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ABSTRACT 

 

 

 

 

A chronic wound is a wound that does not heal in an orderly manner and on time. 

In this project, we simulate different ways of minimizing the time of therapy using 

exponential functions. The analysis in this research project focuses on treating chronic 

wounds using both mathematical and biological models. These models primarily focus on 

the amount of oxygen supplied to the wound using both hyperbaric and topical oxygen 

therapies. This amount should be optimal since too much oxygen is toxic to the body, and 

can potentially lead to death. The goal is to minimize the time spent in therapies since 

longer periods make treatments costlier. In this project, we incorporate exponential 

functions into several existing models of wound healing. 
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CHAPTER 1 

INTRODUCTION 

Biology: Explanation of a Chronic Wound and Skin 

A chronic wound is a wound which does not heal in an orderly set of stages and in 

a usual pattern of healing. Wounds that do not heal in a period of one month are normally 

considered chronic wounds. Chronic wounds normally develop from acute wounds, 

(wounds which heal in less than a month). The most common chronic wounds are ulcers.  

There are several causes of chronic wounds and these are due to lack of necessary 

components of wound healing which include a good supply of blood, oxygen, and 

nutrients. Also lack of a clean and infection-free environment may be another cause of 

chronic wounds (“Chronic Wounds,” 2016).  

When a wound is formed on the skin, it normally goes through three main stages 

of wound healing and these are: inflammation, proliferation, and maturation (also known 

as remodeling). The first process known as inflammation is a natural response to trauma 

when a wound forms on the skin. It begins with homeostasis where blood vessels 

constrict and are sealed thus allowing platelets to create substances responsible for blood 

clotting. Once homeostasis is achieved, blood vessels then dilate again to allow the flow 

of nutrients and white blood cells that fight germs to the infection. At the end of this 

inflammation process, the skin experiences swelling, pain, heat, and redness (Broderick, 

2009). The second process in wound healing process is proliferation. This is when the 
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wound begins to rebuild and healthy granulation tissue is formed. The formation of 

granulation tissue needs sufficient oxygen and body nutrients. The new tissue is 

composed of extracellular matrix and collagen which are responsible for the development 

of network of blood vessels through a process called angiogenesis. Also, the body 

transforms damaged mesenchymal cells into fibroblasts which acts as a link to help in 

moving cells around the affected area. This normally happens three days after the injury 

formation when there is always secretion of liquids and collagen. This helps in 

strengthening the wound. During the process of proliferation, the wound grows stronger 

due to fibroblasts that help in development of new tissue that help in quickens the wound 

healing process (Brown et al., 2001). The last process in wound healing process is 

maturation (remodeling). Maturation occurs when the wound has closed up and this can 

take up to two years. In this phase of wound healing, the dermal tissues are repaired to 

increase the tensile strength of the tissues. At this stage, non-functional fibroblasts are 

replaced by new ones that function. The activities of cells abate and as a result the 

number of blood vessels in the wound reduces. The scar begins to form on the skin but it 

is still advisable to continue the treatment since at this stage only 80% of the affected part 

of the skin will have normalized (Brown et al., 2001) 

There are different types of chronic wounds which result from different causes.  

Infectious wounds are due to bacteria, fungi or virus. Ischemic wounds come as a result 

of insufficient blood supply limiting the amount of nutrients and oxygen that is needed 

for the wound to heal. Radiation poisoning wounds are caused by too much exposure to 

radiation which weakens the immune system. Surgical wounds come as a result of 
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incisions performed during surgeries. The other common chronic wounds are ulcers 

which can be classified as below. 

- Arterial ulcers: These can occur from hypertension, atherosclerosis (plugging) and 

thrombosis (clotting), where the reduced blood supply leads to an ischemic state. 

- Venous ulcers: These account for more than half of ulcer cases, especially in the lower 

limbs (mainly the legs) as associated with deep vein thrombosis, varicose veins and 

venous hypertension. Venous ulcers can lead to stasis, where the blood fails to circulate 

normally. 

- Diabetic ulcers: These are a common complication in uncontrolled diabetes mellitus, 

resulting in impaired immune function, ischemia (due to poor blood circulation) and 

neuropathy (nerve damage), which eventually lead to breakage of skin and ulceration. 

- Pressure ulcers: The constant pressure and friction resulting from body weight over a 

localized area for prolonged duration can lead to breakage of skin and ulceration (also 

known as bed sores); especially on the back and on the ankles and feet (“Chronic 

Wounds,”  2016). 

  Chronic wounds can be identified through their symptoms and signs. These are bad 

odor, pus drainage, dead tissue, inflammation (fever, pain, redness, hotness, and 

swelling), and decrease in hair growth, vomiting, abdominal pain, blistering, skin 

thickening, itching, and weak pulse sensation of the body. 

 

 

http://www.woundcarecenters.org/wound-types/venous-leg-ulcers.html
http://www.woundcarecenters.org/wound-types/diabetic-wounds.html
http://www.woundcarecenters.org/wound-types/pressure-ulcer.html
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CHAPTER 2 

Introduction: Mathematical Modeling 

Over the past 20 years, different mathematical models have been developed for 

the treatment of chronic wounds. These mathematical models will focus on how much 

oxygen will be supplied to the wound. This amount should be the right amount since too 

much oxygen is toxic to the body and much oxygen can potentially kill patients. It will 

also focus on how to modify the model so to capture the significance of the length of the 

therapy. The goal is to minimize the time used in therapy since the longer period makes it 

costly. 

With the use of Matlab, code can be written which solves a system of differential 

equations and integral functions (objective functional). The graphs that Matlab is able to 

generate can be analyzed for the results. The plots depict how the level of bacteria 

changes with neutrophils increase and at different times of administering oxygen to the 

therapy. The aforementioned process is called optimal control and is modeled by the 

following equations:  
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Equation for Bacteria        

𝑑𝑏

𝑑𝑡
= 𝑘𝑏𝑏(1 − 𝑏) − 𝑏

𝑘𝑛𝑟𝑛 + 𝛿

𝜆𝑟𝑏𝑏 + 1
∗

𝑤

𝑤 + 𝑘𝑤
− 𝜆𝑏 

 

 

Equation for Neutrophils 

𝑑𝑛

𝑑𝑡
= 𝑘𝑝𝑒

−𝜆𝑝𝑡(1 − 𝑛) +
𝑘𝑛𝑖𝑏𝑛(1 − 𝑛)𝑔𝑛𝑤(𝑤)

𝜆𝑛𝑖𝑛 + 1
−

𝜆𝑛𝑛

1 + 𝑒𝑏
 

 

 

 

Supplemental Oxygen equation therapy scaled by Gaussian factor 

𝑑𝑤

𝑑𝑡
= 𝛽 + 𝛾 ∗ ∑𝑒−𝛿(𝑡−𝜏𝑖)

2
)

𝑃

𝑖=1

∗ 𝑢(𝑡) − 𝜆𝑤𝑤 − 𝜆𝑏𝑤𝑏𝑤 − 𝜆𝑛𝑤𝑛𝑤  

 

 

Bacteria 

proliferation for 

logistic growth 

Oxidative killing 

of bacteria 

Natural death of 

bacteria 

Activation of 

neutrophils 

Recruitment of 

neutrophils 

External input of 

oxygen scaled by 

gamma 

Uptake of oxygen 

by bacteria and 

inflammatory cells 

 (1) 

Decay of oxygen 

Death of neutrophils 

(2) 

(3) 

Amount of oxygen 

from surrounding 

blood vessels 
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Optimal Control Framework 

Optimal control theory is used in making decisions regarding minimization or 

maximization. Given the variables, we can apply different techniques and test different 

variables to a control function and be able to come up with an optimal solution. The main 

goal is to minimize or maximize the objective function. This can be interpreted using 

Pontryagin’s Maximum Principle given as Theorem 1.1 in Lenhart and Workman (2007). 

Pontryagin’s Maximum Principle provides a set of necessary conditions that need to be 

satisfied for an optimal solution. 

 

Theorem 1.1. For the given control 𝑢⃗ = (𝑢1, … . , 𝑢𝑚)⊺ belonging to the admissible 

control set U and related trajectory 𝑥 = (𝑥1, … . , 𝑥𝑛)
⊺ that satisfies  

𝑑𝑥 

𝑑𝑡𝑖
= 𝑔𝑖(𝑥 , 𝑢⃗ , 𝑡)   (state equation) 

𝑥𝑖⃗⃗  ⃗ (a) = 𝑐𝑖       (initial conditions) 

but with free end conditions, to minimize the performance criterion 

𝐽 =  𝜙(𝑥 , 𝑡)| 𝑏
𝑎
+ ∫ 𝑓(𝑥 , 𝑢⃗ , 𝑡)𝑑𝑡

𝑏

𝑎
      

it is necessary that a vector 𝜆 = 𝜆 (𝑡) exist such that                                                            

𝑑𝜆⃗⃗ 𝑖

𝑑𝑡𝑖
= −

𝜕𝐻

𝜕𝑥 𝑖
                   (adjoint equations)  

          𝜆 𝑖(𝑏)= 𝜙𝑥𝑖[𝑥 (𝑏), 𝑏]    (adjoint final conditions)                                                          
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where the Hamiltonian 

𝐻(𝑡, 𝑥 , 𝑢) = 𝑓(𝑡, 𝑥 , 𝑢) + 𝜆⊺ ∗ 𝑔 (𝑡, 𝑥 , 𝑢),   = integrand + RHS of DE                      

for all t, a ≤  t ≤ b, and all 𝑢⃗ ∈ 𝑈 , satisfies 

 H[𝜆 (𝑡), 𝑥 ∗(𝑡), 𝑢⃗ ] ≥ 𝐻[𝜆 (𝑡), 𝑥 ∗(𝑡), 𝑢⃗ ∗],   where  u*   stands for optimal state of U. 

 

Adjoint equations that are used in the equation above are like Lagrange multipliers because 

they add constraints to the variables being optimized (Daulton, 2013). 
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CHAPTER 3 

Non-Linear Control Problem  

 

Our objective functional for non-linear control is given by the equation below:  

                  𝐽(𝑢) = ∫ [𝑏(𝑡) + (∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)

𝑐

2
𝑢2(𝑡)]𝜏

𝑖=1
𝑡1

𝑡0
𝑑𝑡)                                 (4)                     

where 0 ≤ u ≤ M2. 

 

This models hyperbaric oxygen therapy. We consider a nonlinear function for the 

control u because it is unlikely that a body processes oxygen in a linear way (Daulton, 

2013). We use equation (6) to see if there is a change in the length of therapies and to 

compare with the results that were obtained by Daulton. In equation (6), we use a sum of 

Gaussian functions to better simulate hyperbaric oxygen therapy.  

When using equation (6) combined with differential equations (2) — (4) that were 

obtained from Daulton, we can form the Hamiltonian: 

 

    

 H=𝑒−𝛿𝑡(b+
𝑐

2
𝑢2)+⋋1 (𝑘𝑏𝑏(1 − 𝑏)-b

𝑘𝑛𝑟𝑛+ 𝛿

⋋𝑟𝑏𝑏+1

𝑤

𝑤+𝑘𝑤
−⋋𝑏 𝑏)                                             (5)       

       + ⋋2 (𝑘𝑝𝑒
−⋋𝑝𝑡(1 − 𝑛) +

𝑘𝑛𝑖𝑏𝑛(1−𝑛)(𝑔𝑛𝑤(𝑤))

⋋𝑛𝑖𝑛+1
−

⋋𝑏𝑛

1+𝑒𝑏
) 

       +⋋3 (𝛽 + 𝛾𝑢(𝑡) −⋋𝑤 𝑤 −⋋𝑏𝑤 𝑏𝑤 −⋋𝑛𝑤 𝑛𝑤). 
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Following the Theorem 1.1 stated above, we get the adjoint equations below: 

⋋ ′1 = −
𝜕𝐻

𝜕𝑏
 

                   = -[ 1 +⋋1 (𝑘𝑏 − 2𝑘𝑏𝑏 −⋋𝑏) + 
(𝑘𝑛𝑟𝑛+ 𝛿)𝑏⋋𝑟𝑏−(⋋𝑟𝑏𝑏+1)(𝑘𝑛𝑟𝑛+𝛿)

(⋋𝑟𝑏𝑏+1)2
𝑤

𝑤+𝑘𝑤
−⋋𝑏 𝑏)          

       + ⋋2 (
𝑘𝑛𝑖𝑏𝑛(1−𝑛)(𝑔𝑛𝑤(𝑤))

⋋𝑛𝑖𝑛+1
+

⋋𝑏𝑛𝑒

(1+𝑒𝑏)2
)   +⋋3 (− ⋋𝑏𝑤 𝑤) 

⋋ ′2 = −
𝜕𝐻

𝜕𝑛
                    

 = -[⋋1 (
−𝑏𝑘𝑛𝑟

⋋𝑟𝑏𝑏+1

𝑤

𝑤+𝑘𝑤
)  +⋋2 (

𝑔𝑛𝑤(𝑤)[(⋋𝑛𝑖𝑛+1)(𝑘𝑛𝑖𝑏−2𝑘𝑛𝑖𝑏𝑛)−𝑘𝑛𝑖𝑏𝑛(1−𝑛)⋋𝑛𝑖]

(⋋𝑛𝑖𝑛+1)2
−

⋋𝑛

1+𝑒𝑏
−

𝑘𝑝𝑒
−⋋𝑝𝑡) +⋋3 (− ⋋𝑛𝑤 𝑤)]  

⋋ ′3 = −
𝜕𝐻

𝜕𝑤
 

= -[⋋1 (
−𝑏(𝑘𝑛𝑟𝑛+𝛿)

(⋋𝑟𝑏𝑏+1)

𝑘𝑤

(𝑤+𝑘𝑤)2
) +⋋2 (

𝑘𝑛𝑖𝑏𝑛(1−𝑛)(𝑔′
𝑛𝑤

(𝑤)

⋋𝑛𝑖𝑛+1
) +⋋3 (− ⋋𝑤−⋋𝑏𝑤 𝑏 −⋋𝑛𝑤 𝑛)] 

   where 𝑔′
𝑛𝑤

(𝑤) = 𝑓(𝑥) = {
6𝑤2 − 6𝑤 𝑓𝑜𝑟 0 ≤ 𝑤 < 1,

0         𝑓𝑜𝑟  𝑤 ≥ 1,
       

 and the final time values are: 

⋋1 (𝑇) = 0, ⋋2 (𝑇) = 0, ⋋3 (𝑇) =  0. 

Since 
𝜕𝐻

𝜕𝑢
= (𝑐𝑢 + 𝛾 ⋋3), the optimality conditions follow as given below (Daulton, 2013): 

                                    

𝑢∗(𝑡) = {

0                      𝑖𝑚𝑝𝑙𝑖𝑒𝑠 (𝑐𝑢 + 𝛾 ⋋3)  ≥ 0 𝑎𝑡 𝑡,                                                 

0 <
−𝛾⋋3

𝑐
< 𝑀2,                          𝑖𝑚𝑝𝑙𝑖𝑒𝑠 (𝑐𝑢 + 𝛾 ⋋3) = 0 𝑎𝑡 𝑡,

𝑀2                          𝑖𝑚𝑝𝑙𝑖𝑒𝑠  (𝑐𝑢 + 𝛾 ⋋3) ≤ 0 𝑎𝑡 𝑡.                                       

   (12)          

 

 

        Determining the maximum value for delta used in the summation of Gaussian  

(6) 

(7) 

(10) 
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This is the plot to show determination of delta used in Gaussian, which is indicated as 

delta2 in our Matlab code. 

 

Figure 1: The maximum delta value for this graph tells us how long we should administer 

therapy in a day. 

Looking at the objective function where we incorporate a summation of Gaussian factor           

(∫ [𝑏(𝑡) + (∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)

𝑐

2
𝑢2(𝑡)]𝑃

𝑖=1
𝑡1

𝑡0
𝑑𝑡)  in an optimal model for wound healing, the 

following results were obtained as indicated in Figure 3 below: 

 

 

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Figure 2: Summation of Gaussians for determining how long the therapy should be done 

(each day) for 14 days. 
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Proof for Nonlinear Existence 

 

In order to obtain the solution to the above problem, the following theorem (also by 

Lukes) is helpful in making the arguments about the solution (Daulton, 2013). 

Theorem: Let L be the integrand of the objective functional, 𝑔  be the right-hand side of 

the differential equations, U be a closed subset of 𝐸𝑛,  the space of the n tuples x = (x-

1,…….xn) of real numbers. Let ℱ′ be the class of all (x0, u) such that u is a Lebesgue – 

integrable function on the interval [t0, t1] with the values in U and the solution of the 

differential equations satisfying the end conditions e  S. Let S be a given subset of E2n+2 

and J(x0, u) = 𝜙j(t0, t1, x(t0), x(t1)= 𝜙(𝑒) for j=2,…..,k and e denotes a (2n+2)-tuple of 

the end points. For each (t, x)  En+1, let  𝐹̃ (t, x) = {𝑧̃: 𝑧 = 𝑔(t,x,u), zn+1≥

𝐿(𝑡, 𝑥, 𝑢), 𝑢 ∈ 𝑈}. 

Suppose that 𝑔  is continuous, there exists positive constants C1, C2 such that  

(a). |𝑔 (𝑡, 𝑥, 𝑢)| ≤ 𝐶1(1 + |𝑥| + |𝑢|), 

 (b).| (  𝑔(𝑡), 𝑥′, 𝑢) − 𝑔(𝑡, 𝑥, 𝑢)| ≤ 𝐶2|𝑥′-x|(1+|u|) for all t∈ 𝐸1, 𝑥,  𝑥′(𝑡)  𝐸n, and uU, 

L is continuous, and that: 

1. ℱ′ is not empty; 

2. 𝑈 is closed; 

3. 𝑆 is compact and 𝜙 is continuous on S; 

4.  𝐹̃ (t, x) is convex for each (t, x)  En+1; 

5. 𝐿(t, x, u) ≥ h(u), where h is continuous and |u|-1h(u) →+∞ as |u| → ∞, uU.  

𝑇ℎ𝑒𝑛 there exist (x0
*,u*) minimizing J(x0,u) on ℱ′. 
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From the above theorems we are going to check if all the conditions from Daulton’s 

thesis are met (Dalton, 2013): 

a. The set of the control and state variables is non-empty. 

b. The control set U is closed and convex. 

c. The RHS of the state variable is bounded by the linear function in both state and 

control variables. 

d. The integrand of the objective function is convex on U. 

e. There exists constants c1,c2>0, and 𝛽 > 1 such that the integrand L (t, x, u) 

satisfies   L(t, x, u) ≥c1|𝑢|𝛽 - c2 . 

 

Proof: 

Following Luke’s theorem stated above, we can prove the existence of solutions 

on a given bounded interval of coefficients. Following step (d), we also know 

that u is convex since of the derivative of u function is linear and is closed since 

its domain is closed; that is 0 ≤u ≤ 𝑃 ∗ M2. Also using the same argument from 

Daulton’s thesis (2013), the RHS of the state system of the equations is bounded 

by a linear function in the state and the control because we know that bacteria 

and neutrophils are bounded by the carrying capacities b0 and n0 respectively. 

Also considering that the amount of oxygen is bounded by {𝑤𝑖𝑛𝑡,
𝛽+𝛾∗𝑃𝑀2

𝜆𝑤
}, 

where P is the summation of Gaussians and M2 is the maximum amount of 

oxygen input (Daulton, 2013). Let 𝛼 = 𝛽 + 𝛾 ∗ 𝑃𝑀2. Then 
𝑑𝑤

𝑑𝑡
= 𝛼 − 𝜆𝑤 ∗ 𝑤 is 

maximized where u= M2 and at this point we are not considering the amount of 
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oxygen used by bacteria and neutrophils, thus we equate n=b=0. Solving the 

differential equation step by step we have ∶
𝑑𝑤

𝑑𝑡
= 𝛼 − 𝜆𝑤 ∗ 𝑤 

1).∫
𝑑𝑤

𝑑𝑡
=  𝛼 − 𝜆𝑤 ∗ 𝑤  = ∫

𝑑𝑤

𝛼−𝜆𝑤∗𝑤
= 𝑑𝑡 

2). Let u = 𝛼 − 𝜆𝑤 ∗ 𝑤 , 𝑡ℎ𝑒𝑚 𝑑𝑢 =  −𝜆𝑤𝑑𝑤 

3). In| 𝛼 − 𝜆𝑤 ∗ 𝑤| = −𝜆𝑤𝑡 + C,       𝛼 − 𝜆𝑤 ∗ 𝑤  = 𝑒−𝜆𝑤𝑡+𝑐 

4).  𝑤 =
𝛼−𝐶∗𝑒−𝜆𝑤𝑡

𝜆𝑤
  , at the initial stage, we have w(0) = 

𝛼−𝐶

𝜆𝑤
 

5). So C= 𝛼 − 𝜆𝑤 ∗ 𝑤𝑖𝑛𝑡. So we claim that 𝑤̅(𝑡) =  
𝛼(1−𝑒−𝜆𝑤𝑡)+𝜆𝑤∗𝑤𝑖𝑛𝑡𝑒

−𝜆𝑤𝑡

𝜆𝑤
  bounds the 

oxygen function. 

6). We also need to show that 𝑤̅(𝑡) is decreasing when 𝑤̅int >
𝛼

𝜆𝜔
 and is increasing when 

wint < 
𝛼

𝜆𝜔
 . If  𝑤̅(𝑡) is decreasing, then w(0) = wint.  

7). If  𝑤̅(𝑡) is increasing, then the maximum value lim
𝑡→∞

𝑤(𝑡) =  
𝛼

𝜆𝑤
=

𝛽+𝛾∗𝑀2

𝜆𝑤
, and w’(t) = 

𝑑𝑤̅

𝑑𝑡
= (𝛼 − 𝜆𝑤 ∗ 𝑤𝑖𝑛𝑡)𝑒

−𝜆𝑤𝑡.  

8).  Thus we conclude that w is bounded above by 𝑤̅ and the maximum amount of 

oxygen is given by M=max{b0, n0, 𝑤𝑖𝑛𝑡, 
𝛽+𝛾∗𝑃𝑀2

𝜆𝑤
} which bounds the the state and control 

variables.  

9). The integrand of the objective function is convex on u because (𝑏 +

∑ 𝑒−𝛿(𝜏−𝑡𝒊)2 ∗𝑃
𝜏𝑖=0

𝑐

2
𝑢2) is convex function as defined in Bartle and Sherbert (Bartle et 

al,2000): 
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 “Let I be an open interval and suppose that f: I →R has a second derivative on I. Then f 

is convex function on I iff f” (x)≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐼.” 

Thus the second derivative of(𝑏 + ∑ 𝑒−𝛿(𝜏−𝑡)2 ∗𝑃
𝜏𝑖=0

𝑐

2
𝑢2)= C ∑ 𝑒−𝛿(𝜏−𝑡)2𝑃

𝜏𝑖=0 > 0. Let C1 

= C ∑ 𝑒−𝛿(𝜏−𝑡)2𝑃
𝜏𝑖=0 > 0, C2 > 0 and 𝛽=2. Thus (𝑏 + ∑ 𝑒−𝛿(𝜏−𝑡)2 ∗𝑃

𝜏𝑖=0
𝑐

2
𝑢2)  ≥ C1|u|2 – C2.  

 

Non- Linear Solution 

Using the Hamiltonian given as equation 7, we test different initial conditions and 

parameters to see if our objective functional meets the convergence criterion. We make 

different simulations to see which one drives bacteria to zero. Also, we also make sure 

oxygen goes to zero because it is not being used by bacteria and neutrophils, there is a 

likelihood of oxygen toxicity in the body thus finding our solutions to our biological 

problem. 

Important to note in the code are the parameters 𝑘𝑛𝑟 , 𝛿, 𝜆𝑏𝑤,   𝜆𝑛𝑤 which are added 

to our differential equations 2, 3, and 4. They work as Lagrange multipliers which add 

constraints to the equation . They are meant to kill the bacteria faster so as to increase the 

likelihood of convergence of the results (Daulton, 2013).  Also, parameters A, B, C, and 

D  are numbers either divided or multiplied by 𝑘𝑛𝑟 , 𝛿, 𝜆𝑏𝑤,   𝜆𝑛𝑤 respectively . We make 

the following choice A≫B due to the oxidative killing of bacteria by the presence of 

neutrophils in the wound (Daulton, 2013). It is important to note is that, to keep the same 

ratio of  
𝜆𝑏𝑤,   

𝜆𝑛𝑤
, we chose C = D. We use parameters parameters in Daulton’s thesis which 

come from the work of Schugart and Joyce to check for the convergence criterion with 
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these parameters as shown in Table 1 below, but with parameters bacteria still persists in 

the wound as shown in the Figure 3 below (Daulton, 2013): 

 

Parameter Values 

c 0.1 

𝑘𝑏 14.256 

𝑘𝑛𝑟 2*A 

𝛿 3.84*B 

𝜆𝑟𝑏 3.73 

𝑘𝑤 0.75 

𝜆𝑏 0.14256 

𝑘𝑝 0.52 

𝜆𝑝 3.04 

𝜆𝑛𝑖 80 

𝜆𝑛 0.1728 

𝛾 1 

𝜆𝑤 1.0656 

𝛽 0.7992 

𝜆𝑏𝑤 12.6593/C 

𝜆𝑛𝑤 25.5744/D 

𝑒 100 

𝑘𝑛𝑖 10.28 
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Table 1: The above are parameters used in our code to test for test for convergence 

criterion where the the values of A, B, C, D = 80,8, 3, 3 respectively unless stated 

otherwise. 

Figure 3: This is the figure for b, n, and w when there is no oxygen therapy (u-input). We 

can notice from the figure that bacteria persist in the wound. 

 

We are going to run simulations with different parameters to see which ones 

converge using the following results in the table from Daulton’s thesis. The main goal for 

using Daulton’s results is to see if there is a change when we incorporate the summation 

of Gaussians in our objective functional. The following table from Daulton’s thesis 
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shows different initial conditions that are tested for b, n, w, A, B, C, and D where b stands 

for bacteria, n neutrophil level, and w oxygen from surrounding blood vessels as 

indicated earlier on page 4. 

Initial Condition Parameters J -value Wound Healing Time taken (days) 

(b, n, w) (A, B, C, D)    

(0.9, 0.2, 0.5)     

 (100, 5, 2, 2) 0.7828 No - 

 (80, 8, 3, 3) 0.6999 No - 

 (70, 6, 5, 5) 0.44434 Yes 11.8 

(0.7, 0.1, 0.4)     

 (100, 5, 2, 2) 0.7882 No - 

 (80, 8, 3, 3) 0.7077 No - 

 (70, 6, 5, 5) 0.4803 Yes 12.2 

(0.5, 0.1, 0.5)     

 (100, 5, 2, 2) 0.7852 Not - 

 (80, 8, 3, 3) 0.7037 Not - 

 (70, 6, 5, 5) 0.4818 Yes 13 

 

 

Table2: This table shows different initial parameters of b, n, and w that were tested to 

find the convergence criteria. Parameters A, B, C, and D  are numbers either divided or 

multiplied by 𝑘𝑛𝑟 , 𝛿, 𝜆𝑏𝑤,   𝜆𝑛𝑤 respectively. They vary for each initial condition to find 

out which ones would make bacteria go to zero. 
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Figure 4: Results for (b, n, w) = (0.9, 0.2, 0.5) and (A, B, C, D) = (100, 5, 2, 2). 

 It is easily seen that adding Gaussian factors in the objective functional changes the 

shape of u results. The number of bacteria in the wound does not go to zero. The peaks of 

the curve u show how long the therapy is done and this goes on for one day to fourteen 

days. This is more biologically applicable because it shows how much and how long 

oxygen therapy should be administered, keeping in mind that too much oxygen for long 

periods could cause oxygen toxicity in the body. But the bacteria persist in the wound for 

the 14 days. It is worth noticing that every time oxygen u is administered, there is a bump 

in bacteria results where bacteria goes down during the therapy. 
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Figure 5: Results for and (b, n, w) = (0.9, 0.2, 0.5) and (A, B, C, D) = (70, 6, 5, 5) 

With parameter values of (A, B, C, D) = (70, 6, 5, 5). The number of bacteria in the 

wound goes to zero around the twelfth day. The peaks of the curve u show how long the 

therapy is done and this goes on for one day to 14 days. This is more biologically 

applicable because it shows how much and how long oxygen therapy should be 

administered, keeping in mind that too much oxygen for long periods could cause oxygen 

toxicity in the body. It also drives bacteria to zero which is biologically reasonable 

because bacteria are removed from the wound thus leading to wound healing. 
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Figure 6: In this case, (b, n, w) = (0.7,0.1,0.4). Still bacteria go to zero. This also 

gives a more reasonable biological solution since bacteria is removed from the wound 

and administration of hyperbaric oxygen is still administered on hourly basis for 14 days. 

Oxygen input u goes to zero after 14th day which still makes biologically applicable since 

there is no risk of oxygen toxicity. 

For the given numerical results, in Figure 5 and 6 bacteria is removed from 

wound and the oxygen input u also goes to zero. The difference is that different initial 

conditions gives different number of days it takes for the bacteria to be removed from the 

wound. These results are more biologically applicable since bacteria is removed from the 

wound and oxygen input goes to zero after 14 days of therapy. 
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CHAPTER 4 

LINEAR CONTROL 

 

Forming the Hamiltonian for Linear Control 

Our linear control is given below as follows: 

𝐽(𝑢) = ∫ [𝑏(𝑡) + (∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)𝑐𝑢(𝑡)]𝑃

𝑖=1
𝑡1

𝑡0
𝑑𝑡)                                               (12) 

where 0 ≤ u ≤ M2. 

The linear model for our objective functional is called topical oxygen therapy where 

oxygen is administered to the wound directly. In order to form the Hamiltonian for our 

linear control, we will still use differential equations used earlier for non-linear case from 

Schugart and Joyce (Daulton, 2013). 

 

Linear Existence  

In order to prove existence of linear solutions, we use ‘Optimal Control Theory with 

Economic Applications’ by Filippov – Cesari’s work by Seierstad and Sydsaeter (1987, 

p. 285 Theorem 2) as stated by Daulton (2013) by considering the following problem, 

max ∫ 𝑓0(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡, (𝑡0
𝑡1

𝑡0
, 𝑡1 𝑓𝑖𝑥𝑒𝑑) 

subject to vector differential equation and the initial condition 

𝑑𝑥 

𝑑𝑡
= 𝑓(𝑥 (𝑡), 𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0 (𝑥0 fixed) 
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 and the terminal conditions are: 

𝑥𝑖(𝑡1) =  𝑥𝑖
1    for i = 1,…,l                    (𝑥𝑖

1  all fixed) 

𝑥𝑖(𝑡1) ≥  𝑥𝑖
1    for i = l +1,…,m          (𝑥𝑖

1  all fixed) 

𝑥𝑖(𝑡1) free    for i = m +1…, n, 

and for all t ∈ [𝑡0,  𝑡1] and the constraints  

ℎ𝑘(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≥ 0, 𝑘 = 1, 2…, s. (Daulton, 2013) 

For the given set of necessary conditions below, we can prove the existence of solutions: 

1. There exists admissible pair (𝑥(𝑡), 𝑢(𝑡)). 

2. The set N(𝑥, 𝑡) = { 𝑓0(𝑥, 𝑢, 𝑡) + 𝜌, 𝑓(𝑥, 𝑢, 𝑡)): 𝜌 ≤ 0, ℎ(𝑥, 𝑢, 𝑡) ≥ 0} is convex for 

all 𝑥 and t ∈ [𝑡0,  𝑡1]. 

3. There exists a number b such that ‖𝑥(𝑡)‖ ≤ 𝑏 for all admissible pairs (𝑥(𝑡), 𝑢(𝑡)), 

and all t ∈ [𝑡0,  𝑡1]. 

4. There exists a ball B(0, b1) in Rr  which, for all 𝑥 with                                                                

U(𝑥, 𝑡) = {𝑢: ℎ(𝑥, 𝑢, 𝑡) ≥ 0}. 

Then we say that there exists a measurable optimal control (Daulton, 2013). 

Proof: 

1. Consider (𝑥(𝑡), 𝑢(𝑡)) an admissible pair since u(t) is piecewise continuous and 𝑥(t) 

is both continuous and piecewise continuously differentiable, it satisfies the vector 

differential equation, initial conditions, and constraints with free terminal conditions 

(Daulton, 2013). 

2. The set N(𝑥, 𝑡) = { 𝑓0(𝑥, 𝑢, 𝑡) + 𝜌, 𝑓(𝑥, 𝑢, 𝑡)): 𝜌 ≤ 0, ℎ(𝑥, 𝑢, 𝑡) ≥ 0} is convex for 

all 𝑥  and all t ∈ [𝑡0,  𝑡1] (Daulton, 2013).  A function f(𝑥) is defined as convex on an 

interval [a, b] if for any two points x1 and x2 in [a, b] and any 𝜑 where 0 ≤ 𝜑 ≤ 1,  
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 then f [𝜑x1 + (1- 𝜑)𝑥2]≤ 𝜑 f(x1) + (1- 𝜑) f(x2). (Rudin, 1976, p. 101) 

In our case, we have that: 

    𝑓0 = 𝑏 + 𝑍𝑐𝑢, where Z is the summation of Gaussian (∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)𝑃

𝑖=1  

𝑓0(𝑥 , 𝑢1) + 𝜌 = 𝑏 + 𝑍𝑐𝑢1 + 𝜌 

𝑓0(𝑥 , 𝑢2) + 𝜌 = 𝑏 + 𝑍𝑐𝑢2 + 𝜌 

𝑓0(𝑥 , 𝑢2) – 𝑓0(𝑥 , 𝑢1) = Zc (𝑢2– 𝑢1) 

𝜕𝑓0(𝑥 ,𝑢)

𝜕𝑢
= 𝑍𝑐 

        ⟹ (𝑢2–𝑢1)
𝜕𝑓0(𝑥 ,𝑢)

𝜕𝑢
= 𝑐𝑍  

 

Using our third adjoint equation, we have the following: 

𝑓 = 𝛽 + 𝛾 ∗ ∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)𝑃

𝑖=1 ∗ 𝑢(𝑡) − 𝜆𝑤𝑤 − 𝜆𝑏𝑤𝑏𝑤 − 𝜆𝑛𝑤𝑛𝑤      

𝑓(𝑥 , 𝑢1) = 𝛽 + 𝛾 ∗ ∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)𝑃

𝑖=1 ∗ 𝑢1 − 𝜆𝑤𝑤 − 𝜆𝑏𝑤𝑏𝑤 − 𝜆𝑛𝑤 𝑛𝑤   

𝑓(𝑥 , 𝑢2) = 𝛽 + 𝛾 ∗ ∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)𝑃

𝑖=1 ∗ 𝑢2 − 𝜆𝑤𝑤 − 𝜆𝑏𝑤𝑏𝑤 − 𝜆𝑛𝑤 𝑛𝑤   

𝑓0(𝑥 , 𝑢2) – 𝑓0(𝑥 , 𝑢1) = 𝛾 ∗ Z *(𝑢2–𝑢1) 
𝜕𝑓0(𝑥 ,𝑢)

𝜕𝑢
 = 𝛾 

⟹ 𝑍(𝑢2– 𝑢1)
𝜕𝑓0(𝑥 ,𝑢)

𝜕𝑢
= 𝛾 ∗ 𝑍 ∗ (𝑢2– 𝑢1). 

Using the same argument from Daulton’s thesis, we know that if a function f is 

differentiable, then f is convex if and only if  𝑓(𝑥2) − 𝑓(𝑥1) ≤ (𝑥2– 𝑥1)𝑓
′(𝑥2). From this 

we see that the property holds for our case  since 𝑍𝑐𝑥2 − 𝑍𝑐𝑥1 ≤ (𝑥2– 𝑥1)𝑐𝑍. 

3. Also, there is a number b such that ‖𝑥(𝑡)‖ ≤ 𝑏 for all admissible pairs, 

(𝑥(𝑡), 𝑢(𝑡)),  and t ∈ [𝑡0,  𝑡1] where b= max{b0, n0, 𝑤𝑖𝑛𝑡, 
𝛽+𝛾∗𝑍∗𝑀2

𝜆𝑤
} as shown earlier 

in the nonlinear problem (Daulton, 2013). 
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4. There exists a ball B (0, b1) in 𝑅𝑟such that for all x  

U(𝑥, 𝑢) = {𝑢: ℎ(𝑥, 𝑢, 𝑡) ≥ 0}  which is a convex subset of 𝑅𝑟 , where r is the number of 

control variables. This is considered true because u is always between [0, M], ‖𝑥(𝑡)‖ ≤

𝑏, and t ∈ [𝑡0,  𝑡1], where  𝑡1 is the final time. Thus U(𝑥, 𝑢) = {𝑢: ℎ(𝑥, 𝑢, 𝑡) ≥ 0}. From this, 

we can define the convexity of the function using Helly’s Theorem 1993 as for a given 

vector space X, there is a subset K of X which is convex if for any two points x, y ∈ 𝐾, we 

have c ∈ 𝑉, for every point, then c= (1– 𝜑) 𝑥 + 𝜑 𝑦, with 0 ≤ 𝜑 ≤ 1 (where 𝜑 ∈ 𝑅). 

Let x, y ∈ U, assume without loss of generality 0 ≤ x ≤ y ≤ M (Daulton, 2013).                            

Let ℎ1(𝑢) =  𝑍 ∗ 𝑢, ℎ2 = 𝑀 − 𝑍 ∗ 𝑢 ≥ 0. Then  

       ℎ1(𝑥) ≥ 0 ⟹ 𝑍𝑥 ≥ 0, 

 ℎ1(𝑦) ≥ 0 ⟹ 𝑦 ≥ 0, 

ℎ2(𝑥) ≥ 0 ⟹ 𝑀 − 𝑍𝑥 ≥ 0, 

ℎ2(𝑦) ≥ 0 ⟹ 𝑀 − 𝑍𝑦 ≥ 0, 

Let w = 𝜑x + (1- 𝜑) y∈ 𝑈 for 0 ≤ 𝜑 ≤ 1. Thus we need to show that ℎ1(𝑥) ≥ 0 and 

ℎ2(𝑥) ≥ 0 

ℎ1(𝑤) =  𝜑𝑍x + (1- 𝜑) Z y ≥ 0 

ℎ2(𝑤) = 𝑀 −  𝜑𝑍x – (1- 𝜑) Z y 

= M–y +𝜑y–𝜑x 

= M – Zy +𝑍𝜑(y–x) ≥ 0 for x ≤ y. 

Thus we can conclude that U is convex hence proving the existence of the linear 

solution. 
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Forming the Hamiltonian for Linear Control 

 

The Hamiltonian is for combining the Integrand which in this case is our objective 

functional and the right hand side of our differential equations as given below: 

H = [𝑏 + (∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)

𝑐

2
𝑢(𝑡)]𝜏

𝑖=1 𝑑𝑡+⋋1 (𝑘𝑏𝑏(1 − 𝑏)-b
𝑘𝑛𝑟𝑛+ 𝛿

⋋𝑟𝑏𝑏+1

𝑤

𝑤+𝑘𝑤
−⋋𝑏 𝑏)                                                

       + ⋋2 (𝑘𝑝𝑒
−⋋𝑝𝑡(1 − 𝑛) +

𝑘𝑛𝑖𝑏𝑛(1−𝑛)(𝑔𝑛𝑤(𝑤))

⋋𝑛𝑖𝑛+1
−

⋋𝑏𝑛

1+𝑒𝑏
)                (13) 

       +⋋3 (𝛽 + 𝛾 ∗ ∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)𝑃

𝑖=1 ∗ 𝑢(𝑡) −⋋𝑤 𝑤 −⋋𝑏𝑤 𝑏𝑤 −⋋𝑛𝑤 𝑛𝑤) 

Using Luke’s Theorem 1.1 stated on page 5 we get the following adjoint equations: 

⋋ ′1 = −
𝜕𝐻

𝜕𝑏
 

                   = -[ 1 +⋋1 (𝑘𝑏 − 2𝑘𝑏𝑏 −⋋𝑏) + 
(𝑘𝑛𝑟𝑛+ 𝛿)𝑏⋋𝑟𝑏−(⋋𝑟𝑏𝑏+1)(𝑘𝑛𝑟𝑛+𝛿)

(⋋𝑟𝑏𝑏+1)2
𝑤

𝑤+𝑘𝑤
−⋋𝑏 𝑏)          

       + ⋋2 (
𝑘𝑛𝑖𝑏𝑛(1−𝑛)(𝑔𝑛𝑤(𝑤))

⋋𝑛𝑖𝑛+1
+

⋋𝑏𝑛𝑒

(1+𝑒𝑏)2
)   +⋋3 (− ⋋𝑏𝑤 𝑤) 

 

⋋ ′2 = −
𝜕𝐻

𝜕𝑛
                    

 = -[⋋1 (
−𝑏𝑘𝑛𝑟

⋋𝑟𝑏𝑏+1

𝑤

𝑤+𝑘𝑤
)  +⋋2 (

𝑔𝑛𝑤(𝑤)[(⋋𝑛𝑖𝑛+1)(𝑘𝑛𝑖𝑏−2𝑘𝑛𝑖𝑏𝑛)−𝑘𝑛𝑖𝑏𝑛(1−𝑛)⋋𝑛𝑖]

(⋋𝑛𝑖𝑛+1)2
−

⋋𝑛

1+𝑒𝑏
−

𝑘𝑝𝑒
−⋋𝑝𝑡) +⋋3 (− ⋋𝑛𝑤 𝑤)]  

⋋ ′3 = −
𝜕𝐻

𝜕𝑤
 

= -[⋋1 (
−𝑏(𝑘𝑛𝑟𝑛+𝛿)

(⋋𝑟𝑏𝑏+1)

𝑘𝑤

(𝑤+𝑘𝑤)2
) +⋋2 (

𝑘𝑛𝑖𝑏𝑛(1−𝑛)(𝑔′
𝑛𝑤

(𝑤))

⋋𝑛𝑖𝑛+1
) +⋋3 (− ⋋𝑤−⋋𝑏𝑤 𝑏 −⋋𝑛𝑤 𝑛)] 

 

   where 𝑔′
𝑛𝑤

(𝑤) = 𝑓(𝑥) = {
6𝑤2 − 6𝑤 𝑓𝑜𝑟 0 ≤ 𝑤 < 1,

0         𝑓𝑜𝑟  𝑤 ≥ 1,
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 and the final time values are: 

⋋1 (𝑇) = 0, ⋋2 (𝑇) = 0, ⋋3 (𝑇) =  0. 

 

Linear Solution 

In a way to get results for our linear problem, we test different initial parameters 

for b, n, and w in our code to see which parameters remove the bacteria from the wound. 

In our linear problem, bacteria are removed from the wound for most of the cases. This 

shows that our oxygen input (topical oxygen) therapy works relatively well in wound 

treatment. 

 

Figure 7: This figure shows results for (b, n, w) = (0.9, 0.2, 0.5).  
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In this case, bacteria are removed after about a day of the therapy but oxygen 

therapy goes on for 14 days. This is biologically reasonable since bacteria is removed 

from the wound and oxygen is administered at an hourly basis every day for 14 days. 

 

Figure 8: Results for and (b, n, w) = (0.5, 0.1, 0.5). 

In this case, bacteria are removed from the wound after about 2.2 days of therapy. 

This also provides a biologically reasonable solution since bacteria are removed and 

therapy is done on an hourly basis everyday. 
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Initial Condition Parameters J -value Healing Time (days) 

(b, n, w) (A, B, C, D)   

(0.9, 0.2, 0.5)    

 (100, 5, 2, 2) 52.5080 1.2 

 (80, 8, 3, 3) 35.0598 0.5 

 (70, 6, 5, 5) 39.2118 0.8 

(0.7, 0.1, 0.4)    

 (100, 5, 2, 2) 94.6806 2.1 

 (80, 8, 3, 3) 47.5718 1 

 (70, 6, 5, 5) 49.703 1.7 

(0.5, 0.1, 0.5)    

 (100, 5, 2, 2) 98.7443 2.2 

 (80, 8, 3, 3) 38.8580 0.9 

 (70, 6, 5, 5) 53.2882 1.5 

Table 3: This table summarizes our results for linear problem. It shows initial condition 

parameters with respective J-values which is our objective functional. 

In all cases for our linear problem, bacteria go to zero which means our hourly 

therapy was effective. J values for linear control vary between 30 and 100 for all initial 

conditions and parameters. There is also variation in the values of J for the non-linear 

problem but it is less. This is because the values we choose for u is between 0 and 1, and 

squaring a decimal will make the value smaller hence leading to smaller J value. From 

table, we also notice that the time taken for the wound to heal for our linear problem is 

shorter. This is because we are putting more oxygen in wound which removes bacteria 
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quickly from the wound. For the non- linear problem, for the cases when the wound 

healed, it was longer because of less of oxygen input in the therapy. This can be 

understood by knowing that squaring any decimal between 0 and 1 makes the decimal 

number smaller hence less amount of oxygen input. Also, important to note is that our 

oxygen therapy is done daily for 14 days but it would be more biologically applicable if 

the therapy stopped after bacteria are removed from the would so as to avoid oxygen 

toxicity. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

We developed a non-linear and linear model of exponential functions from 

existing models of optimal control for hyperbaric and topical oxygen therapy of a chronic 

wound. Our model reasonably shows how best we can capture the best results and when 

it is good to administer therapies. It also shows how long the therapy should be 

administered in a day. We found the value of the Gaussian in order to get the best therapy 

and length so that we can use the right amount of oxygen and therapy to avoid high cost 

of therapies and toxicity from excess oxygen.   

Our results for a non-linear show that for cases when bacteria are removed from 

the wound, it takes a bit longer (periods about 10- 13 days of daily hyperbaric oxygen 

therapy). But still this is biologically applicable since oxygen therapy is done on an 

hourly basis each day and there will be no risk of oxygen therapy since the amount 

administered is controlled. There is also variation in our results and the value of J 

depending on the initial conditions and parameters used. 

The linear case captured significant results since bacteria converged to zero for all 

cases and it took a few days for bacteria to be removed from the wound. The topical 

oxygen therapy was still administered with in the time frame of 14 days even after 

bacteria removal. But this not best treatment since oxygen is still administered even after 

bacteria 
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removal yet we wanted to minimize amount of oxygen used in the therapy to avoid costly 

therapies.   

Our future goal is to see what happens when one administers therapies on 

different days that is waiting for some days before doing therapy and how long it should 

be done per day. We also would like to test different parameters to see which ones make 

the bacteria and neutrophils converge to zero. This is a first step toward customizing 

treatment for patients based on administering hourly therapies.  

Also, other areas of future work include using real data as opposed to making 

initial guesses for our parameters and doing simulations on them. Real data helps in 

knowing well which conditions to use and thus helping in making best decisions. The 

advantage of this is that it helps in choosing the best parameters which makes it easy to 

know when or when not to administer oxygen therapy thus avoiding the risk of oxygen 

toxicity and costly therapies. 

The future work will also consider what happens if we do therapy for longer 

periods each day instead of having therapy go on for a short time every day. It may be the 

case that doing longer therapies every day would make bacteria go to zero quickly 

especially for our non-linear problem (𝐽(𝑢) = ∫ [𝑏(𝑡) + (∑ 𝑒−𝛿(𝑡−𝜏𝑖)
2
)𝑐𝑢(𝑡)]𝑃

𝑖=1
𝑡1

𝑡0
𝑑𝑡), 

also referred to as hyperbaric oxygen therapy, where it takes more than 10 days for 

bacteria to be removed from the wound. 

Lastly, we would like to consider a piecewise function as opposed to continuous 

non-linear and linear problem. A piecewise function could work well because instead of a 

continuous function for input of oxygen where there is a likelihood of oxygen toxicity in 

the body, we would have sub-intervals where we can choose to administer therapy on 
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some days. Examples of piecewise functions are absolute value functions which always 

have subdomains. This function minimizes the amount of oxygen used where oxygen is 

only administered where necessary.  
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Appendix 

 
function y=delta3() 
t=18:0.01:30; 
delta=0.00001; 
epsilon=0.01; 
y=exp(-delta*((t-24)/epsilon).^2); 
figure(11) 
plot(t./24,y) 
t1=0:0.01:48; 
y=exp(-delta*((t1-24)/epsilon).^2); 
delta1=0.006; 
epsilon1=0.01; 
t2=0:0.001:18; 
y2=exp(-delta1*((t2-1)/epsilon1).^2); 
figure(12) 
plot(t./24,y,'-k',t2,y2,'-b') 

  
end    

 

       

Figure 9: Code for determining the value of delta 3 used in summation of Gaussian 
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function y = nonlinearproblem5(b0,n0,w0,A,B,C,D)% assigns variable b0, 

n0 and w0 as  
% inputs, y as output 

  
warning('off','all') 
test = -1; % convergence test variable- begins the while loop with a 

neg 
% number 
tf=14; 
zeta = .1; % convergence criterion 
N = 1000; % number of nodes 
t = linspace(0,tf,N+1); % creates N+1=1001 equally spaced nodes 
t1=linspace(tf,0,N+1); 
h = tf/N; % spacing is assigned as h 
h2 = h/2; % short-hand for Runge-Kutta subroutine (h2 short for h/2) 
M2 = 16.37; %max bound of u see page 82 
M1 =0; %min bound of u see pg 82 

  
delta2 =0.06; 
epsilon1=0.01; 
k = 0; 
u = 0; 

  
while k < 14 
    k = k+1; 
    u = u+0.5*ones(1,N+1).*(exp(-delta2*((t-k)/epsilon1).^2)); 
end 

  
%u = zeros(1,N+1); 
%u = -M2*t/tf +M2;  
u = 0.5*ones(1,N+1); 
u1=u; 

  
n = zeros(1,N+1); % vector n and size 
n(1) = n0; % initial condition for n because matlab recognizes 1 as the 
% first element 
 %n(N+1) = n; 
b = zeros(1,N+1); % vector b and size 
b(1) = b0; % initial condition for b 
w = zeros(1,N+1); % vector w and size 
w(1) = w0; % initial condition for w 
lambda1 = zeros(1,N+1); % lamda1 and size 
lambda2 = zeros(1,N+1); 
lambda3 = zeros(1,N+1); 
%x1exact = zeros(1,N+1); 
%x2exact = zeros(1,N+1); 
%uexact = zeros(1,N+1); 
k=0; %k is my counter see pg 82 
temp=0; 
j=0; 
tau =0; 
while(test < 0 && k<1500)%25000) % when convergence occurs test will 

become non-negative 
    k = k+1; 
    c = .000000001; 
    oldu = u; % previous value of u 



 36 

    oldn = n; % previous value of n 
    oldb = b; % previous value of b 
    oldw = w; % previous value of w 
    oldlambda1 = lambda1; % previous value of lambda1 
    oldlambda2 = lambda2; % previous value of lambda2 
    oldlambda3 = lambda3; % previous value of lambda3 
    kb = 14.256; 
    knr = 2*A; 
    delta = 3.84*B; 
    lambdarb = 3.73; 
    kw = .75; 
    lambdab = 0.14256; 
    kp = 0.052; 
    lambdap = 3.04; 
    kni = 10.28; 
    lambdani = 80; 
    lambdan = .1728; 
    gamma = 1; 
    lambdaw = 1.0656; 
    beta = 0.7992; 
    lambdabw = 12.6593/C; 
    lambdanw = 25.5744/D; 
    e = 100; 
    tau = tau+0; 
    %delta2 = 0.06; 
    oldj = j; 
    

params1=[kb,knr,delta,lambdarb,kw,lambdab,kp,lambdap,kni,lambdani,lambd

an,beta,gamma,lambdaw,lambdabw,lambdanw,e,delta2,tau]; 

  
     [T1,x]=firstfunction(b0,n0,w0,t,t,u1,params1); 
     if t~=T1' 
         error('time values for x do not match') 
     end 
     b=x(:,1)'; 
     n=x(:,2)'; 
     w=x(:,3)'; 

  
    [T2,lambda]=secondfunction(b,n,w,t1,t1,params1); 
%     if t~=T2' 
%         t 
%         T2 
%         error('time values for lambda do not match') 
%     end 
   lambda1=flipud(lambda(:,1))'; 
   lambda2=flipud(lambda(:,2))'; 
   lambda3=flipud(lambda(:,3))'; 

    
figure(12) 
%display 
%title(figure(12),'summation of Gaussiana') 
plot(t,exp(-delta2*((t-1)/epsilon1).^2) + exp(-delta2*((t-

2)/epsilon1).^2) ... 
+exp(-delta2*((t-3)/epsilon1).^2) +exp(-delta2*((t-4)/epsilon1).^2)+ 

exp(-delta2*((t-5)/epsilon1).^2)+ ... 
exp(-delta2*((t-6)/epsilon1).^2)+ ... 
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    exp(-delta2*((t-7)/epsilon1).^2)+exp(-delta2*((t-8)/epsilon1).^2)+ 

... 
   exp(-delta2*((t-9)/epsilon1).^2) +exp(-delta2*((t-10)/epsilon1).^2) 

... 
   +exp(-delta2*((t-11)/epsilon1).^2) ... 
    +exp(-delta2*((t-12)/epsilon1).^2)+exp(-delta2*((t-

13)/epsilon1).^2) ... 
    +exp(-delta2*((t-14)/epsilon1).^2)); 
title('Summation of Gaussians') 
xlabel({'Time' 'in days'}) 
%display(figure(12)) 

  

  
 u1 = max(M1.*(exp(-delta2*((t-1)/epsilon1).^2) + exp(-delta2*((t-

2)/epsilon1).^2)+ ... 
     exp(-delta2*((t-3)/epsilon1).^2)+exp(-delta2*((t-4)/epsilon1).^2) 

... 
     +exp(-delta2*((t-5)/epsilon1).^2)+exp(-delta2*((t-

6)/epsilon1).^2)),... 
    min(u1.*(exp(-delta2*((t-1)/epsilon1).^2) + exp(-delta2*((t-

2)/epsilon1).^2)+ ... 
    exp(-delta2*((t-3)/epsilon1).^2)+ ... 
    exp(-delta2*((t-4)/epsilon1).^2)+exp(-delta2*((t-5)/epsilon1).^2) 

... 
    +exp(-delta2*((t-6)/epsilon1).^2))... 
    - h*(c*u1.*(exp(-delta2*((t-1)/epsilon1).^2)  ... 
    + exp(-delta2*((t-2)/epsilon1).^2)+exp(-delta2*((t-3)/epsilon1).^2+ 

... 
    exp(-delta2*((t-4)/epsilon1).^2))) +exp(-delta2*((t-

5)/epsilon1).^2)+ ... 
    exp(-delta2*((t-6)/epsilon1).^2)... 
    +gamma*lambda3),M2.*(exp(-delta2*((t-1)/epsilon1).^2)... 
    + exp(-delta2*((t-2)/epsilon1).^2) ... 
    +exp(-delta2*((t-3)/epsilon1).^2)+exp(-delta2*((t-4)/epsilon1).^2 

... 
    +exp(-delta2*((t-5)/epsilon1).^2)+exp(-delta2*((t-6)/epsilon1).^2) 

... 
    +exp(-delta2*((t-7)/epsilon1).^2)))));    
u1 = max(M1, min(u1 - h*(c*u1+gamma*lambda3),M2)); 
temp = sum(abs(c*u1+gamma*lambda3)); 
%test = 65-sum(b+(c/2)*u1.^2); 
j = sum(b+(c/2)*u1.^2+1); 
temp2 = abs(j-oldj); 
test = .15-temp2; 

   

  
    if floor(k/10)==k/10 
        display(test) 
        %display([temp11,temp21,temp22,temp31,temp23,temp33,temp32]); 
    end 
end 

  
y(1,:) = t; % defines t 
y(2,:) = n; % defines n 
y(3,:) = b; % defines b 
y(4,:) = w; % defines w 
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y(5,:) = lambda1; % defines lambda1 
y(6,:) = lambda2; % defines lambda2 
y(7,:) = lambda3; % defines lambda3 
y(8,:) = u1; % defines u 

  
 J=sum(b+(c/2)*u1.^2); 
 display(J) 
 figure(1) 
 hold on; 
 subplot(7,1,1) 
 plot(t,b,'r-')  
 ylabel('b') 
 title('Optimal control results for b, n, w, u(t),\lambda_1, \lambda_2, 

\lambda_3') 
 subplot(7,1,2) 
 plot(t,n,'r-') 
 ylabel('n') 
 subplot(7,1,3) 
 plot(t,w,'r-') 
 ylabel('w') 
 subplot(7,1,4) 
 plot(t,u1,'r-') 
 ylabel('u(t)') 
 ylim([0,1]) 
 %xlabel('t (in days)') 

  

  
 %figure(2) 
 %hold on; 

  
 subplot(7,1,5) 
 plot(t,lambda1,'r-') 
 ylabel('\lambda_1') 
 %title('Optimal control results for \lambda_1, \lambda_2, \lambda_3') 
 subplot(7,1,6) 
 plot(t,lambda2,'r-') 
 ylabel('\lambda_2') 
 subplot(7,1,7) 
 plot(t,lambda3,'r-') 
 ylabel('\lambda_3') 
 xlabel('t (in days)') 

  
% %display('k =') 
% display(k) 
end 
%----------------------------------------------------------------------

--- 
function gnwvalue=gnw(w) 

  
if w<1 
   % if w<0 
    %    error('w is negative') 
    %end 
    gnwvalue=2*w^3-3*w^2+2; 
else 
    gnwvalue=1; 



 39 

end 
end 
%----------------------------------------------------------------------

--- 
function gnwprimevalue=gnwprime(w) 
if w<1 
%     if w<0 
%        error('w is negative') 
%    end 
    gnwprimevalue=6*w^2-6*w; 
else 
    gnwprimevalue=0; 
end 
end 
function [T1,x] = firstfunction(b0,n0,w0,t,tt,u,params) 
    ic= [b0 n0 w0]; 
    options = odeset('RelTol',1e-4,'AbsTol',[1e-4, 1e-4, 1e-4]); 
    [T1,x]= ode15s(@firstfunctionode, t,ic,options,tt,u,params); 
end 
function dx = firstfunctionode(t,x,tt,u,params) 
 kb=params(1); 
 knr=params(2); 
 delta=params(3); 
 lambdarb=params(4); 
 kw=params(5); 
 lambdab=params(6); 
 kp=params(7); 
 lambdap=params(8); 
 kni=params(9); 
 lambdani=params(10); 
 lambdan=params(11); 
 beta=params(12); 
 gamma=params(13); 
 lambdaw=params(14); 
 lambdabw=params(15); 
 lambdanw=params(16); 
 e=params(17); 
u1=interp1(tt,u,t,'cubic'); 
dx = [kb*x(1)*(1-x(1))-

x(1)*(knr*x(2)+delta)/(lambdarb*x(1)+1)*x(3)/(x(3)+kw)-lambdab*x(1);... 
   kp*exp(-lambdap*t)*(1-x(2))+(kni*x(1)*x(2)*(1-

x(2))*gnw(x(3)))/(lambdani*x(2)+1)-lambdan*x(2)/(1+e*x(1));... 
   beta + gamma*u1-lambdaw*x(3)-lambdabw*x(1)*x(3)-lambdanw*x(2)*x(3)]; 
end 

  
function [T2,y] = secondfunction(b,n,w,t,tt,params) 
ic=[0 0 0]; 
options = odeset('RelTol',1e-4,'AbsTol',[1e-4, 1e-4, 1e-4]); 
[T2,y] = ode15s(@secondfunctionode,t,ic,options,tt,b,n,w,params); 
end 

  
function dy = secondfunctionode(t,y,tt,b,n,w,params) 
 kb=params(1); 
 knr=params(2); 
 delta=params(3); 
 lambdarb=params(4); 
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 kw=params(5); 
 lambdab=params(6); 
 kp=params(7); 
 lambdap=params(8); 
 kni=params(9); 
 lambdani=params(10); 
 lambdan=params(11); 
 beta=params(12); 
 gamma=params(13); 
 lambdaw=params(14); 
 lambdabw=params(15); 
 lambdanw=params(16); 
 e=params(17); 
ttt = flipud(tt')'; 
b1=interp1(ttt,b,t,'cubic'); 
n1=interp1(ttt,n,t,'cubic'); 
w1=interp1(ttt,w,t,'cubic'); 
dy = [-(1+y(1)*(kb-2*kb*b1-lambdab+((knr*n1+delta)*b1*lambdarb-

(lambdarb*b1+1)*(knr*n1+delta))/((lambdarb*b1+1)^2)*w1/(w1+kw))+y(2)*((

(kni*n1*(1-

n1)*(gnw(w1)))/(lambdani*n1+1)+(lambdan*n1*e)/((1+e*b1)^2))+y(3)*(-

lambdabw*w1)));... 
    -((y(1)*(-

b1*knr)/(lambdarb*b1+1)*w1/(w1+kw)+y(2)*(gnw(w1)*((lambdani*n1+1)*(kni*

b1-2*kni*b1*n1)-kni*b1*n1*(1-n1)*lambdani))/(lambdani*n1+1)^2)-

lambdan/(1+e*b1)-kp*exp(-lambdap*t)+y(3)*(-lambdanw*w1));... 
    -(y(1)*((-

b1*(knr*n1+delta))/(lambdarb*b1+1)*(kw)/((w1+kw)^2))+y(2)*((kni*b1*n1*(

1-n1)*(gnwprime(w1)))/(lambdani*n1+1))+y(3)*(-lambdaw-lambdabw*b1-

lambdanw*n1))]; 

     
end 
function delta2=gaussian2() 
%t=18:0.01:30; 
%delta2=0.00001; 
%epsilon=0.01; 
%tau=24:48:60; 
%y=exp(-delta2*((t-tau)/epsilon).^2); 
%figure(11) 
%plot(t./24,y) 
 %t1=0:0.01:24; 
%y=exp(-delta2*((t1-tau)/epsilon).^2); 
%figure(12) 
%plot(t1./24,y) 
%delta2 = find(y > 0.99999999999); 
%delta1=0.006; 
%epsilon1=0.01; 
%t2=0:0.001:2; 
%y2=exp(-delta1*((t2-tau)/epsilon1).^2); 
%plot(t2./24,y) 
%function delta2=gaussian2() 
t=18:0.01:30; 
delta=0.00001; 
epsilon=0.01; 
y=exp(-delta*((t-24)/epsilon).^2)+ exp(-delta*((t-48)/epsilon).^2+exp(-

delta2*((t-72)/epsilon1).^2)); 
figure(11) 
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plot(t./24,y) 
t1=0:0.01:48; 
y=exp(-delta*((t1-24)/epsilon).^2); 
delta1=0.006; 
epsilon1=0.01; 
t2=0:0.001:2; 
y2=exp(-delta1*((t2-1)/epsilon1).^2) + exp(-delta1*((t2-

2)/epsilon1).^2) 
figure(12) 
plot(t./24,y,'-k',t2,y2,'-b') 
delta2=y2(find(y2 > 0.99999999999999)); 
delta2=1.2; 
end 

 

Figure 11:  Code for the non-linear problem. 

 

 

 

 
function y = linearproblem21(b0,n0,w0,A,B,C,D,epsilon)% assigns 

variable n0,b0 and w0 as  
%  
% Inputs: 
% b0 = Initial bacteria level (0 - 1) 
% n0 = Initial neutrophil level (0 - 1) 
% w0 = Initial oxygen level (0 - 1) 
% A = Scalar value (70, 80, 100) 
% B = Scalar value (6, 8, 5) 
% C = Scalar value (5, 3, 2) 
% D = Scalar value (5, 3, 2) 
% Epsilon = Small number (0.0001 - 0.01) 
% 
% Output: 
% Graphs 

  
test = -1; % convergence test variable- begins the while loop with a 

neg 
% number 
tf=14; 
zeta = .00001; %convergence tolerance requirement 
N = 1000; % number of nodes 
t = linspace(0,tf,N+1); % creates N+1-1=1000 equally spaced nodes 
t1 = linspace(tf,0,N+1); 
h = tf/N; % spacing is assigned as h 
%M1 = 0;  not used except for lines 87-91 
M2 = 2; 
M=1.5; 
%u = zeros(1,N+1); % initial guess for u where u_i=0 
%u = ones(1,N+1); 
u = -M2*t/tf +M2; 
%u = 0.5; 

  
%u(1) = 0; 
u1 = u; 
n = zeros(1,N+1); % vector n and size 
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n(1) = n0; % initial condition for n because matlab recognizes 1 as the 
% first element 
% n(N+1) = n; 
b = zeros(1,N+1); % vector b and size 
b(1) = b0; % initial condition for b 
w = zeros(1,N+1); % vector w and size 
w(1) = w0; % initial condition for w 
lambda1 = zeros(1,N+1); % lamda1 and size 
lambda2 = zeros(1,N+1); 
lambda3 = zeros(1,N+1); 

  
utwo = zeros(1,N+1); 
uthree = zeros(1,N+1); 
u2 = utwo; 
u3 = uthree; 
%x1exact = zeros(1,N+1); 
%x2exact = zeros(1,N+1); 
%uexact = zeros(1,N+1); 
k=0; 
j=0; 
while(test < 0 && k<5) % when convergence occurs test will become non-

negative 
    k = k+1; 

     

    
    c = 0.1; 
    kb = 14.256; 
    knr = 2*A; 
    delta = 3.84*B; 
    lambdarb = 3.73; 
    kw = .75; 
    lambdab = 0.14256; 
    kp = 0.052; 
    lambdap = 3.04; 
    kni = 10.28; 
    lambdani = 80; 
    lambdan = .1728; 
    gamma = 1; 
    lambdaw = 1.0656; 
    beta = 0.7992; 
    lambdabw = 12.6593/C; 
    lambdanw = 25.5744/D; 
    e = 100; 
    delta2 = 0.006; 
    epsilon1 = 0.01; 
    

params1=[kb,knr,delta,lambdarb,kw,lambdab,kp,lambdap,kni,lambdani,lambd

an,beta,gamma,lambdaw,lambdabw,lambdanw,e]; 

  
 %reorder for consistency 
     [T1,x]=firstfunction(b0,n0,w0,t,t,u1,params1,u2,u3,epsilon); 
     if t~=T1' 
         error('time values for x do not match') 
     end 
     b=x(:,1)'; 
     n=x(:,2)'; 
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     w=x(:,3)'; 
    [T2,lambda]=secondfunction(b,n,w,t1,t1,params1); 
    if t~=T2' 
       error('time values for lambda do not match') 
    end 
   lambda1=flipud(lambda(:,1))'; 
   lambda2=flipud(lambda(:,2))'; 
   lambda3=flipud(lambda(:,3))'; 
end 

    
   figure(12) 
%display 
%title(figure(12),'summation of Gaussiana') 

    
   plot(t,exp(-delta2*((t-1)/epsilon1).^2) + exp(-delta2*((t-

2)/epsilon1).^2) ... 
+exp(-delta2*((t-3)/epsilon1).^2) +exp(-delta2*((t-4)/epsilon1).^2)+ 

exp(-delta2*((t-5)/epsilon1).^2)+ ... 
exp(-delta2*((t-6)/epsilon1).^2)+ ... 
    exp(-delta2*((t-7)/epsilon1).^2)+exp(-delta2*((t-8)/epsilon1).^2)+ 

... 
   exp(-delta2*((t-9)/epsilon1).^2) +exp(-delta2*((t-10)/epsilon1).^2) 

... 
   +exp(-delta2*((t-11)/epsilon1).^2) ... 
    +exp(-delta2*((t-12)/epsilon1).^2)+exp(-delta2*((t-

13)/epsilon1).^2) ... 
    +exp(-delta2*((t-14)/epsilon1).^2)); 
title('Summation of Gaussians') 
xlabel({'Time' 'in days'}) 
%  
     u1 = 

(((M/2)*(c+gamma*lambda3)./sqrt(((c+gamma*lambda3).^2)+(epsilon^2*lambd

a1.^2)+(epsilon^2*lambda2.^2)))+(M/2)); 
     %u2 = 

(epsilon*lambda1)./sqrt(((c+gamma*lambda3).^2)+(epsilon^2*lambda1.^2)+(

epsilon^2*lambda2.^2)); 
     %u3 = 

(epsilon*lambda2)./sqrt(((c+gamma*lambda3).^2)+(epsilon^2*lambda1.^2)+(

epsilon^2*lambda2.^2)) ; 

     
%      u1 = real(max(M1,min(u1-h*(c+gamma*lambda3),M2))); 
%      u1t = 2/(M2-M1)*u1-(M2+M1)/(M2-M1); 
%      u2 = real(max(M1*sqrt(1-u1t.^2),min(u2-

h*epsilon*lambda1,M2*sqrt(1-u1t.^2)))); 
%      u2t = 2/(M2-M1)*u2-(M2+M1)/(M2-M1); 
%      u3 = real(max(M1,min(u3-h*epsilon*lambda2,M2*sqrt(1-u1t.^2-

u2t.^2)))); 

     

     
     u1 = u1.*(exp(-delta2*((t-1)/epsilon1).^2)+exp(-delta2*((t-

2)/epsilon1).^2)+ ... 
         exp(-delta2*((t-3)/epsilon1).^2)+ ... 
         exp(-delta2*((t-4)/epsilon1).^2)+exp(-delta2*((t-

5)/epsilon1).^2)+ ... 
         exp(-delta2*((t-6)/epsilon1).^2)+exp(-delta2*((t-

7)/epsilon1).^2)+ ... 
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         exp(-delta2*((t-8)/epsilon1).^2)+exp(-delta2*((t-

9)/epsilon1).^2)+ ... 
         exp(-delta2*((t-10)/epsilon1).^2)+ exp(-delta2*((t-

11)/epsilon1).^2)+ ... 
         exp(-delta2*((t-12)/epsilon1).^2)+exp(-delta2*((t-

13)/epsilon1).^2)+ ... 
         exp(-delta2*((t-14)/epsilon1).^2)) 
     ... 
         -h*(c+gamma*lambda3); 
     u2 = u2-h*epsilon*lambda1; 
     u3 = u3-h*epsilon*lambda2; 
    oldj = j; 
    j = sum(b+(c/2)*u1); 
    %temp2 = 
    

%(sum(((c+gamma*lambda3).^2+(epsilon*lambda1).^2+(epsilon*lambda2).^2).

^.5))/N; 
    %un-comment temp2 if the display line, line 106, is uncommented 
    temp = abs(j-oldj);  
    test = zeta-temp; 
    if floor(k/10)==k/10 
        display(temp) 
        %display([temp11,temp21,temp22,temp31,temp23,temp33,temp32]); 

     
end 

  
display(temp) 

  
y(1,:) = t; % defines t 
y(2,:) = n; % defines n 
y(3,:) = b; % defines b 
y(4,:) = w; % defines w 
y(5,:) = lambda1; % defines lambda1 
y(6,:) = lambda2; % defines lambda2 
y(7,:) = lambda3; % defines lambda3 
y(8,:) = u1; % defines u 
%sum(b) 
%sum(u1.^2) 
J=sum(b+(c/2)*u1); 
display(J) 
figure(1) 
hold on; 
subplot(7,1,1) 
plot(t,b,'r-')  
ylabel('b') 
title('Optimal control results for b, n, w, u(t),\lambda_1, \lambda_2, 

\lambda_3') 
subplot(7,1,2) 
plot(t,n,'r-') 
ylabel('n') 
subplot(7,1,3) 
plot(t,w,'r-') 
ylabel('w') 
subplot(7,1,4) 
plot(t,u1,'r-') 
ylabel('u(t)') 
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axis([0 14 0 2])%axis([x-min x-max y-min y-max]) 
%xlabel('t (in days)') 

  

  
%figure(2) 
%hold on; 

  
subplot(7,1,5) 
plot(t,lambda1,'r-') 
ylabel('\lambda_1') 
%title('Optimal control results for \lambda_1, \lambda_2, \lambda_3') 
subplot(7,1,6) 
plot(t,lambda2,'r-') 
ylabel('\lambda_2') 
subplot(7,1,7) 
plot(t,lambda3,'r-') 
ylabel('\lambda_3') 
xlabel('t (in days)') 

  
figure(2) 
hold on; 
subplot(2,1,1) 
plot(t,u2,'r-') 
ylabel('u2') 
subplot(2,1,2) 
plot(t,u3,'r-') 
ylabel('u3') 
xlabel('t (in days)') 

  
%display('k =') 
display(k) 
end 
%----------------------------------------------------------------------

--- 
function gnwvalue=gnw(w) 

  
if w<1 
    if w<0 
        error('w is negative') 
    end 
    gnwvalue=2*w^3-3*w^2+2; 
else 
    gnwvalue=1; 
end 
end 
%----------------------------------------------------------------------

--- 
function gnwprimevalue=gnwprime(w) 
if w<1 
    if w<0 
        error('w is negative') 
    end 
    gnwprimevalue=6*w^2-6*w; 
else 
    gnwprimevalue=0; 
end 
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end 
%----------------------------------------------------------------------

--- 
function [T1,x] = firstfunction(b0,n0,w0,t,tt,u,params,u2,u3,epsilon) 
ic= [b0 n0 w0]; 
options = odeset('RelTol',1e-4,'AbsTol',[1e-4, 1e-4, 1e-4]); 
[T1,x]= ode15s(@firstfunctionode, 

t,ic,options,tt,u,params,u2,u3,epsilon); 
end 
%----------------------------------------------------------------------

--- 
function dx = firstfunctionode(t,x,tt,u,params,u2,u3,epsilon) 
 kb=params(1); 
 knr=params(2); 
 delta=params(3); 
 lambdarb=params(4); 
 kw=params(5); 
 lambdab=params(6); 
 kp=params(7); 
 lambdap=params(8); 
 kni=params(9); 
 lambdani=params(10); 
 lambdan=params(11); 
 beta=params(12); 
 gamma=params(13); 
 lambdaw=params(14); 
 lambdabw=params(15); 
 lambdanw=params(16); 
 %e=params(17); 
 u 
u1=interp1(tt,u,t,'cubic'); 
u1 
u21=interp1(tt,u2,t,'cubic'); 
u31=interp1(tt,u3,t,'cubic'); 
dx = [kb*x(1)*(1-x(1))-

x(1)*(knr*x(2)+delta)/(lambdarb*x(1)+1)*x(3)/(x(3)+kw)-

lambdab*x(1)+epsilon*u21;... 
kp*exp(-lambdap*t)*(1-x(2))+(kni*x(1)*x(2)*(1-

x(2))*gnw(x(3)))/(lambdani*x(2)+1)-

lambdan*x(2)/(1+exp(1)*x(1))+epsilon*u31;... 
beta + gamma*u1-lambdaw*x(3)-lambdabw*x(1)*x(3)-lambdanw*x(2)*x(3)]; 

  
end 
%----------------------------------------------------------------------

--- 
function [T2,y] = secondfunction(b,n,w,t,tt,params) 
ic=[0 0 0]; 
options = odeset('RelTol',1e-4,'AbsTol',[1e-4, 1e-4, 1e-4]); 
[T2,y] = ode15s(@secondfunctionode,t,ic,options,tt,b,n,w,params); 
end 
%----------------------------------------------------------------------

--- 
function dy = secondfunctionode(t,y,tt,b,n,w,params) 
 kb=params(1); 
 knr=params(2); 
 delta=params(3); 
 lambdarb=params(4); 
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 kw=params(5); 
 lambdab=params(6); 
 kp=params(7); 
 lambdap=params(8); 
 kni=params(9); 
 lambdani=params(10); 
 lambdan=params(11); 
 %beta=params(12); 
 %gamma=params(13); 
 lambdaw=params(14); 
 lambdabw=params(15); 
 lambdanw=params(16); 
 e=params(17); 
ttt = flipud(tt')'; 
b1=interp1(ttt,b,t,'cubic'); 
n1=interp1(ttt,n,t,'cubic'); 
w1=interp1(ttt,w,t,'cubic'); 

  
dy = [-(1+y(1)*(kb-2*kb*b1-lambdab+((knr*n1+delta)*b1*lambdarb-

(lambdarb*b1+1)*(knr*n1+delta))/((lambdarb*b1+1)^2)*w1/(w1+kw))+y(2)*((

(kni*n1*(1-

n1)*(gnw(w1)))/(lambdani*n1+1)+(lambdan*n1*e)/((1+e*b1)^2))+y(3)*(-

lambdabw*w1)));... 
    -((y(1)*(-

b1*knr)/(lambdarb*b1+1)*w1/(w1+kw)+y(2)*(gnw(w1)*((lambdani*n1+1)*(kni*

b1-2*kni*b1*n1)-kni*b1*n1*(1-n1)*lambdani))/(lambdani*n1+1)^2)-

lambdan/(1+e*b1)-kp*exp(-lambdap*t)+y(3)*(-lambdanw*w1));... 
    -(y(1)*((-

b1*(knr*n1+delta))/(lambdarb*b1+1)*(kw)/((w1+kw)^2))+y(2)*((kni*b1*n1*(

1-n1)*(gnwprime(w1)))/(lambdani*n1+1))+y(3)*(lambdaw-lambdabw*b1-

lambdanw*n1))]; 
end 

 

Figure 12: The code for the linear problem. 
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