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Nutrient limitation in aquatic ecosystems results from a deficiency in nitrogen or

phosphorus levels relative to cellular growth needs. Nutrient limitation of freshwater

systems is a function of biotic and abiotic factors. Biotic factors include vascular and

nonvascular plant community composition. Abiotic factors include underlying bedrock

and land-use activities (e.g. agriculture, septic systems). Nutrient availability directly

affects growth, productivity, and community structure of primary producers. The purpose

of this study was two-fold: (1) to assess the relationship between ambient algal biomass.

and in-stream nutrient levels along the longitudinal course of a river through a transition

from weak to well-developed underlying karst bedrock, and (2) experimentally assess if

periphyton was nitrogen or phosphorous limited between weak and well-developed karst

sites. Sestonic and filamentous biomass (= chlorophyll-a) levels increased monthly along

the longitudinal gradient. In contrast, periphyton biomass levels increased minimally

monthly and displayed no longitudinal pattern. Nitrate and soluble reactive phosphorus

levels exhibited distinct longitudinal increases, whereas total phosphorous displayed

minimal change and ammonia levels decreased in the downstream direction. Total

nitrogen (TN) levels increased upstream but decreased sharply in the well-developed

VB



downstream karst sites. The nutrient limitation assays revealed that the highest

periphyton levels were with N + P treatments at the most upstream sites. Overall, in

Kentucky's Green River algal biomass accrual appears to be mainly P-limited but likely

also by TN availability during late summer.
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Introduction

Nutrient limitation occurs across a broad variety of ecosystems. Limitation occurs

when a nutrient is in short supply relative to cellular growth requirements (Dodds et al.

2002), and therefore, limits the productivity and biomass accrual of primary producers.

The most common limiting macronutrients are nitrogen and phosphorus (Elser 2001,

Dodds 2002). While nitrogen (N) is the main limiting nutrient in terrestrial ecosystems

(Grimm et al. 2003), aquatic ecosystems are usually limited by N and/or phosphorus (P).

Convention asserts that freshwater systems are typically P limited and marine systems N

limited (Hecky and Kilham 1988, Dodds &Welch 2000, Grimm et al. 2003). This

assumption, however, is imperfect and disputed. In an extensive study ofliterature on 200

- temperate streams from North America and New Zealand, Dodds et al. (2002) found that

N limitation, P limitation, and Nand P colimitation each could occur, and thereby affect

periphyton biomass accrual. Nutrient research in the U.S. often focuses on the effects of

N loading on streams and lakes, and many freshwater systems are classified as P-limited.

Conversely, streams in Queensland, Australia are classified as N-limited, so nutrient .

control research in that region focuses on P loading (Mosisch et al. 2001). Dodds and

Welch (2000) compiled data from 158 bioassays, of which 13% were stimulated solely

by N, 18% by P, 44% by both Nand P, and 25% by neither nutrient. Rosemond et al.

(1993) found that within a single system the limiting nutrient varied annually and small

changes in the concentration of one limiting nutrient induced limitation by the other.

Nutrient availability is influenced by multiple factors, including underlying

geology and watershed-scale land-use patterns. Lohman et al. (1991) investigated stream

nutrient levels across the U.S.A. and found that P limitation was common east ofthe

3
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Mississippi River and N limitation in the Pacific Northwest. Grimm et al. (2003) asserted

that the old view of P limitation in freshwater was a result of geographically-biased

studies. Much of the research had been conducted in the eastern U.S. in areas with low-P

parent geology and excessive N inputs from agriculture.

Weathering of stream geomorphology was once considered a minor contributor to

nutrient availability (Grimm et al. 2003). Holloway (1998), however, reported that

exposed sedimentary rocks contain 20% of the global N inventory and when stream

bedrock has high nutrient (e.g., N03) levels the underlying geology becomes a major

contributor of that nutrient to the stream channel. Dodds and Welch (2000) found that

phosphate-rich rocks may provide sufficient P to prevent limitation. Groundwater may

also contribute to in-stream nutrient levels. In karst geologic regions, nutrient-enriched

groundwater can mix with surface water via springs and fractures in the bedrock

(Note stein et al. 2003). Thus, nutrient limitation can differ according to base geology and

watershed characteristics.

Primary producers in lotic systems are either suspended in the water column (i.e.,

sestonic) or attached to substrates (i.e., benthic). Benthic algae are able to colonize most

submerged substrates and are classified by habitats (Lowe and LaLiberte 2006). Benthic

micro floral growth is referred to as periphyton (Wetzel 1983), which includes

microscopic algae plus bacteria and fungi (Stevenson 1996). Filamentous algae are single

cells that form long chains or filaments (AQUAPLANT 2009), often found attached to

benthic substrates via holdfasts or floating as dense mats on the water's surface and

include the globally ubiquitous Cladophora (Dodds and Gudder 1992).
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Primary productivity and algal biomass accrual are influenced by nutrient

availability (e.g., Lohman et al. 1992, Dodds 2002). Periphyton accrual rates are higher in

areas of greater nutrient availability. For example, flood events scour periphyton from

natural substrates and recolonization is rapid in highly enriched areas (Lohman et al.

1992). Nutrients also influence algal community structure and individual species may

have different nutrient requirements (Hecky and Kilham 1988, Borchardt 1996). The

same ecosystem could exhibit P limitation one year and N limitation the next due to

alterations of algal community structure, which may explain why Nand P colimitation

occurs (Tank and Dodds 2003).

Short life spans and high turnover rates of benthic and sestonic algae allow for

species replacement during periods of nutrient limitation. If a lake becomes N limited, N-

fixing cyanobacteria can alleviate this deficiency by maintaining productivity

proportional to P load (Vitousek and Howarth 1991). The types of algal species present

are also affected by nutrients. Baysinger-Daniel (1989) found filamentous species were

more common in sites that were high in nutrients and moderately enriched, while low-

nutrient sites were dominated by diatom and cyanobacteria assemblages (Lohman et al.

1992). Interactions between species of algae may exist. Cladophora is found associated

with N-fixing cyanobacteria. The nitrogen released by cyanobacteria allows Cladophora

to survive in N-deficient waters (Dodds and Gudder 1992).

Nutrients levels may become a secondary factor regulating algal growth, however,

if light availability becomes a limiting factor (Hecky and Kilham 1988, Mosisch et al.

2001, Carey et al. 2007). Light levels also shape algal community structure. Mosisch et

al. (2001) found that communities were dominated by filamentous algae in open canopy
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sites and by diatoms in shaded sites. Grazer population density can influence community

structure. Communities with dense grazer populations were P limited, while those with

few grazers were N limited (McCormick and Stevenson 1989, McCormick 1990).

Additionally, current velocity can influence algal biomass accrual (Busse et al. 2006,

Rinke et al. 2001). The tough, flexible thallus of Cladophora spreads out at low velocities

and streamlines with increasing flow, allowing it to withstand higher flow velocities

(Dodds 1991, Dodds and Gudder 1992). Periphyton communities are often stratified

vertically, and overstory taxa limit understory growth by maintaining a light barrier and.

competitively taking up nutrients from the water column. Grazers may remove the

overstory periphyton layer, however, and allow light and nutrients to penetrate to the

understory (McCormick and Stevenson 1991).

Algal cells have a molar N:P ratio of 16:1 (i.e., Redfield Ratio; Redfield'1958).

Determining which nutrient limits growth often involves calculating an N:P ratio. The

form of nutrient used, however, affects the ratio outcome. Dodds (2003) found that

dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) were poor

predictors of total nitrogen (TN) and total phosphorus (TP) and were weakly correlated

with periphyton biomass. Dodds (2003) argued that TN and TP more accurately reflect

nutrient supply and are more closely correlated with periphyton biomass. Busse et al.

(2006) used TN/TP and the following criteria to predict the limiting nutrient: NIP > 20

suggested P limitation, NIP < 10 suggested N limitation, and 10 <NIP < 20 suggested

colimitation for both Nand P or neither.

The purpose of this study was two-fold: (1) to assess the relationship between

ambient algal biomass and in-stream nutrient levels along the longitudinal transition of a



river from weak to well-developed underlying karst bedrock geology, and (2)

experimentally assess if periphyton was nitrogen or phosphorous limited between weak

and well-developed karst sites.
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Methods

Study site descriptions

This research occurred in seven sites positioned along the Green River between

the Green River Lake (GRL) and Mammoth Cave National Park, Kentucky, USA (Fig.

1-2). The Green River flows in a westerly direction from source before emptying into the

Ohio River, passing through Level III Ecoregions 71 (Interior Plateau) and 72 (Interior

RiverValley and Hills) (Woods et aI., 2002). The five most upstream sites (1-5) are

positioned in the Eastern Highland Rim Level IV Ecoregion, characterized by

Mississippian limestone, shale, sandstone, undulating plains, hills, and poorly -

developed karst topography. The most upstream sites are underlain by Fort Payne

formation limestone that transitions longitudinally to Salem- Warsaw-Harrodsburg

formation limestone. Soils surrounding the upstream sites in Green and Taylor Counties

include Frederick, Garmon, Monongahela, Mountview, and Shelocta silt loams. Surface

layers (A horizons) of each soil exhibit P concentrations of3.7, 2.1, 4.6, 60, and 1.7 ppm,

respectively. Phosphorus concentrations of the base soil horizons range from 0.4 to 1.0

ppm (USDA 1982). Downstream reaches in Hart County are underlain by Ste. Genevieve

and S1.Louis limestone formations that surround the Salem-Warsaw-Harrodsburg

formations along the river. Upon entering Hart County, the river is bordered by

Nolichucky-Canmer and Frederick-Crider soils that transition to Nolichucky-Canmer,

Baxter-Crider, and Caneyville-Fredonia-Hagerstown soils. The two downstream sites are

located in the Western Pennyroyal Karst Plain (site 6) and Crawford-Mammoth Cave

Upland (site 7) Level IV Ecoregions, respectively. These ecoregions are underlain by

Mississippian-age limestone and Chesterian age bedrock formations, as well as fractured

8
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bedrock with low surface stream density and N-rich groundwater (Kentucky Geological

Survey 2010, Woods et al. 2002). These sites are bordered by Caneyville-Fredonia-

Hagerstown soils that transition longitudinally to Jefferson-Lily-Wellston soils. Baxter,

Frederick, and Canmer soils possess 70, 260, and 10 plm P in the A horizon and 3,5, and

5 plm P in the most basal horizon, respectively (USDA 1993). Each site was

characterized by open canopy and shallow run habitats underlain by cobbles and small

boulders. All sampling occurred in 10-50 cm deep water within a 100-m reach.

Field and laboratory methods

Longitudinal trends - environmental parameters

Quantification of in-stream environmental parameters occurred during baseflow

conditions in July-August 2008 and July, August and October 2009 (Fig. 3). Sampling

did not occur in September 2009 due to repeated precipitation events leading to high river

flow conditions. Current velocity was measured using a Marsh-McBimey Flo-Mate

velocity meter at each site during each sampling event to calculate discharge. Dissolved

oxygen (DO), pH and temperature were measured with a Hach HQ40d digital meter.

Water samples for the quantification of ambient nutrient levels were collected midstream

(sensu Dodds 2003). Either three (2008) or four (2009) replicate samples were analyzed

from each site. Total phosphorus (TP; acid persulfate digestion), soluble reactive

phosphorus (SRP; ascorbic acid method), nitrate (cadmium reduction method), ammonia

(salicylate method), and total nitrogen (TN; persulfate digestion method) levels were

quantified spectrophotometrically. Nutrient levels were compared against a set of

standards.
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Longitudinal trends - algal biomass

Algal biomass levels were quantified similarly during summer baseflow

conditions in July-August 2008 and June-August 2009 (Fig.3). Specifically, periphyton

and sestonic algal biomass levels were quantified in 2008, and periphyton, sestonic, and

filamentous algal biomass in 2009. River flow levels were too high in October 2009 to

permit effective quantification of all algal biomass measures.

Ten replicate samples were taken for each algal type across both years. Grab

samples were collected from each site at midstream for the quantification of sestonic

algal biomass levels. Periphyton and filamentous algae samples were taken from 0.5 m-

wide, cross-stream quadrats. Ten quadrats were selected from a transect spanning the

sample area using a random numbers table. Periphyton samples were taken from

naturally-occurring cobble-sized rocks found in the downstream left portion of the

quadrat. A new quadrat was selected at random if a quadrat did not contain a cobble-sized

rock. A penny was used to establish a 2.2 cm diameter (area = 3.8 cm2
) circle at the

center of each rock. Periphyton within that circle was scraped from the rock using a

scalpel (Lamberti & Resh 1983) and rinsed with stream water into a small pan. Residual

periphyton was scrubbed from the circle using a clean toothbrush (Steinman and

Lamberti 1996). Samples were rinsed from the pan into acid-washed, sterile 275 mL

bottles and filled with stream water (Dodds 2003, Moschish et al. 2001). A new transect

was established 1-2 m upstream and ten new quadrats were sampled for filamentous

algae. Ifpresent, algae were clipped from a 75-cm2 area located in the upstream right

comer of the quadrat, placed in a plastic bag, and frozen upon returning to the lab. Algae
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sample bottles and bags were wrapped in aluminum foil to prevent exposure to light. All

samples were stored on ice in a cooler before being returned to the lab for refrigeration

and filtration. Algae samples were refrigerated up to 24 hours prior to filtration.

Nutrient limitation of weak and well-developed karst systems

Nutrient-diffusing substrates (NDS) were deployed during August-September

2009 at two sites to evaluate algal nutrient needs according to ecoregion. The NDS were

constructed according to Carey et al. (2007). Forty LDPE vials were filled with 10

replicates each of four nutrient solutions (control, N = 87.5 mg/L N03 - using 632 mg/L

KN03, P = 12 mg/L P04- using 103.8 mg/L Na2HP04, and N+P) and attached to a

floating platform in a randomized pattern. Nutrients diffused out through a glass fiber

filter (Whatman, 24 mm diameter, 0.7 /lm pore size) and a membrane filter (Millipore, 25

mm, 0.45 /lm pore size). Glass fiber filters served as growth surfaces for algae. The NDS

were anchored to the streambed and retrieved after 15 days. Glass fiber filters were

frozen and analyzed for chlorophyll-a concentration to determine algal biomass per unit

area (mg/m2).

Laboratory Methods

Periphyton and sestonic algae samples were vacuum-filtered onto 47 mm

diameter, 0.7 /lm pore size Whatman GF glass fiber filters (Taylor 2004). Filtered

samples were transferred to individual petri dishes, wrapped in foil and frozen in the dark

for up to 14 d. Algae and NDS samples were analyzed for chlorophyll-a concentration.

using USGS methods (Yin 2005). A filtered sample was placed in a 50 mL centrifuge
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tube with 10 mL of a 50:50 solution of dimethyl sulfoxide (DMSO) and acetone plus 3-6

glass beads. The tube was vortexed for 30 s, stored overnight in the dark at 4°C for

chlorophyll-a extraction, centrifuged 10 min at 3000 x G (4300 rpm), and the supernatant

was transferred to a new tube. A second 10 mL ofDMSO:acetone was added to the

original sample and the overnight extraction, centrifugation, and removal of supernatant

sequence was repeated. The two supernatant liquids were combined. Five mL of the

DMSO:acetone solution was added to the original sample and the process was repeated.

A total of25 mL ofDMSO:acetone was added to each sample over a period ofthree

days. The resulting supernatant was centrifuged and 5 mL of the liquid were transferred

to a glass tube and analyzed with a Shimadzu RF-5301 PC spectrofluoro~eter. Samples

were measured against set standards. Samples with high intensity readings were diluted

and re-ana1yzed.

Chlorophyll standards were produced from an initial standard of 239 ppb, and a

series of five 20% serial dilutions of 47.60 ppb, 9.52 ppb, 1.90 ppb, and 0.38 ppb.

Additionally, a minimum detectable limit (MDL) was calculated for standards monthly.

The lowest standard was measured seven times, and the mean value was multiplied by

3.14 to produce the MDL. A linear regression performed between intensities and

concentration values of the chlorophyll standards established a standard curve used to

calculate chlorophyll-a concentrations (mg/L) of each algae sample. Chlorophyll-a

concentrations were used to calculate sestonic (mg/L), periphyton and filamentous algal

biomass (mg/m2
) using Standard Methods 10-200 H (APHA 1998).

Analytical Methods
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Nutrient and algal biomass levels were plotted on a monthly basis to assess for

increasing, decreasing, or stable longitudinal trends. Decreasing or stable nutrient levels

implied limitation. Nutrient and algal biomass levels were also compared across months

to assess for nutrient limitation throughout the growing season. Biomass levels were

compared to nutrient levels using linear regression analysis to determine if relationships

between biomass and nutrients existed along longitudinal and temporal gradients. TN:TP

ratios for each site were calculated and compared to the Redfield ratio. A two-way

factorial ANOV A compared NDS periphyton biomass levels between the control and the

three nutrient addition (N, P, and N + P) treatments to assess limitation. The critical a

level was reduced as 0.05/28 (= 0.00179) due to the total number of pair-wise

comparisons. Linear regressions and the ANOVA were performed using Statistica 7.0

(StatSoft@, Tulsa, OK, U.S.A.).

/



Results

Temporal trends - environmental parameters and algal biomass

Mean stream temperature and discharge decreased from July to August during

2008 (Table 1). DO levels increased with decreasing temperature and stream depth.

While mean TP, TN and N03 values decreased, mean SRP, NH3, and TN:TP ratio values

increased. Sestonic and periphytic algal biomass similarly increased from July to August

during 2008 (Table 1).

Temperature increased from July to August of2009, then decreased in October

(Table 2). Mean DO levels increased from July to October, while pH decreased slightly.

Discharge decreased from July to August. Mean TP concentrations fell from July to

August and exhibited little change in October. SRP levels were relatively stable in July

and August, but increased in similar fashion to TP in September and returned to the

previous level in October. TN decreased from July through August and then increased in

October. N03 showed a similar pattern, as did TN:TP ratios. Conversely, mean NH3

increased through August, then decreased significantly in October. Mean sestonic algal

biomass remained constant from July through August, then increased in October.

Periphytic biomass increased from July to August. Filamentous algal levels increased

markedly from July through August (Table 2).

Longitudinal trends - environmental parameters

During July 2008, TP levels varied little longitudinally from non-karst to the karst

region (Fig. 4a). July TP levels were high at the upstream-most site, then dropped and

increased longitudinally until stabilizing in the downstream karst region. A similar

14
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pattern was displayed in August, except for a near three-fold increase at the most

downstream site and lower overall TP concentrations. During 2009 TP levels exhibited

minimal changes longitudinally during each month. These TP levels increased upon

entering the downstream karst region during July, but were stable during other months.

Ovenill TP concentrations were higher in July than in August (Fig. 4b). SRP levels

followed a pattern similar to TP values in 2008, differing only in a marked decrease upon

entering the downstream karst region during August (Fig. 5a). SRP levels increased

steadily along the longitudinal gradient in 2009 (Fig. 5b).

No clear longitudinal patterns were displayed with TN, though July and August

TN displayed similar trends during both years. Initial TN levels dropped with distance

from the most upstream site. Total nitrogen levels generally increased along the

longitudinal gradient during summer 2008, although the most downstream site was

mainly lower during August (Fig. 6a). Total nitrogen levels in July 2009 increased

longitudinally then decreased upon entering the karst, while August TN increased until

entering the karst region. In the downstream karst region TN diminished longitudinally.

Overall TN levels were lower during August. October TN levels followed a similar

pattern as August, but with elevated TN values (Fig. 6b).

Nitrate displayed a consistent pattern of increasing longitudinally during both

years, with the downstream karst sites having the highest levels (Figs. 7a-b). Nitrate

levels exhibited minor differences between months. Of all nutrients measured, only

nitrate followed a longitudinal pattern of continuous increase.

Ammonia levels showed no clear longitudinal patterns during 2008 (Fig. 8a). In

contrast, during 2009 ammonia levels decreased with increasing distance from the Green
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River dam and generally exhibited the lowest concentrations in the downstream karst

region (Fig. 8b). Ammonia concentrations were highest directly downstream of the Green

River Lake (GRL), but displayed little longitudinal change and minimal monthly

variability. Downstream ammonia levels were relatively stable, with little variation or

pattern.

A similar seasonal pattern was exhibited in 2009. July TN:TP values increased

longitudinally in 2008. August TN:TP decreased longitudinally into the downstream karst

region, then increased along the longitudinal gradient. Upstream TN:TP values were

higher in August than July, but were lower in the downstream karst region. With the

exception of the spike during August, TN:TP ratios changed little longitudinally during

2008 (Fig. 9a). A similar longitudinal pattern ofTN:TP was present in 2009. July TN:TP

levels were lower in the upstream reaches than the downstream karst reaches. August

levels were greater in the upstream reaches and dropped longitudinally. October TN :TP

levels followed the same pattern as July, but with slightly lower overall values. There was

a broader range in TN:TP ratio values in 2008 compared to 2009. TN:TP ratios during

2008 ranged between 12 and 333 (Fig. 9a), while in 2009 TN:TP ratios ranged between 7

and 47 (Fig. 9b).

Longitudinal trends - algal biomass

Sestonic algal biomass levels remained relatively constant longitudinally during

July 2008 (Fig. 10a). In August 2008, sestonic biomass levels were higher compared to

July and increased to the upstream karst region and then decreased longitudinally. During

2009 there was a consistent pattern of the highest biomass levels at the upstream end that
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declined longitudinally (Fig. 1Ob). The lowest levels were typically at the most

downstream karst site. Periphyton biomass levels were highly variable during 2008 and

2009, both longitudinally and between successive months (Figs. lla-b). Filamentous

algal biomass levels generally increased longitudinally during 2009 (Fig. 12).

Filamentous levels increased from July to August with the biomass peaking at the most

downstream karst site.

Nutrient limitation between weak and well-developed karst systems

Mean chlorophyll-a values from NDS treatments were generally greater at the

upstream weakly-developed karst site (Table 3). The highest accrual of periphyton

biomass occurred on the upstream N + P addition treatment. There were two significant,

pair-wise differences. Periphyton biomass on the upstream N + P (0.46 mg/L

chlorophyll-a) treatment was significantly higher than both the downstream control (0.29

mg/L; Bonferonni adjusted p-value = 0.02) and downstream N (0.30 mg/L; Bonferonni

adjusted p-value = 0.03) addition treatments (Table 3). Growth on upstream N+P also

exceeded growth on other upstream treatment vials, but not to a significant degree. The

same was true for the downstream N+P treatment compared to downstream control, N,

and P treatments. While the upstream P vials amassed the least amount of periphyton

(0.32 mg/L), the downstream P vials yielded chlorophyll levels of 0.39 mg/L that were

almost as high as that of the N+P treatment (0.40 mg/L).



Discussion

Longitudinal Trends

Clear longitudinal patterns of some nutrient and algal biomass levels were

exhibited during low flow conditions in both 2008 and 2009. Ammonia displayed its

highest concentrations directly downstream of the Green River Lake (GRL), but

displayed little change longitudinally and minimal monthly variability. TP and SRP

exhibited minimal longitudinal change and small differences between months. Nitrate

levels displayed distinct increases longitudinally during both years, yet with minor

differences between months. No clear longitudinal patterns were displayed with TN.

Filamentous algae biomass levels increased longitudinally and across months, but

were not observed at the upstream sites during July and August. In July 2008, sestonic

algal biomass varied minimally along the longitudinal gradient. Overall biomass in

August was greater than July and increased up to the karst region, where it declined

quickly. Sestonic algal biomass in 2009 was greatest at the upstream-most site and

exhibited sharp declines to the next site each month. Sestonic algal biomass exhibited

minimal longitudinal change during July and August, while October levels declined.

Periphyton biomass displayed the same seasonal trends during 2008 and 2009. Biomass

levels were low in July and much higher during August. Biomass increased slightly

longitudinally, but overall changes were seen between months rather than sites.

Both Nand P are considered primary production - limiting nutrients in lotic

waters, and algal biomass diminishes when water column nutrients are below certain

threshold levels. Algal biomass accrual is related to breakpoints of 30 Ilg/L TP and 40

Ilg/L TN (Dodds et al. 2002). Green River TP values ranged from 100-200 Ilg/L and TN

18
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levels from 100-400 j..tg/L, well above the proposed thresholds for algal growth. In this

study sestonic algal biomass had an inverse relationship with TP and SRP concentrations

in 2008, but this relationship was less obvious in 2009. Sestonic biomass increased

monthly in conjunction with decreasing TP and SRP levels. This relationship differs from

that found in a freshwater lake in Sweden where high increases in TP were associated

with increases in N-fixing cyanobacteria in the water column (Yrede et aI2008). Similar

to sestonic algal biomass, periphyton biomass was greater when TP and SRP levels were

low. Total nitrogen followed the same seasonal pattern as phosphorus, while ammonia

levels mirrored the periphyton growth. Sestonic algae experienced minimal monthly

changes relative to the dramatic increases in and filamentous algae. As periphyton and

filamentous biomass levels increased across months, TN levels decreased. Filamentous

algal decreases coincided with the increase in nitrogen levels. Therefore, these forms of

algal biomass may be factors in the nitrogen shifts. In general, algal biomass was lowest

during July, and as it increased from month to month phosphorus decreased. Nitrogen

showed dramatic fluxes in concentrations between months, but TP and SRP changed

relatively little over time. The minimal changes in phosphorus levels across months, in

comparison to the large shifts in temporal and longitudinal TN values, suggest the system

is primarily phosphorus-limited and seasonally limited by nitrogen.

Longitudinal gradients of stream nutrients result from in-stream uptake and

groundwater inputs (Mulholland & Rosemond 1992) as well as point source inputs. The

River Continuum Concept asserts that upstream communities influence downstream

communities via effects on the quality and quantity of material in transport (Yannote et

al. 1980). Continuous nutrient additions from karst flow tributaries, groundwater and in-



20

stream sources indicate that nutrient levels could increase longitudinally. Nitrate and

filamentous algal levels followed this trend, increasing longitudinally. In contrast, the

other algal and nutrient levels exhibited comparatively more subtle patterns. These

patterns are similar to those found by Recky and Kilham (1988) that phosphate occurs in

relative proportions similar to, or less than, the proportions required by phytoplankton.

Other nutrients (e.g., nitrate) accumulate because they are available in excess. Algae take

up and sequester surplus P, which maintains homeorhetic P levels along the longitudinal

gradient. Uptake and sequestration ofN'affects concentrations of TN in the Green River

as well. Nutrient concentrations may also be affected by turnover rates within the system

and high turnover rates result in lower nutrient supply (Dodds 2003).

Vegetative growth of Cladophora results from basal cells on bedrock remaining

after scour events. Cladophora form large, conspicuous floating mats in wide channels

with open canopy. The algae are colonized by epiphytes, some of which are N-fixing

taxa. Filamentous algae and epiphytes take up dissolved N from the water column, but N-

fixing epiphytes on Cladophora may be a source ofN (Power et al. 2009). Epiphyte

assemblages change over time, and these shifts are indicated by color changes in the host

mat. A whole-mat shift to a rusty color coincided with epiphytic succession by diatoms

with N-fixing endosymbionts, and the presence ofN-fixing epiphytes led to a spike in

downstream dissolved N levels (Power et al. 2009). A similar trend was noted in a

freshwater lake study, in which decreases in N availability caused a shift in the

phytoplankton community. The community shifted from being dominated by diatoms to

one dominated by N-fixing cyanobacteria, which increased available N (Vrede et al.

2008). In the case of the Green River, the downstream accumulation of nitrate and large
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populations of filamentous algae cannot be considered unrelated. With the large potential

habitat for N-fixing cyanobacteria provided by filamentous algae, one could propose that

large populations of cyanobacteria fix high amounts ofNz into NH3. The NH3 is then

taken up by nitrifying bacteria in the water column, where nitrification yields nitrate.

While nitrate levels increased longitudinally, levels ofNH3 in the Green River had

minimal longitudinal changes. This may not be an uncommon occurrence. Grimm et al.

(2003) cited findings that small streams draining forests may contain low levels ofNH3

but still exhibit high rates of nitrification. Ammonia is also preferred over nitrate by

phytoplankton as an N source (Dortch 1990, cited by Maberly et al. 2002). Therefore,

nitrate levels may be attributed to contributions ofN-fixing epiphytes inhabiting

Cladophora mats and nitrifying bacteria downstream. Additionally, ammonia levels may

be influenced by the nutrient preferences of phytoplankton and algae.

Nitrate may also be linked to groundwater and karst-flow tributaries feeding into

the Green River. The permeable karst geology provides multiple pathways for

groundwater to mix with surface waters (Katz et al.1997). Sources of nitrate in

groundwater include commercial and residential fertilizers, and nitrate enrichment of

groundwater has been documented in Florida streams (Notestein 2003). Land adjacent to

the Upper Green River is primarily in agriculture, so row crop and livestock operations,

in conjunction with springs, may be a source of nitrate.

Green River nutrient levels across sites and months were low relative to

springhead and tributary inputs (Upper Green River Watershed Watch Program, 2009).

Nutrient levels in tributaries and springs followed a similar longitudinal pattern as the

Green River. Nitrate and phosphate levels were lower in upstream regions of the Green
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River and its tributaries. Upon reaching the karst region, however, levels of nitrate and

phosphate increased dramatically in the tributaries. One surface tributary (i.e., Brush

Creek) displayed comparatively high nitrate (11.11-11.14 mglL) and phosphate (0.55-

0.76 mglL) levels. Two karst springheads of varying sizes, however, exhibited

contrasting nutrient levels. Gardner Spring (very small) exhibited nitrate and phosphate

concentrations of 0.82 mglL and 0.22 mglL, respectively. Downstream of Gardner Spring

is McCoy Bluehole (large), with high nitrate (4.57 mglL) yet low phosphate (0.09 mglL)

levels. Although Green River nitrate levels from this study increased longitudinally, in-

stream concentrations never exceeded 1.4 mglL. Hence, surface-flowing tributaries and

. large springheads contribute markedly higher nutrient loads than riverine levels.

Soils and bedrock can be natural sources of nutrients. Runoff from surrounding

soils and groundwater passing through bedrock accumulate different forms ofN and P.

Surface runoff from topsoil and organic matter contribute P to the river. Weathering and

dissolution of bedrock by groundwater flow is also a source ofP. The bedrock in the

study region is mainly Upper Mississippian-age limestone, and soils surrounding the

upstream sites in Green and Taylor Counties include Frederick, Garmon, Monongahela,

Mountview, and Shelocta silt loams. Surface layers (A horizons) of each soil exhibit P

concentrations of3.7, 2.1, 4.6,60, and 1.7 ppm, respectively (USDA 1982). Phosphorus

levels in the Hart County soils were much higher than those of Green and Taylor

Counties. Baxter, Frederick, and Canmer soils possess 70, 260, and 10 p/m P in the A

horizon and 3, 5, and 5 p/m P in the most basal horizon, respectively (USDA 1993).

Phosphorus concentrations in the Green River increased each month upon entering the

karst region. Phosphorus elevations along the longitudinal gradient in the Green are
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similar to differences between Hart County and Green and Taylor Counties, lending

credence to the possibility of topsoil P contributions. Potential P inputs from bedrock and

soil increase longitudinally, yet monthly levels of TP stabilize in the downstream reaches.

Algal biomass and in-stream P uptake mayexplain this pattern. In July 2009, filamentous

algal levels were very low and found only in the downstream reaches. August

filamentous levels were considerably greater. In contrast, July TP concentrations were

higher than August levels. As algal biomass increased monthly, overall TP levels

decreased. These trends suggest that larger populations of filamentous algae take up and

sequester greater amounts of P and thereby maintain stable longitudinal P concentrations.

The longitudinal nitrate accumulation may be due solely to weathering of bedrock

and groundwater contributions. Hill (1981) noted that saltpeter (KN03) deposits in

Mammoth Cave originated from nitrates leached from limestone bedrock. Nitrate is

leached from exposed limestone and sinkholes, as well as organic soils, during rainfall

and transported as runoff to streams. Holloway (1998) found that a California watershed

with high bedrock concentrations ofN contributed up to 90% ofthe nitrates in

downstream reservoirs. Therefore, in regions with high geological N, great amounts of

nitrate may be available to lotic systems.

Waters from deep-release reservoirs often contain high nutrient concentrations

relative to waters influent to the dam (Wright 1967, Knight et al. 1976, Marcus 1980).

The nutrient content of these waters enriches the immediate downstream environment

and can promote eutrophication. Chlorophyll production by periphyton communities

directly downstream of a Utah reservoir exceeded that of communities above the dam

(McConnell and Sigler 1959). Marcus (1980) found that periphyton directly below the
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Hyalite Reservoir in southern Montana responded mainly to variations in nitrogen

availability, and benthic algae quickly depleted nitrogen levels. Nitrogen levels were

therefore lower in the downstream reaches, limiting periphyton growth. This effect is not

uncommon. Periphyton communities directly below a dam typically take up nutrients

from effluent waters and thereby limit growth in the downstream region (Cooper and

Wilhm 1975). The Green River exhibits this same pattern with TN. Concentrations are

high directly below the dam, but are depleted rapidly by algal communities over the

course of ca 30 river kilometers. Eutrophication does not appear to be of concern directly

downstream of the Green River dam. Sestonic algal levels are highest immediately below

the lake, suggesting lentic taxa are released even during summer baseflow conditions, and

decline along the longitudinal course of the river. Periphyton and filamentous algal

growth experience seasonal changes, but neither exhibit comparatively high levels

immediately below or near the Green River Lake. In particular, filamentous algae are

absent from the upstream reaches and become a prominent primary producer only in the

downstream karst reaches.

Nutrient limitation of weak and well-developed karst systems

Data from the longitudinal study indicated P-limitation in the upstream reaches

and co-limitation downstream. At the time ofNDS deployment, upstream P levels had

experienced little change and upstream N levels had increased from July to August.

Nitrogen and phosphorus levels in the karst region had decreased from the previous

month. Periphyton biomass accrual in the upstream reaches does not appear to be limited

by N or P because the most chlorophyll came from the N+P treatment. Downstream,
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however, algae responded to P addition. This can be attributed to the longitudinal

differences in P from July to August. The minimal P level change monthly in the

upstream reaches did not influence periphyton biomass accrual, but the decrease in P

levels in the karst region resulted in greater algal biomass accrual ofP and N+P vials

compared to N and control vials.

Addition ofP has stimulated periphyton biomass accrual in other studies.

Notestein et al. (2003) found that additions ofP increased periphyton abundance in a

spring-fed karst river system. They also concluded that increases in N03-had no

significant effect on periphyton growth, but N + P additions together stimulated growth.

A nutrient diffusing substrate study in a southeastern coastal blackwater stream found

periphyton growth was primarily limited by light and secondarily limited by P and N+P

treatments (Carey et al. 2007). These findings are congruent with Lohman's (1991)

assertion that east-draining streams in the U.S. are P-limited. Peterson et al. (1983),

however, noted the same trend in an arctic tundra stream in Alaska. Maberly et al. (2002)

found both Nand P limitation in small upland lakes in Scotland. Many lakes were limited

by a single nutrient, but with seasonal progression shifted to co-limitation. In accordance

with the findings ofVrede et al. (2008), the transition to co-limitation was attributed to

seasonal alternation of periphyton species composition (Maberly et al. 2002).

Nutrient criteria

While the U.S. EPA does not have national criteria regarding TP and SRP in

agricultural watersheds, nuisance algal growth often occurs at a level of 0.1 mg/L P.

Recent data suggest a range of only 0.010-0.075 mg/L P for nuisance algal growth
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(USEP A 2008). A study by the USGS showed that 70% of 97 streams in agricultural or

urban areas exhibited TP levels >0.1 mglL (USGS 1999), and the U.S. EPA reported that

nearly 47% of streams had TP level's between 0.1 and 0.3 mglL (USEP A 2008). The

results reported in this study during 2008 (0.01-0.09 mglL) and 2009 (0.08-0.21 mglL)

suggested the Green River possesses moderately low TP levels. The U.S. EPA also

reported that 41% of streams exhibited SRP levels from 0.1-0.3 mglL, which is

consistently higher than the levels reported from the Green River during 2008 (0.01-0.09

mg/L) and 2009 (0.02-0.10 mglL).

Ambient stream N levels vary across the U.S., differing by ecoregion and type of

land use. Nitrogen levels in aquatic systems are usually low, but in watersheds where

land is mainly used for agriculture, nitrogen from fertilizer and animal waste increases

ambient N levels. Of all streams monitored in a U.S. EPA study, 5.3% displayed TN

levels < 1 mglL, while 16.5% fell within the range of 1-<2 mglL and 46.6% ranged from

2-<6 mglL (USEPA 2008). The USGS report showed that 83% of agricultural and urban

streams exhibited> 1 mglL TN and the highest TN concentrations were found in

southeastern streams (USGS 1999). During 2008, TN levels in the Green River ranged

from 0.5-3.3 mglL, and from 0.6-4.3 mglL in 2009. The U.S. EPA reported that

recommended water quality levels of TN range from 0.12 - 2.20 mglL. Green River TN

levels reported in this study exceed the minimum appropriate TN level, but the trend of

high TN concentrations is consistent with streams in the southeastern U.S.

Nitrate levels in the Green River ranged from 0.10 to 0.93 mglL in 2008, and

from 0.20 to 1.38 during 2009. Of the streams studied by the U.S. EPA, 22.3% displayed

less than 1 mglL N03 - and 17.7% of streams displayed N03 - levels from 1 to < 2 mglL
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(USEP A 2008). These results indicate nitrate levels in the Green are similar to those of

40% of US. streams in agriculture-oriented watersheds.

Measurements of TN and TP are used along with the Redfield ratio to predict
r

which nutrient limits system primary productivity. Following the criteria set by Busse et

al. (2006), TN:TP ratios> 20 suggest P-limitation. In 2008, TN:TP levels indicated clear

P-limitation in the Green River. Data from 2009, however, shows P-limitation in

upstream sites only and throughout the sampling area individually during July and

October. August data indicates that while the upstream sites are P-limited, downstream

sites are co-limited (TN:TP ratios between 10 and 20). Phosphorus limitation may be

continuous longitudinally, but co-limitation takes place seasonally.

The Upper Green River is nutrient-rich relative to other streams throughout the

US. Like many streams throughout the southeastern US., it displays high levels ofN and

P that can be attributed to soil, bedrock, and groundwater inputs. The Green River also

exhibits P limitation that transitions to N & P co-limitation on a seasonal basis. Nutrient

and algal data from both the longitudinal and NDS studies support these conclusions.

Information and models for control of nutrient concentrations and algal growth

are available for lakes and reservoirs, but such models for streams are less accurate.

Efforts to establish whole-watershed nutrient criteria are currently under way through

partnerships between the US. EPA and individual researchers. Because streams differ so

broadly across ecoregions, no single standard for Nor P content will suffice to maintain

water quality 'Wd stream integrity. Instead, standards must be set for each watershed, and

it is through research such as this that such a goal may be achieved.



Tables and Figures

Table 1. Mean:l: 1 standard error (S.E.) and range of environmental parameters values during July-August 2008.

Parameter

Temp (OC)
DO (mg/L)
Stream width (m)
Mean stream depth (m)
Mean velocity (m/s)
Discharge (m3/s)
Mean TP
MeanSRP
Mean TN
MeanN03
MeanNH3
TN:TP
Seston Chl-a (mg/L)
Periphyton Chl-a (mg/m2)

July
Mean:l: 1 S.E.

26.0:l: 0.21
7.9:l:0.18
26.7:l: 2.40
0.2:l: 0.01
0.6:l: 0.04
2.4:l: 0.32

0.04:l: < 0.01
0.02 :l:< 0.01
1.90:l: 0.13
0.45 :l:0.04
0.14:l: 0.01
62.3 :l:3.2

0.0001 :l:< 0.0001
0.0006:l: < 0.0001

Range

24.1- 28.3
6.6 - 10.3
7.6 - 51.0
0.1- 0.3
0.1- 0.9
0.6 - 6.2

0.02 - 0.05
0.01- 0.04
0.83-3.17
0.30 - 0.88
0.09 - 0.21

44.4 - 100.0
0.0001 - 0.0001
0.0003 - 0.0010
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August
Mean:l: 1 S.E.

25.0:l: 0.70
8.5 :l:0.64
24.4 :l:5.11
0.2:l: 0.03
0.4:l: 0.07
1.5 :l:0.31

0.03 :l:0.01
0.03 :l:0.01
1.24:l: 0.38
0.30:l: 0.12
0.15:l: 0.01
100.3:l: 41.0

0.0008:l: 0.0001
1.1371 :l:0.4459

Range

22.5 - 27.2
6.4 - 11.2
8.3 - 41.0
0.1 - 0.3
0.2 - 0.7
0.6-2.7

0.01- 0.09
0.01- 0.09
0.5 - 3.33
0.10 - 0.93
0.08 - 0.19
11.3 - 333.3

0.0005 - 0.0015
0.2431- 3.6994



Table 2. Mean::!: 1 standard error (S.E.) and range of environmental parameters values during July-October 2009.
NA = data not obtained.

Parameter

Temp DC
DO (mg/L)
pH
Stream width (m)
Mean Stream Depth (m)
Mean Velocity (m/s)
Discharge (m3/s)
Mean TP
Mean SRP
Mean TN
MeanN03
MeanNH3
TN:TP
Sestonic Chl-a (mg/L)
Periphyton Chl-a (mg/m2

)

Filamentous Chl-a (mg/m2)

July
Mean::!: 1 S.E.

26.1::!: 0.49
7.7::!:O.15
7.9::!:0.03
26.1 ::!:5.16
0.2::!:0.02
0.7::!:0.12
4.3::!: 1.31
0.14::!: 0.02
0.06::!:0.01
3.01 ::!:0.56
0.50::!:0.13
0.10::!:0.01
21.3::!:4.1

0.0002::!: 0.0001
0.0451 ::!:0.0059
0.0382 ::!:0.0257

Range

24.4 - 28.5
7.0- 8.2
7.8 - 8.0

11.5 - 44.3
0.2-0.3
0.2 - 1.1
1.3 - 10.0

0.09 - 0.21
0.02 - 0.09
0.70 - 4.40
0.20 - 1.20
0.07 - 0.12
7.8 -40.0

0.0000 - 0.0007
0.0261 - 0.0578
0.0000 - 0.1662

August
Mean::!: 1 S.B.

26.6::!: 0.37
NA

7.7::!:0.06
20.9::!: 3.82
O.2::!:0.03
0.7::!:0.10
2.3 ::!:0.61
0.11 ::!:0.01
0.07::!: 0.01
2.30::!: 0.32
0.50::!: 0.12
O.l1::!: 0.02
22.6::!: 3.7

0.0002::!: 0.0001
0.2191 ::!:0.0442
0.6107::!: 0.3989

Range

25.7 - 28.4
NA

7.5 -7.9
7.80 - 35.0
0.11- 0.38
0.15 - 0.89
0.93 - 5.07
0.08 - 0.13
0.03 - 0.10
1.35 - 3.43
0.20 - 1.13
0.03 - 0.19
12.3 - 33.8

0.0001 - 0.0005
0.0653 - 0.3920
0.0000 - 2.4175
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Table 2. Continued

Temp °C
DO (mg/L)
pH
Stream width (m)
Mean Stream Depth (m)
Mean Velocity (m/s)
Discharge (m3/s)
Mean TP
MeanSRP
Mean TN
MeanN03
MeanNH3
TN:TP
Sestonic Chl-a (mg/L)
Periphyton Chl-a (mg/m2

)

Filamentous Chl-a (mg/m2)

October
Mean:l: 1 S.B.

13.8:1: 0.27
9.7:1:0.12
7.8:1: 0.08

NA
NA
NA
NA

0.1:1: 0.01
0.07:1: 0.01
2.84:1: 0.51
0.62:1: 0.15
0.08 :I: 0.03
27.8:1:5.5

0.0003 :I: 0.0001
NA
NA

Range

12.8 - 16.9
9.2-10.1
7.4 - 8.0

NA
NA
NA
NA

0.08 - 0.13
0.04 - 0.08
0.58 -4.53
0.30 - 1.38
0.02 - 0.25
7.2 - 46.4

0.0000 - 0.0010
NA
NA
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Table 3. Pair-wise Bonferroni-adjusted test results of the factorial ANOVA comparing NDS
chlorophyll-a periphyton biomass levels (mg/m2

) between control and nutrient addition treatments. U
= upstream, D = downstream, C = control, N = nitrogen, P = phosphorous, N+P = nitrogen +
phosphorous. Significant differences are indicated by bold type.

Pair-wise probabilities

Mean ::l:1 S.E. Chl-a
Site: treatment biomass levels U:N U:P U:N+P D:C D:N D:P D:N+P

U:C 0.41 ::l:0.03291 1.00 1.00 1.00 0.38 0.55 1.00 1.00
U:N 0.37::l: 0.03117 1.00 1.00 1.00 1.00 1.00 1.00
U:P 0.32::l: 0.01259 0.09 1.00 1.00 1.00 1.00
U:N+P 0.46 ::l:0.02622 0.02 0.03 1.00 1.00
D:C 0.29::l: 0.04512 1.00 1.00 0.63
D:N 0.30::l: 0.04019 1.00 0.90
D:P 0.39 ::l:0.02739 1.00
D:N+P 0.40::l: 0.04198
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Fig. 1. Map depicting location of the Green River Basin, including the mainstem Green
River and Green River Lake, in Kentucky. Sampling locations are marked with solid
black circles.
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Fig. 2. Map depicting major land-use categories within the Upper Green River Basin,
Kentucky. Sampling locations are marked with solid black circles.

33



SOOO

-~
0-•• SOOfa
-5-:a
~ -
"0 SO 1Ii
~

s

34

l1D-200B Sep-200B ])cc-200B Jiar-200'
Date

Oct-200'

Fig. 3. Mean daily discharge for the Green River at the Munfordville, Kentucky gauging
station (USGS site 00308550) during the study period. Vertical arrow and corresponding
bars refer to sampling periods.
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