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The problem of finding the crossing number of an arbitrary knot or link is a
hard problem in general. Only for very special classes of knots and links can we solve
this problem. Often we can only hope to find a lower bound on the crossing number
Cr(K) of a knot or a link K by computing the Jones polynomial of K, V (K). The
crossing number Cr(K) is bounded from below by the difference between the greatest
degree and the smallest degree of the polynomial V(K). However the computation of
the Jones polynomial of an arbitrary knot or link is also difficult in general. The goal
of this thesis is to find closed formulas for the smallest and largest exponents of the
Jones polynomial for certain classes of knots and links. This allows us to find a lower
bound on the crossing number for these knots and links very quickly. These formulas
for the smallest and largest exponents of the Jones polynomial are constructed from
special rational tangles expansions and using these formulas, we can extend these
results to for special cases of Montesinos knots and links.
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CHAPTER 1

Introduction

The main purpose of this thesis is to develop some techniques that can be used

to find the breadth of the Jones polynomial for certain classes of knots and links.

Chapter 2 gives an introduction to knot theory. This chapter will be the base upon

which all of the thesis is built upon. Section 2.1 will be used to introduce the reader

to all of the basic definitions that are used in this thesis. Section 2.2 introduces the

Jones polynomial and gives many theorems about the Jones polynomial for different

knots and links.

Chapter 3 focuses on knots and links constructed from rational tangles. Sec-

tion 3.1 is used to introduce the reader to rational tangles and gives some theorems

concerning rational tangles that we will use in the next section. Section 3.2 focuses

on the Jones polynomial of knots and links constructed from rational tangles and in

this section we prove a theorem about the maximum and the minimum exponent of

the Jones polynomial of these knots and links.

Chapter 4 will be used to make some conclusions about the breadth of the Jones

polynomial for certain Montesinos knots and links. Section 4.1 uses our notation from

Chapter 3 to introduce the reader to Montesinos knots and links. Section 4.2 dis-

cusses the Jones polynomial of certain Montesinos links and gives some theorems on

the maximum and minimum degree of some of these links.
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Chapter 5 is used to conclude the thesis and gives ways this research could be

extended in order to draw conclusions about the breadth of the Jones polynomial for

a general Montesinos knot.



CHAPTER 2

Basic Knot Theory

2.1. A Brief Introduction to Knot Theory

This chapter is an introduction to the basic concepts of knot theory that will be

needed for this thesis. The terms defined in this section are standard terms in knot

theory, that can be found in any book on knot theory, see for example [3, 5, 8, 9].

A knot is defined as a simple closed curve in R3, i.e. a function f: S1 → R3 where f

is in C2 -smooth and has finite arclength. A link is a disjoint union of one or more

such simple closed curves in R3. Each closed curve in a link is called a component of

the link. A diagram D of a link L is a regular projection of L, that is the image of a

function π : R3 → R2 such that the following criteria are met:

i.) there are only double points, i.e. no triple or quadruple points;

ii.) there are finitely many double points;

iii.) all double points are like the double point shown in Figure 2.1

Double points in our diagram like the one shown in Figure 2.1 are called crossings.

For examples of knot and link diagrams see Figures 2.2 and 2.3.

Figure 2.1. A crossing in a diagram.

5
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Figure 2.2. The three crossing knot, known as the trefoil.

Figure 2.3. A link with 2 components and 7 crossings.

The advantage of a knot diagram is that instead of studying the 3-dimensional

knot we can instead study a 2-dimensional diagram. Note that any knot can by drawn

with an infinite number of different diagrams, see Figure 2.4. To compensate for this

we need to define some type of equivalence for knot diagrams. This equivalence is

defined in Figures 2.5, 2.6, and 2.7 by simple moves on diagrams called Reidemeister

moves. Two links L and L’, with diagrams D and D’ respectively, are equivalent iff

D can be obtained by applying a series of Reidemeister moves to D’.

Figure 2.4. These are two different diagrams of the same knot.
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Figure 2.5. Type I Reidemeister Move.

Figure 2.6. Type II Reidemeister Move.

Figure 2.7. Type III Reidemeister Move.

A B
Figure 2.8. A diagram that is not reduced

Each link diagram can be classified as either alternating or non-alternating. A

link diagram is called alternating if you can walk along each one of its components and

at each crossing you alternate between being the over strand and the under strand.

If a link diagram is not alternating then it is called non-alternating. In Figure 2.4
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the diagram shown on the left is alternating while the diagram on the right is non-

alternating. A diagram is minimal if we cannot perform any Reidemeister moves to

lower the number of crossings. Again Figure 2.4 is a good example of this concept

in that the diagram to the left is minimal while the diagram on the right is not. We

can also classify a diagram as reduced if it contains no crossing of the form shown in

Figure 2.8 or its reflection. In Figure 2.8 A and B contain the whole diagram away

from the crossing.

Figure 2.9. The connected sum of two trefoil knots denoted L # L
where L is the trefoil.

non split split

Figure 2.10. An example of a non split and a split link
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As in many mathematical areas of study, knot theory also has the concept of

primeness. To do this we will first see a way to construct a link diagram by putting two

diagrams together. A link is non split if I cannot pull out one or several components

of a link, see Figure 2.10 for an example. Suppose L is a link that is intersected with

a 2-sphere in R3 in exactly two points. Then this sphere separates one component

of the link into two arcs. Further the endpoints of either arc can be joined by an arc

lying on the sphere, resulting in two links L1 and L2. When this can be done we call

L a connected sum of L1 and L2, denoted L = L1#L2, see Figure 2.9. Then a link

non split L is prime if for every decomposition of L as a connected sum, L = L1#L2,

either L1 or L2 is the unknot [8]. The unknot is just a circle as in Figure 2.15.

One construction that we will see later in this thesis is called a mutation. Sup-

pose that a link L is intersected by a circle in exactly four points. By rotating the

portion of L in the circle 180 degrees, but leaving the rest of the link the same we

create a mutation of L. This concept is illustrated in Figure 2.11. If the intersection

points of the link with the circle are not symmetric with respect to the rotation then

we need to make appropriate adjustments to the connecting arcs, see Figure 2.11.

Another move that can be made on a diagram is called a flype. Suppose L is a link

that is intersected by a circle in exactly four points, see Figure 2.12. To perform a

flype the portion the circle will be turned over about the horizontal axis. Again this

move is illustrated by Figure 2.12.

Another construction that will be needed in this thesis is the mirror image of

a link. Suppose L is a link and suppose L’ is a link obtained from L by switching

the over and under strands at each crossing, then L’ is the mirror image of L, see
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L

L’
Figure 2.11. L and L’ are links where L’ is a mutation of L.

Figure 2.13. It is important to note that a flype will not change the knot-type while

a mirror and mutation might.

A diagram can be oriented in that we can give a direction in which to walk along

the diagram for each component of the link. When this is done each crossing will
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Figure 2.12. An illustration of a flype.

Figure 2.13. The trefoil and its mirror image.

now look like one shown in Figure 2.14. The crossing on the left can be called a right

hand twist, because if a person puts their thumb and index finger from their right

hand on the incoming strands of this crossing and twist their hand to the right the

crossing becomes untwisted. Similarly the crossing on the right is called a left hand

twist. The standard sign convention is that a right hand twist is positive while a left

hand twist is negative. Using this sign convention we can define two new concepts

that will be needed in later sections. The writhe of a diagram D of an oriented link,

denoted w(D), is the sum of the signs of all the crossings of D. Note that w(D) for

a knot diagram does not depend on how the diagram is oriented since the opposite

orientation will reverse the direction of both strands at each crossing. Our sign

convention is invariant when both orientations at a crossing are changed. For a link

w(D) depends on the choice of orientation. A similar concept can be defined for a
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two component oriented link L with components L1 and L2. The linking number

lk(L1, L2) is the half sum of the signs, in a diagram of L, of the crossings at which

one strand is from L1 and the other is from L2 [5].

Figure 2.14. A left hand and a right hand crossing.

The last thing we will discuss in this section is the idea of link invariants. A link

invariant is a property of a link that will not change after applying Type I, II, or III

Reidemeister moves to a diagram of L. This implies that regardless which diagram

is used the computation of the link invariant will always produce the same answer.

This thesis will focus on one important invariant in knot theory called the Jones

polynomial. One of the reasons the Jones polynomial is important in knot theory is

that it provides a lower bound on the crossing number of a link, see the next section.

The crossing number of a link L, denoted Cr(L), is the minimal number of crossings

of L over all diagrams of L. Because all diagrams must be considered the crossing

number is not easily calculated. For really large links we often only hope to attain a

lower bound on the crossing number. The problem of finding a lower bound on the

crossing number is the motivation for this thesis. A tool we will use to find a lower

bound on the crossing number is the Jones polynomial which we will discuss in the

next section.
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2.2. The Jones Polynomial

To define the Jones polynomial we need to define another polynomial called

the Kauffman bracket. Let U denote the diagram of the unknot as shown below in

Figure 2.15. Let D, D1, D2 be three link diagrams that are identical outside a small

neighborhood. The difference between them is shown in Figure 2.16 where only the

part of the diagram that is in the small neighborhood is shown. Then the Kauffman

Bracket is defined as follows:

Definition 2.2.1. Let D be an unoriented link diagram. Then the Kauffman

Bracket of D, denoted <D> is the polynomial <D>: D → Z[A−1, A] characterized

by

i.) < U >= 1

ii.) < D " U >= (−A−2 − A2) < D >

iii.) < D >= A < D1 > +A−1 < D2 >

Here U denotes the unknot and D"U is the disjoint union between a diagram D and

an unknotted circle U.

Figure 2.15. The unknot U.

Using this definition we can find the Kauffman bracket polynomial of a link

diagram. For example the Kauffman Bracket polynomial of the trefoil knot shown
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D D D1 2

Figure 2.16. D, D1, D2 respectively

in Figure 2.2 has the value A−7 − A−3 − A5. The Kauffman bracket is not a link

invariant, it is however an invariant under Type II or Type III Reidemeister moves,

(It is not invariant under Type I Reidemeister moves.) So to obtain an invariant

under all three Reidemeister moves and hence a link invariant we will need modify

the Kauffman bracket. [5]

Definition 2.2.2. Let L be an oriented link with diagram D. The Jones poly-

nomial V(L)(t) is a Laurent polynomial, V : L → Z[t−
1
2 , t

1
2 ], defined by:

V (L)(t) = (−A)−3w(D) < D >

where A = t−
1
4 .

Note that the Jones polynomial, unlike the Kauffman bracket is defined for

oriented links because we cannot compute w(D) for an unoriented diagram. It can

be shown that V(L) is an invariant under all 3 Reidemeister moves and hence a link

invariant [5]. Let L+, L−, and L0 be three oriented link diagrams that are identical

outside of a small neighborhood. The difference between these diagrams is shown in

Figure 2.17 where only the part of the diagram that is in the small neighborhood is



15

shown. An equivalent definition of the Jones polynomial is the following [5]:

V (unknot) = 1

and

t−1V (L+)− tV (L−) = (t
1
2 − t−

1
2 )V (L0). (2.1)

L L L+ - 0

Figure 2.17. L+, L−, and L0 are identical except in a small neigh-
borhood. This neighborhood is shown for each diagram respectively

Also we can relate the Jones polynomial of a link to the Jones polynomial of its

mirror image by the following theorem:

Theorem 2.2.3. [9] Let K be a link and K’ its mirror image. Then

V (K)(t) = V (K ′)(t−1). (2.2)

Recall that our goal is to relate the Jones polynomial to the crossing number

of a link. First consider a polynomial p(t), the breadth of p(t), denoted Br(p), is the

difference of the maximal exponent of t in p and the minimal exponent of t in p.

Now from [5] we have the following theorem:

Theorem 2.2.4. Let D be a connected diagram of an oriented link L with Jones

polynomial V(L). Then

1.) Br(V (L)) ≤ Cr(L);

2.) Br(V (L)) = Cr(L) iff D is alternating and reduced;

3.) Br(V (L)) < Cr(L) if D is non− alternating and a prime diagram;
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So one way of finding a lower bound on the crossing number of link reduces to the

problem of finding the maximal and minimal exponent of t of the Jones polynomial

of a link. The main focus of this thesis will be to find closed formulas for the values

of these exponents for certain classes of knots.

Before moving on to the next section there are more theorems pertaining to the

Jones polynomial that will be used in later sections. From [9] we have the following

two theorems:

Theorem 2.2.5. Suppose that L = L1#L2 then V (L) = V (L1)V (L2).

Theorem 2.2.6. Suppose L is a m-component oriented link with components

K1, K2, . . . , Km. Further suppose that L’ is the same as L except the orientation of

Km has been reversed. Then

V (L′) = t−3lV (L)

where l =
∑m−1

i=1 lk(Km, Ki).

Another theorem that we will use in later sections comes from the relation in

Equation 2.1:

Theorem 2.2.7. [3] Suppose that L is a link and L’ is a link that differs from

L by only a mutation. Then V(L) = V(L’).



CHAPTER 3

Rational Tangles

This chapter will introduce the basic concepts of rational tangles and their prop-

erties. This chapter will also give a formula for the minimal and maximal exponent

of t in the Jones polynomial for knots and links arising from rational tangles.

3.1. An Introduction of Rational Tangles

To understand rational tangles we must first start with the question, what is

a tangle? A tangle is a 3-ball B that contains two properly embedded disjoint arcs

and possibly some embedded closed curves. We denote this by (B, t) where B is the

three ball and t is the union of the two arcs and simple closed curves in B. Rational

tangles are a special class of tangles. Some examples can be seen in Figure 3.1. A

trivial tangle is like the tangle shown in Figure 3.2.

Figure 3.1. Two examples of tangles.

A rational tangle is a special class of tangles.

17
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Figure 3.2. An example of a trivial tangle.

Definition 3.1.1. A tangle (B, t) is rational if t is only the disjoint union of

two arcs. Furthermore it must be possible to deform (B, t) into the trivial tangle by

a deformation that leaves the endpoints of t on the boundary of B.

Figure 3.3 gives examples of two rational tangles and two non rational tangles.

To prove that the tangles on the right are non rational is beyond the scope of this

thesis and we refer the reader to a standard text in knot theory [3, 5, 9].

Rational Non Rational

Figure 3.3. Two rational tangles and two non rational tangles.

It is a standard convention for rational tangles to think of the endpoints of the

two arcs T as the set of points NW, NE, SW, SE as shown in Figure 3.4.

Two rational tangles (B, t) and (B’, t’) are equivalent if the two arcs in (B, t)

can be deformed to the two arcs in (B’, t’) by a deformation that leaves the four

points {NW, NE, SW, SE} as in Figure 3.4 fixed, that is by a deformation that only

moves points on the inside of the balls B and B’. Two special rational tangles are

given in Figure 3.5
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NW NE

SW SE

z

x

y

Figure 3.4. The 3-Ball B

Figure 3.5. (0)-Type on the right and (∞)-type on the left.

There is an easy way to think of rational tangles when constructing them. A

vertical twist occurs when the southern hemisphere is rotated about the z-axis such

that SE and SW exchange positions. A horizontal twist occurs when the Eastern

hemisphere is rotated about the y-axis causing NE and SE to switch positions. To

define the terms right twist and left twist see Figure 3.6. For a horizontal twist a

left twist is called a negative twist while a right twist is called a positive twist. For a

vertical twist the opposite is true. Now with these terms defined, a rational tangle

can be defined as a finite alternative sequence of vertical and horizontal twists to a

(0)-type or a (∞)-type tangle [9]. Therefore we use the notation < a1, a2, . . . , an >

to define a rational tangle as follows: if n is odd, start with a1 horizontal twists on a

(0)-type followed by a2 vertical twists, a3 horizontal twists and so on. Similarly if n is

even, start with a1 vertical twists on a (∞)-type followed by a2 horizontal twists, a3
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vertical twists and so on. This standard ensures that all rational tangles constructed

end with an horizontal twists. Figure 3.7 shows an example with n odd and one with

n even.

right twist left twist

Figure 3.6. Right and Left Twists

4

3

-2

-3
2

<4, 3, -2, -3, 2>

-2

3

4
-5

<-2, 3, 4, -5>

Figure 3.7. Two examples of rational tangle construction.

These tangles are called rational tangles because each rational tangle can be

represented by a rational number [9]. The rational tangle given by < a1, a2, . . . , an >

can be represented by the rational number β
α , where β

α is obtained as a continued

fraction from the vector < a1, a2, . . . , an >:

β

α
= an +

1

an−1 + 1
an−2+···+ 1

a2+ 1
a1

To turn tangles into knots and links we use the following construction: the numerator

of a tangle T = (B, t) denoted N(T), is the knot or link made from joining the points

NW to NE and SW to SE by non-intersecting arcs on the boundary of B. The



21

denominator of a tangle T, denoted D(T), is made from joining the points NW to

SW and NE to SE by non-intersecting arcs on the boundary of B. This is illustrated

in Figure 3.8. Let T be a rational tangle, because T ends in a horizontal twist it is

easily seen that a Type I Reidemeister applied to D(T) eliminates horizontal twists

and we have the following theorem:

Lemma 3.1.2. [9] Let T = < a1, a2, . . . , an >. Then the link given by D(T) is

equivalent to the link N(T’) where T’ = < −a1,−a2, . . . ,−an−1 >.

T= <-2, 3> N(T) D(T)

Figure 3.8. The numerator and denominator of < −2, 3 >.

Recall that equivalence in knots and links has already been defined and applies

to the knots constructed from rational tangles. However there is another way to

classify knots and links formed from rational tangles based on the continued fraction

of the tangle. The following theorem will classify these links:

Theorem 3.1.3. [3] Let us consider the two links L1 = N( β1

α1
) and L2 = N( β2

α2
).

Then L1 and L2 are equivalent if and only if β1 = β2 and either α1 ≡ α2 modβ1 or

α1α2 ≡ 1 modβ1.
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On top of operations such as the numerator and denominator there are other

operations that can be applied to tangles. The most important is the sum of two

tangles A and B, denoted A + B. A + B can be constructed by connecting the NE

point in A to the NW point in B and the SE point in A to the SW point in B by two

disjoint arcs in the plane z = 0 as shown in Figure 3.9.

A B

Figure 3.9. The sum of tangles A and B

Let A and B be two tangles. A link can be obtained from the sum of these two

tangles, A + B, by constructing the numerator of the sum, N(A + B). For certain

tangles this link can be oriented as shown in Figure 3.10. A link with this diagram

will yield a formula for the Jones Polynomial using the numerators and denominators

of the tangle summants A and B.

A B

Figure 3.10. The orientation used for Theorem 3.1.4.
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Theorem 3.1.4. [6] Let L be a link that can be drawn as the diagram shown in

Figure 3.10 where L = N(A + B). Then we can obtain the Jones polynomial of L,

V(L), in the following way:

V (L) =
−t

t2 + t + 1
((t

1
2 + t−

1
2 )(V (N(A))V (N(B)) + V (D(A))V (D(B)))

+ V (N(A))V (D(B)) + V (D(A))V (N(B))) (3.1)

Here the diagrams of N(A), D(A), N(B), and D(B) have the orientation induced by

the diagram N(A + B) shown in Figure 3.10.

For the following corollary we will need some new notation. Let p(t) be a

polynomial in t then we denote the greatest exponent of t in p to be maxexp(p) and

the least exponent of t in p to be minexp(p). With this new notation the following

corollary falls directly from Theorem 3.1.4.

Corollary 3.1.5. Let L be a link that can be drawn as in the diagram shown

in Figure 3.10 where L = N(A + B). Then the greatest exponent of V(L) is given by

maxexp(V (L)) ≤ max






maxexp(V (N(A))V (N(B)))− 1
2

maxexp(V (D(A))V (D(B)))− 1
2

maxexp(V (N(A))V (D(B)))− 1

maxexp(V (D(A))V (N(B)))− 1

and the lest exponent of V(L) is given by:

minexp(V (L)) ≥ min






minexp(V (N(A))V (N(B))) + 1
2

minexp(V (D(A))V (D(B))) + 1
2

minexp(V (N(A))V (D(B))) + 1

minexp(V (D(A))V (N(B))) + 1
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Note the inequality holds only if there are cancelations of terms involving the

highest or lowest exponents. If no such cancelations occur we have equality in Corol-

lary 3.1.5.

Tangles which contain no closed curves can be separated into 3 classes depend-

ing on how their arcs are connected, see Figure 3.11. These classes are referred to as

the parity of the tangle. For example in Figure 3.12 tangle T1 is of parity 0, tangle

T2 is of parity 1, and tangle T3 is of parity ∞.

0 1 8

Figure 3.11. The 3 parity classes of tangles.

T1

T2

T3

Figure 3.12. Three tangles with different parities.

The following two theorems are well known facts about rational tangles [5, 9]

Theorem 3.1.6. Given a rational tangle β
α then

1.) β is even and α is odd if and only if β
α has parity 0,
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2.) β is odd and α is odd if and only if β
α has parity 1,

3.) β is odd and α is even if and only if β
α has parity ∞.

Theorem 3.1.7. Given a rational tangle β
α =< a1, a2, . . . , an > if all ai are even

integers then

1.) if n is odd β
α has parity 0,

2.) if n is even β
α has parity ∞.

Moreover if α and β are both odd then β
α does not have a continued fraction expansion

< a1, a2, . . . , an > where all ai are even.

3.2. The Jones polynomial for special rational tangles

This section is devoted to only one type of rational tangle, namely those that

can be written as < a1, a2, . . . , an > where each ai is even. As the section heading

suggests this section will explore the Jones polynomial of such tangles. Recall that

in order to find the Jones polynomial of a link, that link must have an orientation.

To solve this problem for knots and links arising from rational tangles the standard

orientation of a tangle as shown in Figure 3.13 will be used.

The next notation that will be given is from [6] and is useful in formulating a

formula for the Jones polynomial of a rational tangle made up of even twists.



26

A

NW NE

SW SE

Figure 3.13. The standard orientation for tangle
A = < a1, a2, . . . , an > where each ai is even.

Definition 3.2.1. Let r ∈ Z, then the matrices M(2r), M̄(2r) ∈ GL2(Z[t−
1
2 , t

1
2 ])

are defined as:

M(2r) =

(
t
1
2 (t2r−1)

t+1 t2r

1 0

)
(3.2)

M̄(2r) =

(
−t

1
2 (t2r−1)

t2r(t+1) t−2r

1 0

)
(3.3)

Proposition 3.2.2. M(2r) = M̄(−2r)

Proof. From Definition 3.2.1 we have the following:

M̄(−2r) =

(
−t

1
2 (t−2r−1)

t−2r(t+1) t2r

1 0

)

=

(
−t

1
2 (t−2r)(1−t2r)
t−2r(t+1) t2r

1 0

)

=

(
t
1
2 (t2r−1)

t+1 t2r

1 0

)

= M(2r)

(3.4)

!

The following theorem gives a formula for the Jones polynomial of the links

created from rational tangles with only even twists.
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Theorem 3.2.3. (Proposition 14 [6]) Let L be a link such that

L = N(< a1, a2, . . . , an >) where each ai is a nonzero even integer. Then the Jones

polynomial of L, V(L), can be computed as a product of matrices:

V (L) =
(
1 0

)
M̄(a1)M(a2) . . . M̄(an−2)M(an−1)M̄(an)

(
1

−t−
1
2 − t

1
2

)
if n is odd.

(3.5)

V (L) =
(
1 0

)
M(a1)M̄(a2) . . . M̄(an−2)M(an−1)M̄(an)

(
1

−t−
1
2 − t

1
2

)
if n is even.

(3.6)

From Chapter 2 we know that the Jones polynomial is a Laurent polynomial,

so if we can calculate the Jones polynomial using these matrices then the rational

expressions in the matrices must simplify to give a Laurent polynomial. The following

lemma will be used to simplify these matrices.

Lemma 3.2.4. Let r ∈ Z, then the following is true.

t2r − 1

t + 1
= t2r−1 − t2r−2 + t2r−3 −+ · · · + t− 1

Proof.

(t + 1)(t2r−1 − t2r−2 + t2r−3 −+ · · · + t− 1)

= t2r + t2r−1 − t2r−1 − t2r−2 + t2r−2 + · · · + t− t− 1

= t2r − 1

!

In later proofs M(2r) and M̄(2r) will need to be multiplied often and the fol-

lowing lemma gives us some formulas that will be helpful.
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Lemma 3.2.5. Let r, s ∈ Z, then the following matrix multiplications can be

simplified as follows:

M(2r)M(2s) =

(
t2r+2s−1 +− · · · + t t2r+2s− 1

2 −+ · · ·− t2s+ 1
2

t2s− 1
2 −+ · · ·− t

1
2 t2s

)
(3.7)

M(2r)M̄(2s) =

(
t2r −+ · · ·− t−2s+1 t2r−2s− 1

2 −+ · · ·− t−2s+ 1
2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)
(3.8)

M̄(2r)M̄(2s) =

(
t−1 −+ · · · + t−2r−2s+1 −t−2s− 1

2 −+ · · · + t−2r−2s+ 1
2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)
(3.9)

M̄(2r)M(2s) =

(
−t2s−1 +− · · · + t−2r −t2s− 1

2 +− · · · + t−2r−2s+ 1
2

t2s− 1
2 −+ · · ·− t

1
2 t2s

)
(3.10)

Proof. We will start by proving Equation 3.7 and use Definition 3.2.1 and

Lemma 3.2.4.

M(2r)M(2s) =

(
t
1
2 (t2r−1)

t+1 t2r

1 0

)
·
(

t
1
2 (t2s−1)

t+1 t2s

1 0

)

=




t(t2r−1)(t2s−1)

(t+1)2 + t2r t2s+1
2 (t2r−1)
t+1

t
1
2 (t2s−1)

t+1 t2s





=

(
t(t2r−1 −+ · · ·− 1)(t2s−1 −+ · · ·− 1) + t2r t2s+ 1

2 (t2r−1 −+ · · ·− 1)
t

1
2 (t2s−1 −+ · · ·− 1) t2s

)

=

(
t2r+2s−1 +− · · · + t t2r+2s− 1

2 −+ · · ·− t2s+ 1
2

t2s− 1
2 −+ · · ·− t

1
2 t2s

)

Next we will show that Equation 3.8 is correct.

M(2r)M̄(2s) =

(
t
1
2 (t2r−1)

t+1 t2r

1 0

)
·
(

−t
1
2 (t2s−1)

t2s(t+1) t−2s

1 0

)

=




−t(t2r−1)(t2s−1)

t2s(t+1)2 + t2r t−2s+1
2 (t2r−1)
t+1

−t
1
2 (t2s−1)

t2s(t+1) t−2s





=

(
−t−2s+1(t2r−1 −+ · · ·− 1)(t2s−1 −+ · · ·− 1) + t2r t−2s+ 1

2 (t2r−1 −+ · · ·− 1
−t−2s+ 1

2 (t2s−1 −+ · · ·− 1) t−2s

)

=

(
t2r −+ · · ·− t−2s+1 t2r−2s− 1

2 −+ · · ·− t−2s+ 1
2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)
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Next Equation 3.9 will be proved.

M̄(2r)M̄(2s) =

(
−t

1
2 (t2r−1)

t2r(t+1) t−2r

1 0

)
·
(

−t
1
2 (t2s−1)

t2s(t+1) t−2s

1 0

)

=




t(t2r−1)(t2s−1)

t2r+2s(t+1)2 + t−2r −t−2s+1
2 (t2r−1)

t2r(t+1)

−t
1
2 (t2s−1)

t2s(t+1) t−2s





=

(
t−2r−2s+1(t2r−1 −+ · · ·− 1)(t2s−1 −+ · · ·− 1) + t−2r −t−2r−2s+ 1

2 (t2r−1 −+ · · ·− 1)
−t−2s+ 1

2 (t2s−1 −+ · · ·− 1) t−2s

)

=

(
t−1 −+ · · · + t−2r−2s+1 −t−2s− 1

2 −+ · · · + t−2r−2s+ 1
2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)

Lastly we will show Equation 3.10 is true.

M̄(2r)M(2s) =

(
−t

1
2 (t2r−1)

t2r(t+1) t−2r

1 0

)
·
(

t
1
2 (t2s−1)

t+1 t2s

1 0

)

=




−t(t2r−1)(t2s−1)

t2r(t+1)2 + t−2r −t2s+1
2 (t2r−1)

t2r(t+1)

t
1
2 (t2s−1)

t+1 t2s





=

(
−t−2r+1(t2r−1 −+ · · ·− 1)(t2s−1 −+ · · ·− 1) + t−2r −t−2r+2s+ 1

2 (t2r−1 −+ · · ·− 1)
t

1
2 (t2s−1 −+ · · ·− 1) t2s

)

=

(
−t2s−1 +− · · ·− t−2r+1 + t−2r −t2s− 1

2 +− · · · + t−2r+2s+ 1
2

t2s− 1
2 −+ · · ·− t

1
2 t2s

)

!

Our goal is to investigate the breadth of the Jones polynomial for links made

from rational tangles. The next two quantities will take the place of the maximal

and minimal exponents of t in the Jones polynomial of a knot made from a special

rational tangle.

Definition 3.2.6. Let K be a link such that K = N(< a1, a2, . . . , an >). Then

define the following two quantities, H(K) representing the highest exponent and L(K)
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representing the lowest exponent:

H(K) =
1

2

∑

i≡(n+1)mod2

ai(sign(ai) + 1) +
1

2

∑

i≡nmod2

ai(sign(ai)− 1)

− 1

4

n∑

i=2

((−1)nsign(ai) + 1)(−sign(ai−1)sign(ai) + 1)

− 1

2
sign(an)(n mod2)

and

L(K) =− 1

2

∑

i≡(n+1)mod2

ai(sign(ai)− 1)− 1

2

∑

i≡nmod2

ai(sign(ai) + 1)

− 1

4

n∑

i=2

((−1)nsign(ai)− 1)(−sign(ai−1)sign(ai) + 1)

− 1

2
sign(an)(n mod2).

The goal is to prove that if p = V(N(< a1, a2, . . . , an >)) where each ai is

even then H(K) = maxexp(p) and L(K) = minexp(p). The next lemma states a

concrete but technical relationship for the minimal and maximal exponent of the

Jones polynomial of a link created from a rational tangle made up of only even

twists.

Lemma 3.2.7. Let K be a link such that K = N(< a1, a2, . . . , an >) where all

ai are nonzero even integers. For even n let ˙̈M(a1) = M(a1) and for odd n let

˙̈M(a1) = M̄(a1). Then the 1 × 2 matrix

(
1 0

) ˙̈M(a1) . . . M̄(an−2)M(an−1)M̄(an)

can be written as

(cmtL(K)+1 + · · · + cpt
H(K), cqt

L(K)+ 1
2 + · · · + cgt

g) (3.11)
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or

(cmtL(K) + · · · + cpt
H(K)−1, cqt

q + · · · + ckt
H(K)− 1

2 ) (3.12)

where 3.11 occurs when an > 0 and 3.12 occurs when an < 0. Moreover

L(K) + 1 ≤ g, q ≤ H(K)− 1 (3.13)

and |cm| = |cg| = |cp| = |cq| = |ck| = 1.

Proof. To prove this lemma we will use induction on the value of n. Let K be

a link such that K = N(A) where A is a rational tangle A = < a1, a2, . . . , an > and

every ai is a nonzero even integer. From Theorem 3.2.3 we see that the calculation

of Jones polynomial V(K) is different for n odd and n even. Thus we must show the

initial case is true for n = 1 and n = 2. When n = 1 then either a1 > 0, or a1 < 0.

Case 1: Let A = < a1 > where a1 = 2r where r is a nonzero positive integer. Then

(
1 0

)
· M̄(2r) =

(
1 0

)
·
(

−t
1
2 (t2r−1)

t2r(t+1) t−2r

1 0

)

=
(
−t

1
2 (t2r−1)

t2r(t+1) t−2r

)

=
(
−t−2r+ 1

2 (t2r−1 +− · · ·− 1) t−2r
)

=
(
−t−

1
2 +− · · ·− t−2r+ 1

2 t−2r
)

=
(
−tl+1 +− · · ·− th tl+

1
2

)

where h = −1
2 and l = −2r − 1

2 . From Definition 3.2.6 we have the following:

H(K) =
1

2
a1(sign(a1)− 1)− 1

2
sign(a1)

=
1

2
(2r)(0)− 1

2
(1)

= −1

2
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and

L(K) = −1

2
a1(sign(a1) + 1)− 1

2
sign(a1)

= −1

2
(2r)(2)− 1

2

= −2r − 1

2

Thus for this case our lemma is satisfied.

Case 2: Let a1 = −2r where where r is a nonzero positive integer.

(
1 0

)
· M̄(a1) =

(
1 0

)
·
(

−t
1
2 (t−2r−1)

t−2r(t+1) t2r

1 0

)

=
(
−t

1
2 (t−2r−1)

t−2r(t+1) t2r

)

=
(

t
1
2 (t2r−1)

t+1 t2r

)

=
(
t

1
2 (t2r−1 +− · · ·− 1) t2r

)

=
(
t2r− 1

2 +− · · ·− t
1
2 t2r

)

=
(
tl +− · · ·− th−1 th−

1
2

)

where h = 2r + 1
2 and l = 1

2 . Again from Definition 3.2.6 we find

H(K) =
1

2
a1(sign(a1)− 1)− 1

2
sign(a1)

=
1

2
(−2r)(−2) +

1

2

= 2r +
1

2

and

L(K) = −1

2
a1(sign(a1) + 1)− 1

2
sign(a1)

= −1

2
(−2r)(0) +

1

2

=
1

2
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Hence the lemma is satisfied for this case as well.

Now that we have shown the claim is true for n = 1, we will need to show it is true

for n = 2. Let r and s be nonzero positive integers. For n = 2 we need to prove the

following cases:

Case1. a1 = 2r, a2 = 2s

Case2. a1 = 2r, a2 = −2s

Case3. a1 = −2r, a2 = 2s

Case4. a1 = −2r, a2 = −2s

We will be using Lemmas 3.2.4 and 3.2.5 to simplify the matrix multiplications.

Case 1:

(
1 0

)
M(a1)M̄(a2) =

(
1 0

)
M(2r)M̄(2s)

=
(
1 0

)
·
(

t2r −+ · · ·− t−2s+1 t2r−2s− 1
2 −+ · · ·− t−2s+ 1

2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)

=
(
t2r −+ · · ·− t−2s+1 t2r−2s− 1

2 −+ · · ·− t−2s+ 1
2

)

=
(
−tl+1 +− · · · + th −tl+

1
2 +− · · · + tg

)

where l = −2s, h = 2r and g = 2r − 2s− 1
2 . Then from Definition 3.2.6 we find

H(K) =
1

2
(a1(sign(a1) + 1)) +

1

2
(a2(sign(a2)− 1))

− 1

4
((−1)2sign(a2) + 1)(−sign(a1)sign(a2) + 1)− 1

2
sign(a2)(2 mod2)

= a1 = 2r

and similarly one can show

L(K) = −a2 = −2s
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Note that g = 2r − 2s− 1
2 and we see that:

L(K) + 1 = −2s + 1 ≤ −2s− 1

2
+ 2r ≤ 2r − 1 = H(K)− 1.

So for this case the lemma is true. The other 3 cases will use similar arguments and

we will skip some details.

Case 2: Let a1 = 2r and a2 = −2s, then

(
1 0

)
M(a1)M̄(a2) =

(
1 0

)
M(2r)M̄(−2s) =

(
1 0

)
M(2r)M(2s)

=
(
1 0

)
·
(

t2r+2s−1 +− · · · + t t2r+2s− 1
2 −+ · · ·− t2s+ 1

2

t2s− 1
2 −+ · · ·− t

1
2 t2s

)

=
(
t2r+2s−1 +− · · · + t t2r+2s− 1

2 −+ · · ·− t2s+ 1
2

)

=
(
tl −+ · · · + th−1 −tq +− · · · + th−

1
2

)

where l = 1, h = 2r + 2s and q = 2s + 1
2 . Again we will use Definition 3.2.6 and find

H(K) = a1 − a2 = 2r + 2s

and

L(K) = −1

4
(−2)(2) = 1

Also we find that

L(K) + 1 ≤ q ≤ H(K)− 1.

Thus for this case our lemma is satisfied.

Case 3: Let a1 = −2r and a2 = 2s, then we find

(
1 0

)
M(a1)M̄(a2) =

(
1 0

)
M(−2r)M̄(2s) =

(
1 0

)
M̄(2r)M̄(2s)

=
(
1 0

)
·
(

t−1 −+ · · · + t−2r−2s+1 −t−2s− 1
2 +− · · · + t−2r−2s+ 1

2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)

=
(
t−1 −+ · · · + t−2r−2s+1 −t−2s− 1

2 +− · · · + t−2r−2s+ 1
2

)

=
(
tl+1 −+ · · · + th tl+

1
2 −+ · · ·− tg

)
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where l = −2r − 2s, h = −1 and g = −2s− 1
2 . So then by Definition 3.2.6 we have

H(K) = −1

4
(2)(2) = −1

and

L(K) = a1 − a2 = −2r − 2s

and

L(K) + 1 ≤ g ≤ H(K)− 1

Thus our lemma is satisfied by this case.

Case 4: Let us consider a1 = −2r and a2 = −2s, then we have

(
1 0

)
M(a1)M̄(a2) =

(
1 0

)
M(−2r)M̄(−2s) =

(
1 0

)
M̄(2r)M(2s)

=
(
1 0

)
·
(
−t2s−1 +− · · · + t−2r −t2s− 1

2 +− · · · + t−2r−2s+ 1
2

t2s− 1
2 −+ · · ·− t

1
2 t2s

)

=
(
−t2s−1 +− · · · + t−2r −t2s− 1

2 +− · · · + t−2r−2s+ 1
2

)

=
(
tl −+ · · ·− th−1 tq −+ · · ·− th−

1
2

)

where l = −2r, h = 2s and q = −2r − 2s + 1
2 . Then by Definition 3.2.6 we find

H(K) = −a2 = 2s

and

L(K) = a1 = −2r

and

L(K) + 1 ≤ q ≤ H(K)− 1

So again the lemma is true for this case. Hence if n = 2 then the lemma is proven to

be true.
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Now that we have proven the initial case we assume that it is true for n = 1, 2,

. . . N. We must show that the lemma is true for n = N + 1. Let K be defined as in

the lemma and let Q be a link such that Q = N(A’) where A′ =< a1, a2, . . . , aN−1 >.

Then to show that the lemma is true for n = N + 1 we will have the following cases:

Case1. aN−1 > 0, aN = 2r, aN+1 = 2s

Case2. aN−1 > 0, aN = 2r, aN+1 = −2s

Case3. aN−1 > 0, aN = −2r, aN+1 = 2s

Case4. aN−1 > 0, aN = −2r, aN+1 = −2s

Case5. aN−1 < 0, aN = 2r, aN+1 = 2s

Case6. aN−1 < 0, aN = 2r, aN+1 = −2s

Case7. aN−1 < 0, aN = −2r, aN+1 = 2s

Case8. aN−1 < 0, aN = −2r, aN+1 = −2s

We will only show the proof for cases 1 and 5 and the arguments for the other cases

are similar to those two cases and the arguments used to prove the lemma for n = 2.

Case 1: aN−1 > 0, aN = 2r and aN+1 = 2s. By the induction hypothesis for
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Q = N(< a1, a2, . . . , aN−1 >) and n = N +1 we have:

(
1 0

) ˙̈M(a1) . . . M̄(an−2)M(an−1)M̄(an)

= (cmtL(Q)+1 + · · · + cpt
H(Q), cqt

L(Q)+ 1
2 + · · · + ckt

k)M(2r)M̄(2s)

where |cm| = |cp| = |cq| = |ck| = 1 and L(Q) + 1 ≤ k ≤ H(Q)− 1

= (cmtL(Q)+1 + · · · + cpt
H(Q), cqt

L(Q)+ 1
2 + · · · + ckt

k)

·
(

t2r −+ · · ·− t−2s+1 t2r−2s− 1
2 −+ · · ·− t−2s+ 1

2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)

=
(
−cmtL(Q)−2s+1 + · · · + cptH(Q)+2r, −cqtL(Q)−2s+ 1

2 + · · · + cptH(Q)+2r−2s− 1
2

)

=
(
−cmtl+1 + · · · + cpth, −cqtl+

1
2 + · · · + cptg

)

where l = L(Q) − 2s, h = H(Q) + 2r and g = H(Q) + 2r − 2s − 1
2 . Next we use

Definition 3.2.6 to find

H(K) =






H(Q) + 1
2 + 1

2aN(sign(aN) + 1) + 1
2aN+1(sign(aN+1)− 1)

−1
4

∑N+1
i=N (−sign(ai) + 1)(−sign(ai−1)sign(ai) + 1)− 1

2 if N + 1 is odd.

H(Q) + 1
2aN(sign(aN) + 1) + 1

2aN+1(sign(aN+1)− 1)
−1

4

∑N+1
i=N (sign(ai) + 1)(−sign(ai−1)sign(ai) + 1) if N + 1 is even.

=H(Q) + aN

=H(Q) + 2r

and

L(K) =






L(Q) + 1
2 −

1
2aN(sign(aN)− 1)− 1

2aN+1(sign(aN+1) + 1)
−1

4

∑N+1
i=N (−sign(ai)− 1)(−sign(ai−1)sign(ai) + 1)− 1

2 if N + 1 is odd.

L(Q)− 1
2aN(sign(aN)− 1)− 1

2aN+1(sign(aN+1) + 1)
−1

4

∑N+1
i=N (sign(ai)− 1)(−sign(ai−1)sign(ai) + 1) if N + 1 is even.

=L(Q)− aN+1

=L(Q)− 2s
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Moreover we still have |cm| = |cp| = |cq| = |ck| = 1 and

L(K) + 1 = L(Q)− 2s + 1 ≤ H(Q) + 2r − 2s− 1

2
≤ H(Q) + 2r − 1 = H(K)− 1.

Thus we find that the lemma is true for this case.

Case 5: In this case let aN−1 < 0, aN = 2r and aN+1 = 2s. Then similarly we use

our induction hypothesis for Q = N(< a1, a2, . . . , aN−1 >) and n = N +1 to find the

following:

(
1 0

) ˙̈M(a1) . . . M̄(an−2)M(an−1)M̄(an)

= (cmtL(Q) + · · · + cpt
H(Q)−1, cqt

q + · · · + ckt
H(Q)− 1

2 )M(2r)M̄(2s)

where |cm| = |cp| = |cq| = |ck| = 1 and L(Q) + 1 ≤ q ≤ H(Q)− 1

= (cmtL(Q) + · · · + cpt
H(Q)−1, cqt

q + · · · + ckt
H(Q)− 1

2 )

·
(

t2r −+ · · ·− t−2s+1 t2r−2s− 1
2 −+ · · ·− t−2s+ 1

2

−t−
1
2 +− · · · + t−2s+ 1

2 t−2s

)

=
(
−cmtL(Q)−2s+1 + · · · + cptH(Q)+2r−1, −cmtL(Q)−2s+ 1

2 + · · · + cptH(Q)+2r−2s− 3
2

)

=
(
−cmtl+1 + · · · + cpth, −cmtl+

1
2 + · · · + cptg

)

where l = L(Q)− 2s, h = H(Q) + 2r− 1 and g = H(Q) + 2r− 2s− 3
2 . Again we use

Definition 3.2.6 to find

H(K) =






H(Q)− 1
2 + 1

2aN(sign(aN) + 1) + 1
2aN+1(sign(aN+1)− 1)

−1
4

∑N+1
i=N (−sign(ai) + 1)(−sign(ai−1)sign(ai) + 1)− 1

2 if N + 1 is odd.

H(Q) + 1
2aN(sign(aN) + 1) + 1

2aN+1(sign(aN+1)− 1)
−1

4

∑N+1
i=N (sign(ai) + 1)(−sign(ai−1)sign(ai) + 1) if N + 1 is even.

=H(Q) + aN − 1

=H(Q) + 2r − 1
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and

L(K) =






L(Q)− 1
2 −

1
2aN(sign(aN)− 1)− 1

2aN+1(sign(aN+1) + 1)
−1

4

∑N+1
i=N (−sign(ai)− 1)(−sign(ai−1)sign(ai) + 1)− 1

2 if N + 1 is odd.

L(Q)− 1
2aN(sign(aN)− 1)− 1

2aN+1(sign(aN+1) + 1)
−1

4

∑N+1
i=N (sign(ai)− 1)(−sign(ai−1)sign(ai) + 1) if N + 1 is even.

=L(Q)− aN+1

=L(Q)− 2s

Moreover we still have |cm| = |cp| = |cq| = |ck| = 1 and

L(K) + 1 = L(Q)− 2s + 1 ≤ H(Q) + 2r − 2s− 3

2
≤ H(Q) + 2r − 2 = H(K)− 1.

Hence for this case the lemma is also satisfied. As stated before the other cases can

all be proven similarly. !

Using Lemma 3.2.7 we obtain Theorem 3.2.8 below that gives a relation between

the formulas we defined in Definition 3.2.6 and the breadth of the Jones polynomial

of certain links.

Theorem 3.2.8. Let K be a link such that K = N(< a1, a2, . . . , an >) where all ai

are nonzero even integers. Then the greatest exponent of t in V(K) is maxexp(V(K))

= H(K) and the least exponent of t in V(K) is minexp(V(K)) = L(K). Moreover

Br(V (k)) = H(K)−L(K) and the coefficients of the maxexp and minexp terms have

absolute value one.

Proof. Let K be a link constructed as stated in the theorem above. We will again

have to consider the two cases, where an > 0 and an < 0. Also let ˙̈M(a1) = M(a1)

when n is even and ˙̈M(a1) = M̄(a1) when n is odd.

Case 1: Let an > 0. Then using Theorem 3.2.3 and Lemma 3.2.7 we can write the
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Jones polynomial of K as

V (K) =
(
1 0

) ˙̈M(a1) . . . M̄(an−2)M(an−1)M̄(an)

(
1

−t−
1
2 − t

1
2

)

=(cmtL(K)+1 + · · · + cpt
H(K), cqt

L(K)+ 1
2 + · · · + cgt

g)

(
1

−t−
1
2 − t

1
2

)

=cmtL(K)+1 + · · · + cpt
H(K) − (cqt

L(K) + · · · + cgt
g+ 1

2 )

where L(K) + 1 ≤ g ≤ H(K)− 1. Thus for Case 1 the theorem is true.

Case 2: Let an < 0. Again by using Theorem 3.2.3 and Lemma 3.2.7 we can write

the Jones polynomial of K as

V (K) =
(
1 0

) ˙̈M(a1) . . . M̄(an−2)M(an−1)M̄(an)

(
1

−t−
1
2 − t

1
2

)

=(cmtL(K) + · · · + cpt
H(K)−1, cqt

q + · · · + ckt
H(K)− 1

2 )

(
1

−t−
1
2 − t

1
2

)

=cmtL(K) + · · · + cpt
H(K)−1 − (cqt

q− 1
2 + · · · + ckt

H(K))

where L(K) + 1 ≤ q ≤ H(K)− 1. Hence for this case the theorem is true. !

Later in this thesis it will be beneficial to relate H(K) and L(K) for knots made

from rational tangles that are mirror images. This next lemma will do this for us.

Lemma 3.2.9. If K = N(< a1, a2, . . . , an >) and

K̄ = N(< −a1,−a2, . . . ,−an >) then

H(K) = −L(K̄) and L(K) = −H(K̄)

This lemma is proved by noticing that K and K̄ are mirror images and applying

Theorem 3.2.8 and Theorem 2.2.3.



CHAPTER 4

Montesinos Links

This chapter will focus on the class Montesinos links. The chapter will begin

with the definition of Montesinos links and some of their properties then we move to

the breadth of the Jones polynomial of this class of knots and links.

4.1. An introduction to Montesinos links

As always with a new concept, this section will start by defining a Montesinos

link. This class of knots can be defined in terms of concepts already seen in the

previous chapters.

Definition 4.1.1. Let A1, A2, . . . As be a finite number of rational tangles, where

s ≥ 3 and e be a rational tangle such that e =< a >, that is e is a rational tangle

constructed by a single row of horizontal twists. Then the link L given by L = N(A1+

A2 + . . . As + e) is called a Montesinos link; see Figure 4.1

Note that the restriction s ≥ 3 is artificial. For s = 1 or s = 2 we obtain the

knots N(< a1, a2, . . . , as >) already discussed in Chapter 3 [4]. Earlier we have

discussed equivalence in links in general and equivalence in links constructed from

the numerator of rational tangles. Likewise there is a classification for Montesinos

links. Recall that every rational tangle can be represented by a rational number β
α .

The next theorem classifies Montesinos links.

41
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A1 A2 As e

Figure 4.1. A Montesinos link.

Theorem 4.1.2. [1, 11] Let L be a Montesinos link L = N( β1

α1
+ β2

α2
+· · ·+ βs

αs
+e)

with s ≥ 3 where e ∈ Z and βi

αi
∈ Q\Z . Then L can be classified by the ordered set of

fractions ( β1

α1
mod1, β2

α2
mod1, . . . , βs

αs
mod1), up to cyclic permutations and reversal

of order, together with the rational number e0 = e +
∑s

j=1
βj

αj
.

Recall from Theorem 2.2.7 that a mutation done to a link will not change

the Jones polynomial of that link. From this theorem the following lemma can be

obtained:

Lemma 4.1.3. Let L be a Montesinos link L = N(A1 +A2 + . . . As) and let L’ be

a montesinos link N(A′
1 +A′

2 + · · ·+A′
s) where the sequence of tangles A′

1, A
′
2, . . . , A

′
s

is a permutation of A1, A2, . . . As. Then V(L) = V(L’).

Proof. From Theorem 2.2.7 it suffices to show that one can permute two rational

tangles in a Montesinos knot by a finite series of mutations. Let L be a Montesinos

link as described in Lemma 4.1.3 with two consecutive tangles Ai and Ai+1 as shown

in Figure 4.2.

Figure 4.2 shows a sequence of mutations that can be done to this link to

permute the two tangles.
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s s

s s

s

Figure 4.2.

!

The next lemma will give us some insight into the orientation of certain Mon-

tesinos links. These are the Montesinos links for which we can compute the breadth

of the Jones polynomial. However many Montesinos links do not fall in this class;

see Chapter 5.
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Lemma 4.1.4. Let L be a Montesinos link given by L = N(A1 + A2 + · · · + As)

where each each Ai is a rational tangle Ai =< ai,1, ai,2, . . . , ai,ni > and each ai,j is

even and not zero for 1 ≤ j ≤ ni. Then L can be oriented as shown in Figure 4.3.

Proof. By Theorem 3.1.7 each Ai has parity 0 if ni is odd and parity ∞ oth-

erwise. Thus an orientation like the one shown in Figure 4.3 can be assigned to

L. !

A1 A2 As

Figure 4.3.

4.2. The breadth of the Jones polynomial for Montesinos links

Now that Montesinos links have been defined we can now draw some conclusions

about the greatest and least exponent of the Jones polynomial of Montesinos links.

We start by proving a couple of lemmas that focus on Montesinos links of the form

N(A1, A2, . . . , As) where each tangle is constructed from even, nonzero twists. After

we have these two lemmas we will use them to prove two more important lemmas and

a theorem that focus on links constructed from tangles that end in vertical twists.



45

For the next group of lemmas we will use the notation H(A) = H(N(A)) and

L(A) = L(N(A)) from Definition 3.2.6 where A is a tangle.

Lemma 4.2.1. Let K be a Montesinos link given by K = N(A1 + A2 + · · ·+ As)

and each each Ai is a rational tangle Ai =< ai,1, ai,2, . . . , ai,ni > such that each ai,j

is even and not zero. Further suppose that each ai,ni > 0 and K has the orientation

as shown in Figure 4.3. Then the greatest exponent of V(K) is given by:

maxexp(V (K)) =
s∑

i=1

H(Ai) +
s− 1

2

and the least exponent of V(L) is given by:

minexp(V (K)) =
s∑

i=1

L(Ai) +
s− 1

2

Proof. We will prove this lemma by induction on the number of tangles s. First

we must prove some preliminary facts about the maxexp and minexp of the Jones

polynomial for tangles of the form Ai as stated above. These facts will be used

throughout this proof. By Theorem 3.2.8 we know the following:

maxexp(V (N(Ai))) = H(Ai) and minexp(V (N(Ai))) = L(Ai) (4.1)

Now suppose that Āi =< −ai,1,−ai,2, . . . ,−ai,ni−1 >. From Lemma 3.1.2 we know

that D(Ai) = N(Āi), and thus

maxexp(V (D(Ai))) = H(Āi) and minexp(V (D(Ai))) = L(Āi)
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Then by Definition 3.2.6 we find

H(Āi) =
1

2

ni−2∑

j≡ni mod2

−ai,j(sign(−ai,j) + 1) +
1

2

ni−1∑

j≡(ni−1) mod2

−ai,j(sign(−ai,j)− 1)

− 1

4

ni−1∑

j=2

((−1)ni−1sign(−ai,j) + 1)(−sign(−ai,j−1)sign(−ai,j) + 1)

− 1

2
sign(−ai,ni−1)((ni − 1) mod2)

=
1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j)− 1) +
1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j) + 1)

− 1

4

ni−1∑

j=2

((−1)nisign(ai,j) + 1)(−sign(ai,j−1)sign(ai,j) + 1)

+
1

2
sign(ai,ni−1)((ni − 1) mod2) (4.2)

and

L(Āi) = −1

2

ni−2∑

j≡ni mod2

−ai,j(sign(−ai,j)− 1)− 1

2

ni−1∑

j≡(ni−1) mod2

−ai,j(sign(−ai,j) + 1)

− 1

4

ni−1∑

j=2

((−1)ni−1sign(−ai,j)− 1)(−sign(−ai,j−1)sign(−ai,j) + 1)

− 1

2
sign(−ai,ni−1)((ni − 1) mod2)

= −1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j) + 1)− 1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j)− 1)

− 1

4

ni−1∑

j=2

((−1)nisign(ai,j)− 1)(−sign(ai,j−1)sign(ai,j) + 1)

+
1

2
sign(ai,ni−1)((ni − 1) mod2) (4.3)
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Then for ai,ni−1 > 0 we find the following:

1

2
ai,ni(sign(ai,ni)− 1) = 0

−1

2
ai,ni(sign(ai,ni) + 1) = −ai,ni

1

2
sign(ai,ni−1)((ni − 1) mod2) =






1
2 if ni is even

0 if ni is odd

−1

2
sign(ai,ni)(ni mod2) =






0 if ni is even

−1
2 if ni is odd

−1

4
((−1)nisign(ai,ni)− 1)(−sign(ai,ni−1)sign(i, ai,ni) + 1) = 0

−1

4
((−1)nisign(ai,ni) + 1)(−sign(ai,ni−1)sign(i, ai,ni) + 1) = 0

Thus we can use Equations 4.2 and 4.3 to find the following for ai,ni−1 > 0:

H(Āi)−
1

2
=

1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j)− 1) +
1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j) + 1)

− 1

4

ni−1∑

j=2

((−1)nisign(ai,j) + 1)(−sign(ai,j−1)sign(ai,j) + 1)

+
1

2
sign(ai,ni−1)((ni − 1) mod2)− 1

2
sign(ai,ni−1)((ni − 1) mod2)

− 1

2
sign(ai,ni)(ni mod2)

=
1

2

ni∑

j≡ni mod2

ai,j(sign(ai,j)− 1) +
1

2

ni−1∑

j≡(ni+1) mod2

ai,j(sign(ai,j) + 1)

− 1

4

ni∑

j=2

((−1)nisign(ai,j) + 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni)(ni mod2)

= H(Ai). (4.4)
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and

L(Āi)− ai,ni −
1

2
=− 1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j) + 1)− 1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j)− 1)

− 1

4

ni−1∑

j=2

((−1)nisign(ai,j)− 1)(−sign(ai,j−1)sign(ai,j) + 1)

+
1

2
sign(ai,ni−1)((ni − 1) mod2)− 1

2
sign(ai,ni−1)((ni − 1) mod2)

− 1

2
sign(ai,ni)(ni mod2)− 1

2
ai,ni(sign(ai,ni) + 1)

=− 1

2

ni∑

j≡ni mod2

ai,j(sign(ai,j) + 1)− 1

2

ni−1∑

j≡(ni+1) mod2

ai,j(sign(ai,j)− 1)

− 1

4

ni∑

j=2

((−1)nisign(ai,j)− 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni)(ni mod2)

=L(Ai) (4.5)

Also for ai,ni−1 < 0 we find the following:

1

2
ai,ni(sign(ai,ni)− 1) = 0

−1

2
ai,ni(sign(ai,ni) + 1) = −ai,ni

1

2
sign(ai,ni−1)((ni − 1) mod2) =






−1
2 if ni is even

0 if ni is odd

−1

2
sign(ai,ni)(ni mod2) =






0 if ni is even

−1
2 if ni is odd

−1

4
((−1)nisign(ai,ni) + 1)(−sign(ai,ni−1)sign(i, ai,ni) + 1) =






−1 if ni is even

0 if ni is odd

−1

4
((−1)nisign(ai,ni)− 1)(−sign(ai,ni−1)sign(i, ai,ni) + 1) =






0 if ni is even

1 if ni is odd
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Similar to Equation 4.4 and 4.5 and we can use Equations 4.2 and 4.3 to find the

following for ai,ni−1 < 0.

H(Āi)−
1

2
= H(Ai). (4.6)

and

L(Āi)− ai,ni +
1

2
= L(Ai). (4.7)

Therefore we can use Equations 4.4, 4.5, 4.6, 4.7 and the fact that ai,ni ≥ 2 to find

maxexp(V (D(Ai))) = H(Ai) +
1

2
(4.8)

minexp(V (D(Ai))) ≥ L(Ai) +
3

2
(4.9)

Now that we have Equations 4.1, 4.8 and 4.9 we need to prove the initial cases for

our induction s = 1 and s = 2. If s = 1 we are done because of Theorem 3.2.8. Let

s = 2 then by Corollary 3.1.5 we find the greatest exponent of V(K) is

maxexp(V (K)) ≤max






maxexp(V (N(A1))V (N(A2)))− 1
2 = H(A1) + H(A2)− 1

2

maxexp(V (D(A1))V (D(A2)))− 1
2 = H(A1) + H(A2) + 1

2

maxexp(V (N(A1))V (D(A2)))− 1 = H(A1) + H(A2)− 1
2

maxexp(V (D(A1))V (N(A2)))− 1 = H(A1) + H(A2)− 1
2

=H(A1) + H(A2) +
1

2

and the least exponent of V(K) is

minexp(V (K)) ≥min






minexp(V (N(A1))V (N(A2))) + 1
2 = L(A1) + L(A2) + 1

2

minexp(V (D(A1))V (D(A2))) + 1
2 ≥ L(A1) + L(A2) + 7

2

minexp(V (N(A1))V (D(A2))) + 1 ≥ L(A1) + L(A2) + 5
2

minexp(V (D(A1))V (N(A2))) + 1 ≥ L(A1) + L(A2) + 5
2

=L(A1) + L(A2) +
1

2
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We must have equality with both of these because there can be no cancelations of

terms involving the greatest and least exponent (Because K is alternating we know

that the breadth of V(K) is Cr(K) and Cr(K) = H(A1) + H(A2)− L(A1)− L(A2)).

Therefore when s = 2 the lemma is true.

Now assume that the lemma is true for s = k - 1. We must show that it is true

for s = k. Let A = (A1 + A2 + · · ·+ Ak−1), then we can observe that L = N(A + Ak)

and A is a tangle. By our inductive assumption we know that

maxexp(V (N(A))) =
k−1∑

i=1

H(Ai) +
k − 2

2

minexp(V (N(A))) =
k−1∑

i=1

L(Ai) +
k − 2

2

and

maxexp(V (N(Ak))) = H(Ak) and minexp(V (N(Ak))) = L(Ak).

Next we can note that D(A) = (D(A1)#D(A2)# . . . #D(Ak−1)) and thus by The-

orem 2.2.5 we know V(D(A)) = (V (D(A1))V (D(A2)) . . . V (D(Ak−1))). So now by

Equations 4.8 and 4.9 we will find the following where Āi =< −ai,1,−ai,2, . . . ,−ai,ni−1 >:

maxexp(V (D(A))) =
k−1∑

i=1

H(Ai) +
k − 1

2

maxexp(V (D(Ak))) = H(Ak) +
1

2

minexp(V (D(A))) =
k−1∑

i=1

L(Āi) ≥
k−1∑

i=1

L(Ai) +
3

2
(k − 1)

minexp(V (D(Ak))) = L(Āk) ≥ L(Ak) +
3

2
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Therefore by Corollary 3.1.5 we have

maxexp(V (K)) ≤max






maxexp(V (N(A))V (N(Ak)))− 1
2 =

∑k
i=1 H(Ai) + k−3

2

maxexp(V (D(A))V (D(Ak)))− 1
2 =

∑k
i=1 H(Ai) + k−1

2

maxexp(V (N(A))V (D(Ak)))− 1 =
∑k

i=1 H(Ai) + k−3
2

maxexp(V (D(A))V (N(Ak)))− 1 =
∑k

i=1 H(Ai) + k−3
2

=
k∑

i=1

H(Ai) +
k − 1

2

and

minexp(V (K)) ≥min






minexp(V (N(A))V (N(Ak))) + 1
2 =

∑k
i=1 L(Ai) + k−1

2

minexp(V (D(A))V (D(Ak))) + 1
2 ≥

∑k
i=1 L(Ai) + 3k+1

2

minexp(V (N(A))V (D(Ak))) + 1 ≥
∑k

i=1 L(Ai) + k+3
2

minexp(V (D(A))V (N(Ak))) + 1 ≥
∑k

i=1 L(Ai) + 3k+2
2

=
k∑

i=1

L(Ai) +
k − 1

2

Again we must have equality with both of these because there are no cancelations

of terms involving the greatest and least exponent using the same crossing number

argument as before. Thus we find our lemma is true. !

To demonstrate how this first lemma works let us consider the knot K = N(3
2 +

54
25 + 532

87 ). Note that we can find the Jones polynomial of K to be

V (K) =
1

t9
− 3

t8
+

8

t7
− 16

t6
+

26

t5
− 38

t4
+

49

t3
− 58

t2
+

65

t
− 68

+ 67t− 62t2 + 55t3 − 45t4 + 34t5 − 23t6 + 14t7 − 7t8 + 3t9 − t10

By using our formulas we find the following:

H(
3

2
) + H(

54

25
) + H(

532

87
) +

3− 1

2
= 2 +

3

2
+

11

2
+ 1 = 10
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and

L(
3

2
) + L(

54

25
) + L(

532

87
) +

3− 1

2
= −2− 13

2
− 3

2
+ 1 = −9

So for K our formulas accurately give the maxexp(V(K)) and the minexp(V(K)).

Now that we have Lemma 4.2.1 we will use it to prove the following lemma that

deals with Montesinos knots constructed from tangles that end in negative twists.

Lemma 4.2.2. Let K be a Montesinos link given by K = N(A1 + A2 + · · ·+ As)

and each Ai is a rational tangle Ai =< ai,1, ai,2, . . . , ai,ni > such that each ai,j is even

and not zero. Further suppose that each ai,ni < 0 and K has the orientation as shown

in Figure 4.3. Then the greatest exponent of V(K) is given by:

maxexp(V (K)) =
s∑

i=1

H(Ai)−
s− 1

2

and the least exponent of V(L) is given by:

minexp(V (K)) =
s∑

i=1

L(Ai)−
s− 1

2

Proof. Let K be defined as above in Lemma 4.2.2. Also let

A′
i =< −ai,1,−ai,2, . . . ,−ai,ni > for each i = 1, 2 . . . , s and let K’ = N(A′

1, A
′
2, . . . , A

′
s).

By Lemma 3.2.9 we find that

H(Ai) = −L(A′
i) and L(Ai) = −H(A′

i). (4.10)

Now we can note that −ai,ni > 0 for i = 1, 2 . . . , s, so by Lemma 4.2.1 we know that

maxexp(V (K ′)) =
s∑

i=1

H(A′
i) +

s− 1

2

and

minexp(V (K ′)) =
s∑

i=1

L(A′
i) +

s− 1

2
.
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Next we can note that K and K’ are mirror images and thus from Theorem 2.2.3

we have V (K)(t) = V (K ′)(t−1). By combining this with Equation 4.10 we have the

following:

maxexp(V (K)) = −minexp(V (K ′)) = −(
s∑

i=1

L(A′
i) +

s− 1

2
)

=
s∑

i=1

H(Ai)−
s− 1

2

and

minexp(V (K)) = −maxexp(V (K ′)) = −(
s∑

i=1

H(A′
i) +

s− 1

2
)

=
s∑

i=1

L(Ai)−
s− 1

2
.

!

The next lemma will concern Montesinos links constructed from tangles that end

in vertical twists. We can use the same notation as we have throughout and make

the last horizontal twist zero to achieve this. For this lemma we will use the fact that

N < a1, a2, . . . , an, 0 >= N < a1, a2, . . . , an−1 > and D < a1, a2, . . . , an, 0 >=

N < −a1,−a2, . . . ,−an >. An example is illustrated in Figure 4.4.
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N(<-3, 2, 4, -3, 2, 0>) N(<-3, 2, 4, -3>)

D(<-3, 2, 4, -3, 2, 0>)

N(<3, -2, -4, 3, -2>)

Figure 4.4. A figure to illustrate the relation between rational tan-
gles ending in vertical twists and those ending in horizontal twists
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Lemma 4.2.3. Let K = N(A1 + A2 + · · · + As) where s ≥ 2 and each Ai is a

tangle constructed as Ai =< ai,1, ai,2, . . . , ai,ni , 0 > and each ai,j is even and nonzero.

Furthermore suppose that each ai,ni is positive and K has the orientation as shown

in Figure 4.3. Then

maxexp(V (K)) =
s∑

i=1

−L(Âi)−
1

2

and

minexp(V (K)) =
s∑

i=1

−H(Âi)−
1

2

Where Âi =< ai,1, ai,2, . . . , ai,ni >

Proof. To prove this lemma we will use induction on the value of s, similar to

the proof for Lemma 4.2.1. Before we get to the induction portion of the proof we

will first need to prove some preliminary results for rational tangles. Let Ai be a

rational tangle as described in Lemma 4.2.3. Then from the facts above we know

N(Ai) = N(< ai,1, ai,2, . . . , ai,ni−1 >) and D(Ai) = N(< −ai,1,−ai,2, . . . ,−ai,ni >).

Also let Âi be defined as in Lemma 4.2.3, then we can note that D(Ai) and N(Âi)

are mirror images. By Theorem 3.2.8 we know that

maxexp(V (N(Âi))) = H(Âi) and minexp(V (N(Âi))) = L(Âi).

So now we can use Theorem 2.2.3 to find that

maxexp(V (D(Ai))) = −L(Âi) and minexp(V (D(Ai))) = −H(Âi). (4.11)
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Now we can use Definition 3.2.6 to find the following:

maxexp(V (N(Ai))) = H(N(< ai,1, ai,2, . . . , ai,ni−1 >))

=
1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j) + 1) +
1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j)− 1)

− 1

4

ni−1∑

j=2

((−1)ni−1sign(ai,j) + 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni−1)((ni − 1) mod2)

=
1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j) + 1) +
1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j)− 1)

+
1

4

ni−1∑

j=2

((−1)nisign(ai,j)− 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni−1)((ni − 1) mod2)

and

minexp(V (N(Ai))) = L(N(< ai,1, ai,2, . . . , ai,ni−1 >))

=− 1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j)− 1)− 1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j) + 1)

− 1

4

ni−1∑

j=2

((−1)ni−1sign(ai,j)− 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni−1)((ni − 1) mod2)

=− 1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j)− 1)− 1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j) + 1)

+
1

4

ni−1∑

j=2

((−1)nisign(ai,j) + 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni−1)((ni − 1) mod2)
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Next we can find the following for ai,ni−1 > 0:

1

2
ai,ni(sign(ai,ni)− 1) = 0

1

2
ai,ni(sign(ai,ni) + 1) = ai,ni

− 1

2
sign(ai,ni−1)((ni − 1) mod2) =

{
−1

2 if ni is even
0 if ni is odd

1

2
sign(ai,ni)(ni mod2) =

{
0 if ni is even
1
2 if ni is odd

1

4
((−1)nisign(ai,ni)− 1)(−sign(ai,ni−1)sign(ai,ni) + 1) = 0

1

4
((−1)nisign(ai,ni) + 1)(−sign(ai,ni−1)sign(ai,ni) + 1) = 0

So then we can find

maxexp(V (N(Ai))) + ai,ni +
1

2

=
1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j) + 1) +
1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j)− 1)

+
1

4

ni−1∑

j=2

((−1)nisign(ai,j)− 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni−1)((ni − 1) mod2) +

1

2
sign(ai,ni−1)((ni − 1) mod2)

+
1

2
sign(ai,ni)(ni mod2) +

1

2
ai,ni(sign(ai,ni) + 1)

=
1

2

ni∑

j≡ni mod2

ai,j(sign(ai,j) + 1) +
1

2

ni−1∑

j≡(ni+1) mod2

ai,j(sign(ai,j)− 1)

+
1

4

ni∑

j=2

((−1)nisign(ai,j)− 1)(−sign(ai,j−1)sign(ai,j) + 1)

+
1

2
sign(ai,ni)(ni mod2)

=− L(Âi) (4.12)
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and

minexp(V (N(Ai))) +
1

2

=− 1

2

ni−2∑

j≡ni mod2

ai,j(sign(ai,j)− 1)− 1

2

ni−1∑

j≡(ni−1) mod2

ai,j(sign(ai,j) + 1)

+
1

4

ni−1∑

j=2

((−1)nisign(ai,j) + 1)(−sign(ai,j−1)sign(ai,j) + 1)

− 1

2
sign(ai,ni−1)((ni − 1) mod2) +

1

2
sign(ai,ni−1)((ni − 1) mod2)

+
1

2
sign(ai,ni)(ni mod2) +

1

2
ai,ni(sign(ai,ni)− 1)

=− 1

2

ni∑

j≡ni mod2

ai,j(sign(ai,j)− 1)− 1

2

ni−1∑

j≡(ni+1) mod2

ai,j(sign(ai,j) + 1)

+
1

4

ni∑

j=2

((−1)nisign(ai,j) + 1)(−sign(ai,j−1)sign(ai,j) + 1)

+
1

2
sign(ai,ni)(ni mod2)

=−H(Âi) (4.13)

Now that we have this result for ai,ni−1 > 0 let us consider ai,ni−1 < 0.

1

2
ai,ni(sign(ai,ni)− 1) = 0

1

2
ai,ni(sign(ai,ni) + 1) = ai,ni

− 1

2
sign(ai,ni−1)((ni − 1) mod2) =

{
1
2 if ni is even
0 if ni is odd

1

2
sign(ai,ni)(ni mod2) =

{
0 if ni is even
1
2 if ni is odd

1

4
((−1)nisign(ai,ni)− 1)(−sign(ai,ni−1)sign(ai,ni) + 1) =

{
0 if ni is even
−1 if ni is odd

1

4
((−1)nisign(ai,ni) + 1)(−sign(ai,ni−1)sign(ai,ni) + 1) =

{
1 if ni is even
0 if ni is odd
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Thus by a similar argument as the one shown above we find that

maxexp(V (N(Ai))) + ai,ni −
1

2
= −L(Âi)

minexp(V (N(Ai))) +
1

2
= −H(Âi)

Therefore for any tangle Ai we have the following:

maxexp(V (N(Ai))) ≤ −L(Âi)−
3

2
(4.14)

minexp(V (N(Ai))) = −H(Âi)−
1

2
(4.15)

Now that we have 4.11, 4.14 and 4.15 we can start to prove the lemma by induction.

If s = 2 then K = N(A1 +A2) where A1 and A2 are a tangles as described in Lemma

4.2.3. Then from 4.14 and 4.15 we have

maxexp(V (N(A1))) ≤ −L(Â1)−
3

2

minexp(V (N(A1))) = −H(Â1)−
1

2

maxexp(V (N(A2))) ≤ −L(Â2)−
3

2

minexp(V (N(A2))) = −H(Â2)−
1

2

and from 4.11 we have

maxexp(V (D(A1))) = −L(Â1)

minexp(V (D(A1))) = −H(Â1)

maxexp(V (D(A2))) = −L(Â2)

minexp(V (D(A2))) = −H(Â2)
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Then we will use Corollary 3.1.5 to find the maxexp and minexp of V(K).

maxexp(V (K)) ≤max






maxexp(V (N(A1))V (N(A2)))− 1
2 ≤ −L(Â1)− L(Â2)− 5

2

maxexp(V (D(A1))V (D(A2)))− 1
2 = −L(Â1)− L(Â2)− 1

2

maxexp(V (N(A1))V (D(A2)))− 1 ≤ −L(Â1)− L(Â2)− 5
2

maxexp(V (D(A1))V (N(A2)))− 1 ≤ −L(Â1)− L(Â2)− 5
2

=− L(Â1)− L(Â2)−
1

2

and

minexp(V (K)) ≥min






minexp(V (N(A1))V (N(A2))) + 1
2 = −H(Â1)−H(Â2)− 1

2

minexp(V (D(A1))V (D(A2))) + 1
2 = −H(Â1)−H(Â2) + 1

2

minexp(V (N(A1))V (D(A2))) + 1 = −H(Â1)−H(Â2) + 1
2

minexp(V (D(A1))V (N(A2))) + 1 = −H(Â1)−H(Â2) + 1
2

=−H(Â1)−H(Â2)−
1

2

We must have equality with both of these because of the crossing number argument

used before. Thus for s = 2 the Lemma is true. Now assume that the lemma is true

for s = k - 1, we need to prove it is true for s = k. Consider K = N(A1+A2+· · ·+Ak).

Let A = (A1 + A2 + · · · + Ak−1). Using the inductive hypothesis as well as 4.14 and

4.15 we find

maxexp(V (N(A))) =
k−1∑

i=1

−L(Âi)−
1

2

minexp(V (N(A))) =
k−1∑

i=1

−H(Âi)−
1

2

maxexp(V (N(Ak))) ≤ −L(Âk)−
3

2

minexp(V (N(Ak))) = −H(Âk)−
1

2
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Next we can note that D(A) = (D(A1)#D(A2)# . . . #D(Ak−1)) and thus by Theo-

rem 2.2.5 we know V(D(A)) = (V (D(A1))V (D(A2)) . . . V (D(Ak−1))). Then by using

4.11 we find

maxexp(V (D(A))) =
k−1∑

i=1

−L(Âi)

minexp(V (D(A))) =
k−1∑

i=1

−H(Âi)

maxexp(V (D(Ak))) = −L(Âk)

minexp(V (D(Ak))) = −H(Âk)

So again we can use Corollary 3.1.5 to find the maxexp and minexp of V(K).

maxexp(V (K)) ≤max






maxexp(V (N(A))V (N(Ak)))− 1
2 ≤

∑k
i=1−L(Âi)− 5

2

maxexp(V (D(A))V (D(Ak)))− 1
2 =

∑k
i=1−L(Âi)− 1

2

maxexp(V (N(A))V (D(Ak)))− 1 =
∑k

i=1−L(Âi)− 3
2

maxexp(V (D(A))V (N(Ak)))− 1 ≤
∑k

i=1−L(Âi)− 5
2

=
k∑

i=1

−L(Âi)−
1

2

and

minexp(V (K)) ≥min






minexp(V (N(A))V (N(Ak))) + 1
2 =

∑k
i=1−H(Âi)− 1

2

minexp(V (D(A))V (D(Ak))) + 1
2 =

∑k
i=1−H(Âi) + 1

2

minexp(V (N(A))V (D(Ak))) + 1 =
∑k

i=1−H(Âi) + 1
2

minexp(V (D(A))V (N(Ak))) + 1 =
∑k

i=1−H(Âi) + 1
2

=
k∑

i=1

−H(Âi)−
1

2

Again we have equality with both of these because of the crossing number argument.

Thus our lemma is true. !
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Lemma 4.2.4. Let K = N(A1 + A2 + · · · + As) where s ≥ 2 and each Ai is a

tangle constructed as Ai =< ai,1, ai,2, . . . , ai,ni , 0 > and each ai,j is even and nonzero.

Furthermore suppose that each ai,ni is negative and K has the orientation as shown

in Figure 4.3. Then

maxexp(V (K)) =
s∑

i=1

−L(Âi) +
1

2

and

minexp(V (K)) =
s∑

i=1

−H(Âi) +
1

2

Where Âi =< ai,1, ai,2, . . . , ai,ni >.

The proof to this lemma is similar to the proof of Lemma 4.2.2 so we leave it

to the curious reader. Now that we have the previous lemmas we will use them to

prove the next theorem which will give a general formula for the maxexp and minexp

of V(K) where K is a Montesinos knot constructed from rational tangles that end

in vertical twists. It is important to discuss a Montesinos link of this form because

a nonalternating diagram of a Montesinos link that contains a tangle ending in a

horizontal twist cannot be minimal [7]. The Lemmas 4.2.1, 4.2.2, 4.2.3, and 4.2.4

all deal with alternating links. The next theorem is for one type of non-alternating

Montesinos links.

Theorem 4.2.5. Let K = N(A1 + A2 + · · · + As) where s ≥ 4 and each Ai is a

tangle constructed as Ai =< ai,1, ai,2, . . . , ai,ni , 0 > and each ai,j is even and nonzero.

Furthermore suppose u of these rational tangles end in ai,ni > 0 and v = s - u of these

rational tangles end in ai,ni < 0 and 1 < u < s− 1. Also let K have the orientation
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as shown in Figure 4.3. Then

maxexp(V (K)) =
s∑

i=1

−L(Âi)−
1

2

and

minexp(V (K)) =
s∑

i=1

−H(Âi) +
1

2

where Âi =< ai,1, ai,2, . . . , ai,ni >.

Proof. Let K be a link as described above. Then by Lemma 4.1.3 we can assume

that for Ai where i = 1, 2, . . . , u that ai,ni > 0 and for Ai where i = u+1, u+2, . . . , s

that ai,ni < 0 without changing V(K). Let A = (A1 + A2 + · · · + Au) and B =

(Au+1 + Au+2 + · · · + As). Then from Lemma 4.2.3 and Lemma 4.2.4 we find the

following:

maxexp(V (N(A))) =
u∑

i=1

−L(Âi)−
1

2

maxexp(V (N(B))) =
s∑

i=u+1

−L(Âi) +
1

2

minexp(V (N(A))) =
u∑

i=1

−H(Âi)−
1

2

minexp(V (N(B))) =
s∑

i=u+1

−H(Âi) +
1

2

Next we can note that D(A) = (D(A1)#D(A2)# . . . #D(Au)) and thus by Theorem

2.2.5 we know V(D(A)) = (V (D(A1))V (D(A2)) . . . V (D(Au))) and similarly V(D(B))
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= (V (D(Au+1))V (D(Au+2)) . . . V (D(As))). Then by using 4.11 we find

maxexp(V (D(A))) =
u∑

i=1

−L(Âi)

maxexp(V (D(B))) =
s∑

i=u+1

−L(Âi)

minexp(V (D(A))) =
u∑

i=1

−H(Âi)

minexp(V (D(B))) =
s∑

i=u+1

−H(Âi)

Then by Corollary 3.1.5 we have the following:

maxexp(V (K)) ≤max






maxexp(V (N(A))V (N(B)))− 1
2 =

∑s
i=1−L(Âi)− 1

2

maxexp(V (D(A))V (D(B)))− 1
2 =

∑s
i=1−L(Âi)− 1

2

maxexp(V (N(A))V (D(B)))− 1 =
∑s

i=1−L(Âi)− 3
2

maxexp(V (D(A))V (N(B)))− 1 =
∑s

i=1−L(Âi)− 1
2

=
s∑

i=1

−L(Âi)−
1

2
(4.16)

and

minexp(V (K)) ≥min






minexp(V (N(A))V (N(B))) + 1
2 =

∑s
i=1−H(Âi) + 1

2

minexp(V (D(A))V (D(B))) + 1
2 =

∑s
i=1−H(Âi) + 1

2

minexp(V (N(A))V (D(B))) + 1 =
∑s

i=1−H(Âi) + 1
2

minexp(V (D(A))V (N(B))) + 1 =
∑s

i=1−H(Âi) + 3
2

=
s∑

i=1

−H(Âi) +
1

2
(4.17)

From [7] we know that a non alternating diagram of K where the all tangles Ai are

alternating and end in vertical twists is a minimal diagram. Note that this implies

Cr(K) =
∑s

i=1 Cr(D(Ai)). Moreover from [10] we also know that Br(V (K)) =
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Cr(K)− 1. From our calculations we know that

Br(V (K)) ≤
s∑

i=1

(H(Âi)− L(Âi))− 1

=
s∑

i=1

Br(D(Ai))− 1 =
s∑

i=1

Cr(D(Ai))− 1 = Cr(K)− 1.

From the previous line we have that equality must hold and therefore Br(V (K)) =

∑s
i=1(H(Âi)− L(Âi))− 1 and likewise we must have equality in Equation 4.16 and

4.17. !



CHAPTER 5

Conclusions

The main purpose of this thesis was to find formulas for the maximum and

minimum exponents of the Jones polynomial for certain classes of knots and links.

To accomplish this goal we started by investigating the maximum and minimum

exponent for knots and links constructed from special rational tangles namely those

of the form β
α where β is odd and α is even or when β is even and α is odd. We

then went on to use the formulas for finding the maximum and minimum exponent

of the Jones polynomial of Montesinos knots. The Montesinos knots that we could

draw some conclusions about were those constructed from rational tangles ending

in horizontal twists and Montesinos knots ending in vertical twists. The next step

in furthering this research would be to investigate what would happen if we have

a Montesinos knot constructed by mixing tangles that end in vertical twists and

horizontal twists.

Another open question is how do we deal with Montesinos knots that contain

rational tangles of the form β
α where β is odd and α is odd. It is clear to us that if

we did have an odd number of these tangles and no tangles of the form β
α where β

is odd and α is even then the knot cannot have the orientation as shown in Figure

4.3 and thus we would have to approach this case with different methods from those

used in this thesis.
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