS) is generally an electronic system 

designed to monitor the air pressure inside all the pneumatic tires on automobiles, airplane 

undercarriages, straddle lift carriers, forklifts, and other vehicles.  The system is also 

sometimes referred to as a Tire Pressure Indication System or TPIS.  These systems report 

real time tire pressure information to the driver of the vehicle -- either via a gauge, a 

pictograms display, or a simple low pressure warning light.  

  TPMS helps to improve vehicle safety and aids drivers in maintaining their vehicle’s 

tire pressures.  Properly maintained tires help with vehicle safety, performance, and 

economy.  In the US, the National Highway Traffic Safety Administration or NHTSA has 

estimated that every year 533 fatalities are caused by tire defects in road accidents.  Adding 

TPMS to all vehicles could avoid 120 of the 533 yearly victims and spare as many as 8,400 

injuries every year. 

  The French Road Safety organization estimates that 9% of all road accidents 

involving fatalities are attributable to tire under inflation, and the DEKRA, Germany’s 

vehicle certification body, estimated that 41% of accidents with physical injuries are linked 

to tire problems.  
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  On the maintenance side, it is important to realize that fuel efficiency and tire wear 

are severely affected by under inflation.  In the US, NHTSA data relates that tires leak air 

naturally and over a year a typical new tire can lose between 20 and 60 kPa. 

  If we also consider that over 40% of vehicle owners in Europe and North America 

check their tires less than once a year, it is conceivable that 40% or more of vehicles 

currently in use in those areas are running with underinflated tires. 

  The European Union reports that an average under inflation of 40 kPa produces an 

increase of fuel consumption of 2% and a decrease of tire life of 25%.  The EU concludes 

that tire under inflation today is responsible for over 20 million liters of unnecessary burned 

fuel, dumping over 2 million tons of CO! in the atmosphere, and 200 million tires 

prematurely wasted in the world. 

  For these safety and environmental reasons, the US Federal Government has 

mandated the use of TPMS, and other countries should follow closely.  The TPMS 

mandated by the US law must warn the driver when a tire is under inflated by as much as 25% 

according to US DOT NHTSA Docket No 2005-20586.  However, since the recommended 

tire pressures for most vehicles are more than 160 kPa, a deflation of 40 kPa would be 

within the 25% allowance and would not trigger the TPMS warning mandated by the US 

law.  Therefore, the mandated TPMS is mainly designed for safety and is unlikely to deliver 

the above benefits.  Drivers are still advised to manually check their tire pressure often to 

maintain optimal performance. 
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1.2 Introduction to Web-Cam Programming 

 This section describes how to get a sequence of images before the explanation of face 

detection technology.  In 1992, Microsoft introduced a multimedia framework called Video 

for Windows, VFW.  According to MSDN, Micro Soft Developer Network, VFW provides 

functions that enable an application to process video data.  This framework covers some 

multimedia techniques such as AVIFile Functions and Macros, Video Compression 

Manager, Custom File and Stream Handlers, DrawDib, and Video Capture.  A programmer 

can implement video capture into an application very easily by using the AVICap window 

class.  AVICap is the class in form of DLL, Dynamic Link Library, which is a module that 

contains functions for the Windows APIs used to capture video from web-cam or other 

devices.  When Windows operating system is installed, AVICap32.dll file is located in 

c:\Windows\System32 folder.  The main functions of AVICap class are following: 

! Capture audio and video streams to an audio-video interleaved file. 

! Connect and disconnect video and audio input devices dynamically. 

! View a live incoming video signal by using the overlay or preview methods. 

! Specify a file to use when capturing and copy the contents of the capture file to 

another file. 

! Set the capture rate. 

! Display dialog boxes that control the video source and format. 

! Create, save, and load palettes. 

! Copy images and palettes to the clipboard. 

! Capture and save a single image as a device-independent bitmap (DIB). 
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1.2.1 Functions of VFW 

  In this section, several functions from VFW API will be demonstrated and segments 

of code will be shown in the C++ programming language. 

  To create capture windows, capCreateCaptureWindow API is used as in the 

following example showing below in segment of code. 

// example to create capture window 

// Returns a handle of the capture window if successful or NULL otherwise. 

hWndC = capCreateCaptureWindow ( 

    (LPSTR) "My Capture Window",  // window name if pop-up  

    WS_CHILD | WS_VISIBLE,         // window style  

    0, 0, 160, 120,                         // window position and dimensions 

    (HWND) hwndParent,            // Handle to the parent window 

    (int) nID /* child ID */);      // Window identifier 

   

  After the application creates a capture window of the AVICap window class and 

connects it to a video driver, the capture window is ready to grasp data.  At this point, the 

application can send the WM_CAP_SEQUENCE message or the capCaptureSequence 

macro to begin capturing. 

  Using default settings, WM_CAP_SEQUENCE initiates the capture of video and 

audio input to a file named CAPTURE.AVI.  Capture continues until one of the following 

events occurs:  

! The user presses the ESC key or a mouse button.  

! An application stops or aborts the capture operation.  
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! The disk becomes full. 

  Once getting a windows handle by using capCreateCaptureWindow, it needs to 

connect to the capture device.  When an application does not need to capture the video any 

more, it needs to disconnect the device from the other application. 

// Connect to the MSVIDEO driver 

// Returns TRUE if successful or FALSE if the specified capture driver cannot be connected to 

the capture window. 

fOK = capDriverConnect(hWndC, 0); 

    // hWndC : handle to a capture window  

    // Index of the capture driver.  The index can range from 0 through 9.  

 

// Disconnect from the MSVIDEO driver 

capDriverDisconnect(hWndC); 

 

  The next step is to find a list of capturing devices so that a user can select one of the 

capturing devices. To get the list of devices, capGetDriverDescription can be used. 

char szDeviceName[80];  // to store device name 

char szDeviceVersion[80];  // to store device’s version 

 

for (wIndex = 0; wIndex < 10; wIndex++)  

{ 

    // Returns TRUE if successful or FALSE otherwise. 

    if (capGetDriverDescription( 

            wIndex,   

    // Index of the capture driver. The index can range from 0 through 9. 

    // Plug-and-Play capture driver are enumerated first, followed by 

    // capture drivers listed in the registry, which are then followed by 

    // capture drivers listed in SYSTEM.INI. 

            szDeviceName,   

    // Pointer to a buffer containing a null-terminated string corresponding 

    // to the capture driver name. 
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            sizeof (szDeviceName),   

    // Length, in bytes, of the buffer pointed to by device name 

            szDeviceVersion,   

    // Pointer to a buffer containing a null-terminated string 

            sizeof (szDeviceVersion)  

    // Length, in bytes, of the buffer pointed to by device version. 

        ))  

    { 

        // Append name to list of installed capture drivers 

        // and then let the user select a driver to use. 

    } 

}  
 

  capDriverGetCaps is to retrieve the driver capabilities.  

// Returns TRUE if successful or FALSE if the capture window is not connected to a capture 

driver. 

capDriverGetCaps(hWndC,  // Handle to a capture window. 

  &CapDrvCaps,   // Pointer to the CAPCRIVERCAPS structure to contain 

      // the hardware capabilities. 

  sizeof(CAPDRIVERCAPS)); // Size, in bytes, of the structure referenced by 

psCaps. 

 

// The capabilities returned in CAPDRIVERCAPS are constant for a given capture driver. 

// Applications need to retrieve this information once when the capture driver is first connected 

to a capture window. 

 

  The following example uses the SetWindowPos function to set the size of the 

capture window to the overall dimensions of the incoming video stream based on 

information returned by the capGetStatus macro in the CAPSTATUS structure. 

CAPSTATUS CapStatus; // Structure defines the current state of the capture window. 

 

// Returns TRUE if successful or FALSE if the capture window is not connected to a capture 
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device. 

capGetStatus(hWndC,  // Handle to a capture window. 

 &CapStatus, //  Pointer to the CAPDRIVERCAPS structure to obtain the hardware 

    // capabilities. 

 sizeof (CAPSTATUS));  // Size, in bytes, of the structure referenced by psCaps. 

 

SetWindowPos(hWndC, NULL, 0, 0, CapStatus.uiImageWidth,  

    CapStatus.uiImageHeight, SWP_NOZORDER | SWP_NOMOVE); 
 

  Each capture driver can provide up to four dialog boxes to control aspects of the 

video digitization and capture process and to define compression attributes used in reducing 

the size of the video data. The contents of these dialog boxes are defined by the video 

capture driver. 

  The Video Source dialog box controls the selection of video input channels and 

parameters affecting the video image being digitized in the frame buffer.  This dialog box 

enumerates the types of signals that connect the video source to the capture card, typically 

SVHS and composite inputs, and provides controls to change hue, contrast, or saturation.  If 

the dialog box is supported by a video capture driver, a programmer can display and update 

it by using the WM_CAP_DLG_VIDEOSOURCE message or the capDlgVideoSource 

macro. 

  The Video Format dialog box controls the selection of the digitized video frame 

dimensions and image-depth and compression options of the captured video.  If the dialog 

box is supported by a video capture driver, a programmer can display and update it by using 

the WM_CAP_DLG_VIDEOFORMAT message or the capDlgVideoFormat macro. 
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  The Video Display dialog box controls the appearance of the video on the monitor 

during capture.  The controls in this dialog box have no effect on the digitized video data, 

but they might affect the presentation of the digitized signal.  For example, capture devices 

that support overlay might allow altering hue and saturation, key color, or alignment of the 

overlay.  If the dialog box is supported by a video capture driver, the programmer can 

display and update it by using the WM_CAP_DLG_VIDEODISPLAY message or the 

capDlgVideoDisplay macro.  The following example shows how to display these dialog 

boxes and their screen shots. 

// Defines the structure of the capabilities of the capture driver. 

CAPDRIVERCAPS CapDrvCaps;   

 

capDriverGetCaps(hWndC,   // Handle to a capture window. 

  &CapDrvCaps,   // Pointer to the CapdriverCap structure 

  // Size, in bytes, of the structure referenced by the pointer. 

  sizeof (CAPDRIVERCAPS));  

  

// Video source dialog box.  

if (CapDriverCaps.fHasDlgVideoSource) 

    capDlgVideoSource(hWndC);  

  

// Video format dialog box.  

if (CapDriverCaps.fHasDlgVideoFormat)  

{ 

    capDlgVideoFormat(hWndC);  

    // Are there new image dimensions? 

    capGetStatus(hWndC, &CapStatus, sizeof (CAPSTATUS)); 

    // If so, notify the parent of a size change. 

}  

  

// Video display dialog box.  

if (CapDriverCaps.fHasDlgVideoDisplay) 

    capDlgVideoDisplay(hWndC); 
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Figure 1: Video source dialog box. 

 

 

Figure 2: Video format dialog box. 

 

  The following example uses the capFileSetCaptureFile macro to specify an alternate 

filename, MYCAP.AVI, for the capture file and the capFileAlloc macro to preallocate a file 

of 5 MB. 

char szCaptureFile[] = "MYCAP.AVI";  // Setting the file name. 

 

//  Return TRUE if successful or FALSE if the filename is invalid or if streaming or  
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// single-frame capture is in progress. 

capFileSetCaptureFile( hWndC,  // Handle to a capture window. 

  szCaptureFile);   // Pointer to the null-terminated string that contains the  

      // name of the capture file to uses. 

capFileAlloc( hWndC,   // Handle to a capture window. 

 (1024L * 1024L * 5)); // Size, in bytes, to create the capture file. 

 

  The programmer can retrieve the current capture format for audio data or the size of 

the audio format structure by sending the WM_CAP_GET_AUDIOFORMAT message or 

the capGetAudioFormat and capGetAudioFormatSize macros to a capture window.  The 

default audio capture format is mono, 8-bit, 11 kHz PCM, Pulse Code Modulation.  When a 

programmer retrieves the format by using WM_CAP_GET_AUDIOFORMAT always use 

the WAVEFORMATEX structure. 

  The programmer also can set the capture format for audio data by sending the 

WM_CAP_SET_AUDIOFORMAT message or the capSetAudioFormat macro to a capture 

window.  When setting the audio format, a programmer can pass a pointer to a 

WAVEFORMAT, WAVEFORMATEX, or PCMWAVEFORMAT structure, depending on 

the specified audio format.  The following example uses capSetAudioFormat to set the 

audio format to 11-kHz PCM 8-bit, stereo. 

WAVEFORMATEX wfex;      // Defines structure of the format of waveform-audio data. 

 

wfex.wFormatTag = WAVE_FORMAT_PCM; // Waveform-audio format type 

wfex.nChannels = 2;              // 2: Use stereo, 1: Use monaural 

wfex.nSamplesPerSec = 11025; // Sample rate, in sample per second (hertz) 

      // Common values: 8.0, 11.025, 22.05 and 44.1 kHz 

wfex.nAvgBytesPerSec = 22050; // Required average data-transfer rate, in bytes per second. 

wfex.nBlockAlign = 2;  // Block alignment, in bytes. 

wfex.wBitsPerSample = 8;  // Bits per sample for the wFormatTag format type. 
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wfex.cbSize = 0;   // Size, in bytes, of extra information appended to 

the  

      // end of the WAVEFORMATEX structure. 

// Returns TRUE if successful or FALSE otherwise. 

capSetAudioFormat(hWndC,  // Handle to a capture window 

  &wfex,    // Pointer to a WAVEFORMATEX structure that defines 

      // audio format. 

  sizeof(WAVEFORMATEX)); // Size, in bytes, of the structure referenced by wfex. 

 

  The CAPTUREPARMS structure contains the control parameters for streaming 

video capture.  This structure controls several aspects of the capture process and allows the 

programmer to perform the following tasks:  

! Specify the frame rate.  

! Specify the number of allocated video buffers.  

! Disable and enable audio capture.  

! Specify the time interval for the capture.  

! Specify whether an MCI device (VCR or videodisc) is used during capture.  

! Specify keyboard or mouse control for ending streaming.  

! Specify the type of video averaging applied during capture.  

 

  This can be retrieved by the current capture settings within the CAPTUREPARMS 

structure by sending the WM_CAP_GET_SEQUENCE_SETUP message or the 

capCaptureGetSetup macro to a capture window.  It can set one or more current capture 

settings by updating the appropriate members of the CAPTUREPARMS structure and then 

sending the WM_CAP_SET_SEQUENCE_SETUP message or the capCaptureSetSetup 

macro and CAPTUREPARMS to a capture window.  
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  The following example uses the capCaptureGetSetup and capCaptureSetSetup 

macros to change the capture rate from the default value, 15 frames per second to 10 frames 

per second. 

CAPTUREPARMS CaptureParms;  // Structure contains parameter that 

controls the streaming 

     // video capture process. This structure is used to get and 

     // set parameters that affect the capture rate, the number of 

     // buffers to use while capturing, and how  

     // capture is terminated. 

float FramesPerSec = 10.0; 

 

capCaptureGetSetup(hWndC,  // Handle to a capture window. 

  &CaptureParms,   // Pointer to a CAPTUREPARMS structure. 

  sizeof(CAPTUREPARMS)); // Size, in bytes, of the structure referenced by  

      // CAPTUREPARMS structure 

 

// Requested frame rate in microseconds. The default value is 66667, which corresponds to  

// 15 frames per second. 

CaptureParms.dwRequestMicroSecPerFrame = (DWORD) (1.0e6 /  

    FramesPerSec); 

 

capCaptureSetSetup(hWndC,  // Handle to a capture window 

  &CaptureParms,   // Pointer to a CAPTUREPARMS structure. 

  sizeof (CAPTUREPARMS)); // Size, in bytes, of the structure referenced by  

      // CAPTUREPARMS structure 

 

  Now, the important part in this section is how to save a file. AVICap, by default, 

routes video and audio stream data from a capture window to a file named CAPTURE.AVI 

in the root directory of the current drive.  It can be specified by an alternate filename by 

sending the WM_CAP_FILE_SET_CAPTURE_FILE message or the 

capFileSetCaptureFile macro to a capture window.  This message specifies the filename; it 
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does not create, allocate, or open the file.  This can be retrieved by the current capture 

filename by sending the WM_CAP_FILE_GET_CAPTURE_FILE message or the 

capFileGetCaptureFile macro to a capture window.  The following example uses 

capCaptureSequence macro to start video capture and the capFileSaveAs macro to copy the 

captured data from the capture file to the file NEWFILE.AVI.    

char szNewName[] = "NEWFILE.AVI"; // Setting the file name. 

 

// Set up the capture operation. 

capCaptureSequence(hWndC);  

 

// Capture. 

capFileSaveAs( hWndC,  // Handle to a capture window. 

  szNewName);  // Pointer to the null-terminated string that contains 

     // the name of the destination file used to copy the file. 

   

  For the face detection purpose, every image in sequence needs to process as a single 

frame.  If a programmer wants to capture a single frame as a still image, he or she can use 

the WM_CAP_GRAB_FRAME_NOSTOP or WM_CAP_GRAB_FRAME message or the 

capGrabFrameNoStop or capGrabFrame macro to capture the digitized image in an internal 

frame buffer.  The programmer can freeze the display on the captured image by using 

WM_CAP_GRAB_FRAME.  Otherwise, use WM_CAP_GRAB_FRAME_NOSTOP. 

  Once captured, the programmer can copy the image for use by other applications.  

The programmer can copy an image from the frame buffer to the clipboard by using the 

WM_CAP_EDIT_COPY message or the capEditCopy macro.  The programmer can also 
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copy the image from the frame buffer to a device-independent bitmap, DIB, by using the 

WM_CAP_FILE_SAVEDIB message or the capFileSaveDIB macro.  

  The application can also use the two single-frame capture messages to edit a 

sequence frame by frame or to create a time-lapse photography sequence.  

  A capture window can send messages to the status callback function while capturing 

video to disk or during other lengthy operations to notify the application of the progress of 

an operation.  The status information includes a message identifier and a formatted text 

string ready for display.  The application can use the message identifier to filter the 

notifications and to limit the messages to present to the user.  During capture operations, the 

first message sent to the callback function is always IDS_CAP_BEGIN and the last is 

always IDS_CAP_END.  A message identifier of zero indicates a new operation is starting 

and the callback function should clear the current status. 

  The following example is a simple status callback function.  

TCHAR gachAppName[] = TEXT("Application Name");  // Application name. 

TCHAR gachBuffer[100];  // Global buffer. 

 

// StatusCallbackProc: status callback function.  

// hWnd: capture window handle.  

// nID: status code for the current status.  

// lpStatusText: status text string for the current status.  

 

LRESULT PASCAL StatusCallbackProc(HWND hWnd, int nID,  

    LPTSTR lpStatusText)  

{  

    if (!hWnd)  

        return FALSE;  

    if (nID == 0) { 
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        // Clear old status messages. 

        SetWindowText(hWnd, gachAppName);  

        return (LRESULT) TRUE;  

    }  

    // Show the status ID and status text.  

    _stprintf_s(gachBuffer, TEXT("Status# %d: %s"), nID, lpStatusText);  

  

    SetWindowText(hWnd, gachBuffer);  

    return (LRESULT) TRUE;  

}   

   

  A capture window uses error notification messages to notify your application of 

AVICap errors, such as running out of disk space, attempting to write to a read-only file, 

failing to access hardware, or dropping too many frames.  The content of an error 

notification includes a message identifier and a formatted text string ready for display.  The 

application can use the message identifier to filter the notifications and to limit the messages 

to present to the user.  A message identifier of zero indicates a new operation is starting and 

the callback function should clear any displayed error messages.  The following example is 

a simple error callback function.  

TCHAR gachBuffer[100]; // Global buffer. 

 

// ErrorCallbackProc: error callback function.  

// hWnd: capture window handle.  

// nErrID: error code for the encountered error.  

// lpErrorText: error text string for the encountered error.  

LRESULT PASCAL ErrorCallbackProc(HWND hWnd, int nErrID, 

    LPTSTR lpErrorText)  

{  

 

    if (!hWnd)  

        return FALSE;  
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    if (nErrID == 0)  // Starting a new major function.  

        return TRUE; // Clear out old errors.  

    // Show the error identifier and text.  

    _stprintf_s(gachBuffer, TEXT("Error# %d"), nErrID);  

 

    MessageBox(hWnd, lpErrorText, gachBuffer,  

        MB_OK | MB_ICONEXCLAMATION);  

    return (LRESULT) TRUE;  

} 

 

  A capture window uses frame callback notification messages to notify the 

application when a new video frame is available.  The capture window enables these 

callback notifications only if the preview rate is nonzero and the streaming capture is not in 

progress.  The following example is a simple frame callback function.  

TCHAR gachBuffer[100];  // Global buffer. 

 

DWORD gdwFrameNum = 0; 

 

// FrameCallbackProc: frame callback function.  

// hWnd:              capture window handle.  

// lpVHdr:             pointer to structure containing captured  

//                         frame information.  

//  

LRESULT PASCAL FrameCallbackProc(HWND hWnd, LPVIDEOHDR lpVHdr)  

{  

    if (!hWnd)  

        return FALSE;  

    _stprintf_s(gachBuffer, TEXT("Preview frame# %ld "), gdwFrameNum++);  

    SetWindowText(hWnd, gachBuffer);  

    return (LRESULT) TRUE ;  

} 
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 As was already mentioned above, recording a video file will be stopped by pressing the 

ESC key, aborting capture operation, or when the disk becomes full.  However, if an 

application supports the estimated size of uncompressed video file, the user may select 

recording time.  Simply, it is easy once a programmer sets up the frame size and frame per 

second.  If the resolution of video is 640 X 480, a frame takes 0.5 Megabyte and fps, frame 

per second, which is 29.  The size of one second video needs 0.5 * 29 = 14.5 MB.  If it 

records 1 hour, it requires 60 minutes * 60 seconds * 14.5MB = 52200 MB that is almost 51 

GB.  Here is the formula to calculate the video size in bytes. 

!"#$%&'( ) (*$+'&( ) ,-. ) /$' 01'# ) .#23 4 5 6 7$+#8(.$9#($:(/;'# 

 If a user adds audio data to captured video the total size of video file will be increased.  

In case of VFW, it usually displays the audio data rate in kilobytes per second.  For example, 

uncompressed stereo 16-bit 44.1 KHz audio has a data rate of 172 kilobytes/second.  The 

formula for audio data in byte is presented in the table below. 

8bit mono  (sec * KHz) /1024 

8bit stereo ((sec * KHz) / 1024) * 2 = 8bit mono * 2 

16bit mono same as 8bit stereo 

16bit stereo (((sec * KHz) / 1024)) * 2) *2 = 8bit stereo * 2 

Table 1: Size of audio data with different format. 

 Total file size with audio data can be expressed below. 

video size + audio size = total file size 

 If the video is compressed, the total file size can be changed like below. 
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(video size / compression ratio) + audio size = total file size 

 Here are some compression ratio tables. 

 Predict left Predict gradient Predict median 

320 x 240 2.18:1 2.27:1 2.34:1 

640 x 480 2.66:1 2.66:1 2.76:1 

Table 2: Huffyuv compression ratio for YUY2 video. 

 size Quality 16 Quality 17 Quality 18 Quality 19 Quality 20 

RGB24  320 x 240 19.96:1 16.37:1 12.66:1 8.14:1 3.03:1 

640 x 480 22.85:1 18.80:1 14.61:1 9.51:1 3.47:1 

YUY2 320 x 240 14.47:1 11.78:1 9.12:1 5.80:1 2.11:1 

640 x 480 16.57:1 13.74:1 10.65:1 6.79:1 2.44:1 

Table 3: PICVideo MJPEG compression for each video type. 

 

1.3 Introduction to Face Detection Technology 

1.3.1 Introduction 

 The definition of the face detection is a computer technology that determines the 

locations and size of human faces in arbitrary images.  This technology was not introduced 

for a long time.  Minority Report, a movie that was released in 2002, is one example. In this 

movie, a pre-crime system in the year 2054 catches future murders.  A suspect must go 

below the radar of the state-of-the art automated city, where every step he or she takes is 
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monitored.  Everybody has to run because people cannot hide.  This movie shows that in the 

future people's identities are recognizable by a system.  But, this is not fiction because this 

system is becoming true.  

 CCTV, Closed Circuit Television, has been improved not only in field of quality of 

image but also by adding many features such as motion detection or face detection.  This 

kind of CCTV is now called smart CCTV or digital surveillance system.  This advanced 

system can capture high definition images and store them digitally.  By this technology, it 

saves time to find data quicker and easier and needs less storage space because it can only 

record when someone is detected.  Like the movie, when a suspect is detected, it records 

video streaming on the hard drive, and it sends alerts to the user via e-mail, SMS, voice 

message, etc.  The police in several countries including Japan and Korea have already 

adapted this system to find suspects.  On January 24, 2009, one homicidal maniac was 

caught by police in Korea.  This suspect killed at least 7 women.  The main key to catching 

this suspect was CCTV.  According to the news, police registered a picture of the suspect 

into the system and received alerts from a digital surveillance system later.  Thanks to this 

technology, it may save others’ lives.   

 Recently, the rate of CCTV installing has increased.  After the 2001 terrorist attack in 

New York and the London bombings in 2005, CCTV has become a part of our society.  

People are caught on video in every place such as airports, buildings, ATMs, parking lots, 

and even vending machines.  It means that the world has been threatened by the terrorist 

attacks.  For this reason many commercial companies and researchers have concentrated on 

this area.  One company, Ex-sight, has created a system called FRS Suspect Detection that is 

an advanced surveillance system.  It can automatically detect faces on-line or off-line using 
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fast acquisition methods.  As face images are detected, FRS Suspect Detection automatically 

alerts for any identified suspects using a variety of interfaces such as SMS, Email, and Web. 

This system working scenario is similar to the ones below. 

! The cameras record and watch online for points of interests. 

! The operator selects the image or video and run it through the system in order to 

enroll or to match a suspect.  

! The system detects if the targets are suspects according to existing watch list.  

! The watch list is located on a shared network database and can be shared between 

several operators or stations.  

! Every operator can work on a different area or camera.  

Key facial recognition and detection features are similar to below. 

! 4 Channels of Face Detection                                                                      

! 2 Channels of Face Recognition                                                                    

! 4 Simultaneous Detection/Recognition per channel, maximum of 16           

! Two separate relays for Facial Detection & Recognition related applications (e.g. 

Access Control) 

! Face Detection Search & Playback                                                                  

! Face Recognition Search & Playback                                                                

! Face Event Recording & Playback                                                                   

! Maximum of 1 Billion faces in the Database                                                        

! Easy integration with third party devices such as Access Control, Biometrics. 

 The following image is an example of a suspect detection program 



25!
!

!

 

Figure 3: Surveillance camera with suspect detection. 

  But, this face detection is not only for professional users any more.  Recently, many 

products use face detection technology and it spreads out into our lives.  Many digital 

cameras and camcorders are now installed with this technology.  In 2004, Fujifilm first 

announced that this company released face-finding cameras.  Nowadays, most camera 

manufacturers sell face detection installed cameras in the market.  In the case of Fuji films, 

this company still put new features into cameras including: 

! Auto focusing 

 Face detection optimizes people pictures by identifying faces and adjusting focus and 

exposure to ensure bright, clear results [3]. 

 

Figure 4: An example image from Fuji. 
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! Red Eye Correction 

 Automatically removes red eye effects often spoiled by flash reflections [3]. 

 

Figure 5: An example image from Fuji. 

! Instantly detect up to 10 faces 

 The advanced Face Detection can simultaneously recognize up to 10 faces in a photo. 

Each priceless expression can be cropped and saved in clear high resolution results [3]. 

 

Figure 6: An example image from Fuji. 

! Couple Timer 

 Couple Timer waits until two faces are close together in the frame [3]. 
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Figure 7: An example image from Fuji.  

 Although Sony included face detection in the camera or camcorder later than others, 

Sony's technology about face detection is remarkable.  Like other companies it contains face 

detection technology functions such as automatically optimizing flash, focus, exposure, and 

white balance.  Sony adds one more function that captures a person’s emotion with Smile 

Shutter. 

 Sony’s Smile Shutter mode takes Face Detection technology one step further. Smile 

Shutter technology helps a user capture those natural smiles, spontaneous reactions, and 

laughs that are often missed because they only last a few seconds.  Simply by selecting the 

subject and the expression and desired smile sensitivity, Smile Shutter technology does the 

rest.  It’s like letting the camera say “cheese” for user.  In the case of camcorders, during 

recording movies and when a person is smiling, they save smile faces into the memory card 

as a still image [4].  

 

Figure 8: An example image from Sony.  
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 The power of Face Detection and Smile Shutter technologies are especially evident 

when the user uses their Adult/Child Priority control to fine-tune whether the camera 

concentrates on grown-ups, children, or both  [4]. 

 

Figure 9: An example image from Sony. 

 Another example of using face detection technology is Toyota's pre-crash safety system.  

Toyota developed an intelligent pre-crash safety system for the automobile industry.  Most 

of the traffic accidents were contributed by the driver's driving attitude.  Toyota has put 

much effort in developing a new vehicle safety system.  A sensitive eye motion camera 

installed in front of the driver seat, in order to detect the upper and lower eyelids, calculate 

how open the eyes are.  This system is able to detect the eyelids movement accurately [5]. 

 

Figure 10: An example image from Toyota.  
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 This pre-crash safety system consist of a camera, milimetre-wave radar, pre-crash brake 

assist, suspension control and pre-crash seatbelt.  The camera and the millimetre wave radar 

detect the position, distance and speed of any obstacle in front of the car even in bad weather 

with poor visibility, working in combination with the Pre-Crash Safety computer which 

monitors vehicle speed, steering angle, and Yaw rate (a vehicle’s angular velocity around its 

vertical axis) inputs to determine if a crash is imminent.  If it is, the system gives an audible 

and visible warning to the driver, retracts the front seatbelts, activates the pre-crash brake 

assist for maximum braking force and applies the brakes to reduce vehicle speed.  Toyota's 

Advanced Pre-Crash Safety system is able to provide early warning of an impending 

collision by detecting when a driver is not looking straight ahead.  This new feature – a 

response to data that suggests that most vehicle accidents are caused by lack of driver 

awareness - uses a camera mounted on the steering column and an image-processing 

computer to detect the orientation of the driver’s face.  If the system reads that the driver is 

not facing forward when it determines that a collision is likely to occur, it will issue a 

warning to help the driver avoid the accident or lessen collision injuries.  This system also 

offers enhanced Pedestrian Detection capabilities to protect vulnerable road users [5]. 

 

Figure 11: An example image from Toyota. 
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Chapter 2: Researches on Face and Eye Detection  

 

2.1 Introduction 

 The human face is a dynamic object and has a high degree of variability that is why face 

detection is considered a difficult problem in computer vision.  Even with the difficulty of 

this problem, scientists and computer programmers have developed and improved various 

face detection technologies.  In this section, this paper introduces several algorithms and 

some researches in the field of face and eye detection.     

2.2 Previous Works 

 Face detection is a necessary first step in all of the face processing systems and its 

performance can severely influence the overall performance of recognition.  Three main 

approaches are proposed for face detection: feature based, image based, and template 

matching. 

 Feature based approaches attempt to utilize some prior knowledge of human face 

characteristics and detect those representative features such as edges, texture, color, or 

motion.  Edge features have been applied in face detection from the beginning (Colmenarez 

& Huang 1996), and several variations have been developed (Fan, Yau, Elmagarmid & Aref 

2001; Froba & Kublbeck 2002; Suzuki & Shibata 2004).  Edge detection is a necessary first 

step for edge representation.  Two edge operators that are commonly used are the Sobel 

Operator and Marr-Hildreth Operator.  Edge features can be easily detected in a very short
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time, but are not robust for face detection in complex environments.  Others have proposed 

texture-based approaches by detecting local facial features such as pupils, lips, and 

eyebrows based on an observation that they are normally darker than the regions around 

them (Huang & Mariani 2000; Hao & Wang 2002).  Color feature based face detection is 

derived from the fact that the skin color of different humans, even from different races, 

cluster very closely.  Several color models are normally used, including RGB (Satoh, 

Nakamura & Kanade 1999), normalized RGB (Sun, Huang & Wu1998), HSI (Lee, Kim & 

Park 1996), YIQ (Wei & Sethi 1999), YES (Saber & Tekalp 1996), and YUV (Marques & 

Vilaplana 2000).  In these color models, HSI is shown to be very suitable when there is a 

large variation in feature colors in facial areas such as the eyes, eyebrows, and lips. Motion 

information is appropriate to detect faces or heads when video sequences are available 

(Espinosa-Duro, Faundez-Zanuy & Ortega 2004; Deng, Su, Zhou & Fu 2005).  Normally 

frame difference analysis, or moving image contour estimation, is applied for face region 

segmentation.  Recently, researchers tend to focus more on multiple feature methods which 

combine shape analysis, color segmentation, and motion information to locate or detect 

faces (Qian & Li 2000; Widjojo & Yow 2002). 

 The Template matching approach can be further divided into two classes: feature 

searching and face models. Feature searching techniques first detect the prominent facial 

features, such as eyes, nose, and mouth, then use knowledge of face geometry to verify the 

existence of a face by searching for less prominent facial features (Jeng, Liao, Liu & Chern 

1996). Deformable templates are generally used as face models for face detection.  Yuille et 

al. (1989) extend the snake technique to describe features such as eyes and the mouth by a 

parameterized template. The snake energy comprises a combination of valley, edge, image 
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brightness, peak, and internal energy. In Cootes and Taylor’s work (1996), a point 

distributed model is described by a set of labeled points.  Principal Component Analysis is 

used to define a deformable model.  Image-based approaches treat face detection as a two 

class pattern recognition problem and avoids using prior face knowledge.  

 It uses positive and negative samples to train a face/non-face classifier. Various pattern 

classification methods are used, including Eigenfaces (Wong, Lam, Siu, & Tse 2001), 

Neural Network (Tivive & Bouzerdoum 2004), Support Vector Machine (Shih & Liu 2005), 

and Adaboost (Hayashi & Hasegawa 2006). 

   

2.2.1 Basic understanding 

 The human face is a dynamic object and has a high degree of variability that is why face 

detection is considered a difficult problem in computer vision.  Several techniques were 

proposed, varying from simple edge-based algorithms to composite high-level approaches.  

Another way for algorithms to be classified is feature-based or image-based algorithms. Erik 

stated that "Many of the current face recognition techniques assume the availability of 

frontal faces of similar sizes," but in reality this assumption may not hold due to the varied 

nature of face appearance and environment conditions such as background. The author 

defined, in general, the face detection problem as given a still or video image and the main 

goal is to detect and localize an unknown number of faces, the common solutions can be 

segmentation, extraction, verification of faces, and facial features. The general classification 

for face detection algorithms is represented in Figure 1. 
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Figure 1: Face detection techniques. 

 Our research is mainly focused on the feature-based approach in Figure 1.  The feature-

based approach can be further divided into three categories.  Low-level Analysis deals with 

the segmentation of visual features using pixel properties such as gray-scale and color.  

Feature analysis is that the locations of the face and facial features are determined.  Active 

shape model is complex and non-rigid feature extraction such as eye pupil and lip tracking.   

 The author mentioned a generalized measuring technique, such as symmetry measure, 

that assigns a magnitude at every pixel location in an image based on the contribution of 

surrounding pixels.  The symmetry magnitude map clearly shows the locations of facial 

features, such as the eyes and the mouth, and can produce a success rate of up to 95% in 

detecting the eyes.  
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 Jeng et al. (S. H. Jeng, H. Y. M. Liao, C. C. Han, M. Y. Chern, and Y. T. Liu, Facial 

feature detection using geometrical face model: An efficient approach, Pattern Recog. 31, 

1998.) proposed a system for face and facial feature detection which is also based on 

anthropometric measures.  In this system, to detect the eye, the algorithm searches for a nose, 

a mouth, and eyebrows.  They used the evaluation function, E, to determine the final most 

likely face candidate weighted by their facial importance with coefficients as shown in the 

following equation 

E= 0.5*Eye + 0.2* Mouth + 0.1*Right_Eyebrow + 0.1*Left_Eyebrow + 0.1*Nose. 

 Finally the author concludes that the face detection is a preprocessor in face recognition, 

and offline processing for face detection technology has reached a saturation point.  

However, accurate detection of facial features, such as the corners of the eyes and mouth, is 

more difficult, and this is still a hard problem to solve. 

2.2.2 Hausdorff Distance 

 One of the famous algorithms for face detection is the Hausdorff distance.  It calculates 

how much two given objects are different from each other.  If all points of one set are close 

to the points of the target set, it matches in the Hausdorff distance.  In computer vision, the 

Hausdorff distance can be used to find a given template in an arbitrary target image.  By 

using an edge detector, a set of images are often pre-processed.  After processing, each 

activated point in the binary image of the template is treated as a point in a set; the shape of 

the template as well as an area of the binary target image is treated as a set of points.  The 

next step is to minimize the Hausdorff distance between the template and some area of the 

target image.  The area in the target image with the minimum value of Hausdorff distance is 
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considered the best candidate for locating the template in the target.  This algorithm is used 

for object detection in given images. [6] 

! Definition 

 Given two finite point sets, A = {a1,  ..., am} and B = {b1, …, bn}, then the Hausdorff 

distance is defined as 

 H(A, B) = max(h(A,B), h(B,A)), where h(A,B) = <1=1 > ?
<$:
@ (/ > AB1 C /B . 

 Hereby h(A, B) is called the directed Hausdorff distance, HD, from set A to B with 

some underlying norm BDB on the points of A and B. 

Let the two-dimensional point sets A and B denote representations of the image 

and the object. Hereby, each point of the set stands for a certain feature in the image, 

e.g. an edge point. The goal is to find the transformation parameters E > F such that 

the HD between the transformed model Tp(B) and A is minimized (see Fig 2). 

The detection problem can be formulated as 

+-G 6 ( "H?I J-HAKK->L
M$:  

 

Figure 2: Model fitting by scaling, translation and rotation. 
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2.2.3 Deformable Template Matching 

 One of the algorithms that extract the eyes in the given image is known as Deformable 

Template Matching.  This new method overcomes the shortcomings of traditional 

algorithms, such as unexpected shrinking of the template and the complexity of the updating 

procedure, while offering higher flexibility and accuracy.  According to Paul Kuo[8], the 

eye features are fitted in a pre-set order to reduce the complexity of the updating procedure 

and increase the flexibility. 

 Accurate eye extraction is a key step for many applications such as model-based human 

face coding, facial expression recognition, human machine interface, biometric 

identification, and our driver safety system.  In this algorithm, it finds and locates one or 

more of the following eye features: pupil, eye contour, upper and lower eyelids, and iris 

rather than simple eye location.  

 Yuille et al. [9] developed a technique using deformable templates to fit the eye features.  

In order to deform their template to properly fit an eye, they employed 11 parameters and 10 

weights to construct a cost function which was then minimized using a steepest descent 

algorithm, combined with a staged updating procedure.  This optimization procedure is 

complex and requires careful initialization.  Including Yuille et al, many researchers found 

the intersections of the upper and lower eyelids and the intercept points of the iris 

circumference and the upper eyelid.  By forcing the eyelid parabolas to pass through these 

points they claim faster and more accurate eye fitting.  Intercept points of the iris 

circumference and the upper eyelid may not exist in the case of wide open eyes. 
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Figure 3: Examples of iris fitting. 

 The pictures above show a 40 x 20 pixel rectangular search region, centred at the PCA 

estimated eye centre.  A circle of variable size is scanned across the search region to find the 

best fit.  The fitting process uses the Intensity Field, the Edge Field and the Radius of the Iris. 

 The Intensity Field for color images can be expressed like below. 

NH=I ;K 6 (OP(Q !RH=I ;K S (TH=I ;K S (AH=I ;K3 

 Where R(x, y), G(x, y), B(x, y) are the intensity values in each R, G, and B color 

channel.  Paul used a Sobel edge operator instead of the Edge Field (x, y) from Yuille’s 

for extracting only the vertical parts of edges.  The reason is that the upper and lower parts 

of the iris are frequently occluded by the eyelids so that only the sides of the iris may be 

visible.  Moreover, only the vertical parts of edges on the sides of the iris may be visible, 

which is the iris boundary.  To avoid the template shrinking to the darkest spot inside the iris, 

an additional size term can be used.  This is the expected Radius of Iris, Rexpected.  The 

preprocessing PCA stage provides the approximate distance between the eyes and Paul sets 

Rexpected to be one-tenth of the eye separation, on the basis of experimental observation.   

 To fit the deformable circle to the iris, this needs to maximize the following function 
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 Acir and Lcir are the area and circumference of the deformable circle.  WI, WE and WS are 

the weighting coefficients associated with intensity, edge and size terms respectively.  

Because 24 bit color image are used in this function, 255 is the maximum value in Intensity 

and Edge Field.  For the best fit, the area of the circle should be dark. A large intensity 

contrast should be present along the circumference and the size of the circle should be close 

to the expected value.  The Rdeform is allowed to vary from 0~2 x Rexprected.   

 A vector, with a length equal to three times of the radius of the iris, and an origin at the 

centre of iris are utilized.  This vector is fitted with an arrow head which subtends a 30º 

angle and has a length equal to the diameter of the iris.  The vector rotates through ±20º with 

respect to the line between the two eye centers.  The arrow head is curved along the iris 

boundary.  If the vector is pointing towards the eye corner, the area enclosed by the arrow 

head should contain only white sclera.  The vector can be represented like below. 
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 The corner templates are incorporated in the calculation of where the vector arrow head 

finds the maximum of the function given below. 
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 S(x, y) denotes the saturation value at pixel coordinate (x, y).  The first term in this 

equation computes the average inverted saturation.  Coefficient P is inserted to encourage 

lower saturation values while penalizing higher saturation values.  The second term searches 

for the maximum value after performing a 2-dimensional convolution, along the vector, with 

the predefined templates.  E+ is the convolved result using the positive gradient template and 

E- is the counterpart.  A scale of jkl is used to reduce the dynamic range to 0 ~ 255. 

   

(A) Pointer 00011   (B) Pointer 02011  

   

 (C) Corner 00011   (D) Corner 02011 

Figure 4: Example of finding eye corners. 

 (A) and (B) show rotating vectors and arrow heads used to find the eye corners. (C) and 

(D) show the vectors and corners that are marked as white dots. 
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2.2.4 Geometric Properties of Topographic Manifold 

 Wang [10] proposes a novel approach to detect and track eyes using geometric surface 

features on topographic manifolds of eye images.  The first step using Geometric Properties 

of Topographic Manifolds is making the face an image as a 3D terrain surface in the joint 

spatial-intensity domain.  Most of all, eye areas are formed intrinsic geometric traits on this 

topographic manifold and hillside-like surround regions.  To apply a terrain classification 

procedure, each location of the manifold can be labeled to generate a terrain map.  Wang 

used the distribution of terrain labels to represent the eye terrain pattern.  To measure the 

distribution similarity between two topographic manifolds, Wang introduced Bhattacharyya 

affinity.  According to the Bhattacharyya kernel, a support vector machine or SVM is 

applied for selecting proper eye pairs from the pit-labeled candidates.   

 After labeling each location that creates a terrain map, a mutual-information-based 

fitting function is defined to describe the similarity between two terrain surfaces of 

neighboring frames, and eye locations are updated for subsequent frames by optimizing the 

fitting function.         

 Using the topographic manifold, Wang said that the appearance variables are eventually 

linked to the surface characteristics of faces in the 3D scene.  Identifying the surface type of 

a certain area of the topographic manifold can help infer the corresponding face region.  Fig 

2-5 shows an example of a face image and the topographic manifold of the eye region and 

the geometric property of the topographic manifold reflects the texture and shape 

appearance of the 2D image. 
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Figure 5: A face image and corresponding 3D terrain surface of the eye region. 

 In this figure, the surface is reversed for better visualization, so the peak denotes the pit 

in the real surface: (a) original face image, marked out by an eye patch with a size of 24 × 

48 pixels; (b) corresponding distribution in the joint spatial-range space with 1152 points; (c) 

continuous terrain surface of the eye patch in the original image; (d) smoothed terrain 

surface of the eye patch using a Gaussian filter with a kernel size of 15 × 15 and ! = 2.5. 

 Wang introduced the Hessian matrix that can be expressed like below. 
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 After applying Eigenvalue decomposition to the Hessian matrix, Wang got 
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 where wO and wV are the Eigenvalues and u1, u2 are the orthogonal Eigenvectors.  A pit 

pixel can be detected when a local minimum gradient BxyHzI {KB is found in the local region.  

In other words, the following conditions must be satisfied. 

B|,H=I ;KB 6 dI wO } `I wV } ` 

2.2.5 Eye Location Method Using Ordinal Features 

 Feng [11] proposes a new eye location method using ordinal features.  According to 

Feng, the advantage of ordinal features is they are very robust to the change of illumination 

and noise, and they can be calculated very fast by the integral image.  It has two steps; first, 

it finds each eye center position using AdaBoost algorithm and Haar-like features.  Then, the 

ordinal features helps to decide the final result.   

 Using AdaBoost detector, it can create a two dimension array R(x, y) like below 

RH=I ;K 6 ~ N$H=I ;K<
$�O , 

 where M is the number of candidate points, and Ii is defined like below 

��HzI({K6( �_((((((((((Hz�z�K
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 where (xi, yi) is the coordinate of each candidate point, and C is the radius of the 

response area.  Then, Feng added evaluation function hk for the ordinal feature detector. 

&�HzI({K6( �_(((((((-���OH=I ;K � ((-���VH=I ;K`((((((((((((((((((((((((((((((((((((((((((��������� 
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 Where Ck1 and Ck2 are mean value of the pixels in two sub-windows, pk is the direction 

of the inequality sign and (x, y) is the coordination of center of the eye region. 

 Feng tested this with 2,800 frontal face images by comparing three methods: 

probability-based method, AAM method proposed by Cootes, and Using Ordinal Features.  

The average locating time can be shown in the table below. 

Method 
Using Ordinal 

Features 
Probability-Based AAM 

Time (ms) 12 25 35 

   

 The author insists that using ordinal features has a similar performance with the 

probability-based algorithm in bad illumination condition and too many noises.  However, 

the eye location method using ordinal features is much faster than other two algorithms.  He 

concludes that proper intermediate features built based on the simple ordinal features can 

achieve better results. 

2.2.6 Support Vector Machines 

 Support Vector Machines, SVM, is an imaged-based face detection technology.  This 

algorithm gets input data while building a model of training phase.  It predicts future data by 

building output a hypothesis function.  According to Michel [12], given a set of labeled 

training examples 

� 6 �H�OI �OKI � I H����K�I �� ( > fCOI Oi 
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 learning systems will find a decision function of the form 

&H=K 6 .%:H� � D � } S�K 

 that yields a label > fC_I_i for a previously unseen example x.  Learning machines 

gather input data into a high dimensional feature space.  To separate embedded input data, 

linear algebra and geometry are used, and they are formulated to make use of kernel 

functions.  This process allows efficient computation of inner products in feature space 

without explicit embedding data.  Kernel function can be expressed like below 

�H=I 9K 6� �H=K D �H9K } 

 where � is a non-linear mapping.  This kernel function in SVM algorithms can find the 

hyper-plane of maximal margin, defined as the sum of the distances.  The non-linear 

functions of the SVM algorithm has a formula like below  

yHzK 6 �� HU¡¢{¢£Hz¢ D zK S (¤K
¥

¦�j
 

 where the ai are Lagrange multipliers of a dual optimization problem. 

  According to Michel [12], the training set is interactively created by the user and 

hence limited in magnitude and that the individual training examples are of constant and 

small size; overhead is low for typical training runs.  This is also aided by the sparseness of 

the SVM solution, manifested by the fact that the numbers of support vectors which define 

the decision surface only increases sub-linearly as more examples are added to the training 

data. 
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  Figure 6: Number of support vectors defining the decision surface as a training set 

size is increased. 

 For this reason, Figure 6 shows that evaluation of an SVM decision function on unseen 

input essentially amounts to checking which of the two subspaces defined by a separating 

hyperplane a point lays in; classification overhead is negligible. 

2.3-Face Detection Software Development Kits 

 There are several libraries or SDKs for helping to develop face detection.  These SDKs 

are mostly support any development environments such as MATLAB, Java, C, C++, C#, 

Pascal, Delphi and even Flash Action script.  In this section, the most famous commercial 

and non-commercial libraries or SDKs will be introduced. 

2.3.1 OpenCV 

 OpenCV is a library of programming functions mainly aimed at real time computer 

vision originally developed by Intel.  It is free for commercial and research use.  Officially 

launched in 1999, the OpenCV project was initially an Intel Research initiative to advance 
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CPU-intensive applications, part of a series of projects including real-time ray tracing and 

3D display walls.  The main contributors to the project included Intel’s Performance Library 

Team, as well as a number of optimization experts in Intel Russia [14]. 

 The creators of OpenCV wrote that “Learning OpenCV puts you right in the middle of 

the rapidly expanding field of computer vision.  The widely used free open-source library, 

this book introduces you to computer vision and demonstrates how you can quickly build 

applications that enable computers to see and make decisions based on the data.”   OpenCV 

provides an easy-to-use computer vision infrastructure along with a comprehensive library 

containing more than 500 functions that can run vision code in real time.  With Learning 

OpenCV, any developer or programmer can get up and running with the framework quickly, 

whether it should build in simple or sophisticated application.  Below is a simple algorithm 

in C++ for face detection. 

// Function to detect and draw any faces that is present in an image 

void detect_and_draw( IplImage* img ) 

{ 

 // Create memory for calculations 

 static CvMemStorage* storage = 0; 

 // Create a new Haar classifier 

 static CvHaarClassifierCascade* cascade = 0; 

 int scale = 1; 

 // Create a new image based on the input image 

 IplImage* temp = cvCreateImage( cvSize(img->width/scale,img->height/scale), 

8, 3 ); 

 // Create two points to represent the face locations 

 CvPoint pt1, pt2; 

 int i; 

 // Load the HaarClassifierCascade 

 cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); 

 // Check whether the cascade has loaded successfully. Else report and error and 
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quit 

 if( !cascade ) 

 { 

  fprintf( stderr, "ERROR: Could not load classifier cascade\n" ); 

  return; 

 } 

 

 // Allocate the memory storage 

 storage = cvCreateMemStorage(0); 

 

 // Create a new named window with title: result 

 cvNamedWindow( "result", 1 ); 

 

 // Clear the memory storage which was used before 

 cvClearMemStorage( storage ); 

 

 // Find whether the cascade is loaded, to find the faces. If yes, then: 

 if( cascade ) 

 { 

 

  // There can be more than one face in an image. So create a growable 

sequence of faces. 

  // Detect the objects and store them in the sequence 

  CvSeq* faces = cvHaarDetectObjects( img, cascade, storage, 1.1, 2, 

CV_HAAR_DO_CANNY_PRUNING, 

          

 cvSize(40, 40) ); 

 

  // Loop the number of faces found. 

  for( i = 0; i < (faces ? faces->total : 0); i++ ) 

  { 

     // Create a new rectangle for drawing the face 

   CvRect* r = (CvRect*)cvGetSeqElem( faces, i ); 

 

   // Find the dimensions of the face,and scale it if necessary 

   pt1.x = r->x*scale; 

   pt2.x = (r->x+r->width)*scale; 
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   pt1.y = r->y*scale; 

   pt2.y = (r->y+r->height)*scale; 

 

   // Draw the rectangle in the input image 

   cvRectangle( img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0 ); 

  } 

 } 

 

 // Show the image in the window named "result" 

 cvShowImage( "result", img ); 

 

 // Release the temp image created. 

 cvReleaseImage( &temp ); 

} 
 

 
Figure 7. Demo of face extraction and finding eye using OpenCV 

 The Haar cascade file is one of the sample scripts that come with OpenCV.  It provides 

functions which can be used to train classifiers for the face detection system.  It is called 

HaarTraining. It makes use of the Haar classifier feature detection and extracts human face 

like regions and passes them back to the Processing program as an array of rectangle 

information. 

2.3.2 VeriLook SDK 

 VeriLook SDK is released by NeuroTechnology.  This SDK is intended for biometric 

systems developers and integrators. It allows rapid development of biometric applications 
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using functions from the VeriLook library, which ensure high reliability of the face 

identification. VeriLook SDK enables 1:1 and 1:N matching modes, simultaneous multiple 

face detection, processing and identification with a comparison speed of 100,000 faces per 

second.  

 

Figure 8. screen shot of VeriLook SDK example program. 

 Here is the list of algorithm features and capabilities from NeuroTechnology website. 

! Simultaneous multiple face processing. VeriLook performs fast and accurate 

detection of multiple faces in live video streams and still images. All faces on the 

current frame are detected in 0.07 seconds, and then each face is processed in 0.13 

seconds.  

! Live face detection. A conventional face identification system can be easily cheated 

by placing a photo of another person in front of a camera. VeriLook is able to 

prevent this kind of security breach by determining whether a face in a video stream 

belongs to a real human or is a photo.  
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! Face image quality determination. A quality threshold can be used during face 

enrollment to ensure that only the best quality face template will be stored into the 

database.  

! Tolerance to face posture. VeriLook has certain tolerance to face posture that 

assures face enrollment convenience: rotation of a head can be up to 10 degrees from 

frontal in each direction.  

! Multiple samples of the same face. Biometric template record can contain multiple 

face samples belonging to the same person. These samples can be enrolled with 

different face postures and expressions, from different sources and in different time 

thus allowing improving matching quality. For example a person could be enrolled 

with and without eyeglasses or with different eyeglasses, with and without a beard or 

a moustache, with different face expressions like smiling and non-smiling, etc.  

! Identification capability. VeriLook functions can be used in 1-to-1 matching 

verification, as well as 1-to-many mode (identification).  

! Fast face matching. The VeriLook 3.2 face template matching algorithm compares 

100,000 faces per second. 

! Compact face features template. A face features template occupies only 2.3 

Kilobytes, thus VeriLook-based applications can handle large face databases.  

Recommended minimal image size 640 × 480 pixels 

Multiple faces detection time 0.07 second 

Single face processing time 0.13 second 

Matching speed 100,000 faces / second 

Size of one record in the database 2.3 Kbytes 

    Table 1: VeriLook SDK technical specifications. 



51!
!

!

2.3.3 Luxand Face SDK 

 Luxand FaceSDK is a face detection and recognition library that can easily be integrated 

into a customer's applications. FaceSDK offers the API, Application Programming Interface, 

to detect a face and facial features, and to match faces 1:1 and 1:N matching is supported. 

Following face detection, the SDK provides the coordinates of 40 facial feature points such 

as eyes, eye corners, eyebrows, mouth corners, and nose tip like Figure 2-9 below. 

 

Figure 9: Example of finding 40 facial feature points. 

 This SDK is supplied as a DLL, a Win32 Dynamic Link Library, and can be used in the 

number of compilers on the Win32 platform. FaceSDK contains interface header files and 

sample applications for Microsoft Visual C++ 6.0/7.0/2005/2008, Microsoft .NET and 

Borland Delphi 6.0/7.0. 

 The FaceSDK library has the following technical specifications 

! Robust frontal face detection 

! Detection of multiple faces in a photo 

! Detection of 40 facial feature points such as eyes, eyebrows, mouth, nose, and face 

contour 

! Detection time: 0.9 seconds 
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! Allowed head rotation: –30~30 degrees of in-plane rotation, –10~10 degrees out-of-

plane rotation 

! Enrollment time: 0.3 seconds  

! Template Size: 90 kb 

! Matching speed: up to 5,000 faces per second 

  This SDK introduces the data type, TFacePosition, which stores the information about 

the position of the face.  The following example source code shows how to declare data 

types.  The xc and yc fields specifies the X and Y coordinates of the center of the face, w 

holds the width of the face, and angle stores the rotations angle of the face in degrees. 

C++ Delphi 

typedef struct {  

 int xc, yc, w;  

 double angle;  

} TFacePosition; 

TFacePosition = record  

 xc, yc, w: integer;  

 angle: double;  

end; PFacePosition = ^TFacePosition; 

 

 FSDK_DetectFace function is used to detect a frontal face in an image and stores 

information about the face position into the data type. 

int FSDK_DetectFace(HImage Image, TFacePosition* FacePosition); 

  // Image: handle of the image to detect the face in. 

  // FacePosition: pointer to the TFacePosition structure to store face information. 

 This function returns pre-defined integer value, FSDK_OK, if it finds a face. Otherwise, 

it returns other integer value to indicate what problems happen such as not found image and 

too small image. Following C++ source code is an example of how to use this function. 
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int img1;    // set integer variable   

TFacePosition FacePosition;   // declare data type 

FSDK_Initialize("");   // initialized face SDK 

FSDK_LoadImageFromFile(&img1, "test.jpg");   // load image file 

FSDK_DetectFace(img1, &FacePosition);   // find face and store face information 

        // print out face information 

printf("face position: %d %d %d", FacePosition.xc, FacePosition.yc, FacePosition.angle); 

 

2.4 Summary 

 In this section, some algorithms and SDKs were introduced.  As mentioned above, there 

are many ways to create and develop face detection applications.  Mostly, non-commercial 

SDKs such as OpenCV need a lot of works to build system than commercial SDKs.  Also, 

there are many differences among commercial SDKs.  For instance, in the case of 

developing faster performances; VeriLook SDK is better than Face SDK because VeriLook 

can match more faces in a given time.  However, if a programmer needs more functions to 

find facial features such as mouth, eyes, eye corners, eyebrows, mouth corners, nose tip and 

etc.  But, none of these SDKs support to find drowsy eyes. This means that SDK helps to 

find a face and some features but other works should be done by a developer.  
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Chapter 3: FINDING DROWSY EYES  

3.1 Introduction 

 Once we find a face in a sequence of an image, the matter is to find drowsy eyes in a 

driver safety system.  The pre-crash safety system, introduced by Toyota, is focused on 

finding how much eye-lids are opened or not.  This system can slow down a car or alert the 

user not to sleep; that is purpose of the pre-crash safety system.  This chapter introduces the 

VeriLook SDK, which is used for finding faces for a driver safety system, and finding 

drowsy eyes using pixel difference algorithm in AOI, Area of Interest.    

3.2 Real Time Driver Safety System 

3.2.1 System Environment 

 In this thesis, VeriLook SDK is selected to detect faces because of its speed.  Moreover, 

IDE, integrated development environment, for this thesis is CodeGear RAD studio that 

includes C++ builder and Delphi 2009.  Delphi is a software development environment for 

Microsoft Windows applications.  It is usually used for the development of desktop and 

enterprise database applications, but it is a general-purpose software development tool 

suitable for most software projects.  Web applications are also possible due to the inclusion 

of several libraries.  The language is suitable for RAD, Rapid Application Development and 

comes with an integrated IDE.  The Delphi products all ship with a large framework called 

VCL, Visual Component Library, including most of its source code.  
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 Third-party components are available on the market as well as tools to enhance the IDE 

or for other Delphi related development tasks such as VeriLook SDK.   

 To get the image, QuickCam Pro by Logitech is used.  For the first time, many sample 

eye pictures from the old versions of webcam could not get a better result because of its bad 

quality.  The following figure shows the bad qualities the samples have. 

Opened Eyes 

Closed Eyes 

 Figure  1: Eye extracted image from old web-cam. 

  Like the picture above, it is too poor to recognize the image itself.  With this quality, the 

system fails most of time because there are too many digital noises in the picture.  Recently, 

the quality of the webcam image has been improved in the market, such as advanced optics 

Lenz by Carl Zeiss, and the autofocus keep images razor-sharp.  Thanks to this technology 

for webcam, it supports HD quality images by using the true two-megapixel sensor.  Even 

these small devices also include face detection technology that keeps the user’s face in the 

middle of the action.  

 

Figure 2: Enhanced quality of web-cam image. 
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3.2.2 System Architecture 

 The system architecture for driver safety system is almost the same as a pre-crash safety 

system by Toyota.  The system work flow is below in Figure 3.   

 

Figure 3: System work flow. 

 The web-cam mounted in front of a driver captures a sequence of images.  The real time 

driver safety system processes a sequence of images to extract face and eye and runs the 

algorithm to find out the status of eyes.  Inside of the real time driver safety system, there are 

two modules, extract and process module, to handle a given sequence of images.  In the 

Figure 4, this diagram shows the hierarchy of real time driver safety system.  For the first 

time inside of the system, it needs to grab a single image frame to find a face because no 

face detection works to movie clip itself.  This means that movie clips or streaming videos 

must be processed to get single image frames.  If a face is not found in the single frame, it 

will grab the next single frame again until the system is terminated or a face is found.  Once 

it finds a face, the next procedure is to execute the extract module that consists of face and 

eye extractions with storing information such as timestamp, extracted both eye images, and 

RGB value of a single image frame.  The process module is the next step to determine the 
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status of each eye.  If this module finds that it is a drowsy eye, it will send an alert to the 

driver; otherwise, it will repeat the steps from the beginning. 

 

Figure 4: The hierarchy of Real Time Driver Safety System. 

3.2.3 Face detection 

 Before extracting eyes and finding the status of the eyes, the system must find a face 

first.  In this section, this paper will introduce how to program using VeriLook SDK in 

Delphi.  Main functions and their descriptions are in Table 1.   
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Functions Description 

CameraManager Show usage of Camera Manager component. 

ConcurrentLicensing Demonstrates usage of concurrent licensing 
functionality. 

CreateMultiFaceTemplate Creates NTemplate that contains multiple face 
templates. 

EnrollImage Demonstrates how to write codes for face 
enrollment to database from a single image. 

EnrollStream Demonstrates how to write code for face 
enrollment to database from stream. 

FindEyes Demonstrates how to write code to find eyes in 
face image. 

FindFaces Demonstrates how to write code to find all faces in 
image. 

Identify Demonstrates how to write code for face 
identification against database. 

MultipleFaceMatching 
Demonstrates how to write code for face 
identification against image containing multiple 
faces. 

TemplateInfo Demonstrates how to write code to get all 
information from biometrical templates. 

Verify Demonstrate how to match two face templates. 

VerifyImages Demonstrates how to match two faces images. 

Table 1: Main functions and description. 

 For the first time, the system must find the available number of web-cam devices to be 

used in this system.  In Delphi, there is called OnCreate event that is executed when an 
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application is about to run.  Usually, this event is used to set initial value for the program.  

Here is a sample to get the list of webcams in OnCreate event. 

procedure TMainForm.FormCreate(Sender: TObject); // OnCreate Event 
var i: Integer;     // for-loop variable 
     camera: TCamera;    // TCamera Object 
begin 
    gCameraMan := TCameraMan.Create;  // creating camera object 
 
    // display result 
    AddToLog('Connected cameras count: ' + IntToStr(gCameraMan.CameraCount)); 
    AddToLog('Found devices:'); 
    for i := 0 to gCameraMan.CameraCount - 1 do 
     begin 
      camera := gCameraMan.GetCameraByIndex(i); 
      AddToLog(camera.GetID, false); 
      FreeAndNil(camera); 
     end; 
end; 

 

 Moreover, the list of web-cams including activated web-cam driver should be released 

from the memory so that other applications can use the web-cam.  OnDestroy event in 

Delphi happens when a program exits by user or malfunction.  

procedure TMainForm.FormDestroy(Sender: TObject);  // OnDestroy event 
 var camera: TCamera; 
     i: Integer; 
begin 
for i := 0 to gCameraMan.CameraCount - 1 do    
 begin 
  camera := gCameraMan.GetCameraByIndex(i); 
  if (camera <> nil) then camera.StopCapturing; 
  FreeAndNil(camera); 
 end; 
 FreeAndNil(gCameraMan); 
 
 Outputfile.Free; 
end; 
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 Once the list of web-cams was provided, it needs to be a converted image into 8-bits 

grayscale image to have face detection performed.  This function can be done by Extractor’s 

detecFace methods consisting of three parameters: image, faces, and face counts. 

! Image: handle to the source image 

! Faces: pointer to an array of NleFace structures of found faces. 

! FaceCount: integer variable that is set to the number of found faces in the image. 

 NleFace structures have two fields that store structure with face rectangle information 

and how confidently the face region was found.  If this system finds at least one face, it will 

call the method, DetectFacialFeature.  This method finds locations of facial feature points, 

and the main purpose of this method is to save the position of each eye.  It has two 

parameters to save the information. 

! Image: handle to the source image. 

! Faces: pointer to the NleFace structure of a face found in the image. 

 When this method is successfully finished, it will return NleDetectionDetails structure 

that brings structure with information about face detection results in a face detection routine.  

When these methods find face and facial features, the system calls the DrawMultiFaces and 

DrawEyes method.  DrawMultiFaces method draws rectangle lines at the face area as much 

as the face counts.  DrawEyes method draws lines between the eyes.  The following 

example is how to use these functions  
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procedure TMainForm.PaintCameraImage(image, rgbImage: Pointer); 
 var Bitmap: TBitmap; 
     faces: TArrayOfTNleFace; 
     facesCount: Integer; 
     details: TNleDetectionDetails; 
begin 
 gExtractor.DetectFaces(image, facesCount, faces); 
 if (facesCount > 0) then 
  details := gExtractor.DetectFacialFeatures(image, faces[0]); 
 Bitmap := TBitmap.Create; 
 PaintImageToTBitmap(rgbImage, Bitmap); 
 // Detecting Eyes 
 if facesCount > 0 then 
 begin 
  DrawMultiFaces(Bitmap, faces, facesCount, true); 
  if (details.EyesAvailable = 1) Then 
    DrawEyes(Bitmap, details.Eyes, true); 
 end 
 else 
 begin 
   isfaceDetected := False; 
 end; 
 PaintBitmapToTImage(image, Bitmap, imgLeft); 
 // Free Bitmap as we don't need it 
 FreeAndNil(Bitmap) 
end; 

 

 If a face and the position of the eye are found using these, it will display its position and 

the application looks like Figure 5.   

 

Figure 5: Screen shot of an application. 
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3.2.4 Extract Module 

 Next step after finding a face is to execute the extract module.  When VeriLook SDK 

finds a face, it only returns faces with a rectangular area and eye position.  Before the 

process module, the system should extract the left and right eye.  Extracting a face is simply 

cropping the rectangular area that is returned by the SDK.  In Delphi, it calls Rect function 

to create a TRect type that represents the rectangle with the specified coordinates.  Face 

extraction uses Rect function to construct parameters for functions that require TRect, rather 

than setting up local variables for each parameter.  Extracting each eye area was determined 

based on experience.  More than 40 people were tested to extract their eyes many times and 

finally the best size of their eyes was determined.  The ratio can be expressed below and 

system workflow as Figure 6. 

 H1) Eye.width = Face.width / 5 

 H2) Eye.height = Face.height / 14 

 

Figure 6: Extracting Face and Eye. 

 Since the system knows the position of each eye, it calls the Rect function again to 

extract eyes.  Below the formula shows how to apply the rectangular area.  
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made by this format, Year_Month_Day_Hour_Minute_Second_Millisecond, so that file can 

have a unique name.  With this file name, it can store 2 eye image files.  For instance, 

adding the prefix “LE_” and postfix “.bmp” is an image for the left eye.  Instead of using the 

prefix “LE_”, the prefix “RE_” is represented for the right eye image file.  Third column and 

Fourth column are the average RGB values for the left eye and the right eye respectively.   

 

3.2.5 Process Module 

 Since SDK does not support to find blinking eyes and once the system gets the eyes, the 

matter is to find whether the driver’s eyes are closed or not.  For the first time, this system 

uses pixel differences of the eyes extract image.  There are two ways to find out. One is to 

get the whole pixel’s average that was saved in text file, and the other is only to calculate 

pixel value of expected cornea positions which is called AOI, Area of Interest.  

 For both algorithms, the basic idea is that when eyes are open, there are a variety of 

pixel values in each eye such as cornea, pupil, iris, and sclera.  However, in the eye area, 

there are only color for skin and eyebrows when the eyes are closed. 

3.2.5.1 Pixel Different Algorithm: 

 Given a picture of the eye area, the system gets red, green, and blue for each pixel, and 

the total value is divided by the number of pixels.  This average value of RGB value for 

each eye is stored in text file.  These have different values each time based on the status of 

the eyes.  Figure 9 shows the sample data with the average of pixel values. 
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Figure 9: Average pixel value of Sample data. 

 In Figure 9, the X-axis is the frame number and Y-axis is the average value of pixels.  In 

this experiment, if the value is higher than 130, the eyes are closed.  The reason is that when 

a person closes his or her eyes, usually there is not much different color distributed.  This 

graph indicates that he or she closed the eyes 3 times during 50 frames.  However, this way 

to finding is not accurate because the value is not constant.  The value depends on the 

conditions such as light, skin color, and quality of image.  So, the threshold value 130 in the 

experiment can be changed due to the environment.  One more disadvantage is that it takes 

so much memory space because the system gets RGB value of whole pixels.  For this reason, 

it also takes so much time to consume. 

 The pseudo code for PDA algorithm is below. 

Pixel-Difference(Images LeftEye, RightEye) 

0 LeftSum, RightSum = 0  

1 for i = 0 to LeftEye.width 

2  for j = 0 to LeftEye.height 

3       LeftSum = LeftSum + (LeftEye[i,j].R + LeftEye[i,j].G + LeftEye[i,j].B) / 3 

4 for i = 0 to RightEye.width 

5  for j = 0 to RightEye.height 

6      RightSum = RightSum + (RightEye[i,j].R + RightEye[i,j].G + RightEye[i,j].B) / 3 
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7 avgL = LeftSum / (LeftEye.width * LeftEye. height) 

8 avgR = RightSum / (RightEye.width * RightEye. height) 

9 display avgL, avgR 

   

 In this case, the expected running time of the algorithm is !(N2).  

3.2.5.2 Area of Interest (AOI) Algorithm: 

 In this algorithm, we shift our concentration to become focusing on pupil position.  The 

idea behind this algorithm is to calculate the expected pupil’s position.  Given a picture of 

the eye area, get the three points of each eye like figure10.   

 

Figure 10: AOI, Three points of each eye. 

 When a driver looks anywhere, his or her pupil is located in at least one of three points.  

However, the pixel RGB values of the three points do not have much difference when a 

driver closes his or her eyes because three points get only the skin’s pixel value.  Calculating 

can be expressed like below.  

1) Max(p) – Min(p) > threshold      Eyes are opened 

2) Otherwise,              Eyes are closed 

 The pseudo code for AOI algorithm is below. 

AreaOfInterest(EyeImage LeftEye, RightEye) 

0 for LeftEye and RightEye do 

1 position X2 = EyeImage.width / 2 

2 positionX1 = positionX2 / 2 
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3 positionX3 = positionX1 + positionX2 

4 positionY = EyeImage.height / 2 

5 SumL1, SumL2, SumL3= 0 

6 create a block for every P1, P2, and P3 as a center and 5 pixel length  

7 numStep = 0 

8 for i = -blockSize to blockSize 

9  for j = -blockSize to blockSize 

10   ++numStep 

11   L1 = LeftEye[positionX1+i, positionY+j].R  

    + LeftEye[positionX1+i, positionY+j].G 

    +LeftEye[positionX1+i, positionY+j].B 

12   L2 = LeftEye[positionX2+i, positionY+j].R  

    + LeftEye[positionX2+i, positionY+j].G 

    +LeftEye[positionX2+i, positionY+j].B 

13   L3 = LeftEye[positionX3+i, positionY+j].R  

    + LeftEye[positionX3+i, positionY+j].G 

    +LeftEye[positionX3+i, positionY+j].B 

14   sumL1 = sumL1 + L1 / 3  

15   sumL2 = sumL2 + L2 / 3  

16   sumL3 = sumL3 + L3 / 3  

17 avgL1 = sumL1 / numStep  

18 avgL2 = sumL2 / numStep  

19 avgL3 = sumL3 / numStep  

20 DiffL = max(avgL1, avgL2, avgL3) - min(avgL1, avgL2, avgL3) 

21 if (DiffL < threshold)  

22  then display “Close” 

23 else display “Open” 

 

 The AOI algorithm expected running time of the complexity is "((N/16)2) where N is 

the number of pixels in the image.  In the comparison with the PDA algorithm, this AOI 
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algorithm scans only expected pupil’s position, while PDA algorithm scans whole entire 

image.  For example, given an eye image, the image will be divided by two vertically then 

be divided by four horizontally to get the three points.  

 From the set of experiments we conducted, it successfully returned the status of the eyes 

when the threshold value is 70.  This means that one of the points in AOI has 70 higher 

value than the other two values, and that higher value is located in his or her pupil.  Figure 

11 shows that it detected the status of the eyes successfully. 

 

Figure 11: Screen shot of process module. 

3.2.6 System Integration 

 To make this system in real-time, extract and process modules are needed for integration.   

A new version of Real-Time Driver Safety System has more options to alert to the user in 

Figure 12. 
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 Figure 12: Real-Time Driver Safety System. 

 When this system saves data, the maximum number of the lines can be defined at the 

“Number of buffer for each eye.”  Because the data is saved as a text file, the system needs 

to limit the record.  Text file can hold up to 64Kb or 65536 Byte, which means that the text 

file can have up to 65,536 characters.  For instance, like above, this system will clear data 

and rewrite data from the beginning when the line of data is met 30,000 lines.  There is a 

check box called “Drowsy Detection mode” that is for selecting the drowsy eyes detection 

mode.  When this is checked, the system will execute the process module in real time.  To 

alert a driver, there are two ways, visual display and audio. 
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Chapter 4: Experimental Results  

4.1 Results 

 During developing this system, about 100 people were tested.  At the beginning, the 

biggest problem this system had was that the sample eye images had bad image quality.  

After we replaced the web-cam, the system could have better accuracy.  In this section, 

several results are introduced by the experiments with time consumption, light, skin color, 

and glasses effect. 

 

4.1.1 Time consumption  

 When the extract and process module is executed, the system creates a data file.  This 

file contains timestamps that represent how much time was needed to get the result through 

the whole process. 

 In this experiment, there are 51 records during 20 seconds with 800 × 600 resolution of 

the web-cam.  Based on the result in Figure 1, this system takes 2.55 frames per second.  

The time, T, field can be calculated using the formula below: 

 T (n) = TimeStamp(n) – TimeStamp(n-1) where n ! 2 
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 Figure 1: Sample data. 

 The average time that stores as single frame and process through Real Time Driver 

Safety System to find the drowsy eyes is 401 milliseconds.  This system sends alert to the 

driver who closed eye for three seconds after this system checks about 12 frames.  However, 

a driver can travel 88 feet per second when he or she drives a car 60 mph.  For the three 

seconds, it will travel 264 feet. 
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Figure 2: Processing Time per Frames. 

4.1.2 Light influence   

 With more than 40 people tested, the system worked fine when it was given by a proper 

threshold value.  This value can be changed depending on the light.   

 Figure 3 and 4 show the influence of the light that can determine proper threshold value.  

In Figure 3, it was tested under the light directly.  With a 70 threshold value, this system 

brings 100 percent accuracy to find drowsy eyes.  However, the second figure was tested in 

an office, which LUX value is usually between 200 and 300.  In this case, 20 is the best 

option for finding drowsy eyes with 97.2 percent accuracy. 
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Figure 3: Result with bright light. 
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Figure 4: Result with poor light. 
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4.1.3 Glasses influence   

 One of the experiments shows how this system works with a person who wears glasses.  

In Figure 5 and 6, it was tested with the same person in an office and the result indicates that 

the glasses did not affect the accuracy of our system too much.  With a person wearing 

glasses, the system determines a 30 threshold value with 97.2 percent accuracy and 20 

threshold with same accuracy without glasses.  When a person wears glasses, the system 

needs a higher threshold value because the glasses reflect the light as shown in Figure 6. 
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Figure 5: Experiment without glasses. 
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Figure 6: Experiment with glasses. 
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4.1.4 Skin Colors   

 Given the same environment, these results show how skin color can affect the real time 

driver safety system.   

 

Figure 7: Effect of white male skin color in system performance. 
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Figure 8: Effect of Indian female skin color in system performance. 
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Figure 9: Effect of white male skin color in system performance. 

 As the three examples of experiments show, skin color is not an important element to 

affect real time driver safety system.  The AOI algorithm in this system has most optimized 

technique with at least 85 percent accuracy if it is given by the proper threshold.  
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  4.1.5 Error on the System  

 The following figure shows that the AOI algorithm cannot find the drowsy eyes in some 

cases.  

 

Figure 10. Error on the system. 
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 In Figure 10, the AOI algorithm has a problem finding drowsy eyes.  Until the 15th 

frame, the system worked properly.  However, from the next frame, this system cannot 

determine not only the best threshold but also the drowsy eyes.  The reason is the Face SDK.  

The SDK should return the center of eyes area, but it returns the wrong position of the eyes 

depending on a person who cannot easily match the face template. 

 When we observed the results in evaluating a sample against its population, the RTDSS 

uses Type I error, also known as a false positive: the error of rejecting a null hypothesis 

(open eyes counted as closed) when it is actually true.  From the above results, the errors are 

representing “Close” when a subject opens his or her eyes. 

 The false positive rate of the threshold value 40, which returns the highest accuracy of 

detecting the drowsy eyes, in Figure 8, is 15 percents by using the formula below. 

§¨©�ª(E«�¬¬®ª(¯¨ª 6 (  °±�ª¯(«§(§¨©�ª(E«�¬¬®ª�
«¨©( °±�ª¯(«§( ª�¨¬®ª(¬ �¨ ²ª�( 

6( °±�ª¯(«§(§¨©�ª(E«�¬®ª�(H²©«�ªK«¨©( °±�ª¯(«§(«Eª ª³(ª´ª� 6 ( ]^` 6 `µ_¶(( 

 



!
!

84!

 

Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

 In this thesis, we have focused on finding a better approach to real time eye tracing and 

detection.  Web-cam resolution was the first challenge and several experiments were 

performed to find out the minimum resolution to handle with web-cam programming. To 

guarantee good quality, the minimum web-cam resolution selected was 800x600 with 15fps.  

Such web-cams are affordable and inexpensive.  

 Three different software development kits were tested and several algorithms were 

implemented using those SDK’s. One SDK was free and open source code (OpenCV) and 

two are commercial (VeriLook, Luxand Face). VeriLook was selected because of its ease of 

use, it accepts different input formats, and provides a higher performance computation than 

the other.  

 There are tons of face detection algorithms and techniques developed and a feature 

based approach was the most promised one for our work.  The scientific pervious work in 

the area recommend to use texture based face detection technique to extract other features 

from the face.  This means that SDK helps to find a face and some features but other feature 

extraction such as eye or nose or mouth needs to be done by a developer. 

 In this work, a novel approach to extract the eye area from the rectangular face area is 

developed using the empirical results from several experiments were achieved through over 
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40 subjects.  The ratio between length and width of rectangular face from Verilook SDK 

was the main idea behind the extraction eye area algorithm.   

 Pixel Different Algorithms for detecting drowsy eyes did not perform well and did not 

achieve reasonable accuracy.  A novel approach for eye detection and feature extraction is 

developed called Area of Interest (AOI) algorithm.  AOI algorithm achieved high accuracy 

of detecting drowsy eye, at least 85%, and it is up to 99% depending on a tester and the 

surrounded environment.  It also is not affected by skin color, light, and obstacles such as 

glasses.  In case of process speed, it is faster than other algorithms because AOI algorithm 

does not use any template matching or object classification technique.   

 There were almost 100 people tested with this system.   During the test, we set several 

threshold values to decide proper value.  The experiments showed that, the best threshold 

value occur between 20 and 40, in the closed indoor area and 70 and 90 outside door area.  

 

5.2 Future Work 

 This system should be installed in the car for the driver’s safety.  One of future works is 

loading this system into the embedded system, which can be also cooperated with the field 

of automobile mechanics.  So, it can finally slow the car or alert to the driver when he or she 

is sleeping.   

 This system must have proper threshold value to find the driver’s drowsy eyes.  There 

are two ways to find the proper threshold value in the future.  One solution is using a light 
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sensor to get the current LUX value.  The other way is calculating the threshold value with 

previous frames. 

5.2.1 Light Sensor  

 In this thesis, there is an assumption that this system pre-installed the light sensor so that 

it will return proper threshold value.  The threshold value will be high if the driver drives a 

car in the sunny day.  To determine the proper threshold value automatically, this system 

must be installed with a light sensor. 

 

Figure 1: LEGO MINDSTOMES light sensor. 

 The LEGO MINDSTOMES light sensor detects ambient light that is better to get the 

LUX value of surroundings.  Frank Angeli[13] describes the LEGO light sensor below. 

“There is a common operation on LEGO light sensors that 

involves removal of the LED. The belief is; If the LED is removed, 

then the sensor works better as an ambient light sensor. I have 

simulated the LEGO light sensor circuit with and without the LED to 

quantify the effect. The plot below shows the Light reading that 

would be made by the RCX over a wide range of ambient light levels. 

Notice that with the LED the Light reading never goes to 0. Not 

because the LED shines on the phototransistor, but simply the way the 
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LED biases the circuit. When the LED is removed it takes a little 

more light to make the sensor start to read anything but 0, but then it 

operates over the same light level range as before. Conclusion: 

Removal of the LED creates a sensor with more resolution (0 to 100) 

vs (20 to 100) while slightly losing low light level sensitivity and 

losing the ability to use it as a reflective sensor.” 

 

Figure 2: Ambient Light Level vs. Light Reading. 

 The short term goal for this project is to add the light sensor so that it is not necessary to 

change threshold value manually.  Finally, the long term goal is to build this system into the 

embedded system. 

 

5.2.2 Pre-Calculation of Threshold 

 When a driver starts the engine and drives the car for a short time, this system will keep 

calculating best threshold value.  Usually, a driver begins to sleep when he or she drives the 

car for a long time.  This system will store the eye status of each threshold values in order to 

get its proper value.  For instance in Figure 8, during 36 frames, if threshold value is 20, it 
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always returns “OPEN.”  Moreover, it returns all “CLOSE” when threshold value is 60.  

The median value of all “OPEN” and “CLOSE” can be a proper threshold value.   

 In this example,  

·©©(¸Eª (¹¯ª�¹«©³ S ·©©(º©«�ª(¹¯ª�¹«©³
^ 6 ^` S »`

^ 6 ¼`!

 In the Figure 8 in Chapter 4, if threshold value is 40, the accuracy of this system is 91.7 

percent, which is the highest value than other values. 

 Here is the scenario for future work.  When a time system finds drowsy eyes, it will 

store the result with several threshold values.  The system then decides the proper threshold 

value using the formula above.  In the future, this system needs to be implemented using this 

scenario and tested with samples in real-time.  If this scenario works, the system does not 

need the extra cost of light sensors.  It will also save memory space for the sensor.  

 



!
!

89!

 

APPENDIX 

1. Source Code of Pixel Different Algorithm (Object Pascal-Delphi) 
function TMainForm.getPDA(img: TImage): double; 
var 
  i, j : integer; 
  tmpcolor : TColor; 
  r, g, b : word; 
  tmpdouble1 : double; 
  tmpint : integer; 
begin 
  tmpint := 0; 
  tmpdouble1 := 0; 
  for i := 0 to img.Width-1 do 
  begin 
    for j := 0 to img.Height -1 do 
    begin 
      inc(tmpint); 
      tmpColor :=  img.Canvas.Pixels[i,j]; 
      r := GetRValue(tmpColor); 
      g := GetGValue(tmpcolor); 
      b := GetBValue(tmpcolor); 
      tmpdouble1 := tmpdouble1 +((r+g+b) / 3); 
    end; 
  end; 
 
  result := (tmpdouble1 / tmpint); 
end; 
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2. Source code of Area of Interest (Object Pascal-Delphi) 
procedure TMainForm.runAOI; 
var 
  x, y : Integer; 
  posX1, posX2, posX3 : Integer; 
  posY : Integer; 
  I, J : Integer; 
  tmpColor : TColor; 
  r, g, b : word; 
  diffL, diffR : integer; 
  sumL1, sumR1, sumL2, sumR2, sumL3, sumR3 : Integer; 
  numOfStep : integer; 
begin 
  posX2 := ImgLeftEye.Width div 2; 
  posY := ImgLeftEye.Height div 2; 
  posX1 := posX2 div 2; 
  posX3 := posX1 + posX2; 
 
  sumL1 := 0; 
  sumR1 := 0; 
  sumL2 := 0; 
  sumR2 := 0; 
  sumL3 := 0; 
  sumR3 := 0; 
  numOfStep := 0; 
  for I := -5 to 5 do 
  begin 
    for J := -5 to 5 do 
    begin 
      inc(numOfStep); 
      tmpColor := ImgLeftEye.Canvas.Pixels[posX1+I, posY+J]; 
      r := GetRValue(tmpColor); 
      g := GetGValue(tmpColor); 
      b := GetBValue(tmpColor); 
      sumL1 := sumL1 + ((r+g+b) div 3); 
 
      tmpColor := ImgRightEye.Canvas.Pixels[posX1+I, posY+J]; 
      r := GetRValue(tmpColor); 
      g := GetGValue(tmpColor); 
      b := GetBValue(tmpColor); 
      sumR1 := sumR1 + ((r+g+b) div 3); 
 
      tmpColor := ImgLeftEye.Canvas.Pixels[posX2+I, posY+J]; 
      r := GetRValue(tmpColor); 
      g := GetGValue(tmpColor); 
      b := GetBValue(tmpColor); 
      sumL2 := sumL2 + ((r+g+b) div 3); 
 
      tmpColor := ImgRightEye.Canvas.Pixels[posX2+I, posY+J]; 
      r := GetRValue(tmpColor); 
      g := GetGValue(tmpColor); 
      b := GetBValue(tmpColor); 
      sumR2 := sumR2 + ((r+g+b) div 3); 
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      tmpColor := ImgLeftEye.Canvas.Pixels[posX3+I, posY+J]; 
      r := GetRValue(tmpColor); 
      g := GetGValue(tmpColor); 
      b := GetBValue(tmpColor); 
      sumL3 := sumL3 + ((r+g+b) div 3); 
 
      tmpColor := ImgRightEye.Canvas.Pixels[posX3+I, posY+J]; 
      r := GetRValue(tmpColor); 
      g := GetGValue(tmpColor); 
      b := GetBValue(tmpColor); 
      sumR3 := sumR3 + ((r+g+b) div 3); 
    end; 
  end; 
 
  sumL1 := sumL1 div numOfStep; 
  sumL2 := sumL2 div numOfStep; 
  sumL3 := sumL3 div numOfStep; 
  sumR1 := sumR1 div numOfStep; 
  sumR2 := sumR2 div numOfStep; 
  sumR3 := sumR3 div numOfStep; 
 
  diffL := Max(Max(sumL1, sumL2), sumL3) - Min(Min(sumL1, sumL2), sumL3); 
  diffR := Max(Max(sumR1, sumR2), sumR3) - Min(Min(sumR1, sumL2), sumL3); 
 
  if cbDetectDrowsy.Checked then 
  begin 
    if (diffL < StrToInt(spThreshold.Text)) and (diffR < StrToInt(spThreshold.Text)) then 
    begin 
      if cbBeep.Checked then Beep; 
      eyeStatus.Color := clRed; 
      eyeStatus.Caption := 'DROWSY EYES'; 
    end 
    else 
    begin 
      eyeStatus.Color := clBlue; 
      eyeStatus.Caption := '  '; 
    end; 
  end; 
 
  Chart1.Series[0].Add(diffL, '', clRed); 
  Chart2.Series[0].Add(diffR, '', clBlue); 
 
  ImgLeftEye.Canvas.Rectangle(PosX1-1, PosY-1, posX1+1, posY+1); 
  ImgLeftEye.Canvas.Rectangle(PosX2-1, PosY-1, posX2+1, posY+1); 
  ImgLeftEye.Canvas.Rectangle(PosX3-1, PosY-1, posX3+1, posY+1); 
  ImgRightEye.Canvas.Rectangle(PosX1-1, PosY-1, posX1+1, posY+1); 
  ImgRightEye.Canvas.Rectangle(PosX2-1, PosY-1, posX2+1, posY+1); 
  ImgRightEye.Canvas.Rectangle(PosX3-1, PosY-1, posX3+1, posY+1); 
end; 
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