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ABSTRACT 

 

 

 

 

 

 

 

Integrity of a graph is defined as  𝐺 = 𝑚𝑖𝑛𝑆⊆𝑉(𝐺){ 𝑆 + 𝑚 𝐺 − 𝑆 } , where G is a graph 

with vertex set V and m(G-S) denotes the order of the largest component of G - S. This 

provides an upper estimate of the integrity of the given graph. Using graph coloring, the 

color sequence of the graph can be generated, with the leading term being the largest 

component of the graph, the maximal independent set. The determination of the set is too 

time intensive to be feasible for moderate to large graphs, since there is no polynomial time 

algorithm to do so. My algorithm completes this task with reasonable accuracy within O(N
2
) 

time. This allows for generation of an upper bound of integrity, and an estimation of real 

integrity, for even extremely large graphs. With integrity known or estimated, network 

reliability can be estimated based on their topography. Through comparison of different 

potential network architectures, network engineers may construct stronger networks based on 

which network has a higher integrity. 
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1. Definition of terms  

 An edge is a connection between two vertices. The edge reaches between the two 

points, allowing a connection between them. There exist directed and undirected edges.  

 A vertex is a distinct point, or node. A vertex can be connected to other vertices by 

means of an edge. Vertices can represent any distinct body, such as a person, building, 

intersection, computer, etc. 

 A graph is a set of vertices and edges. A graph is commonly represented as a 

collection of dots and lines, where the dots are vertices and the lines are the edges connecting 

them. A graph can be conceptualized as a collection of computers connected by Internet 

connections. So long as the computer is plugged in to its jack, you are connected to the other 

machines. A representation of a graph is as below: 

Figure 1.1: An example of a graph 

 A connected graph is one such that all vertices are reachable by all others in the 

graph by some path through the graph. This means that the entire graph is one cohesive body, 

and has no isolated portions. A connected graph is representative of a computer network 
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where everyone has a connection with the internet, or the Interstate Highway System, where 

there does not exist a highway that is by itself, unconnected from the rest of the highways. 

 A complete graph, also known as a full graph or an all-to-all graph, is a type of 

graph has all its vertices connected with all other vertices. This means that from any one 

vertex, you can reach any and all other vertices with only one hop, without interacting with 

any other third vertex. 

 An open walk is a series of edges and vertices that starts at one vertex, and ends at a 

different vertex. This can be conceptualized as a path you would walk along if you were 

transversing the graph, from node to node. A walk allows repetition of vertices and edges. 

Figure 1.2: An open walk 

A closed walk is a transversal of the graph as in an open walk, but the start and end 

vertex is the same. This means you transverse the graph, and return to the vertex that you 

started from. 
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 A path is a transversal of a graph, like an open walk, between two vertices, without 

repeating any edges or vertices, and not ending on the same vertex you started on. 

 The distance between two vertices is the shortest path that can be travelled from one 

vertex to reach another. 

 A cycle is a path, but where you start and end on the same vertex. 

 Graph coloring is a subclass of the field of graph labeling, where the vertices of a 

graph are assigned “colors” such that no two vertices connected by a common edge share the 

same “color.” This type of graph labeling represents special cases in nature, problems in the 

sciences, and has far reaching mathematical and scientific applications, being one of the 

primary problems in graph theory. 

Figure 1.3: A colored graph  

 A graph's chromatic number is the smallest number of different colors that a graph 

may be colored with, provided that no two colors are bordering each other.  
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 A bipartite graph is a graph where all its vertices can be divided into two groups, 

where each vertex in any given group may connect with any of the vertices in the other 

group, but not to any within its own group.  Below is a bipartite graph, with the two groups 

highlighted by colors.  

Figure 1.4: Bipartite Graph  

 A cubic graph is a graph where all vertices have exactly three edges connected 

 The degree of a vertex the number of edges connected to a vertex. 

 A tree is a connected graph where no cycle is possible. These stretch out from a 

common root vertex. Each vertex may only have one parent, but any number of children. The 

parent of a vertex is a vertex that is closer to the root (top of the graph). The ultimate parent 

of all vertices is the root node. The vertices that are the furthest away from the root have no 

children, and are called leaf nodes. These leaves are at the bottom of the graph generally, and 

are the last nodes in any parent-child series originating from the root. Below is an example of 

a tree: 
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Figure 1.5: A tree graph 

 

2. Network Integrity 

 Communication is about exchanging ideas between individuals. Getting this 

information from one to another, particularly when transmitting through technological 

means, can be problematic at times. These new communication methods rely upon 

interconnected smaller systems, which mean a message usually must cross between many 

devices before reaching its recipient. These communication networks are generally effective, 

but lost calls and uplinks are testament to the reality failures in these systems. Technology 

allows us to communicate in new ways, across greater distances, and more effectively, but 

only if the technology is effective enough to enhance communication, rather than inhibit it. 

One of the primary criteria of an effective communication technology is that this method of 
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communication must be highly reliable, so users can grow comfortable with the medium and 

integrate it into their habits. 

 Reliability within communication networks is a measure of just how robust the 

network is. A network is a "web" of devices, computers for example, which all are connected 

by cables and intermediaries, to other computers across a network. This network transmits 

data from one computer to one or many of the others, but only so long as there is a way to 

route the data to the other machine. Likewise, a machine can only receive and send messages 

so long as it is connected to the network. This means that the reliability of a network is a 

function of just how interconnected this network is, assuming all the links are equally 

resilient. 

 Interconnections in the network represent how a computer can be connected to many 

other computers. Devices are generally connected to a network device such as a Switch, 

which interconnects many devices, and connects to the larger network outside the room or 

building. A simple explanation of these interconnections in a standard setup would be that 

the computer in a room is connected to an Ethernet jack on a wall. The jack on the wall is 

connected to a cable a couple of hundred feet long, which connects to a network switch, 

which handles 48 connections in most cases. This switch interconnects all 48 connected to it 

directly, and also connects to all the other switches in the room via another Switch, which 

only Switches connect to. This "Distribution Switch" allows all the switches, and all the 

computers connected to it to communicate with one-another. This Switch, which ensures 

connectivity of a building or a large section of it at least, connects to a central router. This 

router handles many connections coming in from many Distribution Switches, which it 
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handles a bit more complexly than just a switch, and determines where the traffic coming in 

from the Switches goes. The Router also allows all the computers on all the switches, all the 

way down the hierarchy to communicate with one-another. The Router can be connected to 

other routers, etc, across an extensive network, but ultimately these are often connected to the 

Internet through an ISP Uplink. On larger networks, this means the router connects through a 

fiber-optic modem to a larger modem elsewhere, which connects to the large continental 

fiber network, administered by the government and large phone companies. This fiber 

network, and all the networks like above connect together to make what we know today as 

the Internet; simply a large interconnection of computers, routers, and switches, with wires, 

antennas, dishes, and fiber-optics linking them all together.  

 Using this relationship, we can see how networks and graphs inter-relate. The 

computers, routers, switches, etc are the vertices within the graph, and the fiber-optics, 

Ethernet cables, dishes, etc are the links between these vertices. The diagram below 

demonstrates such a hierarchy, which we see can easily be converted into a graph 

representation. 
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Figure 2.1: An example network topology  

 These various interconnections are a focus of much interest. These links are the single 

most expensive part of the network, with this being their primary limitation. In an imaginary 

world, the perfect network would connect each computer directly with every other computer 

in the world. This system is not realistic, because it would not only be impossible to secure 

and administer, but also the sheer amount of wires, dishes, or however the connections would 

be generated, is not possible. With any network, a network of this sort where every node is 

connected to every other, if given N computers for example, there would be 
𝑁(𝑁−1)

2
 

connections between them. For example, if there were 100 computers in an office, and they 

were all connected, there would be 4950 wires connecting them all together. This is 
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unreasonable, even on networks the size of a few offices. A university’s network, which 

might have around 50,000 connections, would require 1,249,975,000 wires to connect them, 

which is very much unreasonable. 

 To combat the high cost of connections and still achieve connectivity between 

machines, the obvious solution is to use as few connections as possible. Trying to achieve the 

absolute minimum amount of connections would be the lowest cost, since all users would be 

connected, and the least wire would have to be run, for example. A graph such as this would 

be a tree graph, where even one broken connection would sever the rest of the network, 

leading out from the root node (the internet uplink). The idea that the fewest connections is 

best gets many in trouble though, in that keeping only the costs of building the network in 

mind will lead to a very "lean" network with few connections that only works in optimal 

conditions. With no redundant connections, and only one connection going to each machine 

or network node, the resistance to damage, and reliability of the network would be minimal. 

If only one connection were broken in the right spot, the network would be split in two, with 

only half of the remaining users connected. Likewise, if connection were cut at the user side, 

only one break would be necessary to sever a machine from the network. 

 A fine balance must be struck then between the cost of connections, and the reliability 

of the network. No one wants to pay for the network where everyone is interconnected, but 

no one wants to rely on a network where one broken wire results in half of the network going 

down. Finding this balance is of high interest to those within the networking field, and 

several different strategies have been put forth, but usually due to costs, the fewer 

connections, weaker networks are far more common, since they work in theory, at least until 
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the first problems. The perception that network problems are common, and that fixing 

problems when they occur is the correct way to approach this problem, is a result of the 

community's familiarity with this setup. A better approach is to increase a network's 

reliability in general through analysis of the network, and working towards shoring up 

weaknesses, or re-doing the network topology entirely. This is what my project hopes to 

achieve: analyzation of a network's reliability, enabling quantification of a network's 

strength. Through creation and analyzation of possible network topologies, businesses and 

network engineers will be able to create networks with fewer connections required to achieve 

the level of integrity that they are comfortable with implementing and maintaining. 

 

3. Graph Coloring 

 Before we discuss how to estimate the integrity of a given graph, we must first 

introduce the foundation on which my work is built upon. The work I have done is based on 

Graph Theory, as I have introduced before, but more specifically, my technique utilizes 

concepts from the field of Graph Coloring. Graph Coloring is focused on assigning unique 

signifier for each vertex, to classify vertices based on whether they are touching or not, by 

assigning them “colors.” 

 Under graph coloring, each vertex which borders other vertices through edges cannot 

possess the same color as any other vertex it borders. This means that the color of a selected 

vertex (blue for example), cannot be the color of any of its neighbors. This does not restrict 
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the color of any vertex that is at least one vertex away from the blue vertex, other than the 

color restrictions that the vertices around it place upon its color.  

 So why color graphs? Graph coloring has applications such as representing 

mathematical relationships, ensuring that certain things represented by the vertices are not in 

contact with one-another and otherwise providing an enforced system of representation for 

any system that can be applied to its framework, for future research applications. In our case 

we will use graph coloring to estimate graph integrity through a relationship between graph 

coloring and integrity of graphs, which I will demonstrate. My work specifically related to 

graph coloring and these colorings corresponding color series. 

The Chromatic number of a graph G is the minimum number of colors needed to 

color the graph G and usually shown with 𝜒(𝐺). 

 A color sequence of k-color (n1, n2,…,nk) is a listing of the quantity of nodes of each 

color, in descending order, that are present on a legally colored graph. In the following 

examples, we see color sequence (1,1,1,1,1,1,1,1) of 8 colors, (3,2,2,1) of 4 colors and (5,2,1) 

of 3 colors. Depending on the number of colors we will have different color sequence for 

same graph. The colors are not especially important unless importance is placed on them 

based on the application, but in general they just delineate the vertices into categories that are 

isolated from one another. A maximal coloring sequence of k-color is a sequence of length 

k that is the result of seeking to have the most vertices of a certain color present, and would 

look something like (5,2,1) for a 8-vertex graph with 3-colors in the following example. That 

is, there is no other color sequence of length 3 lexicographically bigger than (5,2,1). This 
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would mean that there are five vertices with the same color, and that these five are isolated 

from one another. 

Figure 3.1: Graph Colorings 

 Below we show all the possible 3-colorings of given graph G. The colorings are 

progressively more maximal as we progress from the left to right, with the rightmost coloring 

being the maximal coloring for this graph. 

 

Figure 3.2: All possible 3-colorings of graph G 
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 The following theorem gives the relationship between chromatic number and the 

graph’s color sequence:  

 Theorem 1: Every graph G with chromatic number 2 has a unique color sequence. 

 

 Proof: Let G be a given graph with 𝜒(G) = 2. Hence G is bi-partite [1]. 

One can easily observe the following about the distance between two distinct vertices of 

colored graph G. 

 

d(u, v) =  
𝑒𝑣𝑒𝑛      if u and v have same color

    𝑜𝑑𝑑     if u and v have different color
  

 

Suppose there are two different color sequence of the G, say cs1 = (n1, n2) and cs2 = (m1,m2). 

Without loss of generality we can assume that n1 > m1. Since the graph G is a bi-partite, V 

(G) = V1 ∪ V2 = U1 ∪ U2 where |Vi| = ni for i = 1, 2 and |Ui| = mi for i = 1, 2. Since n1 > m1 

there must be at least one vertex v, in V1 which is not in U1. So v has different colors in cs1 

and cs2. Pick a vertex which has same color in both sequences, say u. Then from v to u there 

are two different paths, one of them has length odd and the other has length even. Hence 

there is cycle of length odd from vertex v to v. This contradicts with a fact that G is bi-partite. 

 

4. Finding an Upper Bound for Graph Integrity 

 Our problem is one of efficiency. We must find the graph with the highest resilience 

against removal of nodes, while still using the fewest connections possible. Our approach to 
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measuring this resilience, also known as integrity, is to utilize a unique approach of achieving 

the highest color series possible on a given graph.  

Definition of integrity of a graph G is given as follows: 

𝐼 𝐺 = 𝑚𝑖𝑛𝑆⊆𝑉(𝐺){ 𝑆 + 𝑚 𝐺 − 𝑆 } 

  

Where |S| indicates number of vertices in set S and m(G-S) is the number of vertices of 

largest component in G-S [2]. 

Example: 

 

Figure 4.1: An example star graph 

 

Set of vertices of the above graph is V(G)={1,2,3,4,5,6,7,8}. Among all possible subsets of 

V(G), if we take S={8}, then m(G-S)=1. Hence I(G)=1+1=2.  

 

For any given graph G, to compute the integrity of G, we need to know which subset S will 

give minimum summation |S|+m(G-S). So if graph G has n vertices, then there are 2
n
 

possible subsets of V(G). For example for a network with 1000 computers, we need to 
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compute all the 2
1000

 subsets to determine its exact integrity. Such number of computations is 

going to take quite some time. 

 Since computing exact integrity for a graph with large number of vertices is not 

feasible within reasonable time, we must try to find a bound for the integrity of the graph. 

For such a bound, we will use the maximal color sequence of the graph to determine an upper 

bound for the integrity. This bound will also serve as an estimate of the integrity of the graph. 

Let G be a graph with maximal k-maximum color sequence (n1,n2,…,nk). Hence 𝑉 𝐺 =

𝑉1 ∪ 𝑉2 ∪ …∪ 𝑉𝑘 , where 𝑉𝑖  contains 𝑛𝑖vertices which have same color.  Then we can give the 

following upper bound for the integrity of G: Define set 𝑆 = 𝑉2 ∪ …∪ 𝑉𝑘 , then m(G-S)=1 

since 𝑉1is an independent set. Therefore we have 𝐼 𝐺 ≤  𝑆 + 1.  Hence we can give the 

following theorem: 

 

Theorem 2:  Let G be a graph with maximum color sequence ((n1,n2,…,nk) with k-

color. Then I(G)≤n1+1. 

 

An independent set is a group of vertices that are not connected directly within the graph. 

This equates directly to the most common coloring within a graph colored with the fewest 

colors possible. This maximal coloring strategy is what we will utilize to seek the largest 

independent set possible. 

 

Example: Here are two graphs to demonstrate finding of an upper bound for the integrity 

of graphs: 
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Figure 4.2: Sample graph G  

 Graph G consists of eight vertices and nine edges, and as such can be represented as 

G(8,9). This graph is neither complete, nor a minimally connected graph, but something in-

between, a fairly average graph that might be encountered in a networking situation. G has 

been colored maximally (with 3 colors) on the right, with a coloring sequence of (4, 3, 1). 

Take set S to be vertices with color orange and brown. Hence |S|=4 and m(G-S)=1. Therefore 

𝐼 𝐺 ≤  𝑆 + 1 = 4+1 = 5. On the other, for all possible 2
8
 subsets of V(G), the minimum 

summation |S|+m(G-S) = 5. So our upper bound indeed is equal to the exact integrity of G.  

Figure 4.3: Sample graph H  
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 Graph H has nine vertices, and only eight edges, making the graph less connected. 

The general rule is that the lower the number of edges to vertices, the less connected the 

graph. So, H is a (9,8) graph, and is a bipartite, so it is colorable in two colors. The maximal 

coloring sequence of H is (5,3).  With an independent set of five, an upper bound for the 

integrity of the graph is 3+1=4. On the other hand if we take S to be set of vertices with 

degree 6 and 3, then I(H)=2+1=3. So our bound is very close to the exact integrity of the H.  

 Though these graphs are small and relatively trivial, on larger graphs the maximal 

coloring in order to discover the true integrity of the graph is not so easy to figure out. Even 

more importantly, there is no known way to confirm that a given graph coloring is the 

maximal coloring sequence without comparing it to each and every other possible coloring. 

Even for a small graph the number of possibilities is quite high. As the number of vertices 

and edges goes up, the number of possibilities increases extremely rapidly. As such, a 

program to compute all possibilities and try them is not feasible on all but the smallest 

graphs. In fact, as graphs approach only several dozen, the computing time increases to years, 

even on state of the art computers, making such calculations unreasonable to compute. 

Polynomial Time: an algorithm is computable within polynomial time if the 

algorithm can be computed within a number of steps that is a function of the number of 

elements being calculated on. For example, an algorithm that takes 4N
2 

+ 2N +1 steps to 

complete would be a polynomial time algorithm, because the number of steps is based on N. 

These problems are typically solvable with modern computers, for all but the most extreme 

cases. 
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Exponential Time: an algorithm is computable within exponential time if the 

number of steps required to run the algorithm has the number of elements concerned within 

the algorithm as an exponent. For example: an algorithm that takes 10
N 

+ 4N steps to 

complete is an exponential time algorithm. These algorithms, in that their complexity 

increases exponentially as the number of elements increases, very quickly become 

incalculable on any computer.  

 Such problems without a reasonable way to solve them are generally considered to 

not be solvable within polynomial time. My research on determining graph integrity very 

quickly became determining whether there is a reasonable polynomial algorithm to determine 

k-color coloring sequence and k-color maximum color sequence. 

 Though much research was done, and many things were tried, my conclusion is that 

the problem of finding a graph's color sequence in fact has no polynomial algorithm, and the 

problem (k-color maximum sequence) falls within the subset of problems where there 

random solutions can be generated, but they cannot be verified within polynomial time. The 

maximum color sequence of a graph cannot be extrapolated through any relationship of the 

connections of the vertices, the number of edges, vertices, the ratio of the two, or any number 

of other things that a graph's representation demonstrates. Likely this is due to graphs 

generally being non-uniform, and very complexly connected. I considered whether in special 

circumstances I would be able to determine the k-color maximum coloring sequence on 

specific graphs, or types of graphs, and in fact have discovered a way to color bipartite 

graphs, which I will discuss later. 
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 Decision problem is a problem that has a “Yes” or “No” answer. Here are some 

examples for decision problems: 

 

Example: 

Prime: For given positive integer n, is n prime number? 

k-Color Maximum Color Sequence: Given graph G with n vertices and integers 

𝑛1, 𝑛2 , … , 𝑛𝑘 , is (𝑛1, 𝑛2 , … , 𝑛𝑘 )  the maximum color sequence of G? 

 

NP classification of decision problems includes those problems which can meet the following 

requirements: Any given randomized (nondeterministic) solution can be verified in 

polynomial time (quickly). These problems are generally of the type that do not have a 

polynomial time deterministic solution, and include many of the biggest and most important 

unsolved mathematics and computer science problems. Since these problems cannot be 

deterministically solved in polynomial time, this type of solution cannot be applied to the 

science, nor written into any programs that will complete within our lifetimes, even for trivial 

cases. An example of this is that an exhaustive search for the maximum coloring sequence on 

a graph, which will find the maximum coloring sequence once it completes about 2
N
 steps, 

where N=the number of vertices within the graph. This means that for a graph, or network, 

about the size of Western Kentucky University’s internal network, with over a thousand 

active connections, would take about 2
1000 

steps to complete. With a computer that has a 

modern processor running at 3GHz, processing optimally 3*10
9

 operations per second, and 

with nothing else running on the processor, and each step in the algorithm taking only one 
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cycle, this type of calculation would take about 2
1000

/(3*10
9
) seconds, or 2

1000-12
/3, or 

approximately 2
988

 seconds, or about 8.2897422*10
289

 years in the absolute best case. For 

scale, a billion years is of course only 10
9 

years. This is what it means for the solution to not 

be computable within reasonable time; the calculation would be completed after hundreds of 

orders of magnitude longer amounts of time than have passed in the universe based on 

current estimates. Since the problem is within this class, it becomes obvious that the best we 

can do with current computational methods is estimate, or try to get “the best we can” with 

algorithms that do not calculate every possibility. 

 As for the problem being NP-hard, the problem falls within this category, which can 

be simply explained as “solving this problem is equivalent to solving every problem within 

NP-class.” NP-hard is special in that the solutions to the problems are not verifiable with a 

randomized polynomial algorithm either, unlike NP problems which must have such a 

solution. This means that when you have a candidate for an answer to the question of 

whether this coloring sequence is the maximal one, you cannot confirm whether this is true 

or not without seeing all the possibilities. There is no way to look at a graph and determine 

the coloring is maximal unless all possibilities are considered. This inability to verify 

solutions means that there can be no non-deterministic solution generation method for this 

problem. This means that we cannot, for example, generate a random coloring of the graph 

and then easily look and see if this is the maximum coloring sequence or not. This means that 

again, the only way to see a solution is to compare all possible colorings, which is not 

reasonable within polynomial time.  
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The Maximum Independent Set (MIS) problem is equivalent to our problem in many 

ways.  Firstly, the goal of maximal coloring and the MIS problem are the same, find the 

largest group of elements within the set (graph in our case), that are independent of one-

another, but within the set (graph).  This set is exactly the first element of the maximal color 

sequence. Since for our application of the coloring sequence we are not concerned with the 

other colors in the sequence, only the number of elements within all the other subsets 

(colors), in the graph. To put it plainly, if we know the maximum independent set (most 

common color when the graph is colored maximally), we know that the number of the rest of 

the nodes (the ones removed to find the set), is equal to the number of nodes within the 

graph, minus the number of nodes within the maximum independent set. We can then gather 

an upper bound for the integrity of the graph from this quantity. So finding maximum color 

sequence is at least a NP-hard problem. 

 

5. My Algorithm 

 Due to the fact that any type of exhaustive search for the maximal coloring sequence 

is not feasible, we require an estimation of the maximum color sequence of a given graph, so 

we must use an estimation algorithm to generate an estimate. My algorithm achieves this 

through achieving approximately O(N
2
) speed when searching from every starting point, 

which enables even large graphs to be processed very quickly. This means that the number of 

steps required for the estimation is only the number of nodes squared (N*N because I search 

N nodes    starting from each node once, where N is the number of nodes within the graph). 

For the aforementioned WKU network, my algorithm would take just 10000
2 

steps, and 
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would be calculable on a 3GHz processor in less than a second; using the same time 

estimates as before, in the complete search case. This is of critical importance, in that this 

would enable different network designs to be constructed and tested in nearly real-time, 

enabling even automated programs to perhaps generate the best graph given certain 

parameters, utilizing this algorithm. 

 The algorithm works by coloring the graph utilizing a Breadth-First-Search (BFS) 

advancing strategy, which proceeds through the graph, coloring as it goes deeper. BFS is 

used normally to find a certain vertex within a graph, but by coloring the entire graph (as if 

the search is exhaustive, and the vertex is not found), the entire graph can be covered, and 

colored in our case. Coloring using BFS means that the graph is colored in a certain fashion 

and order, as I will explain. Firstly, you begin at a certain node, which is the start node. 

When you first begin coloring, each node is considered to have a state of uncolored. Each 

time you search a node, that node goes to a coloring state, and when the node has been 

completely colored, it is put into a colored state. These states are important, in that the BFS 

algorithm uses them in order to know how to proceed. 

 Beginning with the start node, we start coloring. The start node becomes coloring. All 

its neighbors (vertices that are connected to it directly by an edge), also become coloring, and 

are added to a list of nodes which the algorithm keeps track of, that are currently coloring. 

For the sake of visualization, colored are shown in white, coloring are grey, and uncolored 

are black. 
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Figure 5.1: Transitional States in BFS Progression 

 Once a node has been set to colored state, the algorithm moves to the next node that 

is coloring, as in the order that we turned them into coloring (first in, first out, like a queue). 

The graph will eventually be completely colored as the method proceeds, in the order as 

depicted below, with the small arrow pointing at the currently active node of the search: 
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Figure 5.2: BFS Traversal of Graph 

 Utilizing the BFS sequence of node coloring, the algorithm will work its way through 

the graph. The node is colored after all its neighbors are set to coloring, but before the 

current node is set to colored. The algorithm will attempt to color utilizing a Greedy 

Algorithm, as it proceeds through the graph, trying to keep the number of colors down to a 

minimum. If at all possible, the first, most common color is used, proceeding down the 

sequence of most common colors, until if necessary it will use a new color on the graph. 

Whenever this coloring is selected, the algorithm checks the other vertices adjacent to the 

current vertex to determine which colors are off limits for it to use (since no vertex may have 

the same color as its neighbors), and uses this information in its attempt to determine which 
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color the vertex should be. Once the vertex has its color, just as in BFS, the next coloring 

node is visited, and the coloring is set on this node, etc, until all the nodes are colored. 

 The Greedy Algorithm that this coloring algorithm utilizes means that whenever a 

color is being selected, it will try always to achieve the best outcome based on the current 

situation whenever the node is colored. This means that the algorithm does not base its 

decision upon past events or predict future ones by extrapolating possibilities, but instead 

makes the best decision in the short term. In the case of coloring the graph this is acceptable, 

because upon coloring each node, we check to make sure each coloring is legal, making it 

fine for us to not plan ahead in terms of making sure a coloring is going to work a certain 

way from the start. This lack of planning ahead and optimizing the coloring completely is 

why this algorithm is viable, and completes so quickly. 

 The downside of this Greedy Algorithm is that constant decision making on the local 

scale does not always generate the optimal solution for the whole graph. The best choices are 

made in each decision, but the lack of planning and an overall strategy can get the algorithm 

in trouble, in terms of maintaining accuracy. Fortunately, the algorithm works well with BFS 

transversal of a graph, and with the inherent rule that any neighboring vertex cannot share a 

color with its neighbors. This inherently means that we must know the color of our neighbors 

before we know the restrictions on which colors the current vertex can be colored, so any 

intuitive algorithm would have to base its decisions in this way, which the greedy algorithm 

does as a rule. 

 For any case that the algorithm finds itself within, it will choose the most common 

color for the current node if it is legal, proceeding down the list of color commonality until it 
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must choose a new color. The preference towards the first coloring being colored if at all 

possible is because the real importance of the coloring is to find the Maximal Color Sequence 

(the leading element being the Maximum Independent Set), so that we may estimate the 

maximum color sequence as accurately as possible. By coloring the node the leading color 

whenever possible, this estimate proves accurate. 

 Once the graph is completely colored, the coloring is stored, and the algorithm runs, 

starting the coloring process one time, starting from each node within the graph in turn. Each 

time the data is stored, and once all the colorings have been computed, the color sequence 

with the largest leading element is selected. This coloring has what the algorithm has 

calculated is the largest independent set, and based on this; an upper bound for integrity set is 

computed using the formula for integrity explained earlier. This is the algorithm's best 

estimation for the integrity of the graph, and is an absolute upper bound, with the integrity 

being equal to or less than this estimate in all cases. 

 

6. Statistical Analysis 

 Through the generation of random graphs, the estimation of their integrity with my 

algorithm, and calculating their actual integrity through an exhaustive calculation program, I 

have analyzed the accuracy of the estimation of the upper bound of the integrity of my 

algorithm. This estimation is not complete though, in that it is only possible to compute the 

absolute integrity on rather small graphs. Were more computing resources available I would 

be able to calculate estimates for graphs going up perhaps a hundred more nodes, but the 

increase in required computational power and time are so rapid as you increase the number of 
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nodes, calculation of accuracy in general for larger case graphs is not possible with current 

computing technology, using current absolute integrity calculation software. 

 For this analysis, 250 graphs were generated randomly by a computer program. For 

each graph generated, the graph was fed into the program to my algorithm which provides an 

estimate for integrity and an absolute upper bound. Once this finished, the file was 

reformatted, and run through the program which calculates the exact integrity of the graph. 

These results were tabulated, and statistically analyzed after this work was completed. 

 First, let’s consider the relationship between the estimates of integrity and these 

graphs’ actual integrity. I charted the relationship as below, with the integrity on the y-axis, 

and the number of nodes in the graph on the x-axis. The red data are the algorithm's average 

estimates for each node count. The blue data are the actual integrity of the cases. As you can 

see; the integrity trends higher as the number of nodes increases in this case, for my test data. 

At the same time, the estimate follows the increase upwards, deviating slightly higher as the 

node count rises.  
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Figure 6.1: Estimate vs. Actual Integrity  

 While the size of the deviation increases as the number of nodes increases, the 

percentage of deviation remained constant. Certain structures within the graph, such as 

triangles, tetrahedrons, square, etc, and the increasing complexity of the graphs may explain 

why some graphs deviate further from the estimate than others. Even though this is the 

variable that effects the deviation the most, there seemed to be a fairly steady increase in 

inaccuracy as the number of nodes increased. Though the number increased, this maintained 

a proportionate relationship with the number of nodes. 

 The following graph shows the relationship between the number of nodes, and the 

deviation in integrity from the actual that the estimate was. In all cases the estimate was 

higher than the actual integrity, so these deviations reflect how much higher the estimate was 

than the actual figures. The fact that all cases have a higher integrity estimate than the actual 

integrity is expected, and follows from the fact that this algorithm finds an estimate, but the 

estimate is also the upper bound of possible integrity. 
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 Figure 6.2: Deviation from Actual Integrity 

The deviation rises as the number of nodes increase, but the proportionate deviation 

does not rise above two for the tested graphs. For most cases on graphs less than ten nodes, 

the algorithm was almost always perfectly accurate in fact. Following the trend, the perfect 

accuracy dropped away as the number of nodes increased. The increase in deviation follows 

the trend line shown, in general, with the R-squared value of 0.543. Based on this value, we 

can see that the relationship is fairly linear as the number of nodes and integrity of the graph 

increase. 

 The real correlation present is that of the correlation between the estimated integrity 

and actual integrity. The correlation was very strong, and the relationship very linear: 
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Figure 6.3: Estimated Integrity vs. Actual Integrity 

 Based on these analyses, we see that the estimation of the graph integrity is fairly 

accurate, with some deviation, and the correlation between the estimate and the actual 

integrity is very strong, and very linear. Based on these results we also have empirical 

support for the fact that this algorithm will always generate an upper bound, making this 

useful for estimating integrity, in that there is a confirmed bound on the integrity, rather than 

a +/- deviation, which would have been much more troublesome. 

7. Conclusions 

 Calculating the integrity of a network or a graph cannot be done within polynomial 

time to perfect accuracy. Very minor graphs can be calculated this way, but for computer 

networks in the field, the sizes of these graphs are too large to be calculable. My algorithm 

provides an estimate of the integrity of the graph; with the estimate being an absolute upper 
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bound for the integrity (integrity must be equal or lower). Using this algorithm, calculation of 

the integrity of a graph can be done in seconds, rather than over impossibly long periods of 

time.  

 This algorithm enables network engineers and researchers to analyze networks and 

graphs to determine their relative integrity to other networks, or even to test different 

configurations to see which configuration has higher integrity. Using these estimations, 

stronger networks can be built, increasing reliability, security, and usefulness of the 

networks. Additionally, this estimation may be useful in some graph theory applications for 

comparing graphs' integrity in some advanced research as the field progresses. 

 Through this research we have also established that determining the Maximal 

Coloring Sequence is comparable to determining the maximum independent set problem, 

firmly planting the problem within the scope of NP-Hard. This confirms there is currently no 

way to calculate the problem fully within reasonable time. Thus, estimation algorithms are 

the only option, so long as NP problems are not P. 

8. Future Work and Conjecture 

 Though my algorithm, and my analysis of the graph integrity problem goes into 

uncharted territory, and provides a reasonable answer to the question of just how to 

determine integrity for any graph, there is more than can be done.  

 During my work, I determined that my algorithm always find the correct integrity for 

any bipartite graph (a ring, tree, or row). In this case there is only one way that my graph can 

possibly be colored maximally, no matter where it starts, but it does present an interesting 

question: is it possible to calculate the integrity of certain special classes of graphs faster or 
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more accurately through other algorithms or heuristics? I believe that by focusing on certain 

groups of graphs, such as degree-regular (all nodes have the same number of edges 

connected to them) graphs, special solutions or short-cuts that could streamline the 

calculation process can be devised. 

 Additionally, my algorithm seems to have problems with certain structures such as 

triangles, other completely connected sub-graphs, and web-graphs. The completely 

connected sub-graphs present a problem in that they will require N colors for the N nodes 

within them, and depending on whether I start coloring within the sub-graph or outside it, I 

will get different results for integrity. This leads me to believe that through some special 

consideration of these sub-graphs within the algorithm, a more accurate estimate might be 

possible. The web-graphs are the same problem, in that they are one node with lots connected 

to this one node, and not interconnected themselves. This is similar to a high-degree node 

within a lower-order graph. The coloring of the center node in this case is critical in 

determining the color distribution within the graph, which means that identification of these 

sub-graphs, and the coloring of them can significantly change the color sequence. Special 

focus on these might yield more accuracy, at the cost of speed. 

 Lastly, more statistical analysis of my algorithm could help confirm whether it 

maintains its accuracy as the complexity and size of the graph increases. This is future work 

by definition, in that a couple of orders higher of computing power will be necessary to 

achieve these studies. Through this analysis, a greater understanding of the inaccuracy of the 

algorithm and perhaps better applications of it will result. 
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