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Proteins carry out an almost innumerable amount of biological processes that are 

absolutely necessary to life and as a result proteins and their structures are very often the 

objects of study in research.  As such, this thesis will begin with a description of protein 

function and structure, followed by brief discussions of the two major experimental 

structure determination methods.  Another problem that often arises in molecular 

modeling is referred to as the Molecular Distance Geometry Problem (MDGP).  This 

problem seeks to find coordinates for the atoms of a protein or molecule when given only 

a set of pair-wise distances between atoms.  To introduce the complexities of the MDGP 

we begin at its origins in distance geometry and progress to the specific sub-problems and 

some of the solutions that have been developed.  This is all in preparation for a discussion 

of what is known as the Geometric Build-up (GBU) Solution.  This solution has lead to 

the development of several algorithms and continues to be modified to account for more 

and different complexities.  The culmination of this thesis, then, is a new algorithm, the 

Revised Updated Geometric Build-up, that is faster than previous GBU’s while 

maintaining the accuracy of the resulting structure. 
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Chapter 1:  Introduction 

1.1 Motivation and Research Goals 

 Biology is the study of living organisms, and biologists focus much of their 

attention on the different types of cells that make up an organism.   The different types of 

cells have their own functions, structures and properties that are predominantly 

determined by proteins.  As a result, proteins themselves are very often the object of 

study.  They are one of the largest types of biological macromolecules containing on 

average around 6650 atoms compared to lipids, another type of macromolecule, which 

have on average only 95 atoms.  Furthermore a protein’s amino acid sequence determines 

a three-dimensional structure which is unique to that protein.  The atomic structure of a 

protein defines areas called binding sites which are sometimes realized as a depression in 

the surface of the protein and more often realized as a patch on the surface.  It is these 

binding sites, created by the three-dimensional atomic structure of a protein, that act like 

a key fitting a keyhole on another molecule, which determines its function.  Ultimately 

then, knowing a protein’s structure can give clues or indicators of its function.  Protein 

Structural determination is the process of “solving” a protein’s three-dimensional atomic 

structure by finding 3D coordinates for all of the atoms in the protein.   

 To determine the three-dimensional structure of proteins, biologists and physicists 

have developed many different methods to extract structural data, including X-ray 

crystallography and Nuclear Magnetic Resonance (NMR).  Inter-atomic distances, bond 

lengths, bond angles, and dihedral angles are just some of the structural data extracted 

and it is from these data a protein structure can be determined computationally and it is 

generally formulated as a so called Molecular Distance Geometry Problem (MDGP).  
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The MDGP is itself split into three sub-problems: all exact distances, sparse exact 

distances, and distance ranges.  In 2002 Dong and Wu first described the geometric build-

up solution as a linear time algorithm for solving the molecular distance geometry 

problem [1].  This work was then extended to solve the case of sparse exact distances [2], 

while also minimizing the total error [3].  In the two latter cases the algorithm’s running 

time is severely affected by the search for a set of base atoms which possess all of the 

required distances. 

The goal of this thesis is to present a new addition to the family of geometric 

build-up solutions, a Revised Updated Geometric Build-up algorithm.  This algorithm has 

been designed to include data structures as well as a triangle detection method in an 

attempt to reduce the running time of the geometric build up solution.  In addition to this, 

the proposed revised updated geometric build-up algorithm also employs the updating 

routine, first described by Wu and Wu, as a means of minimizing the total error of the 

structure resulting from computational round-off error. 

 

1.2 Thesis Outline 

This thesis will explore the union of the Distance Geometry Problem and protein 

determination as well as a survey of some of the existing algorithms from a family of 

geometric build-up (GBU) solutions and give a new GBU algorithm for solving the 

Molecular Distance Geometry Problem (MDGP).  Specifically, Chapter 2 is devoted to 

an overview of proteins beginning from RNA transcription.  A description of protein 

structural composition and its relationship to protein functions are described briefly in 

section 2.1.  Section 2.2 goes on to describe the two major experimental methods (x-ray 
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crystallography and NMR spectroscopy) that biologists use to determine the three-

dimensional structure of proteins.  This section emphasizes the scientific basis of each 

method as well as some pros and cons of each. 

Chapter 3, while including some distance geometry history, focuses on the 

general Distance Geometry Problem (DGP), and its application to the area of molecular 

modeling and protein determination known, as the Molecular Distance Geometry 

Problem (MDGP).  Section 3.1 describes the k-dimensional distance geometry problem 

including the relative difficulty of the problem and a short discussion of the theory of NP-

completeness.  The molecular distance geometry problem and the DGP limited to three-

dimensions, are described in section 3.2.  This section goes on to formulate the MDGP as 

three sub-problems: all exact, sparse exact, and distance ranges.  In describing the all 

exact and distance range cases, existing solutions are described along with their relative 

properties.   

Dong and Wu first described the geometric build-up (GBU) solution [5], which 

has yielded a family of algorithms.  This thesis extends this family of GBU algorithms by 

provided solutions to the sub-problems of sparse exact distances.  Chapter 4 begins with a 

survey of the geometric build-up algorithms starting with the basic idea (section 4.1), 

then extends to the case where all exact distances are available (section 4.2).  This survey 

presents the algorithms in a manner that mirrors the natural progression or evolution of 

the geometric build-up solutions.  Section 4.3 discusses the solution’s application to the 

sparse case of the MDGP pointing out the dilemma of error propagation.  Section 4.4 

then describes an updating routine and algorithm that enables the GBU solution to control 

and minimize this error.  Finally, the Revised Updated Geometric Build-up Algorithm 
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(RUGB) is offered as the main result of this thesis in section 4.5.  This section includes 

test results that illustrate the run time and accuracy of the revised updated GBU 

algorithm. 

This thesis concludes, in Chapter 5, with a summary of the research project and 

computational results.  Also included in the conclusion are future directions of study and 

extensions of this work.   
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Chapter 2: Introduction to Protein Structure 

2.1 Structural Biology of Proteins 

Proteins are molecules with important functions in the biological activities of life.  

They were first discovered in the 1830’s by Jons Jakob Berzelius and his advisee 

Johannes Mulder who coined the term proteins [4] after the Greek word “prota” which 

means “of primary importance”.  A couple of factors contributed to this name, not the 

least of which was the fact that Berzelius noticed that plants prepared proteins as the 

primary source of animal nutrition.  Today proteins are known to no only contribute to 

nutrition but to also serve as biological catalysts, regulatory sensors and structural 

building blocks required in the process of life. 

To further understand the three-dimensional structure of proteins it is important to 

begin at synthesis and understand how they are made and what they are made of.  In the 

1870’s Heinrech Hlasiwetz and Josef Habermann discovered that the building blocks of 

proteins are amino acids [5].   All proteins are made from the same set of 

20 amino acids and differ only in their order and composition.  Amino acids have 

common structure based around a central alpha-carbon atom.  The alpha-carbon is 

bonded to an amino group (NH3
+
), a carboxyl group (COO

-
), a hydrogen atom (H) and an 

R group known as a side chain.  The side chain is the defining characteristic of the amino 

acids because it is responsible for the varying properties of them [6][7].    Table 2.1 lists 

the 20 amino acids and their chemical skeletal structures.  It is important to know that 

these amino acids are not planar and instead the amino, carboxyl, R groups 
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along with the hydrogen atom are arranged spatially around the alpha-carbon atom in the 

form of a tetrahedron [6][7]. 
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Frederick Sanger showed that the amino acids that make up a protein begin as a 

linear sequence [8].  The construction of the sequence follows what is known as the 

“Central Rule” which states that each gene in the DNA contains the “blueprint” for a 

single protein’s sequence.  First the gene must be transcribed as messenger RNA 

(mRNA), which is a sequence of nucleotides (Figure 2.1.A).  These nucleotides are read 

as triplets called codons and each codon represents a specific amino acid (Figure 2.1.B).  

The required amino acids are carried to the assembly site on ribosomes by transfer RNA 

(tRNA) which is specific to the amino acid and to the codon (Figure 2.1.C).  Once a new 

amino acid-tRNA complex is in place on the ribosome it is then joined in a linear 

sequence, to the growing protein by a peptide bond between the carboxyl group, from one 

amino acid, to the amino group of the second amino acid (Figure 2.1.D)[6][7].  These 
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sequences, known as the protein primary structure, usually average between 200-300 

amino acids [6].   

 

 

 

This amino acid sequence was a major discovery in protein studies.  It was 

Christian Anifinsen who showed that the sequence is primarily responsible for the 

protein’s three-dimensional structure [9] because of certain properties inherent to the 

atoms that make up the amino acids in the sequence.  After the assembly the amino acids 

in the chain begin to react with one another and to their environment in a process known 

as protein folding [6].  Because the peptide bonds are formed at the amino and carboxyl 

groups the hydrogen atom and the side chain are the only protrusions from the backbone.  

Hydrophobic and polar interactions between the sidechains and their environment are two 

of the main driving forces behind protein folding.  Table 2.1 classifies the amino acids 

into polar and non-polar.  Polar amino acids readily interact with water and are therefore 

soluble in an aqueous environment.  Non-polar amino acids form hydrophobic 

Figure 2.1: Illustration of the central rule and protein synthesis 

  Borrowed from National Institutes of Health 

A 

B 

C 
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interactions with each other and cell membranes.  These interactions display the 

importance of the environment on the protein and its location in the body, which can also 

determine the activity or inactivity of the protein.   

After the initial positioning of the amino acid R-groups into their respective polar 

and non-polar environments, weak hydrogen bonds form local three-dimensional 

structures known as alpha-helices and pleated beta-sheets. These local structures are 

referred to as the secondary structures of a protein and together with turns in the sequence 

comprise the entire three-dimensional native structure of the protein known as its tertiary 

structure.  Other major contributors to the stabilization of protein three-dimensional 

structure include disulfide bridges which are covalent bonds between the sulfur atoms of 

non-adjacent Cysteine side-chains, and ionic interactions the positive (+) and negative (-) 

charges of different side-chains.  Other, weaker, forces also contribute to the folding 

process including van der Waals interactions and ring stacking.   

The first to determine or solve the three-dimensional structure of any protein were 

Max Perutz and John Cowdery Kendrew who solved the structures of Hemoglobin [10] 

and Myoglobin, respectively [11].  Myoglobin’s three-dimensional structure consists of a 

single chain of amino acid residues, when this is the case the three-dimensional stable 

conformation is known as the protein’s tertiary structure.  Very often, as in hemoglobin, a 

protein consists of multiple amino acid chains held together by the stabilizing forces 

described above.  This complex of chains is called the proteins quaternary structure [6].   

Proteins have a wide variety of functions and certainly many of the processes in 

life would not take place without them.  These almost endless functions can be placed 

into two categories, structural and enzymatic [6][7].  Some proteins are ligand binding 
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like hemoglobin which attaches to oxygen in the lungs and shuttles it to the extremities of 

the body where it releases it to oxygenate the tissue.  Similarly, proteins known as 

antibodies bind to foreign contaminants in the body so they may be destroyed.  Other 

proteins are enzymatic in that they are responsible for catalyzing reactions in the cell such 

as those involved in metabolism, DNA replication, DNA repair, and transcription.  

Signaling proteins are responsible for carrying messages from cell to cell and membrane 

proteins bind to them as receptors.  Fibrous proteins are responsible for cell structure and 

elasticity like collagen.  Motor proteins like actin are responsible for cell motility and 

muscular contractions.  These are but a few examples of the many functions proteins are 

responsible for and, as this is a growing area of study, more and more is being discovered 

about their functions.  For more on protein functions see the referenced textbook [6][7]. 

To summarize, the amino acid sequence uniquely determines a protein’s three-

dimensional structure, which in turn determines the function and utility of the protein.  

Before it is functional, a protein must undergo proper folding.  Incorrectly folded proteins 

are broken down and the amino acids are reused.  If an incorrectly folded protein cannot 

be broken down, it may be discarded and left to form aggregates.  Localization of such 

aggregates can cause Mad Cow disease and other degenerative brain diseases.  

Understanding the role that proteins play in disease continues to be a major motivating 

factor for the study of proteins.  Currently one of the major areas of protein studies is 

structure determination which leads to a more thorough understanding of just how these 

proteins carry out their functions. 
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2.2 Main Methods of Protein Structure Determination 

 Protein structures are determined by two major experimental methods X-ray 

crystallography and Nuclear Magnetic Resonance (NMR) Spectroscopy.  From statistical 

information of the Protein Data Bank (PDB) online, which catalogues all proteins that 

have been determined, as of May 31, 2009, the PDB shows that of the 53,435 proteins 

that are catalogued 46,296 (86.6%) have been determined using X-ray crystallography 

while only 6,852 (12.8%) proteins have been determined using NMR Spectroscopy.   

 The process of X-ray crystallography begins by isolating a protein in a sodium 

chloride crystal, which was first accomplished by James B. Sumner [12].  The crystal is 

then placed into a diffractometer or goniometer where x-rays are blasted through the 

crystal at the protein.  The regular pattern of the crystal allows the x-rays to diffract off of 

the electons of each atom.  This means the x-rays split into multiple beams with different 

directions that are used to create two-dimensional diffraction images.  These images and 

other spatial data are then converted to an electron density map and subsequently to a 

single three-dimensional image. The process of converting the data and 2-D images to a 

3-D structure is actually quite computing intensive and requires the use of Fourier 

Transforms.   

This method has proven to be the most useful; however it is not without its 

drawbacks.  Although the process of growing the crystal has been streamlined since its 

inception, it can sometimes be very time consuming and some proteins such as membrane 

proteins cannot be easily crystallized, if at all.  One of the limitations in crystal growing 

is the requirement for large quantities of pure protein.  Moreover, the crystal must be of a 

certain quality; for instance if the crystal is too small or has imperfections the resolutions 
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may be off producing incorrect results.  For this reason most biologists grow multiple 

crystals with the hope that one of them will be of a sufficient quality.  

 The theory of Nuclear Magnetic Resonance (NMR) was first observed by Isidor 

Rabi in 1938.  What Rabi observed, that was later described by Felix Bloch and Edward 

Purcell, was that elements with an odd number of nucleons (protons and electrons) have a 

well known spin and that the spin enables it to be affected by a magnetic field.  They 

found that those specific atoms can absorb radio frequencies when exposed to a magnetic 

field [13][14].  The frequency at which absorption of the radio wave occurs is unique to 

coupling between local atoms and thus by varying the radio frequency used, the scientist 

can observe spin shifts of atoms to gather physical, chemical, electronic, and structural 

data.  This spectroscopy process begins by first placing a protein into an NMR 

transparent solution which is then placed into a spectrometer where a constant magnetic 

field and varying radio frequencies can be applied and the data collected.  The data is 

then used to construct the protein’s three-dimensional structure, and it is the structural 

data that will be of most relevance to this thesis; specifically inter-atomic distance data.   

 This method too has drawbacks, however.  One of the major inhibitors is that not 

all atoms are observable; that is, only isotopes with odd isotope numbers.  These are 

generally not well represented in proteins and therefore if NMR is to be successful they 

must be enriched to a sufficient number so enough data can be collected.  Another 

drawback of the NMR is that the proteins are placed into a solution.  Due to their 

solubility, the atoms will have a slight wiggle which yields inter-atomic distance ranges 

rather than exact distances.  As such NMR spectroscopy data may result in multiple 

structures satisfying the distance constraints.  Yet another downside to NMR is that it will 
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currently only work for small proteins due to the crowding of the 1-dimensional signal 

spectrum.  To get around this problem and to enable the NMR analysis of larger proteins 

some multidimensional (2D, 3D, and 4D) methods have been developed [15]. 

 These two methods are only the major experimental methods employed; many 

alternative methods exist such as cryo-electron microscopy, fiber diffraction, mass 

spectrometry, circular dichroism, etc.  There also exist some theoretical methods such as 

Potential Energy Minimization, which is sometimes used to refine an experimentally 

determined function [16].  All of these methods offer their own pros and cons, but all 

methods represent attempts to determine structural data of a molecule.  All of the major 

methods discussed require advanced mathematical and physical methods to construct the 

protein’s structure from the experimental or theoretical data.  X-ray crystallography and 

NMR both use Fourier transforms to realize the three-dimensional structure from the data 

and potential energy minimization creates a potential energy function, which can quickly 

become very complex, and then requires the solving of a multidimensional optimization 

problem.  
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Chapter 3: Origins and Formulation of the Problem 

3.1 The Distance Geometry Problem 

Inter-atomic distances of a protein structure can often be obtained experimentally 

or theoretically, then the protein 3D structure can be determined.  However, it requires 

solving a challenging mathematical problem called the distance geometry problem.  

Distance Geometry began in 1841 when Arthur Cayley was the first to state the general 

form of the distance geometry problem [17], but it was Karl Menger, in 1923, who 

established distance geometry as its own branch of mathematics by showing that many 

geometric properties could be formulated and examined using only pair-wise distances 

between points [18].  In distance geometry we begin with an object that is defined only 

by a subset of distances.  The distance geometry problem (DGP) then is to compute the 

coordinates for each point so that the given distances are satisfied [17][19].  In the 

application of distance geometry, biomolecular modeling, three-dimensional models of 

proteins structures are generally considered.  L.M. Blumenthal, stated the problem as, 

“When we have a given set of distances between pairs of points, the distance geometry 

can give a clue to find a correct set of coordinates for the points in three-dimensional 

Euclidean space satisfying the given distance constraints” [19].  This is often referred to 

as the Molecular Distance Geometry Problem (MDGP).  The MDGP is itself divided into 

three sub-problems, which will be formalized later.  The general case of the DGP has 

been shown to be NP-hard, prompting the following description of the computational 

complexity of the DGP. 
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3.1.1: Introduction to the theory of NP 

In 1979, J.B. Saxe showed that the DGP belongs to a class of problems known as 

NP [20]. This classification arose as a way to measure a problem’s difficulty.  Formally, 

NP is the class of decision problems that are solvable by a Nondeterministic Turing 

Machine in polynomial time [21] or equivalently problems that are verifiable by a 

Deterministic Turing Machine in polynomial time [22].  A Turing Machine is a 

theoretical machine which performs an action and moves to another input based upon a 

state and a current input.  If the Turing Machine is deterministic (DTM) a single move is 

specified and if the machine is non-deterministic (NTM) then multiple moves may be 

possible based upon the state and the single input.  

This is measured by the “size” of the problem, which is the amount of input data 

required to explicitly describe the problem instance [23].  For the DGP the size would be 

the number of points, because coordinates for each point must be found to describe them 

all as a single instance.  The time complexity for these problems is given as an upper 

bound on the amount time required to solve a problem of that particular size.  To measure 

this, a method known as “Big O” notation has been developed so to ignore all variability 

between computing machines and measure the time required to solve only in terms of the 

problems size.  Mathematically,   

f(n) = O(g(n)) iff ∈∃ c R
+
, Nkn ∈,  such that ∀ n≥ k, )()( ngcnf ⋅≤ . 

Thus the formal definition of a polynomial time algorithm is one whose complexity 

function is O(p(n)) for some polynomial function p given in terms of the problem size n 

[23].  If an algorithm cannot be bounded by a polynomial function then the problem is 
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said to be an exponential time algorithm regardless of being a true exponential function.  

These complexity classes are now more formally defined [24].   

 

Definition 3.1.1:  NP is the complexity class of decision problems for which answers can 

be checked by an algorithm whose run time is polynomial in the size of the input. 

Definition 3.1.2:  P is complexity class of languages that can be accepted by a 

deterministic Turing machine in polynomial time. 

Definition 3.1.3:  NP-hard is the complexity class of decision problems that are 

intrinsically harder than those that can be solved by a nondeterministic Turing machine in 

polynomial time. 

Definition 3.1.4:  Strongly NP-hard is the complexity class of decision problems which 

are still NP-hard even when all numbers in the input are bounded by some polynomial in 

the length of the input. 

Definition 3.1.5:  NP-complete is the complexity class of decision problems for which 

answers can be checked for correctness, given a certificate, by an algorithm whose run 

time is polynomial in the size of the input (that is, it is NP) and no other NP problem is 

more that a polynomial factor harder.   

 

The idea of NP extends from decision problems to optimization problems and the 

details of the Turing Machines are ignored as the class, NP, is applied to algorithmic 

solutions verifiability.  Informally, if every instance of a problem can be solved by a 

polynomial time algorithm, the problem belongs in the class P.  This class is a subset of 

the class NP, in which not every instance of a problem, if any, will be solvable by a 
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polynomial time algorithm.  Also included under the NP umbrella class are those 

recognized as the most difficult problems, the class NP-complete.   

 

3.2 The Molecular Distance Geometry Problem  

The application of the distance geometry problem is known as the Molecular 

Distance Geometry Problem (MDGP).  Crippen and Havel were the first to apply the 

DGP to the area of molecular modeling, using experimentally obtained (X-ray or NMR) 

distance data [17].  They developed the EMBED algorithm that will be discussed later 

and this algorithm is a very important work in the area of distance based molecular 

modeling.  Other existing solutions include a graph reduction software package ABBIE, 

developed by Hendrickson [25]; the Alternating Projection Algorithm by Glunt et al [26] 

and DGSOL by More and Wu.   

In practice this is a rather difficult problem, for a few major reasons.  The largest 

impediment to this problem is that only a small subset of the total inter-atomic distances 

can be obtained.  With fewer distances the problems difficulty increases and at least one 

solution, the Singular Value Decomposition, requires a full set of distances to be able to 

find coordinates for all atoms in a protein.  This solution will be discussed in more detail 

later.  Another downside, mentioned in the description of the DGP, is that the distances 

collected often contain inconsistencies or errors that violate geometric properties like the 

triangle inequality.  For example, if di,j is the distance between the points i and j, and 

similarly we have di,h and dj,h, then di,j ≤  di,h +dj,h.  If this is the case then it will not be at 

all possible to find a complete set of coordinates satisfying the given constraints unless a 

small amount of error is allowed [27].  Still another setback of the practical case is that 
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the distance data experimentally obtained through NMR spectroscopy are distance 

ranges, not exact distances.  For this reason an ensemble of possible structures may be 

found satisfying the constraints at which time the most accurate would then have to be 

located from that family of structures.   

For these reasons the MDGP is classified into three sub-problems, first is when a 

complete set of exact distances are known, second is when only a sparse set of exact 

distances, and the third type is when instead of having exact distances only lower and 

upper bounds, or constraints, on the distances are known.  The latter is the most practical 

of the three sub-problems but the first two are also important because their solution can 

lead to a greater understanding of the real-world situation as well as important 

improvements in the methods of solution.   This is the goal of this thesis: to find an 

efficient algorithm for the case of sparse exact distances with the hopes of later extending 

its applications to the more practical case of sparse distance ranges.  Here the MDGP sub-

problems will be formally defined and followed by a brief discussion of each.  

 

3.2.1 MDGP with All Exact Distances 

In the case where a complete set of exact distances are available the problem is 

formulated as follows.   

 

MDGP: All Exact Distances 

Let a1, a2… an be the atoms of a protein and di,j, be the inter-atomic distances for 

complete set S of the pairs of atoms (ai, aj) nji ≤≤ ,1 .  The problem then is to find 
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coordinates in 3-dimensions xi = (xi,1, xi,2, xi,3)  such that the distances between pairs of 

points xi and xj, given by the Euclidean norm (||.||), will satisfy the given distances.      

Sjidxx jiji ⊆=− ),(,         (1) 

 

One of the earliest solutions to this problem utilizes the Singular Value 

Decomposition of an induced or modified distance matrix [17][19].  Before this solution 

is explained some preliminary definitions are needed [28]. 

 

Definition 3.2.1:  The Rank of an m × n matrix A, is the maximal number of linearly 

independent rows or columns.  Rank(A) ≤  min{m,n} 

Definition 3.2.2:  An Orthogonal Matrix is a real square matrix A, such that      A
-1

=A
T
, 

(A
T
A = In). 

Definition 3.2.3:  Let L:V�V be a linear transformation of an n-dimensional vector 

space into itself (a linear operation on V).  The number λ  is called an eigenvalue of L if 

there exists a nonzero vector x in V such that L(x) = λ x 

Definition 3.2.4:  Every nonzero vector x satisfying this equation is then called an 

eigenvector. 

Definition 3.2.5:  The Singular Values of a matrix A are the square roots of the 

eigenvalues of A
T
A. 

Definition 3.2.6:  Singular Value Decomposition 

Let A be an m × n real matrix.  Then there exist orthogonal matrices U of size m x m and 

V of size n x n such that A = USV
T
, 
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Where S is an m ×n matrix with non-diagonal entries all zero and s1,1, s2,2,…, sp,p, where  

p = min{m,n}.   

The singular values, then, are the diagonal values of the matrix S. 

 

Solving the MDGP using the Singular Valued Decomposition requires a full set of 

consistent (error free) distances initially placed into a square symmetric distance matrix.  

As mentioned, however, they must be placed into an induced distance matrix, which is 

done by first assuming that we can find coordinates; xi = (xi,1, xi,2, xi,3), ni ≤≤1 ; and by 

allowing the last atom coordinates to be the origin, xn = (0, 0, 0).  We can do this because 

any correct set of coordinates will be unique with respect to translation and rotation and 

by placing one atom at the origin we give ourselves a reference.  We then seek 

coordinates x1, x2,…, xn so that the distance between all pairs of points satisfies the given 

distances.  

Mathematically… 

njidxx jiji ≤≤=− ,0,         (2) 

Equivalently, 

2

0,

2

ii dx =           (3) 

1,12

,

2

−≤≤=− njidxx jiji        (4) 

By expanding the second set of constraints we have, 

1,12 2

,

22
−≤≤=+− njidxxxx jijj

T

ii       (5) 

1,122

0,

2

,

2

0, −≤≤=+− njixxddd j

T

ijjii       (6) 

We then define the induced distance matrix  
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D = [Di,j]           (7) 

Where, 1,12/)( 2

0,

2

,

2

0,, −≤≤+−= njidddD jjiiji        

Let X be an (n-1) × 3 matrix where, 





















=

−−− 312111

322212

312111

,n,n,n

,,,

,,,

xxx

xxx

xxx

X
MMM

 

We then have, 

T XXD =           (8) 

Here we may note that if the given distances are consistent then the equation will have a 

solution and must therefore be of rank ≤3.  Knowing this we can find the singular valued 

decomposition of the n ×n induced distance matrix.  This can be done in at most O(kn
2
) 

floating point operations [29] where k is the dimension of R
k
.  We then have, 

T
 UΣUD =           (9) 

Here, U is an (n-1) × 3 matrix and Σ is a 3 × 3 diagonal matrix where the diagonal values 

are the largest singular values of D.  Then, 

T
 UΣUD =           (10) 

TT
XXUΣ UΣD == 2

1

2

1

        (11) 

 

 

We can then find a solution for X, 

2

1

Σ=UX           (12) 
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The coordinates of the first (n-1) atoms are given by rows of the coordinate matrix X and 

the last atom is fixed at the origin.  This method can also be generalized to solve the DGP 

when defined in k-space.   

 

Theorem 3.2 [19] 

Let {di,j: i,j = 1,…,n} be a set of distances in R
k
, for some k≤n.  Then, the induced 

distance matrix D defined by equation (6) is of maximum rank k. 

 

Proof: It follows from the fact that D = XX
T
 for a coordinate matrix X in R

n-1
 × R

k
 and X 

is of maximum rank k because X is of size n-1 × k with k≤n thus the maximum number 

of linearly independent columns is at most k.  

 

In k-dimensions the decomposition, T
 UΣUD = is composed of U, which is an (n-1) × k 

matrix and Σ  is reduced to a k × k diagonal matrix where the diagonal values are the 

singular values of the induced distance matrix D.  For the DGP, Golub and van Loan 

showed that the singular value decomposition of a k-dimensional, n × n induced distance 

matrix would require O(kn
2
) floating point operations [29].  This would then have an 

upper bound of O(n
3
) again because k≤n. 

 This solution has been employed by Crippen and Havel in there EMBED 

algorithm [17].  To be able to do this they must first estimate missing distances as we will 

see.  Also, Sippl and Scheraga have developed an algorithmic solution to the DGP with a 

sparse set of distances by repeatedly finding the coordinates of complete subsets of 

distances [30].  With each repetition the number of coordinates increases and thus the 
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number of distances available increases because we can always compute missing 

distances from newly determined coordinates.  The algorithm is completed when all 

atoms have been determined.  These examples show that the simplified case of a 

complete set of exact distances has already led to multiple solutions for the more difficult 

case of a sparse/incomplete set of exact distances.  

 

3.2.2 The MDGP with Sparse Exact Distances 

In the case of the MDGP where an incomplete set of distances is all that is available, the 

problem is formulated in the same fashion as when a complete set of distances is given.   

 

MDGP: Sparse Exact Distances 

Let a1, a2… an be the atoms of a protein and di,j, be the inter-atomic distances for 

complete set S of the pairs of atoms (ai, aj) nji ≤≤ ,1 .  The problem then is to find 

coordinates in 3-dimensions xi = (xi,1, xi,2, xi,3)  such that the distances between pairs of 

points xi and xj, given by the Euclidean norm (||.||), will satisfy the given distances.      

Sjidxx jiji ⊂=− ),(,         (13) 

 

As this sub-problem is the topic of this thesis, more will be said of it in the next chapter 

when discussing the geometric build-up solutions.  Note, though, that this sub-problem is 

more closely related to the real-world case in that all pair-wise distances are not 

available.  Recall that in either experimental method, X-ray or NMR, all atoms are not 

observable and thus only a subset of the possible inter-atomic distances can be recorded.  

Reducing the most practical case of the MDGP into these relatively simpler sub-problems 
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allows for a more thorough understanding of the problem as a whole.  This also allows 

for the development of different solutions which can then be extended or adapted to 

handle the more practical case. 

 

3.3.3 DGP with Distance Constraints or Inconsistencies 

In practice, the experimentally collected distance data contains errors.  Also, as 

stated in Chapter 2, NMR only provides lower and upper bounds on the inter-atomic 

distances.  Therefore, the MDGP has been be modified to allow for error, specifically to 

account for the lower, li,j, and the upper, ui,j, bounds.  Formally the problem is formulated 

as follows. 

 

MDGP: Distance Ranges 

Let a1, a2… an be the atoms of a protein and li,j and ui,j, be the lower and upper bounds on 

the inter-atomic distances for subset S of the pairs of atoms (ai, aj) nji ≤≤ ,1 .  The 

problem then is to find coordinates in 3-dimensions xi = (xi,1, xi,2, xi,3)  such that the 

distances between pairs of points xi and xj, given by the Euclidean norm (||.||), will satisfy 

the given distance constraints.      

Sjiuxxl jijiji ⊆≤−≤ ),(,,        (14) 

 

Similarly, we can formulate the problem to allow for some errors, or inconsistencies in 

the distance data as follows. 

Sjidxx jijiji ∈≤−− ),(,, ε        (15) 
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A solution to this problem is known as an ε -approximate solution and the best of these is 

known as the ε -optimal solution [27][31].   

 Currently the major methods of solving the MDGP are the Singular Value 

Decomposition which requires a complete set of exact, consistent distances.  In practice, 

however, the distance information has errors and is also incomplete.  Two methods 

developed to account for this are the global optimization methods and the EMBED 

algorithm.  Because this solution exploits the missing and inconsistent distances and 

utilizes both the SVD and the global optimization methods I offer the following brief 

description of the EMBED algorithm. 

 

EMBED Algorithm 

This algorithm takes on the practical case of the MDGP; therefore the input is typically a 

sparse case of distance ranges.  The EMBED algorithm has three major stages, (1) bound 

smoothing, (2) distance metrication, and (3) global optimization [17][32].  The bound 

smoothing stage uses certain geometric properties like the triangle inequality to create 

distance ranges for the missing pairs of atoms.  For example, if for three atoms, i, j, and k, 

two out of three sets out of distance ranges, ( ) ( )kikijiji ulul ,,,, ,,, , are available, then using 

the triangle inequality the missing distance range ( )
kjkj ul ,, ,  can be found.  It follows from 

the fact that jiji ud ,, ≤  and kiki ud ,, ≤  that… 

kijikijikj uuddd ,,,,, +≤+≤  

Therefore, uj,k can be replaced with the maximum value kiji uu ,, + .  Similarly, lj,k can be 

found by using the inverse triangle inequality.  Once this is done for all missing pairs of 
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atoms and a complete set of 2/)1( −nn  distance ranges is generated for all n atoms in a 

protein, the distance metrication stage finds exact distances that fall within the 

constraints.  These distances may be chosen as the midpoint of the range or may be 

calculated more appropriately by again incorporating the triangle inequality and shortest 

path trees.  Once a complete set of exact, consistent distances is satisfactorily obtained 

the SVD method is used to calculate a set of coordinates.  This set of coordinates is then 

used as a starting point for the final stage of the EMBED algorithm, global optimization.  

In fact the MDGP can be formulated as a global optimization problem using a least 

squares error function.  To measure the distance between the coordinates and the given 

distance the relative error is defined as the following, 

Sji
d

dxx

ji

jiji

R ∈
−−

= ),(,
2

,

2

,

2

ε        (16) 

We then define an error function [27], 

2

),(
2

,

2

,

2

1 ),...,( ∑
∈ 












 −−
=

Sji ji

jiji

n
d

dxx
xxf       (17) 

Then if X = (x1,…, xn) is a solution the function will be equal to zero.  This stage may be 

repeated many times with different sets of coordinates depending on the method used to 

choose the distances in the distance metrication stage.  The minimization may be done 

using gradient methods or simulated annealing and thus a more accurate set of 

coordinates can be obtained.  For a more detailed description of the EMBED algorithm 

see Crippen and Havel’s book Distance Geometry and Molecular Conformation [17]. 
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Chapter 4: Geometric Build-Up Algorithms (MDGP) 

4.1  Introduction to the Geometric Build-Up Solution 

Now that the importance of the MDGP in the area of protein determination has 

been defended and the problem itself explained, focus is shifted to the solution of the 

problem.  As mentioned, the major solutions to the MDGP are the Singular Value 

Decomposition, global minimization, and the EMBED algorithm.  Because these 

solutions are run computationally if the distances are inconsistent, not only will the SVD 

method fail but it will not be able to isolate the place where it fails.  Also, these methods 

can be quite costly with regards to running time.  Recall that the SVD method requires at 

most O(n
3
) floating point operations.  The EMBED algorithm is also very costly.  It’s 

first two stages, bound smoothing and distance metrication can be very costly, in the 

order of O(n
3
~n

4
), and it also repeats the SVD step by determining different sets of exact 

distances satisfying the distance ranges.  To improve on this running time Dong and Wu 

developed the so called geometric build-up (GBU) algorithm for a set of exact distances 

[1].  Since the method was first described and shown to be an improvement in the 

running time there has been a considerable amount of work done to improve and exploit 

other aspects of the solution as well.  In this chapter we will review a set of related 

geometric build-up (GBU) solutions that have been developed, discussing the benefits 

and drawbacks of each solution as we explain the evolution to the novel method proposed 

in the project.   

To understand the foundations of the method we will begin with a 2-dimensional 

example.  Considering three points (x1, x2, x3) in the plane and a set of given inter-atomic 

distances in a matrix form. 
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















0

0

0

3,23,1

3,22,1

3,12,1

dd

dd

dd

, where }321{ ,,(i,j),xx d jii,j ∈−=  

With this information we can immediately find coordinates for three of the points as 

follows. 

 

 

 

This is accomplished by placing the first point (x1) at the origin and the second point (x2) 

along an axis at the distance between the first and second point (d1,2).  The third point can 

then be placed in the plane in one of two positions that are actually reflections of one 

another.  We can always choose the positive position for simplicity and this will not 

affect the coordinates’ ability to fit the distance constraints.  These three points are 

unique with respect to translation and rotation, and as long as they are not collinear these 

coordinates can be used to find the coordinates of a fourth point, again by using the given 

distance information.   

X3 

X1 X2 

d1,2 

d1,3 
d2,3 

d2,3 d1,3 

X3 

Fig. 1 Illustration for finding coordinates 

for 3 atoms in 2-D satisfying the distances 
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To help explain the previous example the following definitions generalized to k-

dimensions will be scaled back to both two and three-dimensions.  The new terms will 

then be applied to the previous example and to the MDGP (3D) to show exactly how the 

coordinates are found.   

Definition 4.1:  A Metric Basis is a set of points B in a space S is a metric basis of S 

provided any point in S Can be uniquely determined by its distances to the points in B. 

Definition 4.2:  An Independent Set of k+1 Points is a set of k+1 points in R
k
 is called an 

independent set of points if it is not a set of points in R
k-1

.  

 

The connection, to the 2-dimensional example, is that we could find coordinates 

for the three points based only on their distance to one another, so they are a Metric 

Basis.  As stated, if the points in the example are not collinear that set can be used to 

determine other points.  Therefore, if we wish to determine the coordinates of another 

point the three points in the example must also be an independent set of points because 

they are a set of three points in R
2
 that are not a set of three points in R

1
. 

Theorem 4.1: [3] A set of 4 independent points in R
3
 form a metric basis for R

3
. 

Proof:  

In 3-dimensional Euclidean space, let T

iiii xxxx ),,( 3,2,1,=  be the coordinate vectors of 4 

independent points i = 1, 2, 3, 4.  Let T

jjjj xxxx ),,( 3,2,1,=  be the coordinate vector for 

any point j in R
3
 with distances di,j from points i = 1, 2, 3, 4 to point j.  Then, 
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jiji dxx ,=−          (18) 

Equivalently, 

2

,

22
2 jijj

T

ii dxxxx =+−        (19) 

By solving each equation for xj, we obtain the system of equations, 

Axj = b 

Where,
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b  

Then, because the 4 points are an independent set they are not a set of points in R
2 

the 

matrix A must be non-singular and is thus invertible. Thus the coordinate vector for xj is 

uniquely determined by 

xj = A
-1 ·

b   

 

 Based on the above definitions and theorem we can then realize that if we have 

four atoms in 3-dimensions that are not in the same plane (R
2
), we can immediately find 

the coordinates for those atoms in 3-dimensional Euclidean space.  We will now show 

how the coordinates of the four “base” atoms (the four atoms that make up the metric 

basis) can be used to determine additional atoms.  The build-up process begins by finding 

the coordinates of the four base atoms, }4,3,2,1{),,,( == iwvux iiii , by placing the first 
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atom at the origin, )0,0,0(1 =x , the second atom along the first axis so that the distance 

between the two is satisfied, )0,0,( 2,12 dx = .  To determine the coordinates of the third 

atom we must solve the following equations by using the coordinates of the previous two. 

Here we assume that x1, x2, and x3 are in the x-y plane 

0

)(

3

2
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2
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23
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         (20) 

After solving, we have,   
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We choose v3 to be positive, as it will not change the accuracy of future determinations.  

The fourth atoms coordinate vector is similarly obtained by using the previous 

coordinates to solve the following. 
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Solving for ),,( 4444 wvux =  we get, 
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Again, we allow the third coordinate of the fourth atom to be positive as it does not 

change the resulting structure, although an exact mirror image structure may be obtained 

by making all third coordinates negative. 

We now have the positions of }4,3,2,1{),,,( == iwvux iiii , which we will refer to as the 

base atoms coordinate vectors.  If we then have all distances from the base atoms to 

another atom (xj) in the protein we can set up a system of equations as follows. 
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         (24) 

Squaring both sides we obtain, 
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We can then expand the middle terms on the left to get, 
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To solve the equation we can subtract the first equation from all other three. 
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This system of equations can then be written in the form 

Axj = b           (28) 

where,
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The solution can be found by multiplying both sides of the equation by the inverse of A. 

xj = A
-1

b 

Here we see that we require the inverse of a square matrix.  If the four base atoms are in 

the same plane then the matrix A will be singular and the inverse of A will not be 

available.  In practice proteins will have a large number of atoms from which to choose 

the base set and therefore, singularity is usually an avoidable issue.  We will now begin 

our discussion of the evolution of the geometric build-up solution.   

4.2  All Exact Distances 

Dong and Wu first described the Geometric Build-Up (GBU) method as it applies 

to the case of a complete set of exact inter-atomic distances [1], and it should be clear that 

if all distances are available and we choose a set of base atoms, we will certainly have the 
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distance from each base atom to all remaining atoms in the protein.  Therefore, an 

algorithm has been developed that looks at each undetermined atom and uses the four 

distances to the base atoms to determine unique coordinates for the each of the remaining 

atoms.  Because all distances needed are available at each step in the algorithm, it will 

only require O(n) floating point operations for a protein with n atoms.  This is a great 

improvement on the SVD step used be Crippen and Havel [17][33] which requires O(n
3
).  

As great as this is, it is not the only improvement.  Dong and Wu also explain that the 

geometric build-up allows for close inspection of each step whereas the SVD handles 

more information behind the scenes.  This means that the GBU can detect inconsistencies 

in the distance data because at each step a system of equations must be solved which, if 

the data is inconsistent, will not have a solution and immediately the trouble causing 

distance(s) can be found among the four presently being used.  SVD on the other hand 

will fail when given inconsistent data but will not give any indication where the failure 

took place.  Another great thing about this algorithm is that it may, in the future, be 

adapted to directly apply to the distance intervals that are obtained from NMR 

experiments.  This could, potentially, eliminate the distance metrication stage of the 

EMBED algorithm, where coordinates are found to satisfy the constraints, which are then 

minimized in the third and last stage.  Moreover, the GBU solution actually employs only 

four distances per atom.  This gives a clue that we may not even have to estimate all of 

the missing distance intervals, the costly bound smoothing stage of the EMBED 

algorithm.  We now show that the GBU can handle some very sparse distance data as we 

will see. 
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4.3  Sparse Exact Distances 

In addition to the benefits above the GBU does only use a small portion of the 

distances available.  In fact, the determination of each atom uses only four of the (n-1) 

distances available for it.  To be exact the four base atoms require only six distances and 

each atom thereafter requires four distances each, so in total only (4n-10) distances are 

used from a total of (n
2
-n)/2.  This is probably the best evidence that this algorithm can 

also work for a sparse set of distances.  In fact, Wu, Wu, and Yuan very nicely gave the 

following necessary and sufficient conditions for the GBU generalized to k-dimensions. 

Theorem 4.2: [31] A necessary condition for the unique determination of the 

coordinates of a group of points x1,…,xn in R
k
 with a given set of distances among the 

points is that each point must have at least k+1 distances from other k+1 points, assuming 

that this point is not in R
k-1

 with any k fo the k+1 points. 

Proof:  

It follows immediately from the fact that in R
k
, a point can be defined uniquely only if it 

has k+1 distances from k+1 independent points, assuming it is not in R
k-1

 with any k of 

the k+1 points.  If is has only k distances from k points, the point will have two reflective 

positions.  

Theorem 4.3: [31] A sufficient condition for the unique determination of the 

coordinates of a group of points x1,…,xn in R
k
 with a given set of distances among the 

points is that in every step of the geometric build-up algorithm, there is an undetermined 

point with k+1 distances from k+1 independent and determined points. 
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Proof: 

The geometric build-up algorithm gives a constructive proof for the theorem, because if 

the condition holds in every step of the algorithm, the algorithm will be able to determine 

the coordinates of all the points uniquely.  

 

In 3-dimensions this just means that if each atom does not have at least four 

distances to four other atoms the GBU will fail to determine a complete set of coordinates 

every time.  These four distances are necessary but they are not enough to guarantee a 

complete structure.  This may be due to the planarity of the four base atoms or because 

some of the distances may be to undetermined atoms.  For example, if there are two 

atoms remaining and they each have three distances to already determined atoms but the 

fourth distance is between the pair of undetermined atoms, then the algorithm will fail to 

find a satisfactory solution.  To be sufficient we must, in every step of the build-up, have 

an undetermined atom with at least four distances to four determined atoms.  Dong and 

Wu were the first to use the GBU in an algorithm for sparse sets which required O(n
4
) 

floating point operations.  This is not a lower bound, as we will see, but their initial 

algorithm is the following. 

A GBU Algorithm for MDGP with Sparse sets of Distances 

 

1. F = {four initial atoms}; fixed atoms 

2. U = {n-4 atoms}; unfixed atoms 

3. while φ≠U  do 
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 A. for Ua∈ do 

  i. find b1, b2, b3, b4 in F; distances to a available 

  ii. fix a with b1, b2 ,b3 ,b4: 

  iii. F = }{aF ∪ ; U = }{aU − : move a from U to F 

 B. end 

 C. if no a in U is fixed, stop; structure partially determined 

4. end 

5. structure completely determined 

 

  

The for and while loops in the above algorithm each require n steps.  It also requires at 

most n steps to find the four base atoms, because there are at most n determined atoms to 

choose from, and at most another n steps to check that they have all the distance to the 

undetermined atom.  This total running time of O(n
4
) can be reduced with the help of 

different data structures and programming techniques as will be shown later.  The 

computational complexities of this problem become varied and many and despite the 

many benefits they have brought about, computers are not without their limitations, 

namely memory.  Numerical values stored in computers cannot have an infinite number 

of digits, therefore they must be truncated which introduces the problem of round off 

error.   

It should be noted that to develop the algorithms it is important to have known 

structures and create test cases from them to work with.  Creating the test cases is 

accomplished by using known 3D structures from the Protein Data Bank (PDB) online, 

Fig. 2 The outline of the GBU algorithm for solving the MDGP with sparse 

distances. [2] 
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which stores information critical to the proteins structure and function.  This information 

includes the number and type of atoms, the method used to determine the necessary data, 

the authors of the structure, etc., and also a 3-dimensional image that can be viewed using 

different modeling software.  To produce the image the PDB stores coordinates for each 

of the atoms in the molecule.  These coordinates can be downloaded as part of a PDB file 

and distances can then be computed.  Specifically, to create a sparse set of data and to 

more accurately reflect actual NMR results a cutoff distance is established at say five 

angstroms (5Ǻ).  NMR is only able to determine distances for atoms that are close 

enough together that their spin state is affected.  Then all distances greater than or equal 

to the cutoff can be removed from the distance matrix, the lower the cut-off the fewer 

available distances. Furthermore, we can calculate the error in the algorithms by 

comparing our new built-up coordinates to the original PDB coordinates using the Root 

Mean Square Deviation (RMSD).  This is necessary in the case of sparse data, due to the 

propagation of the round off errors.  This occurs because earlier determined atoms are 

used to determine later atoms.  This is illustrated in Table 4.1 that shows my test results 

for a sparse algorithm programmed in Matlab, a scientific programming language in 

which all objects are stored as matrices.   

4.4  Root Mean Square Deviation (RMSD) Error Calculation 

Here we briefly describe the RMSD calculation of the error.  If we have two sets 

of coordinates, X and Y, each in the form of an n × 3 matrix.  We first define the Root 

Mean Square Deviation (RMSD) as. 

RMSD(X,Y) = minQ nYQX
F

/−        (29) 
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Where, 
F

.  is the Frobenius norm  

Definition 4.3 [29]: The Frobenius norm of a matrix D, denoted 
F

D , is a matrix norm 

similar to the Euclidean norm that is defined to be the square root of the sum of the 

absolute squares of the elements of D, di,j.  That is, 

∑∑
= =

=
m

i

n

j

jiF
dD

1 1

2

,  

 

 Q, then, is the rotation matrix such that QQ
T 

= I.  To solve this optimization problem we 

will use a familiar technique, the singular value decomposition.  The method follows. 

Compute the geometric centers of the structures. 
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We then align the geometric centers by translating all sets of coordinates in both 

structures. 
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Then to calculate Q, let C = X
T
Y.  We then use the SVD to find C = T

VUΣ , and thus 

2

1

Σ=UQ  is the solution to the minimization problem. 
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In my sparse case algorithm, different methods have been attempted to choose a base set 

of atoms so that they will have distances to more than one undetermined atom and can 

therefore be use to determine multiple atoms before a new set must be found.  The chosen 

method first creates an adjacency matrix of ones and zeros from a sparse distance matrix.  

If a distance, di,j, is available the corresponding cell of the adjacency matrix, ai,j, contains 

a one and if the distance is not available it will contain a zero.  This method then goes on 

to sum all sets of four consecutive rows of the adjacency matrix to create a new matrix of 

size (n-3 × n).  The numbers of fours in each row of the new matrix are counted to find 

the consecutive set of four that has the most atoms with distances to all four.  The 

maximum of this array is used to indicate which first four atoms to use as a base set to be 

determined using the GBU methods already described.  Once a base set is chosen all 

atoms with deistances to it can be determined.  These steps are all taken prior to the while 

loop and they initially set up the lists of determined and undetermined atoms.  This 

method can, however, be modified for use within the for and while loops.   

In each iteration of the algorithm a base set of atoms must be found from the 

determined atoms.  Therefore, a base set can be found by creating, from the original 

adjacency matrix, a modified adjacency matrix.  Note that each atom is numbered 

according to their order in the matrices (all consistent) and the lists of determined and 

undetermined atoms are referenced by their atom numbers.  For this reason the modified 

adjacency matrix can be created by using list of determined atoms as the row numbers 

and the list of undetermined atoms as the column numbers.  Then, in summing the four 

consecutive rows a determined base set can be found with a maximal number of 

undetermined atoms having all necessary distances to the base set.   
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This method, however, can cause varied results in the error depending on the 

arrangement of the atoms in the protein and the order of the atoms in the matrix.  It may 

fail because the four required distances in a step may not be found to be consecutive in 

the given ordering.  Table 4.1 illustrates both the propagation of errors as well as the 

uncertainty of the algorithms stability in controlling the errors.  To understand this, 

consider a protein that is dense in the sense that the atoms are tightly packed together.  

Then, with each new choice of a base set there will likely be many distances available to 

undetermined atoms because more distances will be less than the cut-off.  This can result 

in less running time mainly because fewer base sets will need to be found.  

 

 

Protein Name 

(PDB) 

Size          

(#Atoms) 

RMSD           

(Error) 

1FW5 332 1.2574 Ǻ 

1CEU 854 0.8286 Ǻ 

1CTO 1739 550.996 Ǻ 

 

 

 

Table 4.1:  sparse cutoff at 5 Ǻ. The error increases dramatically for the 

larger of the proteins 1CTO as compared to the smallest 1FW5.  The 

other protein, 1CEU, illustrates that using only consecutive rows for 

finding base sets does not provide a constant rate of error increase due to 

the larger atomic size but the smaller error. 
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How can these errors be controlled and minimized?  To answer this question Wu and Wu 

developed what is sure to become a standard piece of the GBU solution.  They dubbed 

his addition to the GBU the Updating routine as part of their so called Updated 

Geometric build-up solution.   

 

4.5  The Updating Routing For the GBU with Sparse Exact Distances 

Error propagation posed a serious obstacle for the evolution of the GBU.  To 

understand how this happens imagine tuning a piano.  If the first string is tuned using a 

tuning fork or pitch pipe and each string thereafter is tuned using the string previous to it 

how accurate or inaccurate would the 88
th

 string be?  If, however, a tuning fork or pitch 

pipe were used throughout the process each string will be closer to its actual frequency 

and thus minimize the overall error.  Relative to the MDGP the tuning fork can represent 

the given distance data and similar to tuning the piano the more often we use original, 

accurate data the better able we are to keep track of and minimize the errors of each atom.   

It was Di Wu and Z. Wu who first developed the Updated Geometric Build-Up 

Algorithm [3].  They described an algorithm that chooses a base set of determined atoms 

that also has a complete subset of inter-atomic distances in the original distance matrix.  

Recall from Theorem 4.1 that if all inter-atomic distances between four non-coplanar 

atoms are known, coordinates for the four base atoms can immediately be found for them 

in an independent coordinate system.  Two sets of coordinates are then obtained; one set 

from the general build-up process and another independent and updated set.  These two 

structures can be visualized as two tetrahedral in 3-space.  The next step of the updating 
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routine is to calculate the geometric centers of the two structures and then place the 

updated coordinates into the GBU structure by aligning their geometric centers.  The 

atoms can then be adjusted by rotating about the common center of mass so that error is 

minimized, as measured using the Root Mean Square Deviation (RMSD). 

Mathematically, let X be the coordinates obtained from the general GBU and Y be 

the new coordinates obtained by fixing the chosen four base atoms in an independent 

system using the necessary six distances provided in the original distance data. 
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Recall the aforementioned Root Mean Square Deviation (RMSD). 

RMSD(X,Y) = minQ nYQX
F

/−        (30) 

Where, 
F

.  is the Frobenius norm and Y is the matrix of the new translated coordinates. 

Q is the rotation matrix such that QQ
T 

= I. 

We compute the geometric centers, 
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A translation vector can be obtained by simply subtracting xc from yc, then translating Y 

by subtracting the translation vector.   

That is, find a translation vector. 

yc – xc=(tv1,tv2,tv3) 

Translate the independent set of coordinates Y, 



















−

−

−

−

−

−

−

−

−

−

−

−

=

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

33,4

33,3

33,2

33,1

22,4

22,3

22,2

22,1

11,4

11,3

11,2

11,1

tvy

tvy

tvy

tvy

tvy

tvy

tvy

tvy

tvy

tvy

tvy

tvy

Y  

We then set up the same optimization problem as in the RMSD error calculations.  That 

is, 

RMSD(X,Y) = minQ nYQX
F

/−  

Where, 
F

.  is the Frobenius norm and Y is the matrix of the new translated coordinates. 

Q is the rotation matrix such that QQ
T 

= I.  We can, again, use the SVD to solve for Q by 

letting YXC
T= , then we find T

VUC Σ=  and then we must have 2

1

Σ=UQ .  Just as in 

calculating the RMSD for error we are simply rotating the structure about a point in 3-

space and minimizing the error between the two.   
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The Updated GBU Algorithm for MDGP with Sparse Distances 

 

1. F = {four initial atoms}; determined atoms 

2. U = {n-4 atoms}; undetermined atoms 

3. while φ≠U  do 

 A. for Ua∈ do 

i. find b1, b2, b3, b4 in F; distances to a available 

ii. determine a with b1, b2, b3, b4 

iii. if all distances between atoms b1, b2, b3, b4 are known 

   (a) update the coordinates of b1, b2, b3, b4 and a 

   (b) replace atoms in original structure with updated coordinates. 

  iv. end 

  v. if no a in U is determined, stop; structure partially determined 

 B. end 

4. end 

5. structure completely determined 

 

 

This is very beneficial because now we have a set of coordinates that are 

definitely more accurate not only relative to one another but also to the overall structure.  

Therefore, by repeating this updating routine and continually replacing the built-up, error 

induced coordinates with the updated coordinates, existing error can be corrected and the 

transmission of errors to atoms yet to be determined can be prevented.  Numeric test 

results presented in section 4.6 will then show how this has affected the solution of the 

Fig. 3 The outline of the Updating GBU algorithm for solving the MDGP with sparse 

exact distances [3]. 
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GBU.  Suffice it to say that this innovative development to the GBU has proven to be an 

excellent solution to the problem of error propagation.   

Another stage in the evolution of the GBU returns to the issue of sparse data.  

Some of the earliest test cases derived used cut-off distances of 10Ǻ and 8Ǻ, but as 

mentioned the smaller the cut-off the fewer available distances and, thus, the more sparse 

the data.  GBU algorithms developed more recently are able to handle cases with very 

few distances by using an idea: for an undetermined atom, if only three distances to three 

determined atoms are known then two reflective sets of coordinates for the undetermined 

atom can be determined. 

 

 

This is the idea behind the Rigid Branch and Prune Algorithm which was also described 

by Wu, Wu, and Yuan [31] [34].  This is also a method used in the algorithm of this 

thesis.  However, here it is employed, not as a method to handle cases with fewer 

distances, but rather as a way to speed up the process of finding a base set of atoms.  It is 

i 

i 

Fig. 4 Illustration of the rigid determination. 

Atom i has two possible positions  
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certainly faster to find three atoms with all three inter-atomic distances than it is to find 

four atoms with all six inter-atomic distances. 

4.6  Revised Updated GBU Solution 

 The previous chapters and sections have been a survey of the works of many 

biologists, chemists, physicists, and mathematicians, and it has all led to this the latest 

algorithm developed in the progression of the GBU method.  This algorithm, known as 

the Revised Updated Geometric Build-up (RUGB) algorithm, has been developed by 

combining all of the GBU variations discussed previously.  The goals of this algorithm 

are improve accuracy, relative to the general GBU solution, by employing the Updating 

routine as well as improve the running time of the GBU solution.  The updating routine 

has already been shown to improve the accuracy of the GBU solution [3] while it does 

not significantly affect the running time.   

 In programming the sparse case GBU the computational complications in 

choosing the base set of atoms quickly become apparent.  The largest complication and 

the main hindrance to the running time is the search for a base set of atoms.  Finding four 

base atoms with all distances to the undetermined atom is, in itself, difficult and time 

consuming.  This says nothing about trying to find the base set with the most number of 

undetermined atoms with all distances to the base atoms or finding a base set with a 

complete set of inter-atomic distances for use in the updating routine.  The answers to 

these difficulties are in the programming.  Utilizing different data structures to exploit the 

properties of the overall structure as well as inputting the distance data and processing it 

in such a way that all of the pieces are readily accessible. 
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 Now is a good time to introduce some graph theory terminology that will be used 

herein in reference to the MDGP.  In graph theory two vertices are adjacent if there is an 

edge between them.  Here adjacent is also used to mean the distance is available in the 

original distance information which corresponds to the GEP.  Also, recall that for a base 

set of atoms to be used in the updating routine all distances between the base set of atoms 

must be available, it must be a complete subset.  In graph theory a set of vertices with a 

complete set of edges among them is called a clique, thus for a unique determination def. 

4.1 is referring to a k-clique.  For the MDGP we require a 4-clique for the unique 

determination and a 3-clique or triangle for the rigid determination.   

 In searching for ways to best find and choose a 4-clique and looking into general 

k-clique detection methods and algorithms it was discovered that this too is a very 

complicated problem.  In fact there are really no fast algorithms for finding k-cliques for 

k > 3, but there are some algorithms for finding triangles (3-cliques).  These include both 

counting and listing algorithms and node-iterators and edge-iterators.  The running times 

range according to the method, but it seemed for the purposes of the MDGP the best 

suited algorithm was a node-iterating triangle listing algorithm [35].  It is actually a brute 

force algorithm listing all of the available triangles that has a running time of O( 2

maxd n).  

Here dmax is the maximum number of distances available to any atom in the protein and 

this consideration of dmax is the idea behind the data structure improvement.  Rather than 

searching all n atoms for adjacency, if the distance matrix is first analyzed an array of 

adjacency lists can be created.  By referencing these lists we can quickly find a triangle 

so that each of its vertices (the atoms) are adjacent to the undetermined atom at hand.  

The three base atoms, because they form a 3-clique, can then be updated using the routine 
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described by Wu and Wu.  At this point the undetermined atom can be determined rigidly 

in the independent coordinate system and because it will have two possible positions all 

five sets of coordinates can be placed into the structure by rotating and translating.  A 

fourth determined atom adjacent to the rigidly determined atom can then be found by 

referencing the adjacency list once again.  Using that distance data one of the two 

possible positions can then be eliminated if it does not satisfy the original data.  Fig. 4.7 

shows the pseudocode for this novel algorithm. 

The Revised/Rigid GBU Algorithm 

 

1. Find four base atoms that are not in the same plane 

2. Determine the base atoms uniquely 

3. While not all atoms are determined 

For each undetermined atom ui 

Find a triangle with determined atoms having all distances to ui  

 If such a triangle exists  

 Find a fourth atom with distance to ui for use as a cut-off distance 

 End 

 If both a triangle and a cut-off atom are available 

   Determine ui and update using the described Updating Routine  

 End 

4. If no atom can be determined uniquely, stop. 

5. All atoms are determined uniquely 

 Fig. 5 The outline of the Revised Updating GBU algorithm for solving the MDGP 

with sparse exact distances. 
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 The running time for the RUGB is O( 3

maxd n
2
) due to the use of only two major 

loops and the new data structures used in finding a base set.  More specifically, the for 

and while loops each require at most n steps because there are a total of only n atoms, 

thus there can be at most n undetermined atoms.  This is the reason for the inclusion of n
2
 

in the bound on the running time.  Inside the for loop a triangle base set ( b1, b2, b3) must 

be found for an undetermined atom i.  This is accomplished by looking, first, at the list of 

atoms adjacent to atom i, adjlist(i), to find b1.  The adjacency list for b1, adjlist(b1), is then 

used to find b2 and subsequently adjlist(b2) is used to find b3.  Each adjacency list is 

bounded by dmax, therefore these steps, within the for loop, are bounded by 3

maxd .  Also, 

finding a fourth cut-off atom will require at most dmax.  The newly employed data 

structure, an array of adjacency lists, speeds up the process of finding a base set of atoms 

but is also aided by the uses of a separate list of n ones and zeros, where the one indicates 

determined and zero indicates the atom is undetermined.  This provides a way to verify 

that status with a single check. Also, the adjacency of all atoms in the triangle can be 

verified, each with a single check, while the adjacency lists are scanned.   

 As evidence of the running time Figure 6 plots the number of atoms squared, n
2
, 

against the running time, in seconds, for 27 proteins testing the RUGB.  It shows a very 

linear relationship and in fact the correlation coefficient (r = .9257) is quite high.  The test 

results are illustrated further in Table 4.2 which lists the proteins’ names as they appear in 

the Protein Data Bank along with the number of atoms.  The running time, and the 

RMSD error resulting from the RUGB tests are also included in Table 4.2 as well as the 

minimum, dmin, and the maximum, dmax, degrees at a 5Ǻ cutoff.  
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To be sure that this was the best fit for the running time the correlation coefficients for 

the following cases have been verified:  corrcoef(n
3
, time)  = .8964 and corrcoef(n

4
, time) 

= .844 and corrcoef(n, time) = .9147.  Thus, the best correlation with a correlation 

coefficient of .9257 is that of n
2
. 

 

 

PDB 

Name 
dmin dmax # atoms Time (s) RMSD error 

1AIK 5 49 729 36.8232 8.59E-11 

1BOM 9 69 700 42.8199 1.69E-06 

1BWI 4 39 1001 42.7253 1.65E-07 

1CEU 7 65 854 54.674 1.52E-10 

1HAA 7 69 1310 87.1441 8.66E-08 

Fig. 6 Illustration of O(n
2
d

3
max) running time for the 

Revised Updated GBU algorithm 
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1HLL 11 94 540 38.5727 8.42E-10 

1HSM 10 73 1251 68.5916 1.21E-08 

1IMQ 9 77 1308 82.0806 2.05E-04 

1KVX 4 38 954 42.3962 2.60E-06 

1LIH 4 41 1243 50.5037 4.88E-07 

1R7C 9 64 532 28.9494 2.24E-09 

1ULR 4 36 677 22.4415 3.30E-08 

1VII 8 77 596 46.4245 3.33E-11 

1VMP 10 74 1166 61.6084 7.98E-08 

2DX2 8 58 174 9.7131 1.15E-11 

2EZH 8 66 1058 50.8981 9.02E-09 

6LYT 4 39 1001 34.8481 1.79E-08 

8LYZ 4 39 1000 34.5145 2.57E-08 

1CTO 8 74 1739 106.6881 9.38E-06 

1SOL 9 60 353 18.8787 1.88E-12 

1JAV 9 71 360 18.089 3.21E-06 

1IDV 9 72 189 10.208 8.00E-14 

1AMB 8 65 438 24.1381 6.61E-10 

1B5N 10 67 332 17.4421 9.84E-08 

1FW5 9 66 332 19.0297 5.25E-08 

1HIP 5 37 617 26.5239 4.02E-08 

1meq 10 72 405 23.859 5.02E-11 

 

 

 

 To test the effectiveness of the RUGB algorithm in regards to error control, it was 

tested against a sparse algorithm with the updating routine (SparseN6), the sparse 

algorithm without the updating routine (SparseAlgorithm), as well as testing the RUGB 

without the updating routine.  Table 4.3 list the running times and the propagated error 

build up for each of the 10 atoms and Figure 7 plots the error for the 10 proteins 

comparing the RUGB with and without the Updating Routine.  

Table 4.2 
27 proteins testing the running time and error propagation 

for the new Revised Updated GBU algorithm 
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RUGB Error Comparison
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It is clear that as the number of atoms gets large, the error without the Updating routine 

quickly gets out of control.  Also the largest of the 10 proteins was not determined 

uniquely when the updating routine was turned off, however, when the updating routine 

was turned on, not only was it able to determine the entire protein but it did so while 

keeping the error extremely close to zero.  Figure 8 compares the two updating 

algorithms, the SparseN6 and the new RUGB.  This shows that the total error for small 

proteins remains small for both algorithms, data for the Figure 8 is shown in Table 4.2. 

 

Fig. 7 Illustration of the effectiveness of the Updating 

Routine on the new Revised Updated GBU algorithm. 
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Effect of Updating Routine
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The final graphs (Fig. 9 and Fig. 10) displayed illustrate the RMSD data for the 10 

proteins comparing the new RUGB versus the SparseAlgorithm which is somewhat faster 

yet more unreliable and more importantly does not employ the updating routine.   

 

Fig. 8 Illustration of the effectiveness of the Updating 

routine on two differing GBU algorithms 



 

 

57 

Updated vs. Non-Updated
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Figure 9 shows all ten of the test proteins, which reveal an outlier that may be the result 

of a programming error, and Figure 10 shows only the smallest nine.  This is to give a 

better perspective of the randomness of the error propagation in the SparseAlgorithm 

while also showing just how well the updating routine is able to control the error build-

up. 

Fig. 9 Illustration of the Updating routine on 10 proteins.  

Comparison of SparseAlgorithm and the new Revised 

Updating GBU algorithm 
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Updated vs. Non-Updated
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 To summarize this chapter, we have outlined the evolution of the geometric build-

up solution to the MDGP.  Each new development has enabled the method to control 

error propagation, handle more sparse distance data or improve running time.  We have 

shown a new algorithm, the RUGB, which combines many of the methods described.  

The following table will summarize the time and RMSD data for the ten proteins in each 

of the four cases. 

 

 

Fig. 10 Better scale for the illustration of the Updating 

routine on the 9 smaller proteins.   
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Protein #Atoms 

SN6_Update 

time(s) 

SN6_Update 

RMSD 

RUGB w/o 

time(s) 

RUGB w/o 

RMSD 

2DX2 174 6.2882 1.70E-08 5.2595 2.24E-09 

1ID7 189 7.1203 3.05E-12 2.0973 1.12E-10 

1B5N 332 18.2899 8.68E-08 5.8692 2.60E-04 

1FW5 332 21.2162 6.31E-08 16.7198 1.01E-08 

1meq 405 27.3837 1.21E-10 6.6984 3.09E-06 

1R7C 532 42.855 2.27E-07 72.847 0.2107 

1VII 596 66.6627 2.27E-07 11.4302 0.0078 

1BOM 700 89.5844 3.06E-09 31.1666 0.1571 

1CEU 854 113.689 2.46E-09 22.5384 0.0422 

1IMQ 1308 259.573 0.0845 fixable rigidly fixable rigidly 

 

 

 

The above running times and calculated RMSD errors can be compared to 

RUGB_Update data in Table 4.4 to show that we have, in fact, put together a faster and 

more accurate geometric build-up algorithm comprised of previous geometric build-up 

improvements. 

 

Protein #Atoms 

RUGB_Update 

time(s) 

RUGB_Update 

RMSD 

Sparse 

Algorithm 

time 

SparseAlgorithm 

RMSD 

2DX2 174 4.9691 1.15E-11 0.1551 2.20E-05 

1ID7 189 1.9283 8.00E-14 0.1562 1.21E-09 

1B5N 332 4.5157 9.84E-08 1.4415 1.60E-07 

1FW5 332 18.7532 5.25E-08 1.4204 1.2574 

1meq 405 7.0565 5.02E-11 2.4792 0.0104 

1R7C 532 56.7516 2.24E-09 6.8478 0.0213 

1VII 596 12.6779 3.33E-11 8.8554 1.3509 

1BOM 700 16.5135 1.69E-06 17.9107 0.0882 

1CEU 854 20.1145 1.52E-10 40.4166 0.8286 

1IMQ 1308 26.2067 2.05E-04 214.8065 4.72E+12 

 

Table 4.3 
SN6_Update is an updated GBU that has a running time of O(n

6
) 

RUGB w/o is the new Revised Updated GBU without the updating routine 

which has a running time of less than O(n
2
d

3
max) 

Table 4.4 
RUGB_Update is the new Revised Updated GBU including the updating routine 

and a running time of O(n
2
d

3
max) 

Sparse Algorithm is a non-updating GBU algorithm for the sparse exact case 
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Chapter 5: Summary 

5.1  Research Conclusions 

In the area of protein determination the molecular distance geometry problem plays a key 

role.  In practice, because only sparse distance ranges are available, the problem becomes 

very difficult.  One innovative solution developed has been the geometric build-up 

method by Dong and Wu [1].  The GBU was first described as linear time algorithm 

solution for the MDGP when all exact distances are known.  To better simulate the 

practical case the GBU was then adapted to handle sparse cases of distances.  This posed 

yet another problem, that of accumulated error.  The round-off error of earlier determined 

atoms being passed on to the later determined errors highly affects the accuracy of the 

overall structure.  An updated geometric build-up solution was then described by Wu and 

Wu showing that the error could indeed be controlled and minimized [3].  Still, another 

persisting problem for the GBU is running time.  Although a sparse case GBU solution 

[2] and a method for updating the base atoms [3] have been described the running times 

of O(n
4
) and O(n

6
), respectively, leave room for improvement.  Until now the problem of 

finding the base set of atoms has not yet formally been described but has shown promise 

in regards to reducing the running time for the algorithm.   

 The work presented here describes a new Revised Updated Geometric Build-Up 

algorithm that not only employs the aforementioned updating routine but also introduces 

a novel method for more quickly finding a base set of atoms.  The unique determination 

of an atom requires four determined atoms with all four distances to the undetermined 

atom.  Moreover, the use of the updating routine in this situation requires the additional 

use of the six inter-atomic distances (a 4-clique) for the base set.  The problem of finding 
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a 4-clique is, in itself, a very difficult problem that is likely quite costly in regards to 

running time.  To somewhat bypass this problem the revised updated GBU algorithm 

searches instead for a triangle base set of only three atoms and three inter-atomic 

distances (a 3-clique).  This can be an improvement on the previous running time for 

finding a 4-clique of O(n
4
) because a triangle can be found in just O( 3

maxd ), and in fact all 

triangles can be found by a brute force algorithm taking only O( 2

maxd n) [35].   

This is done by first analyzing the distance matrix creating adjacency lists, where 

atoms are adjacent if the corresponding inter-atomic distance is available.  These lists are 

bounded by the maximum number of distances available for any atom in the protein, dmax.  

These lists contain all adjacent atoms, determined and undetermined, but the base atoms 

must be determined.  To eliminate another search or for loop bounded by the number of 

atoms, n, an array of ones (determined) and zeros (undetermined) is used to quickly 

determine that status for any atom.   Then, once a triangle base set has been found the 

revised updated GBU uses the updating routine [3] to “correct” the base coordinates.  The 

undetermined atom is then determined rigidly, with two reflective positions, in the 

independent coordinate system and then all five sets of coordinates are placed into the 

built-up structure.  This is done by translating and rotating all five sets of coordinates, the 

updated triangle atoms and the two possible sets of coordinates for the undetermined 

atom, about the geometric centers of the two triangle base structures.  At this point the 

fourth determined atom required for a unique determination is then found and the 

distances are compared so that one of the two possible sets of coordinates can be 

eliminated.  With a running time of only O(n
2 3

maxd ) the revised updated GBU algorithm is 

an improvement on the first sparse case GBU algorithm described by Dong and Wu 
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which had a running time of O(n
4
), while also including the updating routine to prevent 

the propagation of round-off error. 

 

5.2 Future Directions of Study 

Since first being described, the geometric build-up solution has undergone several 

step-wise progressions and hopefully the work presented in this thesis will prove to be 

another step toward a strong method for solving three-dimensional protein structures.  

That being said, the GBU still poses some challenging issues.  In fact, the new revised 

updated GBU algorithm still fails to find a complete structure in some instances despite 

all atoms satisfying the necessary condition of four required distances.  Permutations in 

the ordering of the atoms in the original distance matrix may affect this but how can one 

find an optimal ordering then becomes the question.  Therefore, I would like to extend 

this work in the future to include these permutations.  However, this problem may be 

sidestepped if methods can be developed so that multiple components can be 

“connected”.  By determining separate components and using distances between 

individual atoms or even shared atoms of the components there may be a way to 

construct a whole structure.  Further study may also be focused on choosing the base set.  

The algorithm’s running time may be reduced even more if a base set can be chosen such 

that it will have multiple undetermined atoms having all three required distances.  This 

would eliminate the necessity of finding a base set for each undetermined atom, but will 

be affected by the density of the atoms in the protein most likely causing inconsistencies 

in its effect on the running time.   
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Much of the work that I propose can be dealt with via strategic programming 

skills.  For this reason I also have hopes of continuing to improve my abilities as a 

programmer exploring ways to analyze the distance matrix as well as the use of different 

data structures enabling more pertinent information to be more readily and quickly 

available.  Still future projects may also include a second look at the use of bond lengths, 

bond angles, and dihedral angles in the GBU.  More generally, this thesis over the MDGP 

and protein determination, because it is so interdisciplinary, presents many further areas 

of study.  As a broad, long term goal learning more in the areas of biology, chemistry, 

computer science, and mathematics would allow further innovation  and development as 

well as possibly opening up new avenues for research altogether.   
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