
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

8-1-2008

Population Structure of Limenitis Butterflies in
Hickman, Kentucky
Mollie Johnson
Western Kentucky University

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Medical Sciences Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Johnson, Mollie, "Population Structure of Limenitis Butterflies in Hickman, Kentucky" (2008). Masters Theses & Specialist Projects.
Paper 368.
http://digitalcommons.wku.edu/theses/368

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/664?utm_source=digitalcommons.wku.edu%2Ftheses%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages


POPULATION STRUCTURE OF LIMENITIS BUTTERFLIES IN HICKMAN,
KENTUCKY

A Thesis
Presented to

The Faculty of the Department of Biology
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science in Biology

By
Mollie R. Johnson

August 2008



POPULATION STRUCTURE OF LIMENITIS BUTTERFLIES IN HICKMAN,
KENTUCKY

Date Recommended 3/ZO/08

Dean, Graduate Studies and Research Date



DEDICATION

This manuscript is dedicated to Sara Ann Neff and Amber Jane Johnson.

in



ACKNOWLEDGEMENTS

First and foremost I would like to thank my family for all of their love, support,

motivational speeches, and of course, financial assistance throughout the years. My mom

and dad have been a constant source of inspiration for me. They let me know at a very

young age that there were no limits to the things that I could do with my life. Ballerina,

doctor, firefighter, actress, concert pianist, or the President of the United States...the sky

was the limit! I am one lucky girl to have been blessed with such an amazing mom and

dad. My sister, Carrie, is responsible for helping me to keep my sanity over the years.

She was always there for me when I needed a late-night pep talk or a motivational kick in

the pants! My brother, Zachary, always reminds me to take things one day at a time.

Zach is the type of person who knows how to enjoy the small things that life has to offer

and keeps me grounded. He also gives the best bear hugs! Again, I got lucky in the

brother and sister department. The rest of my family also deserves a tremendous thank

you for all of their love and support throughout all of my educational endeavors. Without

such an amazing support system I would not be the person that I am today.

Next, I would like to thank Dr. Jeffrey Marcus for teaching me how to be a

biologist. I learned more about biology in the two years that I spent in his lab than I did

in all of my previous years of schooling. Mostly, I would like to thank him for putting up

with me, my loud mouth, and my tendency to be high-strung. Dr. Marcus gave me the

tools and the inspiration necessary to achieve my goals and for that I am truly grateful. I

would also like to thank all of the members of the Marcus lab: Tia Hughes, Tim Shehan,

Brooke Polen-Jackson, Tara Powell-Cox, Rachel Barber, Michelle Dodson, Aaron

Edwards, Jauan Burbage, Alan Simmons, and Joey Marquardt. Tia, Tim, and Rachel

IV



spent a lot of long days in the field catching butterflies, shopping for rotten fruit, blending

up butterfly bait, wearing butterfly bait, taking a bath in insect repellant, and picking

unwanted ticks off of their clothes and skin. They have all been very helpful and

supportive and made my graduate school experience truly amazing. I could not have

asked for a better group of people to share this chapter in my life with.

Finally, I would like to thank several individuals for their generous contributions

and assistance with this project. Dr. Cheryl Davis and Dr. Claire Rinehart were on my

graduate committee and provided encouragement and guidance throughout my time at

WKU. Dr. John Andersland, Dr. Charles Covell, and Dr. Jeffrey Marcus were kind

enough to allow me to use their amazing photographs in this manuscript. Jenny Stovall

and John Sorrell also deserve a big thank-you for helping me in the Biotechnology Center

on numerous occasions.



TABLE OF CONTENTS

Dedication iii

Acknowledgements iv

Table of Contents vi

List of Figures vii

List of Tables viii

Abstract ix

Introduction 1

Materials and Methods 11

Results 15

Discussion 17

Appendix 34

References 44

vi



LIST OF FIGURES

Figure 1: Photographs of Viceroy (Limenitis archippus), Red-spotted Purple {Limenitis

arthemis astyanax), Monarch {Danausplexippus), and Pipevine Swallowtail (Battus

philenor) Butterflies 25

Figure 2: Viceroy {Limenitis archippus) and Red-spotted Purple {Limenitis

arthemis astyanax) Butterflies Mating in Hickman, Kentucky 26

Figure 3: Photograph of Limenitis archippus X L. arthemis astyanax f. Rubidus

Hybrid Butterfly 27

Figure 4: Rubidus Hybrid Butterfly Museum Specimen from Hickman,

Kentucky 28

Figure 5: Neighbor-joining Tree of COI DNA Sequences 29

Figure 6: Strict Consensus Tree Based on Parsimony Analysis of COI

DNA Sequences 30

Figure 7: RAF Electropherogram 31

Figure 8: Parsimony Tree Based on Analysis of Randomly Amplified DNA

Fingerprints Using RP2, RP4, RP6, MRJ-1, MRJ-2, and MRJ-3 Primers 32

Figure 9: Bootstrap Consensus Tree Based on RAF Data 33

vn



LIST OF TABLES

Table 1: PCR and RAF Primer Sequences 34

Table 2: Concentration of DNA 35

Table 3: Concentration of Primer Stocks 36

Table 4: RAF Bands Recovered for Each Primer 37

Table 5: Results of Partition Homogeneity Test 38

Appendix Table 1: Binary Code withRP2 Primer 40

Appendix Table 2: Binary Code with RP4 Primer 41

Appendix Table 3: Binary Code with RP6 Primer 42

Appendix Table 4: Binary Code with MRJ-1 Primer 43

Appendix Table 5: Binary Code with MRJ-2 Primer 44

Appendix Table 6: Binary Code with MRJ-3 Primer 45

via



POPULATION STRUCTURE OF LIMENITIS BUTTERFLIES IN HICKMAN,

KENTUCKY

Mollie R. Johnson August 2008 Pages: 49

Directed by: Jeffrey Marcus, Cheryl Davis, and Claire Rinehart

Department of Biology Western Kentucky University

Two species of Limenitis butterflies occur along the Mississippi River at

Hickman, Kentucky: the viceroy, L. archippus, and the red-spotted purple, L. arthemis

astyanax. Limenitis archippus occurs at a frequency that is 10-30 times more abundant

than its congener, L. arthemis astyanax. Interspecific matings between L. archippus and

L. arthemis astyanax are very rare in the wild and give rise to a hybrid form Limenitis

archippus X L. arthemis astyanax form rubidus. Only 7 heterospecific pairings between

the parental species and 72 "rubidus" individuals have been documented in the wild in all

of North America. Of these documented cases, 2 heterospecific mating pairs and 2

rubidus individuals have been collected along a single 100 meter stretch of the

Mississippi River at Hickman over the last several years, suggesting that this may be a

"hybridization hotspot".

Molecular analysis of mitochondrial DNA haplotype, nuclear SNPs and nuclear

Randomly Amplified DNA Fingerprints (RAF) from the 2 Hickman rubidus butterflies

confirms that they are both Fi hybrids and that L. archippus was the maternal parent for

each specimen. I am interested in discovering the extent to which hybridization has

allowed gene flow between L. archippus and L. arthemis astyanax at this location.

IX



Ten individuals of each species were collected at Hickman and analyzed for both

mitochondrial DNA haplotype and nuclear Randomly Amplified DNA Fingerprint (RAF)

markers. The results of my analyses suggest that there may be some ongoing gene flow

between these two species of Limenitis at this site.



INTRODUCTION

Two species of Limenitis butterflies occur along the Mississippi River at Hickman

(Fulton County), Kentucky; the viceroy, Limenitis archippus and the red-spotted purple,

Limenitis arthemis astyanax (Covell 1994). These two species of butterflies are very

closely related and were once thought to be sister species (Willmott 2003). Sister species

are species that share a most recent common ancestor. Even though they are very closely

related, L. archippus and L. arthemis astyanax are dissimilar in color pattern because they

mimic different distasteful species.

The genus Limenitis includes several species that are well-known mimics

(Poulton 1909). The viceroy (L. archippus), along with the monarch (Danaus plexippus),

makes up one of the earliest documented and most widely appreciated examples of a

mimicry complex in nature (Poulton 1909; Walsh & Riley 1869). The viceroy butterfly,

L. archippus, is dark orange with black markings along its veins and has a row of white

spots that border the edge of the wings (Figure 1). The color and pattern of L. archippus

closely mimics the distasteful monarch butterfly, D. plexippus, with the exception of a

horizontal black stripe that crosses the bottom of its back wings (Figure 1) (Platt 1983).

The caterpillars of D. plexippus feed on milkweed (genus Asclepias), which is a toxic

plant (Brower et al. 1968). Asclepias produces cardiac glycosides which serve as a

chemical defense against predators (Brower et al. 1968). D. plexippus caterpillars can

tolerate the cardiac glycosides and therefore, are able to feed on this plant unharmed

(Brower et al. 1967). As a result, D. plexippus has little competition for this foodplant.

Danaus plexippus feeds on the leaves of the milkweed and stores the poisonous



glycosides in its body (Brower et al. 1967). The adult form of D. plexippus also retains

the toxins, which makes them distasteful to predators (Brower et al. 1968). Despite their

distastefulness, D. plexippus has a bright and obvious coloration that is easily observed

by visual predators, making D. plexippus an easy target. When a predator, such as a bird,

eats D. plexippus the poisonous glycosides cause the bird to vomit (Brower et al. 1968).

This system is beneficial to D. plexippus because the birds learn from experience to

equate the color pattern of D. plexippus with a bad taste (Brower et al. 1968). As a result,

many predators avoid consuming D. plexippus.

Limenitis archippus and D. plexippus were once thought to be a classic example

of Batesian mimicry (Vane-Wright 1991). Batesian mimicry involves a palatable species

mimicking an unpalatable model (Ritland & Brower 1991). Studies conducted by Jane

Van Zandt Brower in the 1950's show that the situation is somewhat more complicated.

The results of Brower's study indicated that L. archippus is more palatable than D.

plexippus, but less palatable than the non-mimetic butterflies used in the study (Brower

1958a). The studies conducted by Jane Van Zandt Brower showed that L. archippus is

somewhat distasteful (Brower 1958a). The results of this study were interpreted by

Brower and the scientific community as support for the Batesian mimicry hypothesis

(Brower 1958a).

More recent studies conducted in the early 1990's by David Ritland and Lincoln

Brower reassessed the widely accepted theory that L. archippus and D. plexippus are

classic examples of Batesian mimicry (Ritland & Brower 1991). Ritland and Brower

used red-winged blackbirds in their bioassay and their results suggest that L. archippus

and D. plexippus are both very unpalatable (Ritland & Brower 1991). The theory of



Mullerian mimicry holds that two unpalatable species resemble each other and are both

protected from predation as a result of their resemblance (Sheppard & Turner 1977).

According to the definition of Mullerian mimicry and the results of Ritland and Brower's

bioassay, this classic example of Batesian mimicry may not be an example of pure

Batesian mimicry, but rather may include strong elements of Mullerian mimicry (Platt &

Greenfield 1971; Ritland 1998; Ritland & Brower 1991). In Florida, where the monarch

is less common than its congener, the queen (D. gilippus berenice), the Florida

subspecies of the viceroy (L. archippus floridensis) appears to be a Mullerian mimic of

the queen (Ritland 1991; Ritland 1998).

What is less widely appreciated is that there are additional mimics in the genus

Limenitis. The red-spotted purple, L. arthemis astyanax, is thought to mimic the pipevine

swallowtail, Battus philenor (Figure 1) in the southeastern United States (Brower &

Brower 1962; Platt & Brower 1968). L. arthemis astyanax is black and has iridescent

blue and purple dorsal wings, while the ventral wings showcase the red-orange marginal

spots that gave this butterfly its common name (Platt 1975). Eyespots are generally

located away from the butterfly's head and deter predators away from the body and vital

organs of the butterfly and attract their attention to the wings instead (Stevens 2005).

This can allow the butterfly to escape with only a hole in its wing, which does not

compromise its ability to fly (Hill & Vaca 2004). Some species of butterfly are able to

fly with as much as 70 percent of their wings missing (Morgan & Marent 2008). The

caterpillars of B'. philenor feed on Dutchman's Pipe, Aristolochia macrophyilla, and other

species of Aristolochia (Triplehorn & Johnson 2005). Aristolochia produces the alkaloid

aristolochic acid which makes the plant highly toxic. Battus philenor caterpillars feed on



Aristolochia and their body retains the toxins (Ramos 2001). Adult B. philenor are

unpalatable to predators and as a result, predators will avoid eating these butterflies

(Brower 1958b). Limenitis arthemis astyanax is a palatable species that has evolved to

mimic B. philenor, (Brower & Brower 1962; Platt & Greenfield 1971) suggesting that it

is a Batesian mimic.

The similarly colored L. arthemis arizonensis, which lives in the Southwestern

United States and Mexico, is also thought to mimic B. philenor (Porter 1989). However,

its palatability has never been tested, so it is not known what type of mimicry is operating

between this subspecies and B. philenor. Finally, the black, white, and orange dorsal

wing surface of Lorquin's admiral (L. lorquini) resembles the dorsal wing surface of the

California sister {Adelpha bredowii) and appears to be a Batesian mimic of that species

(Porter 1989; Prudic et al. 2002). The presence of five closely related butterfly

subspecies which are all mimics, but which resemble vastly different models or co-

mimics is remarkable, and much of the interest in this genus has focused on this

phenomenon (Mullen 2006; Platt 1983).

Limenitis archippus and L. arthemis astyanax butterflies are broadly sympatric

throughout most of the eastern United States (Platt 1983). Even though they share the

same habitats, they rarely interbreed in the wild (Covell 1994). L. archippus shows this

same pattern with each of the other species in the genus, while L arthemis astyanax

hybridizes freely with all other forms of Limenitis (Marcus et al. ms). There are four

species of Limenitis recognized in North America: L. arthemis, L. archippus,

L. weidemeyerii, and L. lorquini (Platt 1983). All species of Limenitis except for L.

archippus are mostly allopatric and hybridize extensively in areas where their ranges



overlap (Remington 1968; Platt 1983; Porter 1989; Porter 1990). As infrequent as it may

be, L. archippus and L. arthemis astyanax do interbreed in the wild giving rise to a hybrid

butterfly called Limenitis archippus X L. arthemis astyanax form rubidus, (subsequently

referred to as "rubidus"; Figure 3) (Strecker 1878; Ritland 1990).

Rubidus hybrids resemble both L. archippus and L. arthemis astyanax (Figure 4).

Like L. archippus, the ground color of rubidus is orange while the dorsal forewings are

darkly pigmented like L. arthemis astyanax (Platt & Greenfield 1971). The hind wings

are distinct with marginal red-orange spots and the ventral side of rubidus contains the

proximal and marginal red-orange spotting characteristic of L. arthemis astyanax (Platt &

Greenfield 1971). Platt (1975) conducted experimental hybridizations of L. archippus

with L. arthemis astyanax in the laboratory. All of the crosses and backcrosses that were

performed made use of the hand-pairing technique (Platt 1969). Hand-pairings between

L. archippus and L. arthemis astyanax resulted in Fi male hybrids that were

phenotypically intermediate and referable to hybrid form rubidus Strecker (Platt 1975).

These hybrids consisted of light forms that more closely resembled L. archippus and dark

forms that more closely resembled L. arthemis astyanax (Platt 1975). These interspecific

crosses generally do not generate any female butterflies (Platt and Harrison 1994). The

Fi males were then backcrossed to females of the parental species (Platt 1975). The

progeny from these backcrosses consisted of phenotypes that were similar to the parental

species and phenotypes that were similar to the hybrid form, and very few individuals

displayed an intermediate phenotype (Platt 1975; Platt and Harrison 1994).

Natural hybridization between L. archippus and L. arthemis astyanax is generally

rare, but has been observed with some frequency in Hickman, Kentucky (Covell 1994).



Hickman is a city located in Fulton County, the southwestern-most county in the state of

Kentucky and is adjacent to the Mississippi River. The viceroy, L. archippus, is very

abundant at this location, occurring at a frequency that is 10-30 times more abundant than

its congener, the red-spotted purple, L. arthemis astyanax (Covell 1994). Only 7

heterospecific pairings between the parental species and 72 rubidus individuals have been

documented in the wild in all of North America (Marcus et al. ms). Of these, 2

heterospecific mating pairs and 2 rubidus individuals have been collected along a single

100 meter stretch of the Mississippi River (adjacent to the Bunge Corporation grain

elevator in Hickman, Kentucky, GPS coordinates N 36.5661, W -89.2177) over the last

several years, suggesting that Hickman, Kentucky may be a "hybridization hotspot"

(Covell 1994). A hybridization hotspot is an area where hybridization occurs more

frequently than in other areas.

A second, much larger, hybridization hotspot has been described from Northern

Florida and Southern Georgia (Ritland 1990). Seven rubidus hybrids and two

interspecific matings between L. archippus and L. arthemis astyanax were documented in

this area within a two-year period (Ritland 1990). Why are these populations of I .

archippus and L. arthemis astyanax in Florida, Georgia, and Kentucky hybridizing so

frequently? Ritland proposed two explanations for the frequent hybridization of

populations in Florida and Georgia (Ritland 1990). The first explanation is that matings

between L. archippus and L. arthemis astyanax occur more frequently in this area of

Florida/Georgia than anywhere else and pre-mating reproductive isolation is drastically

reduced (Ritland 1990). The second explanation is that matings between L. archippus

and L. arthemis astyanax are not more frequent in this area of Florida/Georgia but the



hybrids that are produced are more viable than those produced elsewhere (Ritland 1990).

According to this explanation, post-mating reproductive isolation is also drastically

reduced (Ritland 1990). Ritland then proposed three reasons why pre-mating isolating

mechanisms would break down in this area and allow more frequent matings between L.

archippus and L. arthemis astyanax (Ritland 1990).

(1) Habitat overlap

L. archippus and L. arthemis astyanax eat different larval foodplants (Remington 1968/

L. archippus feeds on willows and poplars (Salix and Populus, Salicaceae), while L.

arthemis astyanax feeds on black cherry (Prunus, Rosaceae) (Remington 1968). These

plants do not usually grow in the same habitats so the larvae that feed on them are usually

segregated (Shapiro & Biggs 1968). This habitat segregation is one of the mechanisms of

pre-mating isolation that has been suggested (Platt et al. 1978). However, in this area of

Florida/Georgia L. arthemis astyanax occasionally feed on willow instead of black cherry

(Ritland 1990). This switch from willow to black cherry allows L. archippus and L.

arthemis astyanax to encounter each other more frequently in this habitat than elsewhere

(Ritland 1990). Habitat overlap has been known to increase hybridization between

species that are normally segregated (Chapin 1948; Anderson 1949; Mayr 1963;

Williams 1983).

(2) Economics of Limenitis arthemis astyanax mate choice

In the northern Florida/southern Georgia habitat L. archippus outnumbers L. arthemis

astyanax by a ratio of 9:1 (Ritland 1990). As a result, L. arthemis astyanax may have

difficulty finding a conspecific mate and end up mating with L. archippus because they

are the only available option (Ritland 1990). Hybridization has been known to increase
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when one species is rare in comparison to the other species (Hubbs 1955; Mayr 1963;

Wittenberger 1983).

(3) Biogeography and genetics

In northern Florida L arthemis astyanax encounters L. archippus that differ in mate

choice behavior from the L. archippus that they encounter in other places (Ritland 1990).

The areas in Georgia and Florida where rubidus individuals were collected correspond

geographically with an intraspecific hybrid zone between two subspecies of L. archippus

(Ritland 1990). This hybrid zone allows L. archippus archippus (Cramer) to join with L.

archippus floridensis (Strecker) and is characterized by a gradual change in the latitudinal

wing color (Ritland 1990). Limenitis archippus archippus is broadly sympatric with L.

arthemis astyanax, while L. archippus floridensis inhabits an area of Florida that is

largely isolated from other species of Limenitis (Ritland 1990). This may allow L.

archippus floridensis to be less discriminating when choosing a mate (Ritland 1990).

Two of the three factors that might contribute to the break down of pre-mating

isolating mechanisms identified by Ritland (1990) could be playing a role at the

Hickman, Kentucky site. First, there are abundant willow trees observed at the site, while

black cherry is not present, so larvae of both species may be feeding on the same host

plant (Covell 1994). Second, there were more L. archippus observed at the site than L.

arthemis astyanax outnumbering the second species by a ratio of 10:1 (Covell 1994) to

30:1 (Jeffrey Marcus and William Black, Jr., unpublished data, 2005). However,

Hickman, Kentucky is outside of the L. archippus hybrid zone (Platt 1983), so the

possible lack of mate discrimination by L. archippus floridensis is unlikely to play a role

at this location.



Increased hybridization between L. archippus and L. arthemis astyanax in

Hickman, Kentucky may allow for a limited amount of genetic introgression between the

two species (Anderson 1949). Introgression is the movement of a gene from one species

into the gene pool of another by backcrossing an interspecific hybrid with one of its

parents. Introgression between L. archippus and L. arthemis astyanax is possible because

Platt's laboratory experiments showed that rubidus males are fertile in backcrosses to

both parental species (Platt 1983). If this is the case, then introgression could affect a

number of traits in both species of Limenitis.

I am interested in the extent to which hybridization has allowed gene flow

between L. archippus and L. arthemis astyanax at this location. Twelve individuals of

each species were collected at Hickman, Kentucky. Two different techniques were used

to study these samples. Initially, specimens were analyzed for mitochondrial DNA

haplotype using DNA sequencing techniques. Mitochondrial sequences in Lepidoptera

are useful when looking at the genetic divergence between species for two reasons

(Mallet et al. 2007). First, due to unisexual inheritance, there is thought to be no

recombination between mitochondria (Mallet et al. 2007). As a result, genetic divergence

is not likely to be affected by occasional introgression (Mallet et al. 2007). Second, in

many species of Lepidoptera, hybrid females are usually sterile, in accordance with

Haldane's rule (Presgraves 2002). Haldane's rule ensures that the introgression of

mitochondria is prevented at an earlier stage of speciation, and that nuclear loci can be

transferred between species by backcrossing male hybrids (Jiggins et al. 2001; Sperling

1990; Naisbitetal. 2002).
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Specimens were also analyzed using a technique called Randomly Amplified

DNA Fingerprints (RAF) (Schlipalius et al. 2001; Waldron et al. 2002). RAF is a

procedure that can be readily used for population studies and Mendelian genetic studies

(Schlipalius et al. 2001). One of the benefits of applying RAF is that it works with

insects of any size (Schlipalius et al. 2001). RAF has several advantages over previously

established procedures for the generation of polymorphic DNA markers including:

robustness, reliability, no requirement for a highly-purified DNA template, few steps,

sensitive detection with radio-labeling or fluorescent tagging, simultaneous detection of

several markers, and the identification of codominant loci (Waldron et al. 2002). In this

study, RAF was employed to assess the nuclear genetic diversity between L. archippus

and L. arthemis astyanax from Hickman, Kentucky.



MATERIALS AND METHODS

(a) Molecular characterization and Sequencing of Limenitis archippus and

Limenitis arthemis astyanax

Limenitis archippus (viceroys) and L. arthemis astyanax (red-spotted purples)

individuals were collected from the bait traps at the Bunge Site, Hickman, KY on

September 11, 2005. Twelve individuals of each species were collected in total.

These specimens were transported alive at 4°C to the lab at Western Kentucky

University where they were stored at -20°C. Tissue from the abdomen of each wild-

caught specimen was harvested and DNA was extracted using the QIAGEN DNEasy

kit. PCR was used to amplify a portion of the mitochondrial COI gene using the

universal primers LCO 1490 and HCO 2198 (Table 1) (Folmer et al. 1994). The

reaction mixture for each sample contained: luL of DNA (Table 2), IJUL of LCO

1490 primer (Table 3), luL of HCO 2198 primer (Table 3), 9.5uL of Nanopure

water, and 12.5uL of Quick-Load Master Mix (New England Biolabs). The PCR

conditions were as follows: one cycle of 95°C for 5 minutes, thirty-five cycles of

94°C for 1 minute, 46°C for 1 minute, 72°C for 1.5 minutes, and one cycle of 72°C

for 5 minutes, and 4°C indefinitely in a BioRad MyCycler Thermocycler. This

primer set is expected to produce a PCR product of 650 base pairs after the PCR

reaction. The size of the amplification products was checked using agarose gel

electrophoresis. Successful amplifications were used for sequencing reactions in both

directions using the LCO 1490 and HCO 2198 primers, Big Dye Fluorescent

sequencing reagents, and a BioRad MyCycler Thermocycler. The reaction mixture

11
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for each sample contained: 4.5uL of Nanopure water, 2.5uL of Sequencing Buffer,

0.5 uL of primer (2 reactions for each PCR product, one with forward primer and one

with reverse primer), 2uL of PCR product, and 1.5uL of Big Dye Terminator v3.1

Cycle Sequencing Mix (Applied Biosystems). The PCR conditions were as follows:

25 cycles of 96°C for 30 seconds, 50°C for 15 seconds, and 60°C for 4 minutes, and

one cycle of 10°C indefinitely. After cleanup by isopropanol precipitation, sequences

were loaded into an ABI 3130 automated sequencer. The resulting sequences were

edited in Sequencher 4.5 (Sequencher 2005) and then aligned using Clustal W

(Thompson et al. 1994). Finally, phylogenetic trees were produced using PAUP*

4.0610 (Swofford 1998). Both Neighbor-Joining and Parsimony methods were used

to reconstruct the phylogeny based on the variation among the mitochondrial

haplotypes.

(b) Randomly Amplified Fingerprints (RAF) of Limenitis archippus and

Limenitis arthemis astyanax

Of the initial 12 specimens of L. archippus and L. arthemis astyanax collected, usable

cytochrome oxidase I sequences were obtained from 10 specimens from each species.

These 20 individuals were analyzed by Randomly Amplified Fingerprints (RAF)

(Schlipalius et al. 2001; Waldron et al. 2002). Two replicates of each Limenitis

sample were amplified by RAF. This technique was employed to examine the

nuclear DNA diversity between L. archippus and L. arthemis astyanax. Multiple

blanks containing no template DNA were also amplified to serve as a negative

control. Six different oligonucleotide primers were used, including: RP2, RP4, RP6

(designed by Schlipalius et al. 2001), MRJ-1, MRJ-2, and MRJ-3 (designed for this
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study, Table 1). The reaction mixture for each sample contained: luL of DNA

(Table 2), 4uL of Quick-Load Master Mix (New England Biolabs), and 5uL of

primer (Table 3). PCR conditions were ... allows: one cycle of 94°C for 5 minutes,

thirty cycles of 94°C for 30 seconds, 57°C for 1 minute, 56°C for 1 minute, 55°C for

1 minute, 54°C for 1 minute, 53°C for 1 minute, and one cycle of 72°C for 5 minutes,

and 4°C indefinitely in a BioRad MyCycler Thermocycler. The samples were

analyzed on an ABI 3130 sequencer with luL of Rox-500 Gene Scan Size Standard

and lOuL of HiDye Formamide (Applied Biosystems). Using Genemapper, bands

that appear in both the Nanopure water negative controls and in the experimental

samples were identified and eliminated from the samples because they represent

experimental artifacts, which are not useful during analysis. We scored each

individual for the presence or absence of RAF bands using binary code. If two

replicates of the same sample showed the same band they received a 1. To be

conservative, if two replicates of the same sample did not show the same band they

received a 0. The resulting data were used to create a phylogenetic data matrix. All

of the phylogenetic analyses were performed with the computer program PAUP*

4.0610 (Swofford 1998). The first analysis performed was a parsimony-based

heuristic search for the best trees. A heuristic search was used with 1,000 random

taxon addition replicates. Next, the data were analyzed by a parsimony analysis with

1,000,000 bootstrap replicates with a simple taxon addition sequence for each. This

analysis was performed to assess the statistical confidence of each node using data

subsampling. Groups that were compatible with 50% majority-rule consensus were
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retained in the final consensus tree. The final test performed was an Incongruence

Length Difference (ILD) test. The ILD is the difference between the number of steps

required by the individual partitions to generate a tree topology and the number of

steps it takes for the combined partitions to generate the same topology. The ILD test

compares the ILD statistic of the specified partitions of informative characters with

the ILD for a series of randomized partitions of the same sizes as the original

partitions, but represents a mixture of characters from each partition (Cunningham

1997). This test was performed in PAUP* (Swofford 1998) as the partition-

homogeneity test with 1,000 replicates and a "maxtrees" setting of 200 trees per

replicate in order to reduce the analysis time. We used a pairwise comparison

approach, examining all of the datasets in pairs to see which ones were heterogeneous

with each other.



RESULTS

(a) Molecular characterization and Sequencing of Limenitis archippus and Limenitis

arthemis astyanax

Limenitis archippus (viceroy butterfly) and L. arthemis astyanax (red-spotted purple

butterfly) individuals were collected from the bait traps at the Bunge Site, Hickman, KY

on September 11, 2005. Twelve individuals of each species were collected in total. PCR

was used to amplify a portion of the mitochondrial COI gene using the universal primers

LCO 1490 and HCO 2198. For each species, only 10 out of 12 PCR amplifications were

successful, for a total of 20 amplifications. I sequenced the mitochondrial gene COI from

the twenty successful amplifications in both directions, using the same primers used for

PCR amplification. The sequences were edited by consulting chromatograms in

Sequencher (Sequencher 2005), and then aligned in Clustal W (Thompson et al. 1994).

Alignments were converted into NEXUS format for further analysis in PAUP* (Swofford

1998). The alignments were analyzed using the Neighbor-joining (Figure 5) and

parsimony (Figure 6) settings of PAUP* (Swofford 1998), both of which grouped the

members of each species into a separate monophyletic group. In other words,

mitochondrial DNA sequences could be used to distinguish between the two species of

butterflies.

(b) Randomly Amplified Fingerprints (RAF) of Limenitis archippus and Limenitis

arthemis astyanax

Each individual Limenitis was scored for the presence or absence of RAF bands using

ABI Genemapper software (Figure 7). The number of bands recovered for each of the six

primers was variable, with some primers producing a large amount of bands and other

15
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primers producing very few bands (Table 4). The resulting data were used to create a

phylogenetic data matrix. The first analysis performed was a parsimony-based heuristic

search for the best trees. This heuristic search resulted in one most parsimonious tree

(Figure 8). The tree groups several Limenitis arthemis astyanax individuals, RSP6, RSP1,

RSP4, RSP7, RSP3, and RSP11, with L. archippus, suggesting that some gene flow

between these species may be occurring.

To assess the statistical confidence of this pattern a bootstrap analysis with

1,000,000 bootstrap replicates was performed with a simple taxon addition sequence for

each. Groups that were compatible with 50% majority-rule consensus were retained in

the final consensus tree. A Bootstrap analysis assesses the statistical confidence of each

node using repeated data subsampling. The resulting tree (Figure 9) does not show

strong evidence for or against hybridization, because the statistical confidence at most

nodes is less than 50%.

The final test performed was an Incongruence Length Difference (ILD) test. The

ILD is the difference between the number of steps required by the individual partitions to

generate a tree topology and the number of steps it takes for the combined partitions to

generate the same topology. The ILD test compares the ILD statistic of the specified

partitions of informative characters with the ILD for a series of randomized partitions of

the same sizes as the original partitions, but represents a mixture of characters from each

partition (Cunningham 1997). The results of the ILD test show that many of the

partitions are incongruous with one another (Table 5), suggesting that there is no one

partition that is responsible for the production of conflicting data in the bootstrap analysis

described above.



DISCUSSION

Little is known about the evolutionary significance of hybridization and

introgression in animals, even though evidence has shown that they both occur with some

frequency (Bernatchez et al. 1995). In contrast, plant hybrids may play an important role

in the formation of new species (Rieseberg & Willis 2007). Animal hybrids are

considered rare on a per individual basis, but recent studies have shown that many

species hybridize (Coyne & Orr 2004; Mallet 2005). Nearly 10% of animal species and

25% of plant species hybridize in the wild, while in some animal groups such as ducks,

birds of paradise, and swallowtail butterflies, 40-75% of species are known to hybridize

(Mallet 2005).

In the past, the transfer of genes across species boundaries was thought to have

little or no evolutionary importance (Mayr 1963). Recently, it has been brought to light

that introgressive interspecific hybridization can have significant and long-term effects on

an organism's genetic composition (Bernatchez et al. 1995). For example, one of the

explanations proposed by Ritland (1990) for the occurrence of hybridization between

Limenitis archippus archippus and L. arthemis astyanax in Georgia and Florida is that

there has been introgression of genetic factors from L. archippus floridensis into L.

archippus archippus. This introgression may be responsible for making this population

of L. archippus archippus less discriminating. Despite the many studies and surveys that

have been performed to date, assessing the magnitude of the genetic impact of

hybridization and introgression still remains an unresolved issue in evolutionary biology.

Hybridization between L. archippus and L. arthemis astyanax in Hickman,

Kentucky may allow for a limited amount of genetic introgression between the two

17



species (Anderson 1949). If this is the case, then introgression could affect a number of

traits in both species of Limenitis such as larval host plant preference, mate preference,

and color pattern characteristics. All of these traits could influence the ability of these

populations to continue to participate in mimicry complexes.

In the present study, I determined the extent to which hybridization has allowed

gene flow between L. archippus and L. arthemis aslyanax at this location. Two different

techniques were used to study this unique butterfly population. Initially, specimens were

analyzed for mitochondrial DNA haplotype using DNA sequencing techniques and then

RAF was employed to assess the nuclear genetic diversity between L. archippus and L.

arthemis astyanax.

Analysis of COI sequences sorts the specimens unambiguously into the two

species of Limenitis butterflies present in Hickman, Kentucky (Figure 5 and 6). This

suggests that while hybridization may be occurring at this location (Covell 1994; Marcus

et al. ms), it is not resulting in extensive introgression of mitochondrial haplotypes

between these two species.

Phylogenetic analysis of the RAF data suggests that it is possible that there is

some genetic exchange between these two species. In the parsimony analysis of the

entire RAF data set, one L. arthemis astyanax specimen, RSP6, clearly shows more

affinity to the nuclear DNA fingerprint patterns of L. archippus than to members of its

own species and an additional group of I. arthemis astyanax specimens (RSP1, RSP3,

RSP4, RSP7, and RSP11) is within the clade that includes all of the L. archippus

specimens (Figure 8). However, a bootstrap analysis of the entire RAF data set shows

that the statistical support for these relationships is very weak and dependent on just a
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small number of characters. In fact, most specimens group according to species in the

bootstrap tree (Figure 9). The ILD Test was used to determine if the weak bootstrap

support could be attributed to markers from one RAF primer that was somehow

conflicting with the data produced by the other primers. However, pair-wise comparisons

between each of the RAF primer data sets show that 4 out of the 6 primers (RP2, RP4,

MRJ-1, and MRJ-2) are heterogeneous with respect to each other. This suggests that

rather than one incongruous data partition reducing tree resolution, the entire data set is

incongruous and the lack of resolution cannot be attributed to the data from a single

primer. Since RAF primers generate markers from all of the chromosomes

simultaneously, when introgression is occurring, one might expect that even data

produced by a single RAF primer might show incongruity because some markers

originate from one parental species, while some markers originate from the other parental

species. On the whole, the RAF data suggest that while there may be some movement of

nuclear markers between these two species, it is not yet possible to say with statistical

confidence that this is the case. Interestingly, only some individuals of the rarer of the

two species at Hickman, L. arthemis astyanax, show any evidence of genetic

introgression, suggesting that if introgression is occurring, there may be an asymmetrical

movement of these nuclear markers at the Hickman, Kentucky site.

A study with some similarities to this one was performed by Bernatchez et al.

(1995) on a population of brook trout, Salvelinus fontinalis, from Lake Alain in Quebec.

The mitochondrial genotype of 48 S. fontinalis was characterized by RFLP analysis

performed on the entire mitochondrial DNA molecule (Bernatchez et al. 1995). The 48

fish examined were morphologically indistinguishable from typical brook trout and were
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homozygous for the alleles characteristic of brook trout (Bernatchez et al. 1995). The

results of this study showed that the mitochondrial DNA of all 48 S. fontinalis individuals

was identical to the haplotype of Quebec Arctic char, Salvelinus alpinus (Bernatchez et

al. 1995). The permanent replacement of S. fontinalis mitochondrial DNA with that of S.

alpinus could be selectively significant. Several mitochondrial enzymes that are central

to intermediary metabolism are encoded by mitochondrial genes, allowing differences in

the mitochondrial genome of these fish to be manifested physiologically (Bernatchez et

al. 1995). Genetic differences between the mitochondrial genomes of introgressed

populations, like that previously mentioned, can translate to differences in the metabolic

capacity of the mitochondria. Varying metabolic capacities can lead to differences in

adaptivity to environmental temperature (Bernatchez et al. 1995).

Similarly, Good et al. (2008) describe hybridization between two species of

chipmunk from western North America. The yellow-pine chipmunk, Tamias amoenus,

inhabits xeric forests across western North America (Sutton 1992), while the red-tailed

chipmunk, T. ruficaudus, primarily inhabits mesic forests of the northern Rocky

Mountains (Best 1993). Tamias amoenus and T. ruficaudus occupy different ecological

niches and have distinct genital bone morphologies, and yet are not completely

reproductively isolated in areas of sympatry (Good et al. 2008). The researchers were

looking to find the extent and pattern of introgression across both mitochondrial and

nuclear loci in both taxa (Good et al. 2008). They examined the genetic variation at one

mitochondrial locus and 11 nuclear loci. Their findings suggest that there is extensive

asymmetric introgression of mitochondrial DNA from T. ruficaudus into T. amoenus with

comparatively little introgression at the nuclear loci (Good et al. 2008). Overall,
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introgression has had a minimal impact on the nuclear genomes of these two species of

chipmunk, despite multiple independent hybridization events (Good et al. 2008).

In contrast, studies conducted by Halbert and Derr (2007) show that introgression

of cattle genes has a very different pattern in populations of United States bison. In the

late 1800's the North American bison, Bison bison was near extinction (Cunningham &

Berger 1994). Thanks to the efforts of a few individuals, who captured and raised them

in zoos and on private ranches, the population of North American bison has been restored

(Cunningham & Berger 1994). These efforts are now threatened by introgression with

domestic cattle, because hybrid species are not protected by the Endangered Species Act

(O'Brien & Mayr 1991). Eleven populations of bison from the United States were

examined for evidence of mitochondrial and nuclear introgression with domestic cattle,

Bos taurus (Halbert & Derr 2007). Mitochondrial introgression was assessed using PCR

and analysis of D-loop sequences, while nuclear introgression was assessed in 14

chromosomal regions by examining micro satellite electromorph and sequence differences

between the two species (Halbert & Derr 2007). Their findings show one population of

bison with domestic cattle mitochondrial DNA introgression, while nuclear introgression

was found in seven of the bison populations (Halbert & Derr 2007).

Studies were conducted by Dasmahapatra et al. (2007) on hybridizing non-sister

species of Heliconius butterflies. Although interspecific hybridization occurs regularly in

wild Heliconius butterflies, hybrid individuals are rare (Dasmahapatra et al. 2007). This

is the first study where two distantly related Heliconius species have been genetically

examined. Dasmahapatra et al. (2007) used molecular markers to determine the parents

of a hybrid butterfly that was captured in Peru. Mitochondrial and nuclear genes
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indicated that the specimen was an Fi hybrid between a female Heliconius ethilla and a

male Heliconius melpomene (Dasmahapatra et al. 2007). The presence of such distant

natural hybrids, along with evidence of backcrossing suggests that gene flow across the

species boundary can take place long after speciation has occurred (Dasmahapatra et al.

2007). Within the melpomene-cydno group, hybridization and backcrossing has led to

interspecific introgression at several genomic regions (Bull et al. 2006; Kronforst et al.

2006). If extensive hybridization among two closely related species can cause adaptive

genes to introgress, then rarer hybridization between two distantly related species may

also play a role (Dasmahapatra et al. 2007). As a result, adaptive genes, like those

involved in wing coloration, could be widely shared among members of this highly

mimetic genus (Dasmahapatra et al. 2007).

Mallet et al. (2007) took Heliconius research one step further by analyzing all

known cases of interspecific hybridization in Heliconiina. It has been determined that

hybridization is a naturally occurring phenomenon between species of Heliconius

(Jiggins et al. 1997). Previous work has shown that backcrossing occurs in the wild and

that backcrosses performed in the lab are fertile (Jiggins et al. 2005; Kapan et al. 2006),

which would allow for genetic introgression. Genetic introgression may contribute to

both adaptive evolution and speciation. Molecular work performed on hybridizing

sympatric species of Heliconius shows that alleles at several loci have been exchanged

between species (Mallet et al. 2007). Based on a molecular clock, gene exchange can

continue for more than 3 million years after speciation. This study's findings agree with

the idea that processes leading to speciation are continuous, and that they are the same as

those processes operating within species (Mallet et al. 2007). Furthermore, adaptive
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genes can be transferred, playing an important role in both adaptation and speciation

(Mallet et al. 2007).

In the studies conducted by Bernatchez et al. (1995) and Good et al. (2008),

mitochondrial introgression was occurring, while the nuclear genome was minimally

affected. Conversely, the studies conducted by Halbert and Derr (2007), Dasmahapatra

et al. (2007), and Mallet et al. (2007) showed that nuclear introgression was occurring at

a high frequency, while mitochondrial introgression was occurring at a much lower

frequency. My study showed that hybridization between two sympatric species of

Limenitis butterflies in Hickman, Kentucky led to no introgression of the mitochondrial

DNA and suggested that a limited amount of nuclear introgression may be occurring due

to hybridization, making it similar to the second group of studies. The L. archippus

lineage diverged from the L. arthemis astyanax lineage about 1.4 million years ago

(Marcus et al. ms), placing Limenitis within the 3 million year post-speciation range

suggested by Mallet et al (2007) as the period when genetic exchange can still occur.

Studies like those previously mentioned show that introgressive interspecific

hybridization can have significant and long-term effects on an organism's genetic

composition, and in order to fully understand the significance of hybridization and

introgression among animal species, we must continue researching and collecting

information on these subjects. In the case of Limenitis, it would be particularly

advantageous to use additional techniques for the study of nuclear genetic markers to try

and better-document the possible introgression that is occurring. The anonymous

markers generated by RAF were not as informative as I had hoped. It might be advisable

for future studies to focus on single nucleotide polymorphisms (SNPs), microsatellites,
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and other markers that are attributable to specific genetic loci in order to not only

document introgression, but also to specify exactly which components of the nuclear

genome are introgressing.



Figure 1 a. Viceroy, Limenitis archippus, Hickman, Kentucky b. Red-spotted Purple,

Limenitis arthemis astyanax, Hickman, Kentucky c. Monarch, Danaus plexippus,

Paducah, Kentucky d. Pipevine swallowtail, Battus philenor. Upper Green River

Biological Preserve, Hart County, Kentucky (images a-c photographed by Dr. Jeffrey

Marcus, 2003; image d photographed by Dr. John Andersland, 2003)
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Figure 2 Female Limenitis archippus (left) and male Limenitis arthemis astyanax

(right) mating in Hickman, Kentucky, September 6, 1997. (Photographed by Dr.

Charles V. Covell Jr.)
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Figure 3 Limenitis archippus X Limenitis arthemis astyanax f. rubidus hybrid from

Hickman, Kentucky, September 7, 2002. (Photographed by Dr. Charles V. Covell

Jr.)
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Figure 4 a. Dorsal and b. ventral views of a rubidus hybrid collected in

Hickman, Kentucky, September 14, 1980. Specimen was collected by Dr. Charles V.

Covell Jr. and is now in the collections of the McGuire Center for Lepidoptera and

Biodiversity in Gainesville, FL.
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Figure 5 Neighbor-joining tree of Cytochrome Oxidase I sequences. Data aligned by

Clustal W and analyzed by PAUP* (Swofford, 1998). Codes V1-V12 refer to

viceroys, L. archippus while codes RSP1-RSP12 refer to red-spotted purples, L.

arthemis astyanax.
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Strict

Figure 6 Strict consensus of 10,000 equally most parsimonious trees based on

analysis of Cytochrome Oxidase I DNA sequences. Data aligned by Clustal W and

analyzed by PAUP* (Swofford, 1998). Codes are the same as described for Figure 5.
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Figure 7 RAF electropherogram
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Figure 8 Most parsimonious tree based on analysis of Randomly Amplified DNA

Fingerprints (RAF) using RP2, RP4, RP6, MRJ-1, MRJ-2, AND MRJ-3 primers.

Data analyzed by PAUP* (Swofford, 1998). Codes are the same as described for

Figure 5.
32



bootstrap

Figure 9 Bootstrap consensus tree, 1,000,000 simple sequence addition repeats of

RAF data. Numbers associated with nodes are measures of the statistical confidence

supporting that node. Data analyzed by PAUP* (Swofford, 1998). Codes are the same

as described for Figure 5.
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Table 1: PCR and RAF Primer Sequences

Primer
LCO 1490
HCO2198
RP2
RP4
RP6
MRJ-1
MRJ-2
MRJ-3

(f)
(r)

Sequence
GGTCAACAAATCATAAAGATATTGG
TAAACTTCAGGGTGACCAAAAAATCA
ATGAAGGGGTT
TGCTGGTTCCC
TGCTGGTTTCC
CTATTCGAGCC
ATTCTCCGCAA
CTTCTCCGCCT
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Table 2: Concentration of DNA

DNA Sample
RSP1
RSP2
RSP3
RSP4
RSP5
RSP6
RSP7
RSP8
RSP9
RSP10
RSP11
RSP12
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
V12

Concentration (ng/jiL)
291.4
202.8
257.6
267.1
84.1
334.7
113.6
224.2
104.9
323.8
113.0
351.3
182.4
394.1
1026.0
1334.6
1189.8
822.4
1192.2
755.2
1922.5
787.7
1543.6
122.9
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Table 3: Concentration of Primer Stocks

Primer
LCO 1490
HCO2198
RP2
RP4
RP6
MRJ-1
MRJ-2
MRJ-3

(f)
(r)

Concentration
23.57 nmol
34.30 nmol
250 nmol
100 nmol
100 nmol
100 fxmol
100 nmol
100 \imo\
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Table 4: RAF Bands Recovered for Each Primer

Primer
RP2
RP4
RP6
MRJ-1
MRJ-2
MRJ-3

Number of Bands Recovered
65
62
2
120
143
15
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Table 5: Results of Partition Homogeneity Test. Numbers listed are the probabilities (p)

that two data partitions are homogeneous with respect to each other. Probabilities less

than 0.05 can be considered significant and indicate partitions that are heterogeneous.

RP2 RP4 RP6 MRJ-1 MRJ-2 MRJ-3
RP2
RP4
RP6
MR-1
MRJ-2
MRJ-3

0.001
0.799
0.001
0.001
0.295

0.001
-
0.708
0.001
0.001
0.138

0.799
0.708
-
0.832
0.985
1

0.001
0.001
0.832
-
0.001
0.147

0.001
0.001
0.985
0.001
-
0.658

0.295
0.138
1
0.147
0.658
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Appendix Table 1: Binary Code with RP2 Primer

Sample Binary Code

VI
V2
V3
V4
V5
V6

V7

V8
V9

V10

Vll

RSP1
RSP2
RSP3
RSP4
RSP5

RSP6
RSP7
RSP8
RSP9

RSP10
RSP11

RSP12

01100000010101000000010000100010000000011000001100011000000000000
00000000010000000000100000000000000000000000001000010000001100010
01100000000100000000000000110001000000011000000100010001000000010
00000010010000000000000000000000000000000000101010010000000010010
01001001110010001000001000000100101000001001001010000011000000010
00000010000000000000000000000000000000000000100010000000000010010
00000010000000000000000000000000000000000000101010000000000010000
00000000000000000000000000000000000000000000100010000000000010000
00000010010000000010000000000000000000000000101000000000000110000
00000001000000000000000000000000000000000000000000000000000010000
00000010010000000000000000000000000000000000100010000000000010000
01010100011001010110000010001000000000100010010000100000001110010
01011110001001010110000101001000000100110010010000100000000100010
00000000010000000010000000000000000000000000000000000000001010000
11010100011001010110000010001000000000000010011000110000001100011
01000100110000010100000100001011001100000100000000100000001000010
00000000010000000010000000000000000000000000100010000000000010000
11010000111000000101000010000010010010000100100000100100010010000
11010101011001010111000110001010010010000100000000100000011000010
01001011110011101000000000010000000000001000000010000001100101000
01001001111000100100000100001000000000000100100011000000010000100
00000000010000000000000000000010000001001000000000000000001110000
01001001110001100100000100001000011100000100001001010000010000110



Appendix Table 2: Binary Code with RP4 Primer

Sample Binary Code

VI

V2

V3

V4

V5

V6
V7

V8

V9

V10

Vll

RSP1

RSP2

RSP3

RSP4

RSP5

RSP6

RSP7

RSP8

RSP9

RSP10

RSP11

RSP12

01000000000000000000000000000000010000000000000000001110011000

00100000000000000101000000000000010000000000001000000000000000

00101000000100100001000000001000010011000011000100000000001000

00100000000000100001000000000000000000000000000000000000000000

00101000000100100000000000001000000000000000000000000000001010

00101000000100100001000000001000000000000000000000000000000000

00100000000100100011000000001000010000000000000000000000001000

00111000000000011001000000000000010000000100000000000110101000

00100000000000000101100000000000010000000000010100000000001000

01101000000011011001000000100000010010110000000000000000000010

00001100110110000100010111000111110100001011100000111110010111

01000000000000000000000000000000000000000000000000000000000000

01000000000000000000000000010000000000000000000000000000000000

00001001110000000000000000000000010010110000000000000001000010

00000000000001000000000000010000000000000000000000000000000000

01000010000000000000000000010000010000000000000011000001000010

00000000000001000010000000010000000000000000000000000000000000

00000000110000000000000000010000010000000100000000000001000010

10000000000001000010000000010000111000100000000000000000000010

10000000110001000010000000010000010000000000010001000000000000

10000000000001000010000000010000000000000000000000000000000000

10000000001001000010000000010000000000000000000000000000000000

10000011010001000010001100010000010000000100000000000000000010



Appendix Table 3: Binary Code with RP6 Primer

Sample

VI

V2

V3

V4

V5

V6

V7

V8

V9

V10

Vll

RSP1

RSP2

RSP3

RSP4

RSP5

RSP6

RSP7

RSP8

RSP9

RSP10

RSP11

RSP12

Binary Code

01

01

00

00

00

00

00

00

00

10

00

00

00

00

00

00

00

00

00

00

00

00

00

to



Appendix Table 4: Binary Code with MRJ-1 Primer

Sample
\M
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
RSP1
RSP2
RSP3
RSP4
RSP5
RSP6
RSP7
RSP8
RSP9
RSP10
RSP11
RSP12

Binary Code

0000001000000100100011

000100000010100000100000000000000000010110100000000000000001001000000000000000000000000000000000010000000000000000010000
000100000010100000100000000000000000010110100000000000000001001000000000000000000000000000000000010000000000000000010000
000000100110100000101010001001010010000000010100010001001000100001000010000010000001000110000011110000101000000010000000

000100001000010100000001000000100000000101000001000001110100010000110001010100000110111011010100000010001111010111100100

000000000000000000000000000000000000000000000000000000000000000010000000000000000010110000100000000000000000000000000000
001101000100100000101000011001001010000010000000001001000000100001000000000000000000000101000000000000000000000000000000



Appendix Table 5: Binary Code with MRJ-2 Primer

Sample Binary Code
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vl l
RSP1
RSP2
RSP3
RSP4
RSP5
RSP6
RSP7
RSP8
RSP9
RSP10
RSP11
RSP12

1100111111011011101011101

101010001100010001000001010101000000000010100100010000100010000000100011110011100000101000110001100001011000010000101011000100101010001000000



Appendix Table 6: Binary Code with MRJ-3 Primer

Sample

VI
V2

V3

V4

V5

V6

V7

V8

V9

V10

Vll

RSP1

RSP2

RSP3

RSP4

RSP5

RSP6

RSP7

RSP8

RSP9

RSP10

RSP11
RSP12

Binary Code

000000000000000

000000000000000

000000000000000

000000000000000

001000000000000

000000000000000

000000000000000

000000000000000

000000000000000

000000000000000

000000000000000

100000000000100

110010011111100
100000000000000

100000000000000

100001000010110

100000000000000

110110100110100

110001100011001

100000000001100

100000000000000

000000000000000

000000000000000

(-/I
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