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ABSTRACT 

 
 
The net-spinning caddisfly Hydropsyche simulans can be a common inhabitant of 

shallow reaches in riverine systems, and is easily the most common hydropsychid in the 

upper Green River, Kentucky. This study was performed in summer 2011 and focused on 

two main questions: 1. Do the larvae of the riverine caddisflies H. simulans and 

Cheumatopsyche preferentially inhabit dense patches of P. ceratophyllum compared to 

bare substrates in the upper Green River?, and 2. Do larvae of H. simulans and 

Cheumatopsyche consume the filamentous alga Cladophora during the annual late 

summer algal bloom in the upper Green River? Densities of both hydropsychid taxa were 

significantly higher in very high (> 75% areal coverage) P. ceratophyllum habitat. A 

multi-source mixing model (IsoSource) using both δ13C and δ15N stable isotope data 

revealed that Cladophora was a prominent assimilated dietary item during August and 

September, indicating that both taxa can preferentially graze the filamentous alga during 

seasonal blooms. There appears to be a clear habitat preference for P. ceratophyllum for 

net-spinning caddisfly larvae, as well as the implication of behavior to switch from 

grazing off the nets to grazing directly on Cladophora sp. when the resource is abundant 

during late summer and into early autumn. 

 

List of Keywords: Cladophora, Green River, Hydropsyche simulans, caddisfly, 

Podostemum ceratophyllum, filamentous algae, Cheumatopsyche 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

 
A mosaic of heterogeneous patches, structurally ranging from lotic to lentic, characterizes 

river and floodplain systems (Delong and Thorp, 2006; Delong, 2010). Aquatic 

communities are influenced by biotic and abiotic components of the system in which they 

reside. In riverine systems, geomorphic, soil composition, lithologic, shading, and land-

use characteristics are important abiotic factors (Penick, 2010). Many of these abiotic 

factors contribute to which nutrients are available and which are limiting. Primary 

productivity and algal biomass accrual are influenced by nutrient availability (Lohman et 

al., 1991; Dodds et al., 2002). Primary producers in lotic systems are either suspended in 

the water column (i.e., sestonic) or attached to substrates (i.e., benthic) (Penick, 2010).  

Different primary producers may be limited by different nutrients (Hecky and 

Kilham, 1988; Borchardt, 1996). Limiting nutrients are those which are unavailable at the 

levels required by cellular growth (Dodds et. al. 2002). Phosphorus and nitrogen are 

typically found to be the main limiting macronutrients in aquatic communities, including 

stream systems (Lohman et al., 1991). Even the terrestrial plants that live in the 

floodplain may contribute to the riverine community’s structuring by providing shade, 
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inhibiting some growth while encouraging others, and by contributing organic matter 

which can shift the nutrient composition to favor a change in dominant primary producers 

(Tank and Dodds, 2003; Veldbloom and Haro, 2011).  

Aquatic macrophytes in riverine systems can serve as habitat for the biota as well as 

stable substrate for the growth of macroalga, such as Cladophora sp. (Delong, 2010).  

Podostemum ceratophyllum Michx. is an aquatic macrophyte that can be highly 

productive in shallow, swift-flowing, riffle areas on bedrock substrate in the eastern 

United States (Hill & Webster, 1984; Hutchens et al., 2004) and is distributed in tropical 

to temperate rivers in the Nearctic region (Hill & Webster, 1984). The Podostemaceae is 

a family of herbaceous annual and perennial aquatic macrophytes that tend to resemble 

aquatic bryophytes or freshwater algae in physical appearance (Philbrick, 1984). Highly 

productive P. ceratophyllum is indicative of high quality, well-oxygenated rivers in the 

southeastern U.S. (Hill & Webster, 1984) and provides stable habitat for 

macroinvertebrate communities (Hutchens et al., 2004). This small aquatic plant 

commonly acts to increase the stability and anchoring of benthic substrates due to the 

spreading configuration of the root-like holdfast structures (Hill & Webster, 1984).  

During summer, P. ceratophyllum can form dense mats over stable substrate and can 

grow stems exceeding 15 cm in length (Hutchens et al., 2004). These characteristics 

allow it to provide a habitat where macroinvertebrate species can hide and hunt, much 

like a dense terrestrial jungle, by increasing the surface area on which they can live 

(Hutchens et al., 2004). Without the cover this macrophyte provides, macroinvertebrate 

diversity abundance and biomass are markedly lower (Hutchens et al., 2004). 
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Podostemum ceratophyllum also provides stable substrate for attachment by filamentous 

macroalgae, specifically Cladophora sp. in the Kentucky’s upper Green River, which 

may act as a food resource for macroinvertebrates during the species’ periods of rapid 

summer growth. 

Cladophora is a genus of filamentous algae that is common to riverine systems with 

high nutrient inputs. Members of this genus can be found in temperate and tropical 

waters, in lentic and lotic systems, and inhabits a broad variety of marine, brackish, or 

freshwater environments (Dodds & Gudder, 1992). Species of this genus are typically 

made up of green single cells that can form long branching chains, or filaments, that look 

like green thread or hair to the naked eye (AquaScaping World, 2012). The filaments 

have a tendency to grow on nearly any submerged, stable surface and, as they grow, 

collect debris washed over them by the current (AquaScaping World, 2012).  Cladophora 

sp. can cover large areas on the bottom surfaces of shallow riverine habitats and 

potentially outcompete other riverine primary producers, including sestonic (i.e., 

suspended in water column) and periphytic (i.e., microscopic forms attached to rocks) 

algae, for light and nutrients.  

Cladophora sp. can dominate primary production in nutrient-enriched systems 

(Dodds & Gudder, 1992). This often occurs during rapid growth periods in riverine 

systems that experience low-flow conditions during the summer and early autumn (Power 

et al., 2009; Penick, 2010). The upper Green River experiences such events and the 

blooms that occur during this time grow with such rapidity that a visible difference in 

cover can be seen within a short time period (i.e., a few weeks), even over a large area. 
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This macroalga was also recently demonstrated to play host to epiphytic diatoms 

containing nitrogen-fixing cyanobacteria, which may allow the algae to survive in low-

nitrogen environments (Dodds & Gudder, 1992; Bratt, 2011). 

In freshwater streams, it is typical that the growth of larval aquatic insects, such as the 

hydropsyche, is strongly influenced by food quality and availability, temperature, and 

population density (Veldbloom and Haro, 2011). Net-spinning caddisflies of the family 

Hydropsychidae were the consumers focused upon during this study, namely 

Hydropsyche simulans Ross and the Cheumatopsyche sp. Members of this family often 

make up an integral portion of filter-feeding fauna in riverine systems they inhabit 

(Georgian and Wallace, 1981). Hydropsychid larvae characteristically spin a net, built not 

unlike a square grid, constructed perpendicular to the current (Georgian and Wallace, 

1981). Hydropsychid larvae have been shown to be more prevalent in microhabitats 

containing large, stable substrates, typically rocky substrata and aquatic macrophytes, 

with high flow velocity (Georgian and Thorp, 1992). Multiple species of hydropsychids 

often coexist in these lotic ecosystems (Benke and Wallace, 1980).   

The larval stages of hydropsychids construct a fixed retreat below the surface of the 

water that includes a net that retains food materials in transport in the river current. The 

larval stage of H. simulans grazes opportunistically, namely on algae, detritus, and 

microarthropods (Rhame and Stewart, 1976; Wiggins, 1998). This species has also been 

shown, however, to graze directly on Cladophora sp. during periods of high filamentous 

growth (Rhame and Stewart, 1976). One of the primary purposes of this project is to 

investigate the influence of Cladophora sp. on the algal-feeding habits of the riverine 
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caddisfly H. simulans. The study species is common in the shallow area of large streams, 

such as riffles, and is widespread throughout eastern North America. 

There are several methods of determining the constituents of the diets of organisms, 

such as direct observation of feeding, analyses of gut contents, and analyses of stable 

isotopes and/or nutrients within the organism’s tissues and that of potential foods 

(Raikow and Hamilton, 2001). Based on the delicate nature and size of the study 

organism in this project, analyses of stoichiometry and stable isotopes were the best 

methods to determine the makeup of the diet of H. simulans. Composition stoichometry 

can be used to determine elemental makeup of materials and the amount (mass) of each 

elemental component, such as the carbon to nitrogen (C:N) ratio in a substance. C:N 

ratios indicate which food sources are most useful, as typically the higher the ratio is, the 

less suitable the food source is to potential consumers. 

The use of stable isotopes as an inexpensive yet accurate method to study aquatic 

food webs is becoming increasingly common (Raikow and Hamilton 2001, Atkinson et 

al. 2010). Stable isotopes are variants of a chemical element that either do not degrade or 

have half-lives too long to be measured, and have the same number of protons but a 

differing numbers of neutrons. The stable isotope portion of this study is classified as a 

natural isotope abundance study, which have been used increasingly as a means of 

determining the relative frequency of consumption of various food sources (Raikow and 

Hamilton, 2001). The distinctive carbon and nitrogen isotope signatures, 13C and 15N, can 

illustrate the larger process of nutrient cycling through a system and indicate what food 

sources have been major contributors in an animal’s diet (Phillips and Gregg, 2003). 
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These distinctive isotopes can be compared with the more common isotopes of these 

elements, 12C and 14N, providing a unique ratio that can be used to identify the source(s). 

The ratio of “heavy” (13C) to “abundant” carbon (12C) provides insight into which food 

resources derived mainly from primary producers (floodplain tree species, Cladophora, 

periphytic algae, sestonic algae, and organic matter in transport within the water column) 

become assimilated into the body tissues by primary consumers and detritivores 

(Peterson and Fry 1987). The ratio of “heavy” (15N) to “abundant” (14N) nitrogen 

provides a method of assessing trophic position (e.g., primary or secondary consumer) 

within a food web (Cabana and Rasmussen 1994).  

Several researchers (Delong and Thorp, 2006) have shown that living (e.g., algae, 

animal) and nonliving (e.g., detritus) components of a riverine food web produce distinct 

isotopic carbon and nitrogen signatures, making it possible to understand the relationship 

between resource availability to a consumer and what is actually consumed and 

assimilated into body tissue. Isotopic ratios of benthic invertebrates can vary between not 

only families, but species, due to the fact that one food resource that is considered high-

quality by one species may be passed over by another (Veldbloom and Haro, 2011). 

Stable isotope analyses of carbon and nitrogen were performed during the peak of an 

algal bloom and after the first scour event of the season to assess the linkages between the 

diet of H. simulans and the Cheumatopsyche sp. and several potential food resource 

items, particularly Cladophora sp.  

Two main questions were addressed in this study: 
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1. Do the larvae of the riverine caddisfly H. simulans and Cheumatopsyche sp. 

preferentially inhabitat dense patches of P. ceratophyllum compared to bare 

substrates in the Green River?, and 

2. Do the larvae of H. simulans and Cheumatopsyche sp. consume Cladophora sp. 

during the annual late summer algal bloom in the Green River? 

 

My first hypothesis for this study is that the larvae of the riverine caddisflies H. 

simulans and the Cheumatopsyche sp. are found in a habitat of P. ceratophyllum 

significantly more often than a habitat of bare substrate in the upper Green River, based 

on the growth habit of the plant and the observation of many caddisfly nets on them 

during the summer months. I anticipated that H. simulans and the Cheumatopsyche sp. 

larvae would actively choose to build their fixed retreats on and in the tangled mats of P. 

ceratophyllum readily available on the river’s bed. I expected them to choose this over 

loose substrate or bare rock, which are also abundant during the study period, where there 

wouldn’t be as much surface area to work with when spinning a net. 

My second hypothesis is that the seasonal availability of the filamentous species of 

the algae Cladophora would have a significant effect on the dietary habits of the larvae of 

H. simulans and the Cheumatopsyche sp. in the upper Green River. I anticipated that 

increased availability of Cladophora sp. during summer and early fall will result in 

reduced levels of sestonic algae, which will in turn be reflected in the diet of the 

caddisfly. I predicted that when both Cladophora sp. and sestonic algal levels were low, 

such as after a scour event, stable isotope analyses would show that the main dietary 
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component of the caddisfly was detritus. Oppositely, during a Cladophora sp. bloom, the 

levels of sestonic algae in the caddisfly diet will decrease and Cladophora sp. will be 

consumed and comprise the majority of the diet. 
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CHAPTER 2 
 
 

METHODS 
 
 
 

Study Reach Description 

The field research took place during June–October 2011 in a 7th-order reach of the upper 

Green River (37.2431, -86.0027) located in central Kentucky, U.S.A. at the Western 

Kentucky University Upper Green River Biological Preserve (WKU-UGRBP). The 

Green River originates in Lincoln County, Kentucky, and flows ca. 600 km west before 

emptying into the Ohio River. The Green River Basin is the largest of Kentucky’s twelve 

primary river basins, draining nearly 24,000 km2 of the Interior Plateau (71) and Interior 

Valley and Hills (72) Level III Ecoregions, nearly 23% of the commonwealth (Woods et 

al., 2002). 

The study reach is located at the downstream edge of the WKU-UGRBP (Figure 1.). 

A woody riparian corridor lines the entire portion of the WKU-UGRBP, comprised 

mainly by American sycamore (Platanus occidentalis L.), silver maple (Acer 

saccharinum L.), and box elder (A. negundo L.). The study reach is ca. 50 m wide, 

characterized by an open canopy and shallow run habitats underlain by small cobbles and 

gravel substrates, and is positioned within the Crawford-Mammoth Cave Upland Level 

IV Ecoregion. This ecoregion is underlain by Mississippian-age limestone and 

Chesterian-age fractured bedrock formations with low surface stream density and 

nitrogen-rich groundwater (Woods et al., 2002). Karst systems, especially those that are 
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limestone, are unique in that nutrient inputs can come both from surface runoff during 

precipitation events and directly from the dissolution of the parent rock (Holloway et al., 

1998; Morford et al., 2011). Previous research conducted at the study reach revealed that 

during base-flow conditions in summer and autumn that nitrogen levels are high, 

particularly for nitrate (mean: 1.1–1.4 mg/L) but less so for ammonia (mean: 0.02–0.09 

mg/L) (Penick, 2010). Base-flow phosphorous levels are also moderately high (soluble 

reactive phosphorous, mean: 0.08–0.10 mg/L; total phosphorous, mean: 0.10-0.21 mg/L). 

There are several aquatic macroproducers present at the study reach, including a 

productive and dense bed of the vascular plant Podostemum ceratophyllum (Michx). 

During late summer, a dense bloom of Cladophora sp. rapidly proliferates and reaches 

maximum standing stocks in stable flow conditions prior to high-flow scouring events in 

autumn. Fontinalis sp., Potamogeton sp. and Spirogyra sp. are also present, but markedly 

less abundant. Dense beds of Justicia sp. are present along exposed gravel bars 

immediately above the base flow channel.  

Over 30 species of fish have been collected from shallow (< 1 m) habitats along the 

study reach (Wilsey, 2008; Grubbs, unpublished data). Several species are particularly 

abundant, namely Campostoma oligolepis (Hubbs & Green) (largescale stoneroller), 

Cottus carolinae (Gill) (banded sculpin), Etheostoma blenniodes (Rafinesque) (greenside 

darter), E. zonale (Cope) (banded darter), Hypentelium nigricans (Lesueur) (northern hog 

sucker), Lepomis macrochirus (Rafinesque) (bluegill), Micropterus punctulatus 

(Rafinesque) (spotted bass), Moxostoma spp. (redhorses), Notropis atherinoides 

(Rafinesque) (emerald shiner), N. telescopus (Cope) (telescope shiner), Noturus elegans 

(Taylor) (elegant madtom), and Pimephales notatus (Rafinesque) (bluntnose minnow). 
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There are several common macroinvertebrate taxa that have been obtained from 

coarse substrate habitats along the study reach. Abundant molluscan taxa include a 

gastropod snail Leptotoxis praerosa (Say), the introduced Asiatic clam Corbicula 

fluminea (Müller), and a productive and diverse assemblage of unionid mussels 

(Cicerello, 1999). Several unionids are abundant, especially Actinonaias ligamentina 

(Lamarck) (mucket), Amblema plicata (Say) (threeridge), Cyclonaias tuberculata 

(Rafinesque) (purple wartyback), Elliptio dilatata (Rafinesque) (spike), Megalonaias 

nervosa (Rafinesque) (washboard), Obliquaria reflexa (Rafinesque) (threehorn 

wartyback), Quadrula quadrula (Rafinesque) (mapleleaf), and Tritogonia verrucosa 

(Rafinesque) (pistolgrip) (Cicerello, 1999). 

In addition to the study species Hydropsyche simulans (Ross) and  Cheumatopsyche 

spp., abundant aquatic insect taxa include ephemeropterans Baetis sp., Caenis sp., 

Maccaffertium mediopunctatum (McDunnough), Serratella deficiens (Morgan), and 

Tricorythodes sp., the giant stonefly Pteronarcys dorsata (Say), aquatic beetles Dineutus 

sp., Stenelmis crenata group, and Psephenus herricki (Dekay), the megalopteran 

Corydalus cornutus (L.), caddisflies Cheumatopsyche sp., Hydropsyche simulans (Ross), 

and Oecetis sp., and the dipteran blackfly Simulium sp. (Grubbs, unpublished data). 

Chironomid dipteran larvae are very abundant but have yet to be identified below the 

family level. 

Field and Laboratory Methods 

Environmental variables 

Nutrient content, dissolved oxygen levels and pH were quantified monthly. Samples for 

nutrient analyses (n = 4) were obtained at midstream in acid-washed 275-mL bottles 
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during low water conditions at flow ca. < 11,000 L/s (< ca. 400 cfs). Total phosphorus 

(acid persulfate digestion), soluble reactive phosphorus (ascorbic acid method), nitrate 

(cadmium reduction method), ammonia (salicylate method), and total nitrogen (persulfate 

digestion method) levels were determined spectrophotometrically. Dissolved oxygen and 

pH readings were taken during mid-day with a Hach HQ40d digital meter. Discharge data 

were obtained from a USGS streamflow monitoring station at Munfordville (Station 

number 03308500; 37.2667, -85.8872), located ca. 11.5 km NW upstream of the study 

reach. Due to the paucity of surface tributaries between Munfordville and the study reach 

it was assumed that flow conditions would be representative of the USGS station. 

Temperature data were obtained with a HOBO Water Temp Pro v2 data logger 

configured at 1-hr intervals. 

Algal biomass 

Biomass levels of sestonic and filamentous algae were measured monthly during low-

flow conditions. Sestonic algal samples (n = 4) were obtained at midstream in acid-

washed 275-mL bottles coincident with the collection of nutrient samples. The bottles 

were then immediately placed inside a covered cooler until the samples were able to be 

filtered in order to prevent degradation of chlorophyll. Sestonic samples were vacuum-

filtered on 47-mm diameter, 0.7-µm pore size Whatman GF glass fiber filters, placed in 

individual Petri dishes, wrapped in foil, and kept refrigerated in the dark for up to 14 

days. The algal samples were analyzed for chlorophyll-α concentrations using USGS 

methods (Yin, 2005). Each filtered sample was placed in a 50 mL centrifuge tube with 3–

6 glass beads and 10 mL of a 50:50 dimethyl sulfoxide (DMSO) and acetone solution. 

The tube was vortexed for 30 seconds, stored overnight in the dark at 4°C, centrifuged 10 
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min at 4300 rpm, and the supernatant transferred to a new tube. A second 10 mL of 

DMSO:acetone was added to the original sample and the process was repeated. The two 

supernatant liquids were combined. A final five mL of DMSO:acetone was added to the 

original sample and the process repeated. The resulting supernatant was centrifuged and 5 

mL of the liquid was analyzed with a Shimadzu RF-5301 PC spectrofluorometer. 

Samples were measured against set chlorophyll standards produced from an initial 

239 ppb solution and 20% serial dilutions of 47.60 ppb, 9.52 ppb, 1.90 ppb, and 0.38 ppb. 

A linear regression of intensity vs. concentration of the standards established a standard 

curve and was used to calculate chlorophyll-α concentrations (mg/L) for the sestonic 

samples. 

Percent areal coverage of Cladophora sp. and P. ceratophyllum were calculated in 

July and August along longitudinally positioned cross-stream transects (n = 10). Standing 

stocks of Cladophora sp. and P. ceratophyllum were quantified in August, September, 

and October. Different transect sets were selected each month (n = 5) to avoid 

resampling. Along a transect, 1-m intervals were established and four points were 

randomly selected. At each point a Hess sampler (0.09 m2 sampling area) was placed at 

the center of each point and all Cladophora sp. and P. ceratophyllum was removed by 

hand, placed into individually-labeled plastic bags, and transported to the laboratory in a 

cooler. Samples were placed into a drying oven for 48 h at 80oC, weighed to the nearest 

0.01g to quantify dry mass (DM), crushed with a mortar and pestle, transferred to pre-

weight porcelain crucibles, and placed in a muffle furnace for 4 h at 550oC. The 

remaining ashed, inorganic materials were weighed to the nearest 0.01g. Ash-free dry 
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mass (AFDM; mg/m2) for each sample was determined by subtracting the mass of the 

ashed materials from DM. 

Macroinvertebrate sampling 

To quantify benthic densities (no./m2) of the two hydropsychid taxa, sampling was 

conducted by randomly choosing areas of substrate in the study reach in which there was 

either very high or very low P. ceratophyllum growth present. Those areas considered as 

very low growth consisted < 5% areal coverage, while those considered very high 

contained >75% coverage. Five samples were taken from each habitat type in August (= 

mid-summer) and September of 2011(= late summer) using a Hess sampler (0.09 m2 

sampling area). If the sampling area contained any cobble-sized substrates with 

filamentous algal or P. ceratophyllum growth present, it was either cleaned of the growth 

or, if it was small enough to completely fit within the sampling area, it was taken as part 

of the sample. Everything contained in the catch-net was then washed into a bucket 

where any large stones were either removed, or cleaned, and then removed. The 

remaining portion of the sample was rinsed through a 500-µm sieve, placed in a Nalgene 

container, and preserved in 95% ETOH. In the laboratory, samples were re-rinsed 

through a 500-um sieve and then full-sorted under a dissecting microscope to partition 

out all H. simulans and Cheumatopsyche sp. larvae.  

Food resources 

Potential dietary components for H. simulans and the Cheumatopsyche sp. included 

Cladophora sp., P. ceratophyllum, floodplain tree leaves, epiphytic biofilm, sestonic 

algae, and transported organic matter (TOM). Samples for all resources were obtained in 
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mid and late summer. Fresh specimens of H. simulans were obtained at the same time in 

both months while the Cheumatopsyche sp. was collected only in September. 

Cladophora sp. samples were obtained by cutting filaments near the tip, placed in 

individual plastic bags, and held on ice. Cladophora sp. samples were inspected under a 

dissecting microscope (7–10X) and any visible detrital material was removed. Samples of 

P. ceratophyllum were obtained by cutting plant tissue above the roots, placed in 

individual plastic bags, and held on ice. The P. ceratophyllum samples were inspected 

under a dissecting microscope (7–10X) to remove detritus and Cladophora sp. Composite 

samples of American sycamore, box elder, and silver maple leaves were collected 

adjacent to the stream reach, placed in individual plastic bags, and held on ice. Rocks 

with epiphytic biofilm development were scrubbed with a tooth brush into a bucket 

containing river water, transferred to an acid-washed 275-mL bottle and kept in a 

refrigerator. Surface samples of TOM were obtained at two near-shore and two mid-

channel points. Individual samples (20 L each) for each transect were pooled into one 80-

L composite sample to provide a cross-channel representation for the water column. 

The processed samples of filamentous algae, P. ceratophyllum, and leaf litter were 

dried at 80oC for 24 h. Dried samples were pulverized to a fine powder using a Wig-L-

Bug. The epilithic biofilm samples were initially vacuum-filtered through a 1-µm Gelman 

glass fiber filter. The composite TOM samples were first passed through two sieves to 

partition into coarse (CTOM; > 1mm diameter) and fine (FTOM; > 100-1,000 µm 

diameter) particle size classes. Subsequently, there was insufficient CTOM material to 

process further and this fraction was discarded. Water that passed through the 100-µm 

sieve was retained and vacuum-filtered through a 1-µm Gelman glass fiber filter to obtain 
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an ultrafine (UTOM; 1-100µm diameter) fraction. The resulting filtrate was processed to 

obtain a colloidal dissolved organic matter (cDOM) sample was according to Delong and 

Thorp (2006). The cDOM sample was adjusted to a pH of 4.2–4.3, oxygenated with 

aquarium bubblers, and evaporated at 60-65oC to a particulate residue. The latter was 

pulverized with the Wig-L-Bug. 

Epilithic biofilm, FTOM, and UTOM samples were processed using a colloidal silica 

technique to separate algal and detrital components (Hamilton et al., 1992; Delong & 

Thorp, 2006). Glass fiber filters were placed in 50-mL conical centrifuge tube with a 76% 

solution of Ludox TM-50 (50 wt. % suspension) colloidal silica and centrifuged at 1200 

rpm for 15 min. The living algal fraction remaining in the top aqueous layer was 

separated from the detrital fraction present at the bottom of the centrifuge tube and the 

separation process was repeated. The separate fractions were vacuum-filtered through 

separate 1-µm Gelman glass fiber filters and washed with distilled water to remove 

excess silica. Material was carefully peeled - off of the filters and dried at60oC for 48 h. 

Total C content, total N content, and C and N stable isotopic ratios were quantified 

with a Thermo Electron LTQ-Orbitrap Hybrid MS 

(http://cmsf.ucdavis.edu/instrumentation.html) mass spectrometer in the University of 

California Davis Campus Mass Spectrometry Facilities (http://cmsf.ucdavis.edu/). 

Isotopic ratios were expressed as: 

 
δ

13C or δ15N (per mil) = ([Rsample/Rstandard]-1) * 1000 

 
where R is the 13C:12C (=δ13C) or 15N:14N (=δ15N) ratio. A bovine protein (peptone) 

laboratory standard was referenced against an international standard.  Stable N and C 
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isotopic analyses were performed on a PDZ Europa ANCA-GSL elemental analyzer 

interfaced to a PDZ Europa 20–20 isotope ratio mass spectrometer (Sercon Ltd., 

Cheshire, UK) at UC Davis Stable Isotope Facility, University of Davis, California, USA. 

Stable isotope ratios were calculated as dX(%) = (RSample/RStandard - 1) * 1000 where 

X is either 13C with the corresponding ratio, R, 13C/12Cor 15Nwith corresponding R, 

15N/14N. Pee Dee Belemnite and atmospheric nitrogen (AIR) were used as standards for 

carbon and nitrogen analysis, respectively (Boll et al., 2012). 

Statistical Methods 

A two-way analysis of variance (ANOVA) was used to assess the importance of the P. 

ceratophyllum treatment (very low vs. very high) and Cladophora sp. levels (before 

[July] and after a partial scour [September]) on hydropsychid densities. The ANOVAs 

were performed separately for H. simulans and the Cheumatopsyche sp. SPSS 19.0 (IBM 

Corporation) was employed for the ANOVA’s. 

Stoichiometry was used to quantify and compare molar C:N ratios in the body tissue 

of consumer larvae (without their gut) and the basal food resources as a means of 

assessing which resource was most likely being consumed and assimilated. A multisource 

mixing model, IsoSource, was employed to model the contribution of different food 

resources (Phillips and Gregg, 2003) to the diets of H. simulans and the Cheumatopsyche 

sp. IsoSource creates all possible iterative combinations of resource proportions (each 

combination = 100%) at set increments (1%, tolerance at 0.05) to established a predicted 

source mixture. The predicted multisource signature was then compared to the observed 

δ
13C and δ15N values of the consumer. All basal food resources (Cladophora sp., P. 

ceratophyllum, tree leaves, biofilm-algal, biofilm-detrital, TOM-algal, and TOM-detrital) 
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were used for assessing potential mixing contributions to the diet of both consumers. To 

correct for anticipated fractionation that results from trophic transfer, δ13C and δ15N were 

adjusted by +0.4‰ and +3.4‰, respectively (Post, 2002; Delong and Thorp, 2006). 

Because IsoSource works only on one temporal dataset at a time, mixing models were 

employed separately on H. simulans in August and September. IsoSource was applied to 

the Cheumatopsyche sp. only in September. Fresh material of the latter taxon was not 

obtained in July. 
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CHAPTER 3 
 
 

RESULTS 
 

 
Environmental variables 

Mean pH in the study ready was 7.92 and varied little across the study period (range: 7.72 

– 8.10). Dissolved oxygen levels rarely exceeded 9.0 mg/L and exhibited an overall mean 

of 8.3 mg/L. Temperature data was not obtained in June. In-stream temperatures were 

warmest during July, followed closely by August (Table 1). Temperatures decreased 

markedly during September and October. River discharge was variable throughout the 

study period, but with the exception of the first half of June the study reach was generally 

accessible for in-stream sampling via wading. June had easily the highest mean discharge 

levels (61517.9 L/s; Table 1). There were also short-term summer peak-flow events in 

July, leading to this month producing the second highest mean discharge level (18009.5 

L/s; Table 1), and again in early September (ca. 48400 L/s) prior to the second benthic 

sampling event. Discharge levels were relatively stable in August and October. 

 Nitrogen and phosphorous levels in the upper Green River at the study reach were 

high, particularly for the nitrate and soluble reactive phosphorous components (Table 2). 

The high values for these two nutrients were likewise reflected in high total nitrogen and 

total phosphorous levels. Ammonia levels are comparatively lower and remained 

relatively constant during summer and autumn. The TN:TP ratios were highest in early 
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summer, decreased nearly two-fold by late summer, and remained stable through 

October. 

 
Primary producer standing stocks and percent cover 

Mean sestonic algae levels increased from July to August, but peaking only at 10.5 µg/L 

chlorophyll-α (Table 3) and then decreased nearly 5-fold by September with only a 

marginal increase in October. Cladophora sp. coverage of the stream bed increased 

quickly during summer, from 15.6% to nearly 75% areal coverage in August (Table 3). 

Cladophora sp. standing stocks were similarly highest in August. The scouring event in 

early September resulted in moderately-decreased standing stocks. Both standing stocks 

and percent areal coverage of the streambed by P. ceratophyllum remained stable across 

the study period, increasing only from 48% (August) to 57% (October; Table 3).  

 
Hydropsychidae community 

Hydropsyche simulans and Cheumatopsyche sp. larvae were the only hydropsychid taxa 

obtained from the study reach. Because Cheumatopsyche larvae are difficult to identify to 

species (Wiggins 1998, Burrington 2011), multiple taxa may have been present. Densities 

of both hydropsychid taxa were greatest in the very high P. ceratophyllum areal coverage 

habitat, yet varied with regard to month (Table 4). The high H. simulans density 

coincided with rapidly-increasing Cladophora sp. standing stocks. Density of the 

Cheumatopsyche sp. larvae remained high during Cladophora sp. proliferation and 

following the modest scour event in early September (Table 3). Density of H. simulans 

was significantly higher in the very high P. ceratophyllum habitat (F = 38.3, p < 0.001), 

with a ca. 24-fold higher density in July and also nine-fold greater in September. 
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Hydropsyche simulans density was also higher in July (F = 10.6, p = 0.005), but the 

interaction effect of treatment and month was likewise significant (F = 10.3, p = 0.006). 

Similar to H. simulans, the density of the Cheumatopsyche sp. was significantly higher in 

the very high P. ceratophyllum habitat (F = 22.2, p < 0.001), but neither month (F < 0.1, 

p = 0.767) nor the treatment-month interaction term (F = 0.1, p = 0.733) were significant. 

 
Food resources 

Mean stoichiometric C:N ratios and stable isotopic values varied considerably across the 

basal food resources (Tables 5–6). Mid-summer C:N ratios ranged from 5.3 (detrital 

component of epilithic biofilm) to 21.2 (algal UFTOM) and 24.2 (detrital FTOM), while 

late summer C:N ratios ranged from 4.0 (cDOM) to 23.4 (floodplain tree leaves) (Table 

5). The mid-summer δ13C values ranged from -34.2 (Cladophora sp., most 13C-depleted) 

to -28.8‰ (detrital UFTOM, most 13C-enriched), while the late summer δ13C values 

ranged from -39.7 (P. ceratophyllum, most 13C-depleted) to -24.9‰ (FTOM algal, most 

13C-enriched) (Table 6). The mid-summer C:N ratio value for H. simulans (5.0) most 

closely aligned to detrital epilithon (5.3) and possibly Cladophora  sp.(8.9), while in late 

summer the C:N ratio values for H. simulans (4.8)  and the Cheumatopsyche sp. (5.5) 

were most similar to cDOM (4.0) and possibly Cladophora  sp.(9.8). The mid-summer 

δ13C value for H. simulans (-34.0) was nearly identical with Cladophora sp.(34.2) and 

somewhat close to detrital epilithon (-31.9), while in late summer the δ13C value for H. 

simulans (-32.7) and the Cheumatopsyche sp. (-31.5) were most similar to leaves (-30.6) 

and algal epilithon (-29.9) (Table 6). The IsoSource model indicated that during mid-

summer that Cladophora sp.(84–86%) was likely the main food source of H. simulans, 

with P. ceratophyllum (10–11%) estimated as a distant second. The maximum 
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contribution for any epilithic or TOM source was only 3% (Table 7). Similarly, in late 

summer the IsoSource model analysis indicated Cladophora sp. as the main food source 

of both H. simulans and the Cheumatopsyche sp. (66–72% and 56–60%, respectively), 

with tree leaf material a distant second for H. simulans (3–14% and 2–13%, respectively) 

(Table 7). Each of the remaining resource types was estimated to contribute only a small 

fraction to the late summer diet of H. simulans. In contrast, both TOM components were 

also likely important dietary items to the Cheumatopsyche sp. during late summer (Table 

7).
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CHAPTER 4 
 
 

DISCUSSION 
 

 
Hydropsychid larvae are found in a wide range of lotic environments (Wiggins 1998), 

typically in areas of higher current (Fuller and Mackay 1980) and associated with coarse 

substrates (e.g. cobbles or wood; Wallace 1975, Oswood 1979, Cudney and Wallace 

1980). Fairchild and Holomuzki (2002) found that the distribution of the net-spinning 

caddisfly Hydropsyche betteni was positively correlated with the amount of habitable, 

rocky substrates. The first hypothesis for this study, that larvae of the two riverine 

hydropsychid caddisflies H. simulans and the Cheumatopsyche sp., are found 

preferentially in dense P. ceratophyllum habitat in the upper Green River was strongly 

supported. 

Densities of both H. simulans and the Cheumatopsyche sp. were markedly and 

significantly higher in the very high P. ceratophyllum habitat compared to the very low 

P. ceratophyllum habitats during both July and September. There was a significant effect 

of time between the sampling periods for H. simulans, a difference that wasn’t mirrored 

with the Cheumatopsyche sp. The difference for H. simulans could have been an effect of 

life cycle rather than a result of a small decrease in Cladophora sp. standing stocks 

following the small spate-scouring event. The nearly three-fold decrease of larval H. 

simulans density may have resulted from adult emergence prior to the September 

sampling event. Rhame and Stewart (1976) observed H. simulans emergence during July 
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and August during their year-long study on the Brazos River in Texas. The peak density 

(2002 individuals/m2) of H. simulans in their study occurred in mid-summer, followed by 

a sharp decrease one month later to 610 individuals /m2, was very similar to the 1862 to 

636 individuals/m2 drop in density that occurred in this study. 

The observed result from the Cheumatopsyche sp. could have been due to there being 

multiple species in the samples with possibly different, or very similar,  species-specific 

life cycle timing. Several hydropsychid life cycle studies have reported two or more 

Cheumatopsyche species (e.g., Rhame and Stewart 1976, Sanchez and Hendricks 1997). 

Even if only one species was present, there may have been multiple generations present 

during the summer months. For example, Alexander and Smock (2005) reported 

considerable size variation and likely multiple generations of C. analis in a Virginia 

stream. 

 Podostemum ceratophyllum provides important habitat for riverine 

macroinvertebrates (Grubaugh et al. 1997, Hutchens et al. 2004) and possibly also for 

riverine fishes (Connelly et al. 1999, Neely et al. 2003, Argentina et al. 2010a). Although 

the mean monthly standing stocks reported in this study (48.5–56.7 AFDM g/m2; Table 

3) during summer and autumn were ca. 2–5 fold lower than the maximum values (101.3–

244.8 AFDM g/m2) reported by Hill and Webster (1980) in the New River, Virginia, 

dense patches of this macrophyte covered ca. 50% of the benthic substrata within the 

study reach (Table 3). This value would be higher if portions of the stream reach lacking 

coarse substrates were not included in this. Similarly, Argentina et al. (2010a) reported 

pre-manipulation percent cover values of 32.8 and 60.6% in their work in Conasauga 
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River, Georgia and Tennessee and Argentina et al. (2010b) documented a maximum 

percent cover of 55% from 20 shoals from the same river system. 

Hutchens et. al. (2004) found that a complete removal of P. ceratophyllum in the 

Little Tennessee River greatly reduced total macroinvertebrate abundance and biomass 

and showed a strong positive relationship between the macrophyte surface area and total 

macroinvertebrate abundance and biomass. They estimated that P. ceratophyllum 

increased surface area by 3–4 fold compared to bare bedrock habitat, revealing that P. 

ceratophyllum provides important habitat and promotes riverine benthic 

macroinvertebrate productivity. Hutchens et. al. (2004) also suggested that the ability of 

P. ceratophyllum to facilitate high macroinvertebrate productivity is similar to the 

ecological roles played by bryophytes and the filamentous alga Cladophora sp., citing 

specifically the findings of Dodds and Gudder (1992) that Cladophora sp. mats have the 

ability to support a dense macroinvertebrate community.  

Grubaugh et al. (1997) similarly found in their study in an Appalachian river 

continuum that macroinvertebrate secondary production was highest on P. 

ceratophyllum. They attributed this to the macrophyte’s ability to stabilize the gravel and 

small cobble substrates. Secondary production estimates on bedrock habitats containing 

P. ceratophyllum were also higher than those containing bryophyte mosses and other 

habitats with different substrates that lacked P. ceratophyllum. Unlike the steady standing 

stock of P. ceratophyllum that was observed in this study, Hill and Webster (1984) 

recorded an increase in standing stock of P. ceratophyllum from mid-May until late 

August before starting to decline in their study area on the New River of Appalachia. 
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The second hypothesis, that the seasonal availability of the filamentous algae 

Cladophora would have a significant effect on the dietary habits of the larvae of the 

riverine caddisfly H. simulans in the upper Green River, was also supported. The high 

density of H. simulans and the Cheumatopsyche sp. coincided, in part, with high 

Cladophora sp. standing stocks. This positive correlation between larval density and 

Cladophora sp. is similar to Fairchild and Holomuzki (2002), who found that the 

presence of filamentous algae on substrates significantly increased larval density of 

hydropsychid caddisflies. They also observed that hydropsychids will use Cladophora sp. 

to construct their retreats, mirroring the previously mentioned statement on the supportive 

role these algae can play for macroinvertebrate communities of Dodds and Gudder 

(1992). 

Hydropsychid larvae are functionally defined as filtering-collectors (e.g. Wallace and 

Merritt 1980, Merritt and Cummins 2006) but are opportunistic in their feeding habits, 

with substantial dietary variation that can include a combination of detrital, algal, and 

animal tissues (e.g. Coffman et al. 1971, Rhame and Stewart 1976, Benke and Wallace 

2000) depending in season and availability of potential food items. The mean 

stoichiometric C:N ratios of Cladophora  sp.(8.9) were similar to H. simulans in August 

(5.0) and September (4.8) and the Cheumatopsyche sp. in September (5.5). Although the 

epilithic detrital C:N ratio (5.3) was nested in the range of each of the hydropsychid 

consumer taxa, the IsoSource modeling results showed this basal resource was at most 

only a minor dietary item. The C:N ratio of cDOM (4.0) was likewise similar to each of 

the hydropsychid consumers, but during preliminary IsoSource modeling the contribution 

of this resource never exceeded 1% and was subsequently eliminated as a potential food 
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source in the final dietary analyses. Veldbloom and Haro (2011) observed that the 

elemental composition of an organism can vary temporally, indicated in their study by the 

C:N ratio of their study species of suspension-feeding caddisfly Brachycentrus 

occidentalis showing large differences seasonally. Their findings were similar in that C:N 

ratios of several basal shifted changed between the two sampling periods. The most 

dramatic example being the C:N ratio of detrital epilithon increasing from 5.3 –11.5 

between mid- and late summer.  

The comparison of stable isotopic δ13C values between Cladophora and mid-summer 

H. simulans body tissue, and more importantly, the evaluation of the IsoSource 

contribution models, strongly suggested that the filamentous alga was a prominent 

assimilated dietary item during mid-summer.  This result mirrors that of Rhame and 

Stewart (1976), who had found that the proportion (by volume) of gut contents of H. 

simulans in the Brazos River, Texas, composed of filamentous green algae increased 

from <1 – 98% between July and December during a rapid growth period. Positive 

interactions between Cladophora-induced habitat availability and Hydropsyche 

communities have been previously demonstrated (Dudley et al. 1986). Delong and Thorp 

(2006), however, reported that sestonic algae were the predominant dietary item for H. 

orris in the upper Mississippi River. Sestonic detritus, macrophytes, and benthic algae 

each contributed markedly less. Delong and Thorp (2006) indicated that since their 

benthic algal samples included both microscopic and macroscopic forms, that their 

respective δ13C signals may be distinct. 

Although easily a secondary dietary item, the modeled presence of P. ceratophyllum 

to H. simulans was a surprise, and not repeated with either the late summer H. simulans 
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or the Cheumatopsyche sp. Detrital material of P. ceratophyllum decays at a rate faster 

than leaves of most tree species (Hill 1982), suggesting that the leafy material of this 

macrophyte may be of sufficient dietary quality for some generalist consumers. For 

example, the crayfish Procambarus spiculifer has been shown to selectively feed on P. 

ceratophyllum (Parker et al. 2007). Ironically, however, although the C:N ratios reported 

in this study decreased from 14.7 to 11.2 this potential basal food source was only 

meagerly used as a food source by late summer.  

The late summer δ13C values for H. simulans suggested a dietary shift toward a larger 

proportion of floodplain tree leaf material and slightly higher amounts of both epilithic 

and sestonic materials. The modest decrease in the modeled contribution of Cladophora 

sp., with reduced standing stocks of nearly three-fold between August and September, 

and the concomitant increase in each of the other resource categories (except P. 

ceratophyllum), coincided with the partial scour event that occurred prior to the second 

benthic sampling event. Why the contribution of P. ceratophyllum as a dietary item 

decreased in light of the combination of slightly higher standing stocks and lessened 

Cladophora sp. availability is unknown. 

The late summer diet of the Cheumatopsyche sp. was similarly dominated by 

Cladophora sp. and leaf material, but unlike H. simulans, also included a comparatively 

high proportion of both TOM components. The presence of multiple food items in the 

diet of hydropsychid larvae has been demonstrated several times (e.g. Benke and Wallace 

1980), yet in most studies one food item tends to easily be the most important. Similar to 

H. simulans in the Brazos River, Rhame and Stewart (1976) found that the 

Cheumatopsyche sp. larvae consumed the rapidly-proliferating Cladophora sp. when 
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available. Proportion by volume increased from 37 to 93% between July and October, 

and was still 65% by December. 

Other caddisflies can consume Cladophora. McNeely and Power (2007) went so far 

as to suggest that the larger populations of armored grazing species of caddisflies 

(Leptoceridae) supported by the higher productivity during early summer in their study 

might affect the abundance of algae due to their high numbers and very focused 

consumption. 

There is also ample evidence that hydropsychid larvae, including Hydropsyche 

species, can rely heavily upon animal tissue as a preferred and/or easily assimilated 

dietary item. This is particularly true for Arctopsychinae (Arctopsyche and Parapsyche) 

(e.g. Benke and Wallace 1980, Ross and Wallace 1983), yet also for some species of 

Hydropsyche. Benke and Wallace (1980) showed that animal material contributed >50% 

to annual production of H. macleodi and H. sparna in a southern Appalachian river. 

In conclusion, the densities of both H. simulans and the Cheumatopsyche sp. are 

significantly higher in very high P. ceratophyllum habitat compared to very low habitats 

during both sampling periods. There was also shown to be a significant effect of time as 

well as an interaction between time and habitat for H. simulans, while there was a 

significant effect of habitat for both H. simulans and the Cheumatopsyche sp. These 

results support the hypothesis that these hydropsychid larvae preferentially inhabit P. 

ceratophyllum as opposed to bare substrate.  

With regard to the question of Cladophora sp. making up a significant portion of the 

hydropsychid’s diet, the stoichiometry suggested Cladophora sp. as a highly beneficial 

food source during both sampling periods. In accordance with this, the stable isotopic 
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values of H. simulans and the potential food resources sampled for August suggested that 

Cladophora sp. are the main food source. IsoSource also strongly indicated Cladophora 

sp. as the main portion of diet of H. simulans in August and both hydropsychids in 

September. All of these results suggest that these caddisflies do, in fact, take advantage of 

the annual summer Cladophora sp. bloom.
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TABLE 3.1 Mean monthly temperature (°C) and discharge (L/s) data during the study 
period June–October 2011 in the upper Green River, Kentucky. 
              

Month 

Variable Jun Jul Aug Sept Oct Overall 

Temperature NA 25.1 24.2 19.7 15.0 21.0 

Discharge 61517.9 18009.5 7453.0 13655.5 8752.0 21671.7 
              

NA = data not collected 

 

 

 

TABLE 3.2 Mean (n = 4) monthly nutrient levels (mg/L) during the study period 
June–October 2011 in the upper Green River, Kentucky. 
              

Month 

Nutrient Jun Jul Aug Sept Oct Overall 

  

Nitrate 0.95 1.25 0.88 0.80 0.68 0.77 

Ammonia 0.02 <0.01 0.02 0.02 0.03 0.02 

TN 2.75 2.13 1.90 0.80 1.37 1.79 

TP 0.10 0.15 0.18 0.12 0.10 0.13 

SRP 0.09 0.11 0.12 0.06 0.09 0.09 

TN:TP 31.43 20.24 15.51 14.55 15.22 19.39 
              

TN = total nitrogen. TP = total phosphorous, SRP = soluble reactive phosphorous 
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TABLE 3.3 Mean standing stocks and percent cover of primary producers during the study period June–
October 2011 in the upper Green River, Kentucky. 
            

Primary producer 

Month 

Jun Jul Aug Sept Oct 

Sestonic algae (Chl-α, µg/L) NA 6.09 10.48 2.08 2.96 

Cladophora (AFDM, mg/m2) NA NA 19.76 7.74 9.09 

Cladophora (% cover) NA 15.61 74.52 NA NA 

P. ceratophyllum (AFDM, mg/m2) NA NA 48.46 48.93 56.73 

P. ceratophyllum (% cover) NA 52.35 51.04 NA NA 

            

Chl-α = chlorophyll-α, AFDM = ash-free dry mass, NA = data not collected 

 

 

 

 

 

TABLE 3.4 Mean (± 1 S.E.) densities (no./m2) of Hydropsyche simulans and 
Cheumatopsyche in very high (VH, > 75%) and very low (VL, < 5%) areal coverage 
of Podostemum ceratophyllum during August and September 2011 in the upper Green 
River, Kentucky. 
            

Month 

Taxon Treatment Aug   Sept   

H. simulans VH 1862.2 ± 329.9 635.6 ± 185.6 

VL 77.8 ± 24.1 68.9 ± 23.7 

Cheumatopsyche VH 3095.6 ± 849.7 3537.8 ± 1065.9 

VL 124.4 ± 31.1 93.3 ± 30.3 
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TABLE 3.5 Comparison of mean (± 1 S.E., if applicable) stoichiometric C:N ratios between the two 
hydropsychid consumers and basal food resources  during August and September 2011 in the upper 
Green River, Kentucky. Resource C:N ratio values in bold type are those speculated to be prominent 
assimilated dietary components. 
                

Month 

Consumer or resource Aug ± 1 S.E. n Sept ± 1 S.E. n 

Consumer 

Hydropsyche simulans 5.0 ± 0.08 2 4.8 NA 1 

Cheumatopsyche NA NA NA 5.5 NA 1 

Basal resource 

Cladophora 8.9 ± 0.17 5 9.8 0.30 5 

Podostemum ceratophyllum 14.7 ± 0.58 5 11.2 0.41 5 

Leaves 18.0 ± 0.39 5 23.4 0.86 5 

Epilithic - algal 14.8 NA 1 11.2 1.22 3 

Epilithic - detrital 5.3 NA 1 11.5 1.13 2 

FTOM - algal 17.9 NA 1 11.7 NA 1 

FTOM - detrital 24.1 NA 1 15.1 5.03 2 

UFTOM - algal 21.2 NA 1 NA NA NA 

UFTOM - detrital 14.0 NA 1 NA NA NA 

cDOM NA NA NA 4.0 0.45 5 
                

FTOM = fine transported organic matter (1000 – 100 µm), UFTOM = ultrafine transported organic 
matter (100 – 1 µm), cDOM = colloidal dissolved organic matter (< 1 µm), NA = data not collected or 
applicable. 
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TABLE 3.6 Comparison of mean (± 1 S.E., if applicable) stable isotopic signatures (δ13C, δ15N) between the two hydropsychid consumers 
and basal food resources during August and September 2011 in the upper Green River, Kentucky. Signatures in bold type are those 
speculated to be prominent assimilated dietary components. 
                        

Month 

Aug Sept 

Consumer or resource δ
13C ± 1 S.E. δ

15N ± 1 S.E. n δ
13C ± 1 S.E. δ

15N ± 1 S.E. n 

Consumer 

Hydropsyche simulans -34.0 0.17 7.5 < 0.01 2 -32.7 NA 7.6 NA 1 

Cheumatopsyche NA NA NA NA NA -31.5 NA 7.3 NA 1 

Basal resource 

Cladophora -34.2 0.64 3.6 1.11 5 -36.3 0.14 5.6 0.12 5 

Podostemum ceratophyllum -37.7 0.21 8.1 0.16 5 -39.7 0.10 7.2 0.16 5 

Leaves -30.9 0.11 4.3 0.10 5 -30.6 0.19 4.6 0.12 5 

Epilithic - algal -28.4 NA 6.1 NA 1 -29.9 0.10 5.2 0.53 3 

Epilithic - detrital -31.9 NA 7.7 NA 1 -28.6 0.23 4.9 0.14 2 

FTOM - algal -28.3 NA 4.5 NA 1 -24.9 NA 5.3 NA 1 

FTOM - detrital -27.9 NA 4.6 NA 1 -27.6 0.82 4.8 0.14 2 

UFTOM - algal -28.9 NA 14.4 NA 1 NA NA NA NA NA 

UFTOM - detrital -28.8 NA 14.4 NA 1 NA NA NA NA NA 

cDOM NA NA NA NA NA -25.1 0.18 9.0 0.36 5 
                        

FTOM = fine transported organic matter (1000 – 100 µm), UFTOM = ultrafine transported organic matter (100 – 1 µm), cDOM = 
colloidal dissolved organic matter (< 1 µm), NA = data not collected or applicable. 
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TABLE 3.7 Estimated range (25–75th percentiles) of the contribution of basal food resources to the assimilated diet 
of hydropsychid consumers during August and September 2011 in the upper Green River, Kentucky. 

        

Basal resources Consumer 
 

  H. simulans (Aug) H. simulans (Sept) Cheumatopsyche (Sept) 

Cladophora 84–86 66–72 56–60 

P. ceratophyllum 10–11 2–6 0–0 

Leaves 0–3 3–14 2–13 

epilithic - algal 0–1 1–6 0–1 

epilithic - detrital 0–2 1–6 0–0 

TOM - algal, 1000-1 µm 0–1 2–8 10–27 

TOM - detrital, 1000-1 µm 0–1 1–7 6–22 
        

Percentiles were calculated using a seven-source mixing model in the IsoSource program (Phillips and Gregg 2003). 
TOM = transported organic matter. 
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Figure 2.1 Location of the study reach (solid red circle). 

 

 

 

Green River Basin 
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Figure 3.1 Mean δ
13

C  and δ
15

N (± 1 S.E., if n > 1) values of basal food sources 
and H. simulans in the upper Green River, July 2011. TOM = transported 
organic matter.  
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Figure 3.2 Mean δ
13

C  and δ
15

N (± 1 S.E., if n > 1) values of basal food sources 
and both hydropsychid consumers in the upper Green River, September 2011. 
cDOM = colloidal dissolved organic matter, TOM = transported organic matter.  
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