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Kelton 1

A ti Iing IS a collection of closed subsets 't={'t 1 , 't 2 , ... } of

the plane such that 't covers the plane and the interiors of

the sets 't 1 , 't 2 ,... are pairwise disjoint. The sets 't 1 , 't 2 ,... are

called ti I es 1. Tilings have been used for centuries in mosaics

and architecture; they form a bridge between art and

mathematics. However, due to their intricacy and complexity,

the mathematical study of tilings proves extremely difficult

unless we impose severe restrictions on their properties.

A monoltedral tiling is a tiling in which all the tiles

are congruent to a single tile, called the prototile of the

tiling. A regu lar tiling IS a monohedral tiling in which the

prototile is a regular polygon 2
. The only shapes that yield a

regular tiling are the triangle, square, and hexagon 3 (Figure

1 ).

I
I
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Figure 1. The three regular tilings.

An. open question of interest IS how to generate a regular

tiling using a subset of the tiling. Given a regular tiling 't, we

define an ani 111 a 1 to be a finite collection of tiles of 't 4. A

tiling 't, or a closed subset 't ~ 't, is re ti led by an animal X if

it can be partitioned by rigid motions of X. The question

becomes, given an animal X of n tiles, is it possible to retile
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Kelton 2

the tiling with X? For a square tiling, this is always possible

for n~4, and is generally not possible for n~65. Likewise

every animal X will retile a hexagonal tiling for n~3, but not

every animal will retile for n~6 (Figure 2).

Figure 2. A 6-celled

animal that does not

retile the plane.

In the tilings discussed thus far, all the tiles were

"equal" in the sense that there was no distinguishing property

to differentiate between the tiles. The notion of "color"

presents just such a property. How does this differentiation

affect the retiling of the plane? Is it possible to apply

methods of retiling noncolored tilings to this problem? The

focus of this study is the retiling of the colored hexagonal

tiling H (Figure 3). For the purpo~e of simplification, the

research has been limited to methods of retiling by translations

only.

- -- ---- - - -



Kelton 3

Figure 3. The colored hexagonal tiling H.

1. Definitions

Let X be an animal in a tiling, and let T be a set of

translations of the tiling. Then T is a s Ii d e of X if X retiles

the plane under the translations T. The fo c u s of X, denoted

F(X), is the set of all slides of X.

A pol y hex P is an animal in a hexagonal tiling. The

corresponding term for a square tiling is a b10 c k. Any animal

which retiles its tiling using translations only is a generator

of the tiling.

In the colored hexagonal tiling H the ratio of gray tiles

to white tiles is 1:3; any generator of H must exhibit this

same ratio. Note also that the coloring of H divides it into

--

---------.--



For a polyhex P to be a generator it IS necessary that P

contains at least one gray hex, and that each translation of P

maps a gray hex to another gray hex. Translating P In this

fashion also implies that any hex of A j IS mapped to another

A 3

The aXIS systems A o ,AI ,A 2 ,A 3

Kelton 4

(Figure 4), where Ao

Az

Figure 4.

four aXIS systems A 0 ,A 1 ,A 2 ' and A 3

represents the set of gray hexes.
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Kelton 5

hex of Ai. Thus for P to be a generator of the tiling, it is

not sufficient for P to exhibit a ratio of three white hexes to

each gray hex; more specifically, it must contain equal

numbers of hexes from each axis system Ai for j=O,1,2,3. A

4 n -It e X IS a polyhex consisting of n hexes from each of the

aXIS systems Ao ' AI' A
2

, andA
3

• Given a 4n-hex P, we

define Pj by Pi = pnAi for each j=O,1,2,3. Note that for P

to be a generator of H, Pi must be, a generator of Ai' The

converse is true only under certain conditions, which will be

presented later.

2. The Square Tiling

Observe that Ai' for each j=O,l,2,3, is isomorphic to

the integer lattice. This relationship yields the following

notation.

Let h represent the translation which maps a hex of Ai

to a horizontally adjacent hex of Ai' and let v represent the

translation which maps a hex of Ai to a vertically adjacent hex

of A j . If t=hxv y IS a translation of H, then t=(x,y).

Similarly, let h' be the unit horizontal translation and v

the unit vertical translation of the square tiling. If

( = (h') x (v')Y IS a translation of the square tiling, then

t'=(x,y).

Let p and q be animals in a square or hexagonal tiling

such that t(p )=q for some translation t= (x,y). Then

p+(x,y) = q, or equivalently, q-p = (x,y).
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Kelton 6

The equivalence relation correspondence, denoted =, is

defined on the set of translations of the plane as follows. By

definition, h=h' and v=v'. Let t and ( be translations of a

hexagonal and square tiling, respectively. Then t=.( if and

only if t=(x,y) and t'=(x,y).

The problem of retiling Aj for a gIven J IS now reduced

to the problem of retiling the square tiling, as presented in

the following theorem. Recall that F(X) denotes the focus of X.

Theorem 2.1 Let P be a 4n-hex. For each j=O,1,2,3, let

Bj represent an n-block in Z2 that is an isomorphic Image of

p. Then:
)

1) F(P j ):::: F(B j ) for each j=O,1,2,3.

2) F(P) = n F(P j ) == n F(B j ).

Proof. Observe that for each j=O,1,2,3, A j IS isomorphic to

Z2. Thus T is a slide of P j in A j if and only if T is a slide of

Xj in Z2. So F(Pj)=F(B j) for each j=O,1,2,3.

Clearly if T is a slide of P, then T must be a slide of P j

In A j for each j=O,1,2,3. Furthermore, for P to retile the

plane by translations, it IS necessary that P j retile A j for each

j. Hence T is a slide of P if and only if T is a slide of P j in

A j for each j. Thus F(P) = nF(P j ) = nF(B j). 0

This relationship is. particularly helpful when considering

uniform 4n-hexes. A 4n-hex P is un ito rm if there exists a

translation of A j onto Ak that maps P j onto Pk for each

- - --- - --- ----
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Corollary 2.2 Let P be a uniform 4n-hex. Then P IS a

generator of H if n~2.

o~j,k~3. Each polyhex P j ~ P IS thus isomorphic to a fixed

block B in the square tiling.

Figure 6. A 3-block that does

not retile the square tiling

using translations only.

Figure 5. A

uniform 8

hex.

This result naturally follows from Theorem 2.1 upon observing

that all 1-blocks and 2-blocks are generators (that is, they

retile by translations only) of the square tiling. For n~3,

there exists an n-block that will not retile the square tiling

using translations only (Figure 6).
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Kelton 8

3. Well-Behaved Generators

It is clear that any 4-hex retiles the colored hexagonal

. tiling H; this can be directly inferred from Corollary 2.2. It is

easily seen that the slide T of a 4-hex P forms a group with

respect to composition. This property is useful in the study of

larger generators. It is possible not only to construct a 4n-hex

generator for any natural number n, but also to derive other

generators from it.

An animal generator X is we 11- be h a ve d if there exists

a slide T of X that forms a group with respect to composition.

The slide T is then called a slide group. The co re of a

generator. X, denoted C(X), is the set of all slide groups T

such that X retiles under T. In other words,

C(X) = {TE F(X) : (T,o) is a group}.

It is important to note that any group of translations

acting on· the plane is isomorphic to .8 X .8. Thus for any well

behaved 4n-hex generator with slide group T, T:=::::.8 X .8.

However, not all 4n-hex generators are well-behaved; for

example, the 8-hex in Figure 5 is a l1'on well-behaved

generator of H. It may be determined if a 4n-hex P is a

well-behaved generator of the tiling by observing the behavior

of its components P j .

Theorem 3.1 A 4n-hex P IS a well-behaved generator if

and only if

1) P j IS a well-behaved generator of A j for all

j=O,1,2,3; and

---==~ ---------~ ----------- ---_._---
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2) nC(P j ) ~ 0 .

Furthermore, C(P) = nC(P j).

Proof. Suppose P is well-behaved. Then clearly

nC(P j) = C(P) ~ 0. Furthermore, since P retiles the plane under

a slide group T, then P j must retile A j under T for each

j=O,1,2,3. So by definition, P j is a well-behaved generator of

Aj .

Suppose P j IS well-behaved for each j, and nC(P j ) ~ 0.

Let T E nC(P j ); then P retiles the plane under T. Thus

rC(PV c C(P).

Likewise, if P retiles the plane under a slide group T,

then P j retiles A j under T for each j=O,1,2,3. By definition

T E nC(P j). Hence C(P) ~ nC(P j). 0

Combining the results of Theorems 2.1 and 3.1 leads to

the following condusion.

Corollary 3.2 A 4n-hex P IS a well-behaved generator if

and only if

1) B j IS a well-behaved generator of the square tiling for

all j=O,1,2,3; and

2) nC(B j ) ~ 0 .

It follows that C(B) = nC(B j ).

Thus a 4n-hex generator of the tiling may be constructed

for any natural number n. A fundamental 4-hex F is

--- ~-- -~-~-- ~----- - -- -- -- - - - ---
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Figure 7. A fundamental 4

hex.

The fundamental 4n-hex F4n presents a well-behaved

4n-hex generator of H for any natural number n. However, it

may also be used to construct other well-behaved generators.

a well-behaved generator of H for anyF4n
IS3.3Theorem

natural number n.

Proof. Since F4n is uniform for any n, it suffices to observe

the behavior of the gray hexes F~n. This corresponds to a

block B of n horizontally adjacent squares In a square tiling. It

is easily seen that the block B retiles the tiling under the

slide group T = <(n,O ),( 0,1). B is a well-behaved generator

of the square tiling; thus from Corollary 3.2 it follows that

F4n is a well-behaved generator of H. 0

4n
pictured in Figure 7. A fundamental 4n-hex F consists of

n horizontally adjacent fundamental 4-hexes. This provides a

well-behaved 4n-hex generator for any positive integer n.
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4. Derivation and Equivalency of Generators

Let P be a well-behaved 4n-hex generator under the

slide group T. Then Q is a derivation of P under T if there

exist polyhexes Sj In P such that Q = p\(u Sj ) u (ut j (Sj ))

for some translations t JET. That is, a collection of hexes P' cp

is replaced by hexes that were previously retiled by P'. This

produces another well-behaved generator of the tiling.

Theorem 4.1 Let P be a well-behaved 4n-hex generator

under the slide group T, and let Q be a derivation of P

under T. Then Q retiles the plane by the translations T.

Proof. Label the hexes of P as PI ,P2 , ... ,P4n' where

Pnj+1, ... ,Pnj+nE A j . Then label the hexes of Q as ql ,... ,q4n' by

Qnj+k=tnj+k(Pnj+k), j=O,l,2,3, where tnj+k E T is the translation

which maps Pnj+k to qnj+k· Since Q is a derivation of P, this is

a one-to-one correspondence.

Let RE A j for any j=O,l,2,3. Since P retiles the plane

by T, there exists a translation U E T such that U (Pnj+k) = R

for some k, 1 ::::::k::::::n. Since qnj+k= tnj+k(Pnj+k), R may also be
-1 .

covered by U otnj+k (qnj+k). T IS a group; therefore
-1

u otnj+k E T. This holds true for all hexes R in A j for any J.

Thus Q retiles the plane by the translations T. 0

----------- - - - -~- - - - --- -
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This definition of derivation defines an equivalence

relation on the set of well-behaved 4n-hexes. Given well-

polyhex P, and let Q be derived· from P using the collection

.behaved 4n-hexes P and Q, Q is equivalent to P mod T,

denoted Q = P mod T, if Q is derived from P under T. Note

Theorem 4.2 Let P be a well-behaved 4n-hex generator

with core C(P). If Q is derived from P USIng only translations

tjEnC(p), then C(P)cC(Q).

2 1 211 2 1
1 2

,'.'.'l..'.'~

1 2~~'t-...~

2 1 211 2 1

(c)1 2 1 2 1 2

1 2 ~ ,'-J>..: 1 2'0-.'''' ~
1 2 1 2 1 2

Let C(P)={T1 , ... ,Tm } be the core of a well-behavedProof.

two retiling groups illustrated

in (b) and (c).

Figure 8. (a) The fundamental (Ii)
8-hex F 8 retiles under the

that Q = P mod T if and only if T E C(P) n C(Q). If C(P) = C(Q),

then P and Q are equivalent, denoted P=Q.

It is possible that a well-behaved generator P may retile

the plane under two or more nondisjoint slide groups (Figure

8). This case presents another interesting property.

I
I
I
I
I
I
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I
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of translations T c nC(P). Then for each Tk E C(P), Q is derived

from P under Tk . From Theorem 4.1 it follows that Q retiles

the plane under Tk . Thus Tk E C(Q) for all Tk E C(P). Therefore

C(P) c C(Q). 0

Note that this does not imply that C(Q)c C(P)! A

counterexample is presented in Figure 9.

p Q

Figure 9. First note that P IS a well-behaved generator of H,

SInce it retiles H under the group T= <(2,0),(1,1».

Q may be derived from P by translating the hex p to

the hex q. All the slides of P contain this translation. The hex

q must be retiled by the hex p, SInce retiling q by r leads to

overlap. Thus Q is derived from P under the translation

t E nC(p); hence C(P) ~ C(Q).
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genera tors.

5. The Periodic Strip

However, C(P) is clearly not equal to C(Q). Q retiles the

plane under the additional group T'=( (2,0),(0,1), whereas

P does not.

An aX1S 1 of A j IS a line which passes through the

centers of at least two hexes of A j . A hex IS said to lie 0 n

1 if I passes through its center. A strip is the set of all

hexes of Ai that lie on an axis 1. Let I be an axis of Ai for

some j=O,1,2,3, let p and q be distinct hexes of Ai that lie

1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 2 3 ~~" ~ 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

Figure 10. The retiling of a

square tiling by a horizontal

connected 3-block.

An example of a method for retiling the square tiling by

a 3-block is pictured in Figure 10. Each square o~ the tiling IS

numbered according to which square of the block retiled it, so

that the resulting pattern may be seen. Note that the rows

are retiled periodically with a period of 3. The columns are

retiled in a periodic fashion as well, with a period of 1. This

property is also common to well-behaved generators of A j ,

and proves a useful tool In constructing larger 4n-hex

I
I
I
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on I, and let t be the translation such that t(p) = q. Then p

and q are 1- ad j ace n t if the strip 1 can be retiled by the

group of translations <(t(p) ).

Let P be a well-behaved 4n-hex generator with slide

group T, and let 1 be a strip of A j for some j=O,l,2,3. Then

there exist a subset R of P j and a subgroup S of T such that 1

IS retiled by R under the group S. Furthermore, the number

of hexes p in R is a divisor of n.

Theorem 4.1 Let I be a strip of A· for some j=O,l,2,3,
J

and let R be a generator of I under the group of translations

S. Let p be thy number of hexes In R. Then pin.

Proof Recall that for any slide group T, T::::: S X S; it follows

that S::::: S. S must therefore by cyclic, which causes to be

retiled by R in a periodic fashion. Define u to be the

translation which maps a hex of 1 to an I-adjacent hex. Then

S =<uP).

Observe that A j may be retiled by retiling each strip

parallel to 1. Any strip parallel to 1 is also generated by a

subset of P j lmder a group of translations. Since the slide T IS

a group, the generators of the strips parallel to 1 are pairwise

disjoint; furthermore, they partition P j .

Let. Y be a generator of a strip m parallel to 1 such that

R#Y, and let q be the number of hexes In Y. Then Z = <u q
)

is the slide group for Y. If P < q then the translation uP (Y)

leads to overlap. A similar contradiction is reached if q < p.

~---~-----
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Therefore p = q. Since this IS true for any strip m parallel to

I, it follows that pin. 0

An analogous proof shows that the same result holds for

well-behaved generators of the square tiling.

6. 8-Hexes

Having discussed some general properties of 4n-hex

generators, the study turns to considering generators for

specific values of n. Corollary 3.2 implies that any 4-hex IS a

well-behaved generator of the tiling. From Theorem 2.1 it

follows that any uniform 8-hex is a generator of the tiling. It

is further possible to broaden the discussion to inc!ude non

uniform 8-hex generators, as well as to characterize those

which are well-behaved.

The characterization of well-behaved 8-hexes reqmresa

determination of the slide groups for 8-hexes. Given an 8-hex

generator P it is necessary that the two hexes of P j retile A j

for each j=O,l,2,3. Furthermore, given any well-behaved 2

block in the square tiling, it is possible to construct a

corresponding uniform 8-hex. Hence the slide groups for 8

hexes in H are determined by the slide groups for 2-blocks 111

the square tiling.

Theorem 6.1

2-blocks:

There are exactly three slide groups for

- - - -~~ --~~--~----------
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T I = «(0,2), (1,0) );

T 2 = «(0,1), (2,0); and

T3 = «(1,1),(2,0).

Pro of. Label the two squares of the block Xl and X2 , and

let Y be a square horizontally adjacent to Xl'

Case I: Xl retiles Y. Then if the translations form a

group, the horizontal strip I containing Xl and Y must be

retiled entirely by Xl. Likewise, each horizontal strip adjacent

to I n1ust be retiled completely by X2 . Thus each vertical strip

IS retiled In an alternating fashion, producing the pattern In

Figure 11(a). This pattern corresponds. to the slide group T I .

Case II: X2 retiles Y. Then In order for the slide to form

a group, the horizontal strip 1 containing Xl and Y must be

retiled in an alternating pattern. Let Z be a square vertically

adjacent to Xl'

Subcase 1: 'Xl retiles Z. Then the vertical strip containing

Xl and Z must be retiled entirely by Xl. Each vertical strip

must thus be retiled in a solid pattern (Figure 11 (b)). This

pattern is produced by the slide group T 2 .

Subcase 2: X2 retiles Z. Then the vertical strip containing

Xl and Z must also be retiled in an alternating pattern. This

produces the checkerboard pattern shown in Figure 11 (c). This

pattern corresponds to the slide group T3. 0
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1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 ~~ 1 1 1 1 1
2 2 ~~ 2 2 2 2 2

1 1 1 1~ 1 1
2 2 2 2 2 2 2

1 1 . 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 ~ ~ 1 2 1 2
,,,,,"' ,,' ,,'

1 2 1 2 1 2 1 2

1 2 1 2 m2 1 2

1 2 1 2 1 E 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1

1 2 ~~ 1 2 1 2

2 1 2 1 2 2 1

1 2 1 2 1 1 2

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1

Figure 11. Patterns and

prototypes for the three slide

groups (a) TI' (b) T2' and

(c)T3 ·

Thus the pattern produced by the slide group divides the

tiling into two sets of tiles. Two connected prototypes of each

slide group are presented 111 Figure 11. However, a well

behaved 2-block generator of the tiling may be constructed for

any slide group by choosing anyone square from each of the

orbits of Xl and X2 . Such a generator is easily seen to be a

derivation of one of the prototypes.

Observe in Figure 11 that there are three connected

prototypes for well-behaved 2-blocks. Each prototype retiles

the plane under exactly two slide groups (Figure 12). Any

--

•
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Figure 12. The

three prototypes

WllW2 'W3 ' and their

corresponding slide

groups.

1 1 1 1 1 1
2 2 2 2 2 2

1 1 ~ 1 1 1
2 2 2 ~ 2 2

1 1 1 1 1 1
2 2 2 2 2 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 ~ 2 1 2

1 2 1 ~ 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 ~~ 1 2

1 2 1 2 1 2

1 2 1 2 1 2

W1

C( W 1 ) = {T l' T~)

1 2 1 2 1 2

2 1 2 1 2 1

1 2 ~~ 1 2
2 1 2 1 2 1

1 2 1 2 1 2

W z
C(Wz)={T z1 T:3}

1 1 1 1 1
2 2 2 2 2

1 1 ~~ 1 1
2 2 ~~ 2 2

1 1 1 1 1
2 2 2 2 2

1 2 1 2 1
2 1 2 1 2

1 2 ~~ 2 1~ ~

2 1 ~ ~ 1 2

1 2 1 2 1
2 1 2 1 2

W:3

C( W:3) . {T 1 I T:3}

----
~--~-~
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well-behaved 2-block may be derived from one of these

prototypes; this will be proven later.

A direct result of Theorem 6.1 is the following corollary.

Corollary 6.2. There are exactly three slide groups for 8-

hexes: T1 ,T2' and T 3

As before, it is possible to construct a well-behaved 8

hex generator for a particular slide group by choosing any paIr

of hexes from distinct orbits for each A j , j=O,l ,2,3. This

procedure may be used to construct a well-behaved 4n-hex

generator for any value of n; however, the process of

determining the possible slide groups increases in complexity as

n Increases.

It is also possible to determine if a gIven 8-hex is a

generator of the tiling. From Corollary 2.2 it is known that

any uniform 8-hex retiles the plane. However, the study of

non uniform 8-hexes relies on the concepts of difference and

parity.

Let a and b be animals in a square or hexagonal tiling

such that a - b exists and a - b = (x,y). Then x is the

horizontal difference of a and b, and y is the vertical

difference of a and b. The ordered palr (x,y) is the

difference of the animals a and b. Let Z={Z1,Z2} be a 2

block in the square tiling or a 2-hex in A j for some

j=O,l,2,3 such that Z2 -Z1 =(x,y). Then the parity of Z,

- ----- --
----~
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denoted Ilzll, is given by (x mod 2, y. mod 2). The parity of

Z then determines whether it is well-behaved.

Theorem 6.3 Let B={b I ,b 2} be a 2-block in the square

tiling. Then B is a well-behaved generator of the tiling if and

only if IIBII;=(O,O).

Proof. Suppose IIBII;=(O,O). Then there exist integers x and

Y such that b l - b 2 = (2x,2y) + (0,1); hence

b l = b 2 + (2x,2y) + (0,1).

Note that IIwI II=(l,l), Ilw2 "=(l,O),·and IIw3 11=(O,l),

as shown in Figure 12. Let W E {WI 'W2 'W3 } such that

Ilwll = IIBII. Label the squares of W as WI and w 2 , and position

WI so that WI coincides with b l . Now

W2 - b 2 = (2x,2y) E n T j ~ n C(W); thus W2 retiles b 2 . Therefore

B is a derivation of W under anyone of the two slide groups

in C(W). From Theorems 4.1 and 4.2 it follows that B is

well-behaved, with C(B) =:l C(W). Furthermore, Figure 11

illustrates that there is no 2-block that retiles under all three

slide groups; thus C(B) = C(W).

Now let B be a well-behaved generator of the tiling.

Suppose IIBII=(O,O); then b l - b 2 = (2x,2y) for some integers

x and y. Consider the square b = b l +(2,0). From Theorem 6.1

it follows that b l must retile b. Thus b l must retile b l + (2k,O)

for all integers k; in particular, b l retiles b I + (-2x,O).

Similarly,. b 2 must retile b 2 + (O,2y). But

b I b 2 = (2x,2y)

b l b 2 = (2x,O)+(O,2y)

--- - - - -~.~---~-
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C(P) =nC(P j )

=C(W)nC(x)nC(Y)nC(Z)

=C(w)nC(X)nC(Y)

=0

However, this contradicts the assumption that P IS well

behaved. Thus Isl~2.

Suppose (1) and (2) are true. Since IIP jll:;o!:(O,O) for all

j=O,1,2,3, P j is well-behaved for all j. If 151=1, then P is

uniform and therefore well-behaved.

Suppose 151=2. Let W, X and Y be as before. As

ill ustrated in Figure 12, the intersection of any two of the

cores of W, X and Y is non empty; thus C(p)=nC(P j ):;o!:0.

Hence P is well-behaved. 0

7. Areas for Further Study

This study has identified some general properties of

generators of the t.iling, and provided a detailed description of

4-hexes and 8-hexes. Yet there is still much to explore. The

complete classification of 8-hexes requires an investigation of

non well-behaved 8-hexes. It has been shown that uniform

8-hexes retile the plane (Figure 5), but there is not yet a

detailed characterization of non well-behaved, non uniform 8

hexes.

This research may also be expanded to consider larger

4n-hexes. An algorithm similar to the one presented In
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Theorem 6.1 may be used to determine the slide groups for

4n-hexes for 11. > 2; however, the process of characterization

grows increasingly difficult with higher values of n. A

systematic method of identifying and classifying higher-order

generators also requires an understanding of non well-behaved

4n-hex generators for 11. > 2.

A third avenue for exploration IS to consider retiling

methods using rotations and reflections as well as translations

(Figure 13). This poses additional problems, since rotations'

and reflections do not preserve the axes systems as

translations do. Nevertheless, it will also yield a diverse new'

class of generators.

P

p(p)

Figure 13. A polyhex P which reqmres a rotation to retile the

colored hexagonal tiling. Let p be a rotation of the plane

through 180 degrees about the point a. The polyhex formed by

Pup (P) is a well-behaved 16-hex generator that retiles the

/
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plane under the slide groups 51 = ( (2,0),(0,2) ),

52 = ( (2,0), ( 1 ,2) ), 53 = ( (2, 1 ), (0 ,2) ), and 54 = ( (2, 1 ), ( 1 ,2) ).
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Notes

1. Branko Grunbaum and G.C. Shephard, Tilings and Patterns,

W.H. Freeman and Company, NY, 1987, p. 16.

2. Grunbaum and Shephard, p. 20.

3. Grunbaum and Shephard, p. 58.

4. Don Coppersmith, "Each Four-Celled Animal Tiles the

Plane," Journal of Conrbinntorinl Theory, Series A 40, 1985,

p. 444. Coppersmith defines this term in the context of a

square tiling only. This capacity is also served by the more

common term "block"; thus we have altered the definition to

serve as a general term for a regular tiling.

5. Coppersmith, p. 444.


	Western Kentucky University
	TopSCHOLAR®
	4-11-1994

	Retiling a Colored Hexagonal Plane
	Kari Kelton
	Recommended Citation


	tmp.1216927608.pdf.0IWNg

