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ABSTRACT 

Cisplatin is a well-known anti-cancer drug that is effective, but also has some severe and 

unwanted side effects.   Analogs of cisplatin were reacted with the nonstandard amino acid 

selenomethionine (SeMet), and the products were characterized by 
1
H and 

195
Pt NMR 

spectroscopy and HPLC.   In previous studies, SeMet was found to react faster than methionine 

(Met) with a representative platinum complex (Pt(dien)Cl2), therefore SeMet is said to react faster 

kinetically.  Thus, while only a subset of proteins have selenium-containing amino acids, 

platinum complexes could target them kinetically.  Cisplatin analogs with two leaving groups 

have also been studied.  Pt(Me4en)(NO3)2 (Me4en = N,N,N’,N’-tetramethylethylenediamine) 

reacts with SeMet to form a [Pt(Me4en)(SeMet-Se,N)]
+
 chelate regardless of the Pt:SeMet ratio.   

Pt(en)(NO3)2 (en = ethylenediammine) reacts to form three possible products, with the 

distribution dependent on the Pt:SeMet ratio and time. 

INDEX WORDS:  Cisplatin, Selenomethionine, Platinum(II) compounds, Hard-soft acid-base  

     theory, Trans effect, Nuclear magnetic resonance 
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INTRODUCTION 

 It was estimated by the American Cancer Society that approximately 10,701,000 people 

had a form of cancer in 2005, and the number of new cases each year continues to increase
1
.  

Odds are that a person will know one person, if not more, with cancer during their lifetime.  And 

every person affected both directly and indirectly hopes that a cure will be found in time to help 

them.  There are many promising treatments currently in use but still researchers are working to 

find more effective and less toxic treatments for a cancer cure.  One such area of research is that 

involving the use of platinum(II) compounds for cancer treatments.  In fact, Tour de France 

winner Lance Armstrong’s cancer was successfully treated using such a compound
2
.  Like many 

other developments in science, the discovery of cisplatin and its anti-cancer ability was an 

accidental event that occurred during another experiment involving bacteria.  Since its discovery, 

many variations in the composition of the platinum(II) compounds have been developed and 

researched to improve its anti-cancer activity.  The research in this project looked at two such 

compounds that are analogous to the structure of cisplatin. 

 The potential of cisplatin as an anticancer agent was stumbled upon around 1964.  

Barnett Rosenberg was exploring the effects of an electric field on bacterial growth.  The 

experiment consisted of platinum electrodes in an aerobic solution of Escherichia coli with 

ammonium chloride.
3
   Rosenberg was not looking for anticancer activity; he simply wanted to 

know what would happen to the bacteria in an electric field.  The results of the experiment 

presented evidence that the cells were not participating in normal cellular division, but they did 

appear to be grow into long filaments 300 times the normal length.  It was soon determined that 

the effects on the cells were not originating from the electrode alone, but an eletrolysis product in 

the solution, cis-[Pt(NH3)2Cl2].
4
  This platinum compound was capable of compromising cell 

division without cell death, which made it a candidate for preventing tumor growth with minimal 
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damage done to cells of the host.  Clinical trials were approved and began in the early 1970’s, and 

cisplatin was FDA approved in 1979. 

The chemistry of the platinum compound is important in that it results in specific 

behaviors that can be utilized when it is combined with other compounds.  Platinum(II), the form 

in cisplatin, is an d
8
 transition metal with square planar geometry at the platinum atom.  The 

Pt(NH3)2Cl2 compound under normal biological conditions has two ammine ligands and two 

chlorine ligands.  Two arrangements are possible, a cis (Figure 1) and trans isomer.  However, it 

was shown in several studies that only the cis isomer is effective as an anticancer drug.  Many 

theories have been put forth as to why the trans isomer is not as effective, but no definite answer 

or combination of reasons has been verified through experimentation.  Platinum is described as a 

“soft” acid.  This results in platinum having a greater affinity for sulfur and nitrogen ligands.  

This affinity greatly determines the main biological targets for platinum(II) compounds, such as 

the sulfur of cysteine or methionine and nitrogen of guanine or adenine.  The cysteine and 

methionine represent the protein adduct of binding, while the guanine and adenine represent the 

DNA adduct.  Cisplatin and similar compounds possess a high specificity when binding so 

reactions tend to progress slowly. 

Cisplatin takes a specific path in the body and further within the cells due to its geometry 

and cis conformation.  Cisplatin is distributed intravenously where it remains neutral in the high 

chloride (Cl
-
) concentration environment.  The neutrality of the platinum compound allows it to 

pass through the cell membrane into the cytosol of the cell, which contains a lower Cl
-
 

concentration.  The lower Cl
-
 concentration causes the chlorides to be displaced by water 

molecules.  This substitution charges the overall compound preventing it from easily leaving the 

cell.  This new cisplatin-water compound can react with DNA adducts, protein adducts, or other 

adducts in the cell.  Reactions with protein adducts are thought to lead to detoxification, toxicity, 

or transfer to DNA.  Reactions with DNA adducts lead to either cell repair or cell death. 
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Cisplatin’s effectiveness in the body in preventing tumor growth comes by distorting the 

DNA within the cell.  The main site of reaction with DNA is at the N7 atom of guanine, and the 

major adduct that forms is a 1,2-intrastrand cross-link between adjacent guanines.  The cisplatin-

DNA cross-link formation distorts the DNA structurally preventing it from replicating.  The 

distortion of the DNA is the main mechanism in its antitumor activity by preventing cancer cells 

from replicating into new tumor cells.  The trans isomer is not able to form the 1,2-intrastrand 

cross-link, but leads to a different distortion, which is one of the suspected reasons that this 

isomer is less effective at anticancer activity.  This binding of cisplatin to DNA for distortion is 

controlled kinetically and leads to cytotoxicity.
3
   Cisplatin is known to be toxic, carcinogenic, 

teratogenic, and mutagenic, as well as to have interactions with several other kinds of substances.  

Side effects of the drug during treatments can include renal toxicity, nephrotoxicity, 

hypomagnesaemia, nausea, vomiting, diarrhea, ototoxicity, neurotoxicity, hematological effects, 

sensitivity reactions, cardiovascular effects, ocular effects, and hepatic effects.
5
   It is apparent 

that there is targeted cell death throughout the entire body and not just where cancer or a specific 

tumor is present.  Due to its extreme side effects, efforts are being made to alter the structure or 

functionality of the platinum compound to reduce the amount of damage done to non-cancerous 

cells in the body.   

Methionine is an amino acid that contains a side chain with a thioether group
6
.  As stated 

earlier, Sherman and Lippard
3
 noted that the type of platinum(II) form in cisplatin has a high 

affinity for sulfur, which makes methionine a prime target for reaction. Although, the platinum 

would have a high affinity for sulfur, it is also capable of coordinating to a nitrogen or oxygen in 

the compound.  As mentioned earlier, platinum(II) is a soft acid and its reactivity can be related 

according to the hard-soft acid-base theory.  Assignment of a hard or soft characteristic is relative 

to one element being compared to another, such as one atom being harder or softer when 

compared to another atom.  This theory can be applied to two atoms of interest in reaction to 
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cisplatin:  sulfur and selenium.  Elements are considered softer if they have a larger radius, lower 

electronegativity, and higher polarizability, which can represent movement down a group on the 

periodic table among nonmetals.  Selenium is one below sulfur in the Group VI elements.  The 

theory states that soft acids will prefer to react with soft bases, and hard acids will prefer to react 

with hard bases.  Since selenium is a softer element that sulfur, it is likely that it will react with 

the soft platinum(II).
7
 

Selenomethionine is a natural amino acid that has the same structure as methionine with a 

selenium atom substituted for the sulfur atom
6
.  Since selenium is considered to be softer than 

sulfur it can be predicted that cisplatin and similar compounds would react with selenomethionine 

than methionine.  Researcher Steve Chmley has previously done experiments using an analog of 

cisplatin ([Pt(dien)Cl]Cl) and reacting it with both methionine and selenomethionine.  The results 

that he gathered suggested that the reaction between [Pt(dien)Cl]Cl and selenomethionine was 

kinetically favored over its reaction with methionine.  The experiments also showed that over 

time an equilibrium between the product of [Pt(dien)Cl]Cl with methionine and the product with 

selenomethionine was established. 

!
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Previous experiments have shown that cisplatin is capable of binding to the DNA adduct 

in the cell and distorting the DNA to prevent replication.  The platinum(II) form that makes up 

cisplatin is a soft metal that has been shown to react faster with softer selenomethionine, but 

comes to an equilibrium with methionine and selenomethionine.  This project was about reacting 

selenomethionine with two analogs of cisplatin:  Pt(Me4en)(NO3)2 and Pt(en)(NO3)2.  In previous 

experiments with a Pt(Me4en)
2+

 compound, reactions with Met and N-AcMet have resulted in the 

formation of one product.  It is thought to be due to the steric hindrance of the platinum 

compound’s structure (as shown in Figure 2).  Reaction of Met and N-AcMet with a Pt(en)
2+

 

compound is able to form multiple products due to a lack of steric hindrance and multiple 

substitution positions available. 

 

Two main techniques were used in the collection of data about the structures and 

properties of the compounds and their products:  Nuclear Magnetic Resonance Spectroscopy and 

High-performance liquid chromatography.  Nuclear Magnetic Resonance (NMR) is a 

phenomenon in which the nuclei of particular atoms are immersed in a static magnetic field and 

exposed to a second oscillating magnetic field.  Spectroscopy is the phenomenon of the 

interaction of matter with electromagnetic radiation.  NMR spectroscopy uses the NMR 

phenomenon to study the chemical, physical, and biological properties of matter.  Many atomic 

nuclei, such as hydrogen (
1
H) and platinum (

195
Pt), can be imagined as spinning around an axis, 

said to be a nuclear spin.  The charge of the molecule causes its nuclear spin to create a tiny 
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magnetic field, which can then be manipulated by a larger magnetic field (or external magnetic 

field).   

In a simple case, when exposed to the external magnetic field, the nuclear spin can have 

one of two orientations:  aligned (! spin state) or against (" spin state).  The aligned orientation is 

energetically favorable, while the against is higher in energy.  The right frequency produces 

resonance when irradiation bridges the difference in energy between the two states by “flipping” 

from one state to another.  Afterward, it returns to its original state, and continues a cycle of 

constant excitation and relaxation of the nuclei.  The difference in the energy between the spin 

states is directly related to the external field strength, which is directly proportional to the 

absorption frequency.  The energy of this absorption is referred to as the chemical shift.  The 

chemical shift of nuclei depends on the electron density surrounding it.  Therefore, the chemical 

shifts of nuclei can be used to determine the molecular structure of a species by the variations in 

the electron densities around them.
8
 

Another technique being used is high-performance liquid chromatography.  High-

performance liquid chromatography (HPLC) is an enhanced version of column chromatography 

used to identify, separate, and quantify compounds.  HPLC makes use of a column that contains a 

“packing material” called the stationary phase, a pumping system that pushes the mobile phase 

through the column, and a detector.  The stationary phase is part of the column and is what the 

solutes in the mobile phase travel through and with which they interact.  The mobile phase is the 

part containing the solutes that interact with the stationary phase through the column.  This kind 

of technique takes advantage of a high affinity of proteins for specific chemical groups.  This 

project used cation exchange chromatography that is based on the separation of polar molecules 

and ions due to the charge properties of the species.  In cation exchange chromatography, 

positively charged molecules are attracted to the negatively charged stationary phase.
9
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These techniques were used in the project to characterize platinum (II) compounds 

containing two leaving groups.  The techniques were used to determine key reaction 

characteristics in the two analogs of cisplatin being investigated in the project, and structural 

characteristics of the product(s) formed after reaction with selenomethionine. 
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MATERIALS AND METHODS 

Synthesis of Pt compounds.  Pt(en)Cl2 and Pt(Me4en)Cl2 were synthesized based on a 

modification
10

 of a previous method of Romeo et al
11

.  The chloride compounds were converted 

to nitrate (NO
-
3) by addition of two equivalents of AgNO3, stirring in dark for 24 hours, filtering, 

and drying. 

Reaction of Pt compounds with L-SeMet.  One or two molar equivalents of L-SeMet 

were reacted with Pt(Me4en)(NO3)2 and the pH was adjusted to ~5.0.  Pt(en)(NO3)2 was reacted 

with L-SeMet and L-Met in 1:1, 2:1, or 1:3 Pt:ligand ratios and adjusted to a pH of ~5.0. 

NMR Spectroscopy.  Both 
1
H and 

195
Pt NMR spectra were attained on a JOEL Eclipse 

500 MHz NMR instrument.  The 
1
H NMR spectra obtained were adjusted for temperature and 

referenced using the residual HOD signal relative to TSP.  
195

Pt NMR spectra were referenced 

relative to K2PtCl6 (0 ppm). 

HPLC (High-performance liquid chromatography).  The project used cation exchange 

chromatography column to separate the three products of the reaction of Pt(en)(NO3)2 with L-

SeMet.  The sample was eluded with 20 mM phosphate, pH 6 (Buffer A) and, 20 mM phosphate, 

pH 6.0 and 0.5 M NaCl (Buffer B).  Time zero minutes was a flow of 100% Buffer A, at 20 

minutes there was 50:50 mixture of Buffer A and B, and after 25 minutes it returned to 100% of 

Buffer A.  The flow rate through the column was regulated at 0.5 milliliters/minute.  The sample 

was not collected after separation. 
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RESULTS 

Reaction of Pt(Me4en)(NO3)2 with SeMet.  The addition of one equivalent of SeMet to 

[Pt(Me4en)(H2O)2]
2+

 showed new resonances with singlets at 2.49 and 2.51 ppm in the 
1
H NMR 

spectrum.  Previous reaction between [Pt(Me4en)(H2O)2]
2+

 and Met led to similar sets of 

resonances
12

; the product was assigned to [Pt(Me4en)(Met-S,N)]
+
, and the two singlets are due to 

slow chirality exchange at the S atom.  Thus, the signals in the SeMet spectrum are assigned to a 

single product, [Pt(Me4en)(SeMet-Se,N)]
+
, with differing chirality around the selenium atom.  

There was a 1:1 ratio between Pt(Me4en)
2+

 and SeMet based on integration of the NMR signals.  

Support for the assignment came from the 
195

Pt NMR spectrum, which showed two peaks at         

-3190 and -3260 ppm.  These results were similar to the values of -3160 and -3230 ppm for Met 

and Pt(Me4en)
2+

, and to the product of [Pt(dien)(SeMet-Se)]
+
.!

!

Reaction of Pt(en)(NO3)2 with SeMet.  The addition of SeMet to Pt(en)(NO3)2 showed 

multiple peaks ranging from 2.4 to 2.5 ppm leading to three different products:  monochelate, bis, 

and bischelate.  The monochelate product showed resonances with a set of two singlets at 2.4 
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ppm in the NMR spectrum.  The resonances were dominant in reactions containing low SeMet:Pt 

ratios.  Reaction of Pt(Me4en)(NO3)2 with SeMet led to similar resonance signals.  The bis 

product showed resonances with two singlets at 2.5 ppm in the NMR spectrum.  These 

resonances were dominant in reactions containing higher SeMet:Pt ratios.  The en signal at 2.7 

ppm is a singlet relating to its C2 symmetry.  The bischelate product showed resonances with one 

singlet and two doublets between 2.4-2.5 ppm in the NMR spectrum.  There is also the presence 

of free en indicated by a signal at 3.35 ppm.  This product is formed from the bis product with the 

presence of excess SeMet.  The doublet at 2.5 ppm related to the bis product disappears as the 

bischelate singlet and doublets between 2.4-2.5 ppm appears.  This product does not form from 

the monochelate product even in the presence of excess SeMet. 

!
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This reaction was also analyzed with high-performance liquid chromatography (HPLC).  

The three products from the reaction of Pt(en)(NO3)2 with SeMet were separated by their 

different charges using a Hitachi Elite LaChrom:  Pump L-2130 and UV Detector L-2400 cation 

exchange column.  The bischelate product is neutral and was the fastest product to travel through 

the column indicated by a peak at 2-3 minutes.  The monochelate product has a charge of +1 

associated with it and was indicated by a peak at 5 minutes.  The bis product has a charge of +2 

associated with it and was indicated by a peak at 15 minutes to move through the column.  The 

buffers used to move the sample through the column were 20 mM phosphate, pH 6 and 0.5 M 

NaCl. 

!
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DISCUSSION!

It has been shown in previous experiments that the type of platinum(II) form making up 

the structure of cisplatin reacts faster kinetically with SeMet than Met.  Expanding on this 

suggestion, it was the purpose of this project to take two analogs of the cisplatin compound and 

react them with SeMet to characterize their products.  Both the analogs have two leaving groups 

of either chlorides or nitrates that relate to the structure of cisplatin.  The two leaving groups are 

important for creating an overall chemistry to easily move the compound through the cell 

membrane and then be replaced to prevent it leaving the cell.  The differences in the analogs from 

cisplatin were meant to look at the effects that bulk can play in binding with SeMet. 

The results of the project in certain areas can be used to formulate a prediction of the 

SeMet adduct in these reactions.  It is possible to predict the SeMet adduct characterization with 

the behavior of the reaction of Pt(Me4en) with SeMet.  The product [Pt(Me4en)(SeMet)-Se,N]
+
 

with its two chiralites were represented by specific peaks in both the 
1
H and 

195
Pt NMR spectra, 

which were similar to peaks seen previously with the reaction of Pt(Me4en) with N-

actylmethionine (N-AcMet) and Met.  This allows for certain similarities to be drawn regarding 

the structure and other characteristics of the product. 

One of the main focuses of the results with the project has been on a phenomenon called 

the trans effect.  The trans effect is related to platinum(II) compounds and suggests that ligands 

trans to a chloride, sulfur, or selenium atom are more easily displaced than when trans to an 

ammonia group.  This effect is known to be a kinetic effect and not thermodynamic, meaning that 

it requires a compound effective at substituting for the reaction to work properly.  It prefers to 

interact with ligands or elements that are kinetically favored, as opposed to those that are 

thermodynamically favored.
7
 There are several culminating factors that suggest this effect is 

taking place in some of the reactions and not taking place in others.   



!

! $'! !

The reaction of SeMet with Pt(en) results in separate products dependent on the Pt:Se 

ratio present.  In a low Se:Pt ratio the monochelate product is prominent, while in a high ratio the 

bis and bischelate product is more prominent.  The low Se:Pt ratio favors the monochelate 

product mainly due to there being less SeMet compounds to Pt compounds, making the 

probability of double substitution with SeMet unlikely.  Although the substitution with SeMet is 

faster than the formation of the chelate on the monochelate product, without a second substitution 

(due to low concentration) the nitrogen of one of the amine groups will chelate and prevent 

further substitution.  The bischelate product formed from the reaction of Pt(en) with SeMet in a 

high Se:Pt ratio only appears after the formation of the bis product.  In 
1
H NMR spectra taken at 

several intervals over a period of time, the signals for the bis product disappear and the bischelate 

signals begin to form.  There are no peaks indicating that the bischelate product is present at the 

initial stage of the reaction.  In a reaction with low Se:Pt ratio favoring the monochelate product, 

there appears no formation of the bischelate product.  This is due to the presence of the 

monochelate labilizing only one of the Pt-N bonds, which directly affects the formation of the 

bischelate product by breaking the chelate.  Formation of a new chelate would be unfavoarable, 

therefore there would be no formation of a bischelate product.  Even adding excess of N-AcMet 

after forming a monochelate product with N-AcMet, it took approximately three months at a pH 

of ~2.0 before any change was observed. 

The process of the trans effect with this compound is achieved by the chelated ligands 

that are displaced when the sulfur or selenium ligand attaches trans to both nitrogen ligands.  The 

entire process uses the formation of two chelates to replace one.  The first step in the process is to 

replace an N,N chelate (two chelated amine groups) with an Se,N chelate.  The first step is 

assumed to be thermodynamically neutral.  The second step is to displace the rest of the N,N 

chelate to form a second Se,N chelate, which should be favorable.  The free N,N chelate (free en) 
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is then visible with its own signal.  At no point was there indication that an intermediate form was 

being observed in the NMR data. 

Many studies have been done with cis/carbo-platin in which the amine groups are not 

chelated.  In those experiments that were performed, the results suggested that the non-chelated 

amine groups were easier to displace than chelated amines.  This is strongly influenced by the 

chelate forming a more rigid structure to the central atom.
13 

Platinum (II) has a high affinity for sulfur, and it is possible that sulfur-containing 

biomolecules other than DNA may have an important role in the metabolism and mechanism of 

action or cisplatin.  Higher affinity for selenium may cause it to have the same role as sulfur, and 

it has been shown in in vivo studies to prevent cisplatin-induced drug resistance and toxicity.  

However, it does not affect the cytotoxicity of cisplatin.  Greater affinity for SeMet, along with 

cisplatin’s high specificity, may lead to new methods of targeting and reactions within the cell.
14

  

Although the specific mechanisms involved in the reaction of two cisplatin-like 

compounds with selenomethionine are not fully understood, the trans effect plays a significant 

role in one of them. The reactions produced four products that were identified and characterized 

from NMR spectra and HPLC data and the significance of these products could be the focus of 

future research.  The anticancer properties of selenomethionine and its reduced cellular toxicity 

make it a promising area for further cancer reaserch.  The knowledge gained from the project 

could provide insight into the specific mechanisms that occur in the reactions and if they will 

have significance in reactions with other molecules.!
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