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This research assessed the influence of hydrologic gradients on woody debris 

dynamics in a Cumberland Plateau watershed, eastern Kentucky, U.S.A. Although the 

breakdown of wood can be attributed to several different processes, including leaching, 

biological decay, fragmentation, and transport, the influence of differing flow regimes 

has been unstudied. The objectives of this study were to examine how stream channel 

type (temporary vs. perennial) affected wood processing dynamics (i.e., mass loss and 

macroinvertebrate colonization and standing stock patterns). Two questions were 

addressed: (1) do mass loss rates of wood differ across hydrological gradients in stream 

channels?, and (2) do macroinvertebrate colonization and standing stock patterns vary in 

relation to hydrologic gradients?  Although within each channel type both dry mass and 

ash free dry mass loss followed a negative exponential model (p < 0.05), there wasn’t a 

significant between-channel difference in mass loss rates (p > 0.05).  Breakdown rates (-

k) ranged from 0.133 – 0.194year
-1

 for perennial streams compared to 0.103 – 0.170year
-1

 

in the temporary streams. Collector-gathers comprised the greatest proportion of 

macroinvertebrates, accounting for 65.5% (temporary) and 59.3% (perennial) of all taxa 

colonizing wood bundles, followed by shredders (16.1%, 16.8%), predators (16.8%, 
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20.1%), (scrapers < 0.1% in both reaches) and filtering collectors (1.2%, 3.7%). Overall, 

there were no significant between-channel differences for total macroinvertebrate 

abundance, total macroinvertebrate biomass, and similarly for abundance and biomass of 

all functional groups. There was a trend, however, of decreasing density and biomass 

over time of collector-gathers and shredders on wood. Overall, hydrological gradients 

had no effects on short-term breakdown rates of woody debris or macroinvertebrate 

colonization patterns. Studies of wood breakdown have been shown to require long study 

periods (≥ 5 years), therefore, future studies of hydrological gradient may show differing 

results for woody debris breakdown.
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INTRODUCTION 

Headwater streams and hydrologic gradients 

The structure and function of headwater streams draining forested basin are tied to 

their adjacent landscapes and organic matter supplies through allochthonous inputs 

(Benfield 1997, Abelho and Graca 1998, Webster et al. 1999, Acuna 2004, Richardson et 

al. 2005, McNeely et al. 2007, Wipfli et al. 2007). The terrestrial vegetation along stream 

margins can limit primary production by blocking sunlight, but the organic material that 

falls into the streams can provide high amounts of allochthonous carbon (Gessner and 

Chauvet 1993). This litter, or coarse particulate organic matter (CPOM), is comprised 

mainly of leaves but also includes seeds, flowers, fruits, nuts, bark, and wood (Benfield 

1997, Abelho 2001). 

Abscised leaves and wood, in particular, are transformed by abiotic and biotic 

factors while undergoing continuous movement downstream (Simon and Benfield 2001). 

Allochthonous matter is stored in various structures in headwater streams and with 

hydrological events may be transported downstream (Abelho 2001). Studies have shown 

CPOM standing stocks decline both with increasing stream order and decreasing 

elevational gradient (Benfield et al. 2000). Transport and retention of CPOM along a 

hydrological gradient from temporary to perennial streams may in turn affect aquatic 

invertebrate communities. 

The River Continuum Concept (RCC) presented a riverine system as a 

unidirectional gradient of physical conditions with consistent longitudinal patterns of 

organic matter loading, transport, and storage (Vannote et al. 1980). At a finer scale 

community shifts from within only the headwater reaches are subtle (Delucchi and 
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Peckarsky 1989, Feminella 1996, Proger and Moldenke 2002) since environmental 

gradients from temporary to 1
st
- and 2

nd
-order perennial channels are relatively shallow. 

Temporary streams may be underestimated in terms of biodiversity in macroinvertebrate 

assemblages, and many studies have shown high levels of taxonomic richness in these 

systems (Feminella 1996; Dietrich and Anderson 2000; Chadwick and Huryn 2005, 

Grubbs unpublished data). Whiles and Goldowitz (2005) showed that mean annual 

invertebrate abundance and biomass increased with hydroperiod length across a 

hydrologic gradient in four wetlands, yet, taxon richness and diversity were greatest at 

intermittent sites and concluded that a diversity of habitat with varying hydrologic 

regimes will maximize macroinvertebrate abundance and diversity. 

Hydrological variation is commonly used as a means to suggest differences in 

ecosystem structure and function in streams (Diaz et al. 2008). Variations in flow can 

greatly influence macroinvertebrate communities, and flow heterogeneity and substratum 

size influence habitat types for stream insects (Merritt et al. 2008). High flow events are 

accompanied by increased velocity and hydraulic forces on the stream bed (Lancaster 

1999), who identified several mechanisms by which macroinvertebrates may use refugia 

during flow disturbances. She investigated if lotic invertebrates move (either actively or 

passively) away from microhabitats where near-bed hydraulic forces increase with 

discharge towards areas that maintain lower flows and act as refugia. Schlosser and Ebel 

(1989) found that the density of benthic and drifting invertebrates increased significantly 

with elevated flow. 

 The importance of microbes and macroinvertebrate consumers varies both 

seasonally and across stream size gradients. Graca et al. (2001) revealed a decrease in 
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shredder densities downstream, yet this did not decrease litter processing rates and 

suggested increased microbial processing downstream due to parallel downstream 

increases in temperature and nitrogen and phosphorous levels. These results support RCC 

predictions (Vannote et al. 1980) that stream temperatures and nutrient content increase 

with distance from the source while shredder densities decrease in importance. 

 Acuna et al. (2004) showed that hydrological regimes significantly modified the 

influence of ecosystem respiration through its direct effect on the amount of 

allochthonous material stored. Their study found that high discharges had a cleaning 

effect by removing benthic organic matter and allowing light to reach benthic primary 

producers, further concluding that the best single predictor of gross primary production 

was discharge. 

 

Woody debris 

Forested headwater streams typically receive large volumes of woody debris from 

the surrounding riparian forest (Wipfli et al. 2007). The recruitment of wood from mass 

movement is highly variable over space and time (Hassan et al. 2005). Wood input into 

streams may greatly affect local-scale hydrological gradients and rate of wood 

decomposition. Stream size and hydrologic condition may influence the amount of 

woody debris stored in streams (Anderson et al. 1978, Collier and Halliday 2000). In 

headwater streams, large woody debris is too big to be moved by water and therefore 

affects channel form by providing sites for sediment storage and contributing to changes 

in flow hydraulics and high flow protection (Ehrman and Lamberti 1992, Gippel 1995, 

Hassan et al. 2005). Woody debris provides habitat complexity by the creation of pools 
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and retention of organic matter (Lemly and Hilderbrand 2000, Gullis et al. 2004). Woody 

debris and other organic matter breakdown are also affected by hydrological conditions 

of streams, since higher flow rates may cause increased physical fragmentation that in 

turn may increase surface area/volume ratios to enhance microbial growth (Benfield et al. 

2000, Fowler and Scarsbrook 2002). 

The contribution of woody debris to stream food webs as an energy and carbon 

source (Dudley and Anderson 1982, Gulis et al. 2008) to nutrient cycling (Spanhoff and 

Gessner 2004) is of particular interest because information on this function remains 

limited, which can be contributed to the necessity for long term studies due to a slow rate 

of breakdown (Harmon et al. 1986, Webster et al. 1999, Dahlstrom and Nilsson 2006). 

 Woody debris contributes to several important biological and physical processes 

and can influence biological communities in stream habitats. Although research on wood 

breakdown have shown how nutrient cycling, invertebrate communities, tree species, and 

chemical properties can influence rates of mass loss (Dudley and Anderson 1982, 

Golladay and Webster 1988, Gulis et al. 2004, Scherer 2004), few studies have assessed 

the influence of hydrological gradients.  

Many studies have shown the importance of leaf breakdown to stream ecosystems 

(e.g., Webster and Benfield 1986, Webster et al. 1999), but relatively few studies have 

assessed the importance of wood processing. Although the input rates of wood are 

typically lower than that of leaves (Webster et al. 1999), the standing crop of wood is 

usually higher (Tank and Webster 1998). Some studies have shown that wood as a carbon 

resource may be an important resource for times when leaf detritus is unavailable, either 

seasonally or if excluded completely (Eggert and Wallace 2007). Wood breakdown can 
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also be attributed to other factors, including piece size, stream temperature, and water 

chemistry (e.g., nitrogen levels) (Harmon et al. 1986, Scherer 2004).  

Similar to leaves, woody debris breakdown is affected by four main processes, 

namely leaching (i.e., chemical), microbial decay, macroinvertebrate feeding, and 

physical fragmentation (Harmon et al. 1986). Wood breakdown begins with a relatively 

rapid mass loss that is attributed to the leaching of soluble substances (Díez et al. 2002). 

Leaching of dissolved material accounts for 10–30% of initial weight loss from most leaf 

species, but it is likely that very little material is leached directly from wood (Webster et 

al. 1999). However, Díez et al. (2002) suggested that leaching of wood may occur at 

similar rates to those of leaf litter but extended over a longer period of time (e.g., several 

weeks). 

Woody debris possesses both lower nutrient and higher lignin contents compared 

to leaves (Gulis et al. 2004). Lignins belong to a class of complex aromatic polymers 

formed from phenyl propanoid units, protect cellulose against microbial enzymes, and 

comprise 20–30% of woody tissue (Wallace et al. 1999). Lignin also complexes with 

cellulose forming lignocelluloses, representing more than one-half the total carbon 

present in wood (Aumen et al. 1983). Lignin decays slower than cellulose and 

hemicelluloses, leading to an increase in the lignin to cellulose ratio as wood decay 

proceeds (Harmon et al. 1986). Wood decaying fungi are of importance because they can 

break down lignins in cellular walls (Blanchette 1991).  

Oxygen is required for significant rates of microbial decomposition of lignin 

(Harmon et al. 1986). Wood breakdown occurs mainly at the surface via fungal (e.g., 

aquatic hyphomycetes) and bacterial activity (Tank and Winterbourn 1996, Crenshaw et 
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al. 2002), allowing for a more suitable habitat and food supply for stream 

macroinvertebrates. The fact that wood decays at a much slower rate than other organic 

matter allows microbes to recolonize after grazing by macroinvertebrates, showing that 

wood can be a long standing carbon resource for stream organisms (Eggert and Wallace 

2007).  Although abrasion and fragmentation are two means of physical breakdown in 

wood that allow for increased surface area for microbial colonization, yet the chemical 

constituents of wood can affect decomposition rates by making them resistant to abrasion 

and fragmentation (Sedell et al. 1988). The decay of intact wood is limited typically to 

the surfaces because high water content and low oxygen levels within the wood limit 

microbial penetration (Richardson et al. 2005).   

Microbial communities that colonize wood are an important biotic processing 

component. Gulis (2001) showed that wood has a distinctly different fungal community 

from those found on leaf litter. Aquatic hyphomycetes are a major fungi colonizer of 

woody tissues. Wood can promote extensive biofilm development as a carbon source and 

as a surface for microbial colonization, therefore playing a significant role in supporting 

stream community metabolism (Tank and Winterbourn 1996). The slow decomposition 

of wood also provides a stable surface for microbial colonization. Few freshwater 

organisms consume wood directly so microbial colonization serves as a primary vector of 

wood carbon transfer to higher trophic levels in stream food webs (Tank et al. 1998, Tank 

and Dodds 2003).  

The microbial activity on the substrate can increase the palatability of the 

substrate to detritus feeders (Nikolcheva et al. 2003). Many studies have been performed 

to address the relationships between macroinvertebrate colonization and level of 
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microbial conditioning. For example, Eggert and Wallace (2007) measured assimilation 

efficiencies of three detritivores (Pycnopsyche gentilis (Trichoptera), Tipula abdominalis 

(Diptera), and Tallaperla spp. (Plecoptera)) for grazed versus ungrazed wood epixylon to 

determine its use by detritivores and to see what extent wood biofilm is a food resource 

for stream invertebrates. All three detritivores fed on epixylon and wood had significantly 

lower microbial respiration rates plus lower fungal and bacterial densities and biomass 

(Eggert and Wallace 2007). 

There have been several studies (e.g., Hax and Golladay 1993, Kaller and Kelso 

2006) focusing on macroinvertebrate colonization patterns on wood substrates. 

Invertebrates will colonize wood based on substrate quality (Harmon et al. 1986). All 

functional feeding groups can be found on wood substrates. Some macroinvertebrate use 

wood as a preferred food source, while others may only incidentally ingest wood when 

feeding on other detritus (Dudley and Anderson 1982, Sedell et al. 1988). Factors that 

influence macroinvertebrate colonization patterns include species, size, texture, and 

degree of conditioning (Magoulick 1998). Dudley and Anderson (1982) and Magoulick 

(1998) both summarized that invertebrate density, diversity, and richness were correlated 

to wood decay. A few studies (e.g., Kaller and Kelso 2006), however, have produced 

contrasting results. 

Sedell et al. (1988) indicated that invertebrates colonize wood according to 

successive stages of decay. New wood serves mainly as habitat that is then colonized by 

microbes and algae, providing a direct food source for grazers but this feeding does not 

affect the structure of the wood. Colonization by fungi eventually softens the wood 

enough to be incidentally ingested by scrapers, and also the wood becomes suitable for 
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wood grazers and wood shredders (Sedell et al. 1988). 

Collier and Halliday (2000) showed varying preferences by different 

macroinvertebrates at different stages of decay for wood, signifying that invertebrate 

community changes as wood goes through various stages of breakdown. They found that 

Austroclima sepia (Ephemeroptera: Leptophlebiidae) preferred wood at early to 

intermediate stages and Pycnocentria funerea (Trichoptera: Conoesucidae) and Zephlebia 

dentata (Ephemeroptera: Leptophlebiidae) preferred wood at intermediate to advanced 

stages, while Coloburiscus humeralis (Ephemeroptera: Coloburiscidae) and Eukiefferiella 

(Diptera: Chironomidae) preferred severely decayed substrate.  Overall, Collier and 

Halliday (2000) found that P. funerea larva became more xylophagous throughout larval 

growth and there was significantly more FPOM produced by macroinvertebrates on wood 

at a highly decomposed state than from early or intermediate stages. 

The availability of nutrients, specifically nitrogen (N) and phosphorus (P), in 

wood for microorganisms can contribute to the decomposition process. Recent studies 

(Tank and Webster 1998, Gulis et al. 2004) have shown that experimentally-augmented 

nutrient content significantly increased microbial biomass and activity. In general, 

breakdown rates have been found to be higher in nutrient-rich and lower in nutrient-poor 

systems (Gulis et al. 2004). Other studies (Tank and Dodds 2003) have demonstrated 

nutrient-limitation, with fungal biomass increasing 26% with N additions, 43% for P 

additions, and increasing 157% with both N and P supplements. 

There is considerable variability between tree species in decomposition rates due 

to differing chemical contents. For example, gymnosperm wood typically degrades more 

slowly than angiosperms due to the higher proportion of lignin and lower nutrient levels 
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(Harmon et al. 1986, Golladay and Webster 1988, Spanhoff and Gessner 2004). 

Magoulick (1998) analyzed how wood hardness, condition, and texture influenced 

colonization of stream macroinvertebrates, showing found that taxa richness was greater 

on rough conditioned wood compared to rough unconditioned wood.  Magoulick (1998) 

concluded that wood condition and hardness can influence community structure on wood 

substrates.  Druryl and Kelso (2000) showed differences in invertebrate colonization 

dynamics due to wood type and underlying substrate type, indicating that a higher rate of 

decomposition means more surface area for invertebrate colonization.   

Spanhoff et al. (2001) stated that determining wood decay state based on external 

characteristics (e.g., hardness) may be misleading because it does not represent the 

physical state of the wood. Surface texture may be influenced by abiotic and biotic 

factors, including invertebrates scraping off the top layers and darkening of wood due to 

burial by sediment or by microbial colonization. Spanhoff et al. (2001) determined decay 

state based on relative density of wood, finding a correlation of decreasing wood density 

and increasing water content. 

Wood size plays an important role because small pieces of wood have high 

surface-to-volume ratios causing them to breakdown at a faster rate (Webster and 

Benfield 1996). Simon and Benfield (2001) suggested that their study may have 

overestimated natural wood breakdown rates due to the use of wood veneer strips with 

high surface area to volume ratios. Spanhoff and Meyer (2004) summarized wood 

breakdown rates in streams from various studies, finding that natural wood (e.g. twigs 

and branches) decayed at a slower rate compared to commercial wood products and that 

deciduous versus coniferous wood had varying breakdown rates.  
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Although research on wood breakdown have shown how nutrient cycling, 

invertebrate communities, tree species, and chemical properties can influence breakdown 

rates (Dudley and Anderson 1982, Golladay and Webster 1988, Gulis et al. 2004, Scherer 

2004), few studies have assessed the influence of hydrological gradients. Hydrological 

gradients may influence stream functions, including water chemistry, nutrient content, 

breakdown of allochthonous materials, and plant and animal communities (Fowler and 

Scarsbrook 2002) and influence the rate of organic matter breakdown of biomass in 

streams. 

 

Study purpose and statement of hypothesis 

As stated previously, although there have been several studies examining the 

effects of varying hydrological regimes on leaf processing (e.g., Leff and McArthur 

1989), comparatively little research has been done to study woody debris breakdown 

across flow gradients. This research assessed woody debris breakdown dynamics across a 

temporary-perennial hydrological stream gradient in a Cumberland Plateau watershed in 

eastern Kentucky, U.S.A. Although the temporary and perennial streams are linked 

longitudinally in the same watershed, it was hypothesized that the woody debris would 

breakdown at a faster rate and would be colonized by a more abundant and diverse 

macroinvertebrate fauna in the perennial reaches due to the perpetual flow conditions. 

 A specific series of a priori hypothesis were established for woody debris 

breakdown rates and all macroinvertebrate variables. Woody debris breakdown was 

proposed to breakdown at a faster rate in perennial channels due to continual flow 

conditions compared to temporary streams when comparing –k values. I also expected to 
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find that comparing all total abundance and biomass, as well as abundance and biomass 

for all functional feeding groups, that there would be a significant difference from month 

one of sampling to month 13 due to greater time in stream.  For macroinvertebrate 

richness, it was anticipated that perennial streams would hold a more diverse 

macroinvertebrate fauna due to higher breakdown rates.  For macroinvertebrate 

abundance, it was proposed for total abundance and abundance for all functional feeding 

groups that perennial streams would hold a higher abundance of macroinvertebrates in 

perennial streams also due to perpetual flow conditions.  For macroinvertebrate biomass, 

it was similarly assumed that total biomass and biomass for all functional feeding groups 

in perennial streams would hold a higher biomass of macroinvertebrates in perennial 

streams due to perpetual flow conditions in these reaches.
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METHODS and MATERIALS 

Study site description 

All research was performed during autumn-spring 2007–2008 and 2008–2009 in a 

1545 ha, 3
rd

-order watershed, Clemons Fork, that is located in the Kentucky River Basin 

of eastern Kentucky and is part of a series of tracts at Robinson Forest (Fig. 1) that are 

owned and managed in part by the University of Kentucky. Robinson Forest is positioned 

in portions of Breathitt, Knott and Perry counties (Fig. 1). Clemons Fork is positioned in 

the Central Appalachians-Dissected Appalachian Plateau Level IV Ecoregion, 

characterized by Pennsylvanian-aged shale, sandstone, and coal (Woods et al. 2002). The 

main underlying bedrock and stream substrates within both watersheds are sandstone, 

with occasional exposed coal seams and shale. 

Clemons Fork was last logged during the early part of the 1900’s and currently 

supports mature second-growth mixed mesophytic forests (Cherry 2006). Forest stand 

age and disturbance history are virtually identical both across the watershed and along a 

hydrologic continuum from temporary downslope to perennial channels. Tree and woody 

shrub species commonly located along study streams and the adjacent upland slopes 

include American beech (Fagus grandifolia Ehrh.), black oak (Q. velutina Lamb.), 

chestnut oak (Q. prinus L.), northern red oak (Q. rubra L.), white oak (Q. alba L.), 

hickory (Carya spp.), yellow-poplar (Liriodendron tulipifera L.), sugar maple (Acer 

saccharum Marshall), red maple (A. rubrum L.), white ash (Fraxinus americana L.), 

American rhododendron (Rhododendron maximum L.), mountain laurel (Kalmia latifolia 

L.), and common spicebush (Lindera benzoin L.). Dekalb-Marowbone-Lantham, 
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Cloverick-Shelocata-Cutshin, Shelocta-Gilpin-Hazleton, and Shelocta-Gilpin-Kimper soil 

series underlay the forest (Cherry 2006). 

A series of seven similar-sized 1
st
–2

nd
 order tributaries were established as apriori 

replicates (Fig. 1). Each tributary drains a small subwatershed (34–109 ha), is positioned 

within a narrow altitudinal band (Table 1–2), and was divided longitudinally into 

temporary, intermittent and upland perennial reaches based on annual flow permanence. 

Only temporary and perennial reaches were employed in this study. All stream reaches 

were 50 m in length and composed mainly of coarse sandstone substrates intermixed with 

small accumulations of large woody debris and an occasional shallow bedrock run. Pools 

were mainly associated with woody debris. 

In-stream physical and chemical parameters were analyzed monthly during 2008. 

Conductivity (µs/cm) and pH (S.U.) were measured in the field with an YSI 556 

multiprobe system. Automated ISCO and grab samples were taken for quantifying 

alkalinity, dissolved organic carbon, and total organic carbon levels according to standard 

methods (APHA 1992). Alkalinity (mg/L) was analyzed with an Orion 940/960 

autotitrator and both organic carbon parameters were quantified with a Shimadzu TOC-

5000A. 

 

Field and laboratory methods 

Untreated wood strips (1.3 cm x 1.3 cm x 7.6 cm; = 12.3 cm
3
) from freshly-

harvested red maple heartwood were used as substrates for measuring mass loss and 

macroinvertebrate colonization patterns. Wood strips were placed in plastic mesh holders 

(5 mm mesh; Conweb Plastics, LLC, Minneapolis, MN) to make wood bundles (WB) 
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weighing approximately 10 g. Mesh holders were attached to aluminum nails using 

cable-ties (6 holders per nail), fully submerged, and staked to the stream bed of all 14 

study reaches in January 2008. 

Three bundles were collected monthly from each study reach between February 

2008 and February 2009. A 500-um sieve was place immediately downstream of each 

collected bundle to obtain any dislodged macroinvertebrates. The bundle and associated 

biota were placed in individual plastic bags and then immediately in a cooler. 

In the laboratory, macroinvertebrates were gently washed off the wood strips with 

a soft brush and preserved in 75% ethanol. Macroinvertebrates were identified to the 

lowest practical level, namely genus or species, and assigned to individual functional 

feeding groups according to Merritt et al. (2008). Body lengths for macroinvertebrates 

were measured digitally with SIMAGIS®3.0 (Smart Imaging Technologies, Houston, 

TX). Mass-body length regressions were taken from Benke et al. (1999), Matousek 

(2007) and McNeely et al. (2007) to calculate macroinvertebrate biomass with the 

equation M=aL
b
, where M = mass (mg), L = length (cm), and b = logarithmic slope of the 

line. 

To quantify dry mass loss, each wood bundle was dried for at 70°C for 72 h, 

cooled to room temperature, and weighed to the nearest 0.01g. The bundle was then 

combusted at 550°C for 24 h in a muffle furnace, cooled to room temperature, and 

reweighed to the nearest 0.01g. Wood breakdown rates, as processing coefficients (-k), 

were calculated with ash free dry mass (AFDM) using a negative exponential model 

(Webster and Benfield 1986). All AFDM data were log-transformed and the negative 

exponential model calculated -k by taking the slope of the regression line for the natural 
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log mean of percent AFDM remaining per time in-stream. 

 

Statistical methods 

 To assess differences between temporary and perennial reaches, paired sample t-

tests were used to compare wood processing rate coefficients (-k), total macroinvertebrate 

taxa richness, and all macroinvertebrate abundance (no./WB) and biomass variables 

(mg/WB). Macroinvertebrate variables included total abundance and biomass, and 

abundance and biomass individually for the shredders, scraper, filtering-collector, 

gathering-collector, and predator functional feeding groups. The t-tests were analyzed 

using STATISTICA 9.1 and SPSS 18.0.
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RESULTS 

Physiochemical characteristics 

All study reaches were weakly acidic and generally exhibited both low alkalinity 

and conductivity levels. All reaches also had both low total and dissolved organic carbon 

levels (Table 3). 

 

Hydrologic gradients 

Woody debris breakdown 

The range of woody debris mass loss rates (-k, calculated with ash free dry mass) 

overlapped between stream reach types (temporary (T): 0.103 – 0.170 year
-1

 vs. perennial 

(P): 0.133 – 0.194 year
-1

; Table 4). Although the mean rate of mass loss was slightly 

lower in the temporary (0.133 year
-1

) compared to the perennial reaches (0.160 year
-1

), 

there were no significant between-reach differences (t = 1.71, p = 0.11). 

 

Macroinvertebrate colonization patterns 

In total, 48 macroinvertebrate taxa colonized the wood bundles from both stream 

reaches (Tables 5–6). The number of taxa found on wood bundles in the temporary (n = 

43) and perennial (n = 48) reaches was similar. Both the overall mean abundance 

(no./WB: 9.5 > 7.2) and mean biomass (mg/WB: 2.8 > 2.5) were marginally greater on 

wood bundles in the temporary compared to the perennial reaches. Non-tanypod 

Chironomidae, (T = 45.1%, P = 36.6%) were the most abundant group of 

macroinvertebrates colonizing the wood bundles in both reaches.  Amphinemura sp.
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 (T = 5.7%, P = 6.4%), Ameletus sp. (T = 5.5%, P = 7.5%), Oligochaeta (T = 5.4%, P = 

3.7%), Ephemerella sp. (T = 4.5%, P = 6.1%), Isoperla spp. (T = 3.8%, P = 4.6%), 

tanypod Chironomidae (T = 3.5%, P = 3.6%) and Peltoperla arcuata (T = 3.4%, P = 

3.2%) were the next most numerically-abundant taxa obtained from the wood bundles. 

These eight taxa comprised 76.9% and 71.7% of the total macroinvertebrate abundance 

on the wood bundles in the temporary and perennial reaches, respectively. 

Macroinvertebrate biomass patterns on wood bundles were similar to abundance.  

Oligochaete worms (T = 27.0%, P = 19.6%) constituted the highest biomass of 

macroinvertebrates colonizing the wood bundles in both reaches. Lepidostoma spp. (T = 

13.6%, P = 16.0%), Ameletus spp. (T = 10.0%, P = 10.4%), Ephemerella sp. (T = 8.0%, P 

= 8.8%), immature Taeniopteryginae (T = 5.0%, P = 4.3%), Eurylophella sp. (T = 4.9%, 

P = 7.8%), Amphinemura sp. (T = 3.6%, P = 3.2%), and Rhyacophila sp. (T = 3.0%, P = 

3.7%) had the next highest biomass taxa obtained from the wood bundles. These eight 

taxa comprised 75.1% and 73.8% of the total macroinvertebrate biomass on the wood 

bundles in the temporary and perennial reaches, respectively. 

Comparisons between the first (February 2008) and last (February 2009) months 

for total macroinvertebrate abundance and biomass, plus both shredder and gathering-

collector abundance, were significantly different (p < 0.05; Table 11). Between-month 

differences for shredder and gathering-collector biomass, plus both abundance and 

biomass of filtering-collectors and predators, were not significant (p > 0.05). 

Although there was considerable between-reach variability, gathering collectors, 

predators and shredders dominated the wood bundles in terms of both abundance and 

biomass (Tables 7–8). Overall, gathering-collectors were the most numerically-abundant 
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individual functional feeding group colonizing wood bundles, comprising 65.5% 

(temporary) and 59.3% (perennial) of the total macroinvertebrates obtained (Table 9). 

Predators (T = 16.8%, P = 20.1%) and shredders (T = 16.1%, P = 16.8%) were also 

moderately abundant while filtering-collectors (T = 1.2%, P = 3.7%) and scrapers (T = 

0.4%, P = 0.2%) were comparatively rare. Gathering-collectors, shredders, and predators 

similarly comprised the majority of macroinvertebrate biomass colonizing wood bundles 

in both reach types (T = 98.3%, P = 97.8%; Table 7). 

Overall, there was a trend of declining macroinvertebrate abundance and biomass 

on woody bundles in both the temporary and perennial reaches (Figs. 3 and 4). This trend 

was particularly evident with both gathering-collector (Figs. 5 and 6) and shredder (Figs. 

7 and 8) functional groups. Predator abundance and biomass, however, did not decline 

with in-stream colonization time (Figs. 9 and 10). 

There was only one between-reach difference comparing macroinvertebrate 

richness, abundance and biomass on wood bundles (Table 10). Mean filtering-collector 

biomass was significantly greater, albeit marginally, on wood bundles in the perennial 

reaches (t = 2.17, p = 0.049).



 

21 

 

DISCUSSION 

 This study compared breakdown dynamics of red maple (Acer rubrum) heartwood 

between temporary and perennial sections of a forested, headwater stream continuum. 

Although mean breakdown rates (-k) in the perennial reaches (0.160 year
-1

) were higher 

than from the temporary reaches (0.133 year
-1

), this difference was not significant (p = 

0.09 or 0.11). Hence, the hypothesis that woody debris would breakdown at a faster rate 

in the perennial reaches due to perennial flow conditions was refuted. 

Breakdown rates in this study ranged from 0.103 – 0.194 year
-1

, which was 

similar to rates published from previous studies (Table 11). Specifically, this range of 

breakdown rates is comparable to prior research using wood derived from other Acer 

species. Fisher, Wold and Hershey (1999) reported that sugar maple (Acer saccharum) 

wood was processed at rates (0.133 – 0.140 year
-1) 

comparable to this study. Shearer and 

von Bodman (1983) also found that silver maple (A. saccharinum) was processed at a 

rate (0.16 year
-1

) similar to this study. The woody debris used by both Fisher Wold and 

Hershey (1999) and Shearer and von Bodman (1983) used natural maple wood products. 

There is ample evidence, however, from various studies (e.g., Spanhoff and Gessner 

2004, Spanhoff and Meyer 2004) suggesting that breakdown rates differ among wood 

products (e.g., commercial vs. natural or differing species). Many prior studies have used 

commercial wood substrates (e.g. ice-cream sticks and tongue depressors) that differ 

unlike the natural heartwood used in the present study. Spanhoff and Meyer (2004) found 

that natural wood exhibited slower breakdown rates than commercial products. Differing 

surface area: volume ratios can also lead to great differences in breakdown rates, 
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implying that the mean surface or volume per woody debris piece should be reported with 

studies of wood processing dynamics. 

Studies have shown that temporary streams may harbor macroinvertebrate 

abundance and diversity of equal or greater value when compared to downstream 

perennial reaches (Alvarez et al. 2001). This study showed no clear distinction in total 

macroinvertebrate richness, abundance and biomass, and abundance and biomass of 

individual functional feeding groups, on decay woody debris. 

Studies comparing permanent and temporary reaches through random sampling 

with kick nets (Halwas and Church 2005) found that the majority of taxonomic groups 

were abundant in perennial rather than ephemeral or intermittent streams.  Other studies 

(Feminella 1996) have found taxa to be similar between reaches, similar to the present 

study. 

Decaying leaves in streams draining forested watersheds are typically 

characterized by high macroinvertebrate densities, particularly as shredder and gathering-

collector functional groups (Webster and Benfield 1986). Wood substrates, however, may 

maintain lower densities, because few macroinvertebrates consume wood directly. 

Whereas both wood and leaves first require microbial activity to improve the palatability 

of each organic carbon resource prior to transfer to higher tropic levels (Webster and 

Benfield 1986, Tank and Winterbourn 1996, Tank et al. 1998), the former is more 

resistant to ecosystem-level processing (Tank and Winterbourn 1996, Gulis et al. 2004). 

Hofer and Richardson (2007) compared macroinvertebrate colonization on plastic leaves 

and several species of wood and leaves, finding that there was no significant difference in 

colonization of wood versus plastic leaves or between various species of wood, 
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suggesting that macroinvertebrates may colonize wood for physical features (i.e., habitat) 

initially, or when they have developed surface biofilm and fungal colonization. Anderson 

et al. (1978) and Drury and Kelso (2000) showed similar macroinvertebrate colonization 

patterns, specifically that wood supported higher richness but low mean abundance 

values. 

The greatest proportion of macroinvertebrates colonizing wood bundles in both 

reach types were gathering-collector Chironomidae. Overall, gathering-collectors (all) 

comprised 66% (temporary) and 59% (perennial) of the total number of taxa found on the 

wood bundles while Chironomidae (minus Tanypodinae), in particular, constituted 45% 

(temporary) and 36% (perennial). Anderson et al. (1978) and Magoulick (1998) similarly 

found high chironomid densities colonizing decaying woody debris in headwater streams. 

Several other taxa, namely Oligochaete worms, Ephemeroptera (Ameletus and 

Ephemerella), and Plecoptera (Amphinemura, Isoperla and Peltoperla arcuata), were 

also found in relatively high abundance and biomass numbers on wood bundles. 

Anderson et al. (1978) also reported that Ameletus, Ephemerella, and Yoraperla (reported 

as Peltoperla) were common colonizers of woody debris. Johnson and Kennedy (2003) 

reported highest invertebrate densities on newly submerged wood, comparable to this 

study with a trend of initial high invertebrate densities that gradually decreased over the 

time of the study. 

Gathering-collectors and shredders exhibited marked declines in both abundance 

and density with increasing instream colonization time. Magoulick (1988), O’Connor 

(1991), and Kaller and Kelso (2006) similarly have shown the same trend for taxa 

densities stabilizing after a few weeks and then decreasing over time on wood substrata. 



24 

 

 

In contrast, Tank and Winterbourn (1996) have reported that mean densities of 

invertebrates colonizing wood increased over time and Wooster and DeBano (2006) 

found high scraper and shredder densities on woody debris.
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CONCLUSION 

 Environmental gradients have been shown to have affect detritus processing rates 

and macroinvertebrate colonization patterns (Graca et al. 2001). This study, however, 

showed little difference in either wood breakdown or macroinvertebrate abundance and 

diversity between perennial and temporary reaches. Wood is a resilient organic matter 

resource for forested, headwater stream foodwebs (Tank and Webster 1998). The 

importance of this food resource can be easily overlooked due to the long time 

commitment required to fully assess processing dynamics and few studies have dedicated 

long term (> 5 yrs) research on this topic. The slow breakdown rates of wood compared 

to other substrata may require a longer study to get a better understanding of breakdown 

processes and macroinvertebrate community structure. 
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Table 2. GPS for each study reach in the Clemons Fork watershed. T = temporary, P 

= perennial. 

 
 

Tributary Reach Latitude Longitude 
    
    
Little Millseat T N 37 28.673' W 83 10.007' 

 P N 37 28.445' W 83 09.218' 

Shelly Rock Fork South T N 37 28.816' W 83 09.583' 

 P N 37 28.911' W 83 09.188' 

Shelly Rock Fork West T N 37 28.993' W 83 09.737' 

 P N 37 29.010' W 83 09.262' 

Bookers Fork T N 37 29.223' W 83 08.445' 

 P N 37 28.809' W 83 08.418' 

Wet Fork T N 37 29.760' W 83 07.246' 

 P N 37 29.160' W 83 07.876' 

Goff Hollow T N 37 28.925' W 83 07.168' 

 P N 37 28.946' W 83 07.556’ 

Falling Rock T N 37 28.403' W 83 07.694' 

 P N 37 28.509' W 83 08.199' 

    
    

TABLES AND FIGURES 

 

 
 

Table 1. Summary of physical characteristics of the seven study subwatersheds in 

the Clemons Fork watershed. Adapted from Cherry (2006). 

         
    
Tributary 

 

Drainage 

area (ha) 

Drainage 

density (m/m
2
) 

Elevational range 

(m) 

    
    
Little Millseat 77.9 0.0038 304–451 

Shelly Rock Fork South 34.5 0.0032 304–426 

Shelly Rock Fork West 69.0 0.0045 304–426 

Booker Fork 59.6 0.0041 304–451 

Wet Fork 108.7 0.0036 316–451 

Goff Hollow 34.3 0.0043 316–451 

Falling Rock Branch 92.3 0.0040 304–445 
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Table 3. Mean in-stream chemical parameters within the Clemons Fork watershed during 

2008. T = temporary, P = perennial. n.a. = data not obtained. 

 
 
Tributary Reach Parameter 

       
       
  pH Cond Alk TOC DOC 

    (s.u.) (µs/m) (mg/L) (mg/L)  (mg/L)  

Little Millseat T 6.24 42.5 23.8 4.5 4.4 

 P 6.36 49.7 41.8 3.1 2.8 

Shelly Rock Fork South T 6.18 44.3 24.0 3.5 3.2 

  P 6.37 46.8 30.4 3.8 3.4 

Shelly Rock Fork West T 6.11 41.0 15.9 3.0 2.5 

  P 6.27 50.7 22.7 3.8 3.2 

Booker Fork T 6.44 32.8 15.3 n.a. n.a. 

 P 6.35 45.6 34.6 3.5 3.2 

Wet Fork T 6.49 61.7 46.4 7.1 5.7 

 P 6.44 51.2 32.3 4.0 3.3 

Goff Hollow T 6.16 40.6 18.2 5.2 3.7 

 P 6.03 42.4 18.4 2.9 2.4 

Falling Rock Branch T 6.23 41.8 18.5 2.7 2.5 

  P 6.35 47.2 34.1 2.7 2.5 

       
       
 

 

 

 

Table 4. Comparison of woody debris ash-free dry mass loss rates (-k) between temporary 

and perennial study reaches in the Clemons Fork watershed during 2008–2009. n.a. = not 

enough data collected. All mass loss models were significant (p < 0.05). 
  
 
Tributary Temporary   Perennial  

 -k r
2
 -k r

2
 

     
     
Little Millseat n.a. n.a. 0.14 0.77 

Shelly Rock Fork South 0.10 0.77 0.16 0.92 

Shelly Rock Fork West 0.10 0.75 0.15 0.76 

Booker Fork 0.17 0.87 0.19 0.54 

Wet Fork 0.15 0.81 0.16 0.84 

Goff Hollow 0.15 0.51 0.19 0.87 

Falling Rock Branch 0.13 0.80 0.13 0.90 
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Table 5. Overall mean individual macroinvertebrate taxa abundance (no.) and biomass (mg) values per wood bundle by stream reach 

type and functional feeding group (FFG). SHR = shredders, SCR = scrapers, FC = filtering-collectors, CG = collector-gathers, PR = 

predators. 

  
  
FFG Taxa   Temporary   Perennial  

        no. mg no. mg 

        
        
SHR Plecoptera Capniidae Allocapnia sp. 0.28 0.02 0.21 0.02 

  Leuctridae Leuctra sp. 0.06 0.01 0.01 < 0.01 

  Nemouridae Amphinemura sp. 0.54 0.10 0.46 0.08 

  Taeniopterygidae Taeniopteryginae (immature) 0.18 0.14 0.14 0.11 

  Peltoperlidae Peltoperla arcuata 0.32 0.09 0.23 0.11 

 Trichoptera Lepidostomatidae Lepidostoma  sp. 0.12 0.38 0.13 0.39 

  Limnephilidae Pycnopsyche sp. 0.02 0.01 0.01 0.05 

 Coleoptera Dryopidae Helichus sp. 0.01 0.02 0.02 0.04 

 Diptera Tipulidae Tipula abdominalis 0.01 0.01 0.02 0.01 

        
SCR Trichoptera Glossosomatidae Agapetus sp. 0.03 0.04 < 0.01 0.05 

  Molannidae Molanna sp. 0 0 < 0.01 < 0.01 

 Coleoptera Psephenidae Ectopria nervosa 0.01 0.01 < 0.01 0.01 

        
FC Bivalvia Sphaeriidae Sphaerium sp. 0.09 0.01 0.22 0.03 

 Trichoptera Hydropsychidae Diplectrona modesta 0 0 0.01 0.01 

  Philopotamidae Wormaldia moestus 0 0 < 0.01 0.01 

 Diptera Simuliidae Prosimulium sp. 0.02 < 0.01 0.03 < 0.01 

        
CG Oligochaeta   0.51 0.75 0.27 0.48 

 Collembola Poduridae  0.10 < 0.01 0.08 < 0.01 

 Ephemeroptera Ameletidae Ameletus sp. 0.52 0.28 0.54 0.26 

  Baetidae Centroptilum sp 0 0 0.02 0.01 

  Ephemerellidae Ephemerella sp. 0.42 0.22 0.44 0.22 

   Eurylophella sp. 0.05 0.14 0.08 0.19 

  Leptophlebiidae Habrophlebia vibrans 0.10 0.04 0.01 0.04 

    Paraleptophlebia sp. 0.05 0.03 0.04 0.02 
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 Coleoptera Elmidae Stenelmis sp. 0.12 0.03 0.11 0.03 

    Macronychus glabratus 0.02 0.01 0 0 

 Diptera Chironomidae non-Tanypodinae 4.29 0.06 2.63 0.04 

  Stratiomyiidae Nemotelus sp. 0.01 < 0.01 0.01 < 0.01 

        
PR Plecoptera Chloroperlidae Sweltsa sp. 0.01 0.01 0.01 < 0.01 

  Perlodidae Clioperla clio 0.07 < 0.01 0.05 < 0.01 

   Diploperla robusta 0.05 < 0.01 0.09 < 0.01 

   Isoperla spp. 0.36 0.02 0.33 0.02 

   Remenus bilobatus 0.08 0.01 0.03 0.02 

   Yugus kirchneri 0.04 < 0.01 < 0.01 0.01 

   Perlodidae (immature) 0.22 0.00 0.28 < 0.01 

 Hemiptera    0 0 0.01 < 0.01 

 Megaloptera Corydalidae Nigronia sp. 0.03 0.03 0.02 0.01 

 Trichoptera Rhyacophilidae Rhyacophila sp. 0.05 0.08 0.04 0.09 

 Coleoptera Dytiscidae  < 0.01 < 0.01 0.01 0.03 

 Diptera Ceratopogonidae Ceratopogon sp. 0.15 0.02 0.08 0.01 

   Bezzia sp. 0.12 0.02 0.12 0.02 

  Chironomidae Tanypodinae 0.33 0.01 0.26 0.01 

  Dolichopodidae Rhaphium sp. < 0.01 < 0.01 0.01 < 0.01 

  Empididae Clinocera sp. < 0.01 < 0.01 0.01 < 0.01 

  Tabanidae Chrysops sp. 0.01 < 0.01 < 0.01 < 0.01 

   Tabanus sp 0.01 < 0.01 0.02 0.01 

  Tipulidae Hexatoma sp. 0.01 0.01 0.01 < 0.01 

   Limnophila sp. 0.03 0.18 0.02 0.01 

   Pilaria sp. 0.03 < 0.01 0.07 0.02 
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Table 6. Overall mean individual macroinvertebrate taxa abundance (no.) and biomass (mg) values per ash-free dry mass wood 

bundle by stream reach type and functional feeding group (FFG). SHR = shredders, SCR = scrapers, FC = filtering-collectors, CG = 

collector-gathers, PR = predators. 

 
 

FFG Taxa   Temporary Perennial 

       no. mg no. mg 

        
        
SHR Plecoptera Capniidae Allocapnia sp. 0.09 0.01 0.07 0.01 

  Leuctridae Leuctra sp. 0.02 < 0.01 < 0.01 < 0.01 

  Nemouridae Amphinemura sp. 0.18 0.03 0.16 0.03 

  Taeniopterygidae Taeniopteryginae (immature) 0.06 0.05 0.05 0.04 

  Peltoperlidae Peltoperla arcuata 0.11 0.03 0.08 0.04 

 Trichoptera Lepidostomatidae Lepidostoma  sp. 0.04 0.13 0.04 0.13 

  Limnephilidae Pycnopsyche sp. 0.01 < 0.01 < 0.01 0.02 

 Coleoptera Dryopidae Helichus < 0.01 0.01 0.01 0.01 

 Diptera Tipulidae Tipula abdominalis < 0.01 < 0.01 0.01 0.01 

        
SCR Trichoptera Glossosomatidae Agapetus sp. 0.01 0.01 < 0.01 0.02 

  Molannidae Molanna sp. 0 0 < 0.01 < 0.01 

 Coleoptera Psephenidae Ectopria nervosa < 0.01 < 0.01 < 0.01 < 0.01 

        
FC Bivalvia Sphaeriidae  0.03 < 0.01 0.08 0.01 

 Trichoptera Hydropsychidae Diplectrona modesta 0 0 < 0.01 < 0.01 

  Philopotamidae Wormaldia moestus 0 0 < 0.01 0.01 

 Diptera Simuliidae Prosimulium sp. 0.01 < 0.01 0.01 < 0.01 

        
CG Oligochaeta   0.17 0.25 0.09 0.16 

 Collembola Poduridae  0.03 < 0.01 0.03 < 0.01 

 Ephemeroptera Ameletidae  0.17 0.09 0.18 0.09 

  Baetidae Centroptilum sp 0 0 0.01 < 0.01 

  Ephemerellidae Ephemerella sp. 0.14 0.07 0.15 0.07 

   Eurylophella sp. 0.02 0.05 0.03 0.06 

  Leptophlebiidae Habrophlebia vibrans 0.03 0.01 < 0.01 0.01 

   Paraleptophlebia sp. 0.02 0.01 0.01 0.01 
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 Coleoptera Elmidae Macronychus sp. 0.01 < 0.01 0 0 

   Stenelmis sp. 0.04 0.01 0.04 0.01 

 Diptera Chironomidae non-Tanypodinae 1.41 0.02 0.90 0.01 

  Stratiomyiidae Nemotelus sp. 0.01 ¸ < 

0.01 
< 0.01 < 0.01 

        
PR Plecoptera Chloroperlidae Sweltsa sp. 0.01 < 0.01 < 0.01 < 0.01 

  Perlodidae Clioperla clio 0.02 < 0.01 0.02 < 0.01 

   Diploperla robusta 0.02 < 0.01 0.03 < 0.01 

   Isoperla spp. 0.12 0.01 0.11 0.01 

   Remenus bilobatus 0.03 < 0.01 0.01 0.01 

   Yugus kirchneri 0.01 < 0.01 0 0 

   Perlodidae (immature) 0.07 < 0.01 0.10 < 0.01 

 Hemiptera   0 0 < 0.01 < 0.01 

 Megaloptera Corydalidae Nigronia sp. 0.01 0.01 0.01 0.01 

 Trichoptera Rhyacophilidae Rhyacophila sp. 0.02 0.03 0.01 0.03 

 Coleoptera Dytiscidae  < 0.01 < 0.01 < 0.01 0.01 

 Diptera Ceratopogonidae Bezzia sp. 0.04 0.01 0.04 0.01 

   Ceratopogon sp. 0.05 0.01 0.03 < 0.01 

  Chironomidae Tanypodinae 0.11 0.01 0.09 < 0.01 

  Dolichopodidae Rhaphium sp. < 0.01 < 0.01 < 0.01 < 0.01 

  Empididae Clinocera sp. < 0.01 < 0.01 < 0.01 < 0.01 

  Tabanidae Chrysops sp. 0.01 < 0.01 < 0.01 < 0.01 

   Tabanus sp < 0.01 < 0.01 0.01 < 0.01 

  Tipulidae Hexatoma sp. < 0.01 < 0.01 < 0.01 < 0.01 

   Limnophila sp. 0.01 0.06 < 0.01 < 0.01 

   Pilaria sp. 0.01 < 0.01 0.02 0.01 
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Table 7. Overall mean functional feeding group abundance (no.) and biomass (mg) per wood bundle (WB) by individual stream 

reach. T = temporary, P = perennial, SHR = shredders, SCR = scrapers, FC = filtering-collectors, CG = collector-gathers, PR = 

predators. 

  
  
  no./WB  mg/WB 

 
 

Reach Tributary SHR SCR FC GC PR  SHR SCR FC GC PR 

  
  

T Little Millseat 3.7 0 0.1 7.0 1.9  4.1 0 < 0.1 1.1 0.5 

 Shelly Rock Fork South 1.2 < 0.1 0.1 6.5 1.8  0.3 0.1 < 0.1 2.8 0.3 

 Shelly Rock Fork West 1.6 < 0.1 0.2 6.2 3.5  0.9 < 0.1 < 0.1 1.7 0.2 

 Booker Fork 2.3 0.5 0 7.2 1.5  2 0.2 0 1.4 0.1 

 Wet Fork 1.9 0 0.4 8.3 1.9  1.4 0 0.1 1.6 0.5 

 Goff Hollow 0.4 0 < 0.1 4.1 0.4  0.3 0 0 1.3 < 0.1 

 Falling Rock Branch 1.3 0 0.1 6.1 1.1  0.9 0 0 1.7 0.2 

             
P Little Millseat 0.8 0 0.5 3.4 2.8  0.5 0 0.1 0.9 0.3 

 Shelly Rock Fork South 1.3 0 0.2 5.2 0.9  0.7 0 < 0.1 1.2 0.2 

 Shelly Rock Fork West 1.3 0 < 0.1 3.5 1.5  0.6 0 0 1.6 0.2 

 Booker Fork 1.5 < 0.1 0 4.6 1.1  1.5 < 0.1 0 0.7 0.1 

 Wet Fork 1.2 0 1.3 4.1 1.2  0.8 0 0.1 2.0 0.1 

 Goff Hollow 1.1 0 0.1 4.5 1.0  0.4 0 0 1.1 0.1 

 Falling Rock Branch 1.5 < 0.1 0.1 4.8 1.6  1.1 < 0.1 0.1 1.8 0.9 
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Table 8. Overall mean functional feeding group abundance (no.) and biomass (mg) per ash free dry mass (AFDM) wood bundle by 

individual stream reach. T = temporary, P = perennial, SHR = shredders, SCR = scrapers, FC = filtering-collectors, CG = collector-

gathers, PR = predators. 

  
  
  no./AFDM  mg/AFDM 

 
 

Reach Tributary SHR SCR FC GC PR  SHR SCR FC GC PR 

  
  

T Little Millseat 1.3 0 < 0.1 2.4 0.7  1.2 0 < 0.1 0.3 0.1 

 Shelly Rock Fork South 0.4 < 0.1 < 0.1 2.2 0.6  0.1 < 0.1 < 0.1 0.9 0.1 

 Shelly Rock Fork West 0.5 < 0.1 0.1 2.0 1.1  0.3 < 0.1 < 0.1 0.6 0.1 

 Booker Fork 0.8 0.2 0 2.5 0.5  0.7 0.1 0 0.5 < 0.1 

 Wet Fork 0.6 0 0.1 2.4 0.6  0.5 0 < 0.1 0.5 0.2 

 Goff Hollow 0.1 0 < 0.1 1.4 0.1  0.1 0 < 0.1 0.4 < 0.1 

 Falling Rock Branch 0.5 0 < 0.1 2.0 0.4  0.3 0 < 0.1 0.6 < 0.1 

             
P Little Millseat 0.3 0 0.2 1.2 1.0  0.2 0 < 0.1 0.3 0.1 

 Shelly Rock Fork South 0.4 0 0.1 1.2 0.3  0.2 0 < 0.1 0.4 0.1 

 Shelly Rock Fork West 0.5 0 < 0.1 1.3 0.5  0.2 0 < 0.1 0.6 0.1 

 Booker Fork 0.5 < 0.1 0 1.6 0.4  0.5 < 0.1 0 0.2 < 0.1 

 Wet Fork 0.4 0 0.4 1.3 0.4  0.2 0 < 0.1 0.6 < 0.1 

 Goff Hollow 0.4 0 < 0.1 1.5 0.3  0.1 0 < 0.1 0.4 < 0.1 

 Falling Rock Branch 0.5 < 0.1 < 0.1 1.6 0.5  0.4 0 0.1 0.6 0.3 
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Table 9. Overall relative percentage values for abundance (no.) and 

biomass (mg) by per wood bundle (WB) for each reach type and 

functional feeding group (FFG). SHR = shredders, SCR = scrapers, FC 

= filtering-collectors, CG = collector-gathers, PR = predators. 

 
 
FFG Temporary Perennial 

         
 no./WB mg/WB no./WB mg/WB 

     
     
SHR 16.1 % 37.2% 16.8 % 32.9% 

SCR 0.4 % 1.2% 0.2 % 0.1% 

FC 1.2 % 0.5% 3.7 % 2.1% 

GC 65.5 % 54.1%        59.3 % 53.4% 

PR 16.8% 7.0% 20.1 % 11.5% 

        
      

 

 

 

 

Table 10. Summary of paired t-tests comparing macroinvertebrate richness, abundance and 

biomass values per wood bundle between the temporary and perennial reaches. SHR = 

shredders, SCR = scrapers, FC = filtering-collectors, GC = gathering-collectors, PR = 

predators, * p = 0.05. 

      
      
 Temporary  Perennial   

      
      
Variable  Mean 1 S.E. Mean 1 S.E. t-statistic 

            
      
Total taxa richness 3.03 0.13 2.88 0.10 0.58 

Total abundance 8.38 0.65 7.11 0.39 0.97 

Total biomass 3.06 0.17 2.46 0.14 1.58 

SHR abundance 1.40 0.13 1.23 0.08 0.56 

SHR biomass 1.01 0.07 0.78 0.06 1.43 

SCR abundance 0.07 0.01 0.01 < 0.01 1.05 

SCR biomass 0.03 0.01 0.01 < 0.01 0.81 

FC abundance 0.12 0.01 0.27 0.02 1.53 

FC biomass 0.01 < 0.01 0.05 < 0.01 *2.52 

CG abundance 5.59 0.42 4.34 0.25 1.16 

CG biomass 1.58 0.10 1.33 0.08 0.67 

PR abundance 1.49 0.11 1.35 0.08 0.66 

PR biomass 0.20 0.01 0.27 0.01 1.19 
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Table 11. Summary of Student t-tests comparing macroinvertebrate abundance and biomass values per 

wood bundle between first month and last month of sampling between reaches. SHR = shredders, SCR = 

scrapers, FC = filtering-collectors, GC = gathering-collectors, PR = predators, * p = 0.05, ** = t-tests not 

performed due to zero data for both months 
            
      
 Month 1  Month 13   

           
      
Variable  Mean 1 S.E. Mean 1 S.E. t-statistic 

            
      
Total abundance 9.2 1.42 3.0 0.72 *3.3 

Total biomass 3.5 0.68 1.8 0.46 *1.9 

SHR abundance 1.9 0.39 0.5 0.17 *3.0 

SHR biomass 1.1 0.41 0.5 0.20 1.5 

SCR abundance 0 0 0 0 ** 

SCR biomass 0 0 0 0 ** 

FC abundance 0.1 0.09 0.1 0.09 0.1 

FC biomass 0.1 0.05 < 0.1 0.01 1.3 

CG abundance 5.9 0.95 1.5 0.35 *4.0 

CG biomass 1.7 0.42 1.0 0.33 1.3 

PR abundance 1.4 0.44 1.0 0.42 0.6 

PR biomass 0.3 0.16 0.4 0.23 0.8 
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Table 12. Comparison of woody debris breakdown rates (-k) by species and wood piece size between 

published studies and the current study. 

 
 

Reference Species -k (year 
-1

) Size of wood pieces 

       
    
This Study Acer rubrum 0.10 – 0.19 1.3 * 1.3 * 7.7 cm 

Diez et al. (2002) Alnus glutinosa (branch) 0.06 – 0.17 3 cm 

Diez et al. (2002) Alnus glutinosa 

(heartwood) 
0.12 – 0.27 10 * 2.5 * 2.5 cm 

Diez et al. (2002) Quercus robur 0.07 – 0.18 3 cm 

Diez et al. (2002) Pinus insignis 0.02 – 0.07 3 cm 

Diez et al. (2002) Eucalyptus globulus 0.08 – 0.15 3 cm 

Fisher Wold and Hershey (1999) Betula sp. 0.13 – 0.22 0.6 cm 

Fisher Wold and Hershey (1999) Acer saccharum. 0.13 – 0.14 0.6 cm 

Golladay and Webster (1988) Quercus rubra 0.11 – 0.28 1 – 3 cm diameter  

Shearer and Von Bodman (1983) Acer saccharinum 0.16 20 * 1.6cm
b
 

Spanhoff and Meyer (2004) Alnus glutinosa (branch) 0.07 – 0.09 25.1 * 5 cm 

Spanhoff and Meyer (2004) Pinus sylvestris (branch) 0.07 28.6 * 4.6 cm 

Tank et al. (1988) Liriodendron tulipifera 1.71 – 3.10 15 * 2.5 * 0.1 cm 

Tank and Webster (1988) Quercus rubra 0.53 15 * 2.5 * 0.1 cm 

Webster et al. (1999) Liriodendron tulipifera 0.15 – 0.23 1.3 – 3.6 cm 

Webster et al. (1999) Pinus strobus 0.06 – 0.38 1.3 – 3.6 cm 

Webster et al. (1999) Quercus rubra 0.11 – 0.16 1.3 – 3.6 cm 
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Figure 1. Location of Robinson Forest in eastern Kentucky, U.S.A. and specific location 

of the seven study streams. Adapted from Cherry (2006). Shelley Fork N. (4), Upper 

Clemons Fork (6), and Carpenter Fork (8) were not included in this study.
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Fig. 2A 
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Fig. 2B 

Figure 2. Comparison of percent AFDM remaining of wood bundles between temporary 

and perennial stream reaches. A = perennial, B = temporary, and symbols refer to 

individual stream reaches. 
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Fig. 3a. 
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Fig. 3b. 

Figure 3. Comparison of total macroinvertebrate abundance per wood bundle between 

temporary and perennial stream reaches. A = perennial, B = temporary, and symbols refer 

to individual stream reaches. 
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Fig. 4a. 
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Fig. 4b. 

Figure 4. Comparison of total macroinvertebrate biomass per wood bundle between 

temporary and perennial stream reaches. A = perennial, B = temporary, and symbols refer 

to individual stream reaches.
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Fig. 5a. 
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Fig. 5b. 

Figure 5. Comparison of gathering-collector abundance per wood bundle between 

temporary and perennial stream reaches. A = perennial, B = temporary, and symbols refer 

to individual stream reaches.
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Fig. 6a. 
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Fig. 6b. 

Figure 6. Comparison of gathering-collector biomass per wood bundle between 

temporary and perennial stream reaches. A = perennial, B = temporary, and symbols refer 

to individual stream reaches.
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Fig. 7a. 

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

Months

S
h

re
d

d
e
r 

T
o

ta
l 

N
u

m
b

e
rs

 
Fig. 7b. 

Figure 7. Comparison of shredder abundance per wood bundle between temporary and 

perennial stream reaches. A = perennial, B = temporary, and symbols refer to individual 

stream reaches.



44 

 

 

 

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

Months

S
h

re
d

d
e

r 
B

io
m

a
s
s

 (
m

g
)

 
Fig. 7a. 
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Fig. 7b. 

Figure 8. Comparison of shredder biomass per wood bundle between temporary and 

perennial stream reaches. A = perennial, B = temporary, and symbols refer to individual 

stream reaches.
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Fig. 9a. 
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Fig. 9b. 

Figure 9. Comparison of predator abundance per wood bundle between temporary and 

perennial stream reaches. A = perennial, B = temporary, and symbols refer to individual 

stream reaches.
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Fig. 10a. 
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Fig. 10b. 

Figure 10. Comparison of predator biomass per wood bundle between temporary and 

perennial stream reaches. A = perennial, B = temporary, and symbols refer to individual 

stream reaches.
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