The Relationship between Aerobic Capacity and Bone Health in Young Women

BRITTANY R. MASTELLER†, CURT B. DIXON‡, ERIC S. RAWSON‡ and JOSEPH L. ANDREACCI‡

†Department of Exercise Science, Bloomsburg University, Bloomsburg, PA, USA;
‡Department of Health Science, Lock Haven University, Lock Haven, PA, USA

†Denotes graduate student author, ‡Denotes professional author

ABSTRACT

International Journal of Exercise Science 9(1): 56-63, 2016. The purpose of the present investigation was to examine the relationship between maximal oxygen consumption (VO\textsubscript{2}max) and bone health in young women. Eighty-three participants (age=21.0±2.2 years; BMI=22.4±3.0 kg/m2) reported for testing on two occasions separated by 48 hours. During visit 1 body composition assessment via dual-energy X-ray absorptiometry (DXA) and during visit 2, a VO\textsubscript{2}max test performed on a motorized treadmill. Weak correlations were found between absolute VO\textsubscript{2}max (L/min) and whole-body bone mineral density (WB-BMD: r=0.24, \(p\)=0.031) and whole-body bone mineral content (WB-BMC: r=0.37, \(p<0.001\)). No relation between variables were observed when VO\textsubscript{2}max was expressed relative to body mass (mL/kg/min). Moderate correlations were observed between bone variables and body mass (WB-BMD: \(r=0.36, p<0.001\); WB-BMC: \(r=0.62, p<0.001\)), fat-free mass (WB-BMD: \(r=0.45, p<0.001\); WB-BMC: \(r=0.54, p<0.001\)), and fat mass (WB-BMD: \(r=0.31, p=0.004\); WB-BMC: \(r=0.60, p<0.001\)). Body mass, regardless of composition, was a stronger predictor of bone health than aerobic capacity in this sample of young women.

KEY WORDS: Osteoporosis, bone mineral content, bone mineral density, VO\textsubscript{2}max

INTRODUCTION

Osteoporosis is a major health concern in the United States as more than 40 million people currently have been diagnosed or are at risk for developing the disease (19). Osteoporosis is characterized by low bone mass and deterioration of bone tissue which leads to bone fragility and an increased risk of fractures of the hip, spine, and wrist (19). During childhood, throughout adolescence, and into early adulthood, new bone is formed at a very high rate until peak bone mass is reached by approximately the third decade of life. Failure to reach an optimal peak bone mass can increase the risk for osteoporosis later in life (4). While men and women are both at risk, the prevalence of developing osteoporosis is much higher in women, specifically following menopause due to the hormonal changes that occur.

Numerous research studies have focused on the causes, risk factors and effects of the osteoporosis (6, 16, 20) but limited research
is available on the years leading up to the development of the disease. Risk factors for osteoporosis include gender, age, body size, ethnicity, family history, hormone levels, disordered eating, calcium and vitamin D intake, medication use, cigarette smoking, alcohol intake, and physical activity level (19). Of these, regular physical activity (PA) has been shown to increase bone health in various populations (7-9, 15).

Professional organizations, such as the American College of Sports Medicine, recommend PA as a way to maintain bone health and prevent osteoporosis (2, 4). In particular, high-impact PA is recommended because it activates the restoration and formation of new bone (4). Previous research has examined the relationship between PA levels and bone health in young adult women (8, 16, 24). Wallace and Ballard, reported that lifetime PA levels, assessed by a self-report questionnaire, and calcium intake were related to bone health in young women (24). In addition, they found that lean mass was the strongest predictor of whole-body bone mineral density (WB-BMD) and whole-body bone mineral content (WB-BMC) and suggested that increased PA levels coincide with higher lean mass leading to greater bone health. In support, numerous studies have found body composition variables to have an association with bone health (12, 21-23). However, a direct measurement of aerobic capacity such as maximal oxygen consumption (VO₂ max) was not included in these studies.

A common assumption is that individuals who exhibit high relative VO₂ max values are more physically active and therefore may have improved bone health. However, VO₂ max, much like bone health, is the resultant of a variety of factors including genetic predisposition (6) and few studies have actually examined whether aerobic capacity is related to bone health in younger populations (9, 23). Recently, El Hage et al. explored the relation between VO₂ max and WB-BMD in young Lebanese adults (10). The authors reported moderate to very strong correlations between absolute VO₂ max (L/min) and bone variables (both sexes). When VO₂ max was expressed relative to body mass (mL/kg/min), moderate correlations were observed in the women but not the men. To our knowledge, this was the first study to show a relationship between absolute VO₂ max (L/min) and bone health in young adults. Although interesting, these previous findings were limited to a relatively small sample of women (n=20). The aim of the present study was to further explore the potential relation between VO₂ max and bone health in a larger cohort of young women.

METHODS

Participants
Eighty-three healthy females between the ages of 18 and 31 participated in this study. The Bloomsburg University Institutional Review Board approved the study protocol and methods. Prior to participation, all subjects signed an informed consent document consistent with the Bloomsburg University policy for the protection of human subjects, and answered a physical activity readiness questionnaire. Each subject made two visits to the laboratory for testing separated by a period of approximately 48 hours with each visit lasting no more than one hour. All subjects
AEROBIC CAPACITY AND BONE HEALTH IN YOUNG WOMEN were free from bone-related disease and not taking any prescription medications for the treatment of any bone-related illnesses.

Table 1. Characteristics for the study participants.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21.0 ± 2.2</td>
<td>18.0 – 31.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>164.7 ± 5.6</td>
<td>149.5 – 177.5</td>
</tr>
<tr>
<td>Body Mass (kg)</td>
<td>61.2 ± 8.4</td>
<td>43.8 – 89.7</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.4 ± 3.0</td>
<td>16.3 – 32.5</td>
</tr>
<tr>
<td>%BF (%)</td>
<td>30.4 ± 7.3</td>
<td>12.9 – 57.8</td>
</tr>
<tr>
<td>FM (kg)</td>
<td>18.0 ± 6.8</td>
<td>7.6 – 46.2</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>40.1 ± 4.4</td>
<td>31.3 – 51.5</td>
</tr>
<tr>
<td>Total BMD (g/cm²)</td>
<td>1.2 ± 0.1</td>
<td>1.0 – 1.4</td>
</tr>
<tr>
<td>Total BMC (g)</td>
<td>2581.7 ± 361.9</td>
<td>1829 – 3683</td>
</tr>
<tr>
<td>Total Ca²⁺ Intake (mg/day)</td>
<td>705.8 ± 439.4</td>
<td>186 – 2254</td>
</tr>
<tr>
<td>Total Vit D Intake (IU/day)</td>
<td>309.1 ± 318.0</td>
<td>16 – 1742</td>
</tr>
</tbody>
</table>

BMI, body mass index; %BF, percent body fat; FM, fat mass; FFM, fat-free mass; BMD, bone mineral density; BMC, bone mineral content

Protocol
Height and body mass were measured prior to testing using a wall-mounted stadiometer and a digital scale. Dual-energy X-ray absorptiometry (DXA; General Electric, Lunar Prodigy Pro, Madison, WI, USA) was used to measure fat mass (FM), fat-free mass (FFM) and bone variables (WB-BMC, WB-BMD). Each day prior to any testing, the DXA was calibrated using the standard calibration block to control for possible baseline drift. All measurements were maintained within the manufacturers precision standards of ≤1.5%. Subjects, wearing only a t-shirt and shorts, removed all metal objects and lay in a supine position according to the guidelines established by the manufacturer. In order to control for testing variability, subjects were asked to adhere to the following pretesting guidelines: a) no physical exercise within 12 hours of your scheduled test; b) no eating or drinking within 2 hours of the test; c) empty bladder within 30 min of the test; d) no alcohol consumption within 48 hours of the test; and e) no diuretic medications within 7 days of the test.

Subjects completed the Block Ca²⁺/Vitamin D screener developed by Nutrition Quest during their first visit. It included 19 food items, 3 supplemental questions, and questions to adjust for food fortification practices. This screener took approximately 7-8 minutes to complete and each subject was encouraged to answer the survey honestly and to be as accurate as possible. The questionnaire has been validated as a reliable method of assessing dietary Ca²⁺/vitamin D intake (7).

VO₂max was assessed using the Bruce protocol (5) on a Quinton (model Q-65) motor-driven treadmill. Heart rate was continuously monitored by a Polar heart rate monitor (Polar, Port Washington, NY, USA). Subjects breathed through a Hans-Rudolph respiratory valve while wearing a nose clip and were acclimated to this device prior to testing. Expired concentrations of O₂ and CO₂ were analyzed by open circuit spirometry in 15-second intervals using a ParvoMedics TrueMax 2400 metabolic measurement system (ParvoMedics, Inc., Sandy, UT, USA). The criteria for attainment of VO₂max was based on the achievement of four of the five following criteria: (a) a change in VO₂ of < 2.1 mL/kg/min with increasing exercise intensity; (b) a respiratory exchange ratio of ≥1.10; (c) heart rate ±10 beats per minute of the age-predicted maximum at the end of the exercise test; (d) a rating of perceived
exertion using the OMNI scale of ≥9; and (e) volitional termination due to exhaustion (17).

Statistical Analysis
Statistical analyses were performed using the Statistical Package for the Social Sciences Version 22.0 (SPSS, Inc., Chicago, IL, USA). All values are expressed as mean ± standard deviation. Pearson-product moment correlations were used to determine the relationship between VO₂max and, bone and body composition variables. Significance was established a priori for all analyses at \(p \leq 0.05 \).

RESULTS
Characteristics of the 83 women who participated in this study are displayed in Table 1. The subjects were recreationally active and approximately 50% participated in 1-3 strength training workouts per week. Subjects varied greatly in body mass and composition, as well as WB-BMD and WB-BMC (Table 1). Self-reported total Ca²⁺ and vitamin D intake values for the women were 706 mg/day and 309 IU/day, respectively (Table 1). Mean VO₂max values were 2.5±0.42 L/min and 41.1±5.47 mL/kg/min, respectively (Table 2). As demonstrated in Table 3, absolute VO₂max (L/min) was positively correlated to WB-BMC \((r=0.37, \ p<0.001)\) and WB-BMD \((r=0.24, \ p=0.031)\). Moderate correlations were observed between bone variables and body mass (Table 3).

A moderate relationship was observed between absolute VO₂max (L/min) and BMC and BMD (Figures 1A, 2A). However, no relationship was observed between relative VO₂max (ml/kg/min) and BMC or BMD (Figures 1B, 2B).

Table 2. Physiological data obtained from maximal oxygen consumption test.

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative VO₂max (mL/kg/min)</td>
<td>41.1 ± 5.5</td>
<td>29.0 – 55.0</td>
</tr>
<tr>
<td>Absolute VO₂max (L/min)</td>
<td>2.5 ± 0.4</td>
<td>1.7 – 3.7</td>
</tr>
<tr>
<td>Respiratory Exchange Ratio</td>
<td>1.17 ± 0.10</td>
<td>1.05 – 1.30</td>
</tr>
<tr>
<td>Rating of Perceived Exertion</td>
<td>9 ± 1</td>
<td>8 – 10</td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>192 ± 23</td>
<td>176 – 216</td>
</tr>
</tbody>
</table>

VO₂max, maximal oxygen consumption.
AEROBIC CAPACITY AND BONE HEALTH IN YOUNG WOMEN

Table 3. Correlations between body composition variables and bone variables.

<table>
<thead>
<tr>
<th></th>
<th>WB-BMC (g)</th>
<th></th>
<th>WB-BMD (g/cm²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>r²</td>
<td>p-value</td>
<td>r</td>
</tr>
<tr>
<td>Body Mass (kg)</td>
<td>0.62</td>
<td>0.38</td>
<td>0.001*</td>
<td>0.36</td>
</tr>
<tr>
<td>Fat-free Mass (kg)</td>
<td>0.54</td>
<td>0.29</td>
<td>0.001*</td>
<td>0.45</td>
</tr>
<tr>
<td>Fat Mass (kg)</td>
<td>0.60</td>
<td>0.36</td>
<td>0.001*</td>
<td>0.31</td>
</tr>
<tr>
<td>Total Ca²⁺ Intake (mg/day)</td>
<td>0.03</td>
<td>0.00</td>
<td>0.825</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Statistically significant (p < 0.05)

DISCUSSION

The primary aim of this study was to examine the impact of aerobic capacity on bone health in young women. The mean VO₂max values (2.5±0.42 L/min; 41.1±5.5 mL/kg/min) rated as “good” for this age group according to guidelines outlined by the ACSM (1). We hypothesized that women with a higher aerobic capacity would display a higher WB-BMC and WB-BMD. Our data supported this hypothesis when absolute VO₂max (L/min) was compared to WB-BMC (r=0.37, p<0.001) and WB-BMD (r=0.24, p<0.031). However, no relationship was observed between relative VO₂max (mL/kg/min) and WB-BMC (r=0.10, p=0.348) or WB-BMD (r=0.03, p=0.814).

Previously, El Hage and colleagues reported a relationship between relative VO₂max and WB-BMC (r=0.51), WB-BMD (r=0.50), and absolute VO₂max and WB-BMC (r=0.82), WB-BMD (r=0.80) in 20 young women (10). Although our subjects demonstrated similar anthropometric measures, the mean aerobic capacity values of the women in the El Hage et al. study were substantially lower than the present investigation (VO₂max values: 1.8±0.47 vs. 2.5±0.42 L/min and 30.7±6.8 vs. 41.1±5.5 mL/kg/min). The difference in the aerobic fitness level of these women may partially...
explain the conflicting findings related to absolute VO$_{2}$max in these studies. In addition, we examined a much larger sample of women (N=83) than the previous work by El Hage et al. (10).

In the present study, body mass, regardless of body composition, was related to bone health. Significant relationships were observed when body mass was compared to WB-BMC and WB-BMD (r=0.62 and r=0.37, respectively). We expected this finding due to the increased load placed on the body when a person has a higher body mass. This observed relationship between body mass and BMD, BMC is supported in the literature (6, 13, 18, 22).

Previous research has also reported a relation between FFM and WB-BMC in young women (12, 22, 24). Wallace and Ballard concluded that FFM was the strongest predictor of WB-BMC (r=0.89) and WB-BMD (r=0.75) (24). In our subjects, FFM was also significantly related to WB-BMC (r=0.54) and WB-BMD (r=0.45). The subjects with more FFM displayed higher WB-BMC and WB-BMD than those with less FFM.

Another important factor that could influence bone health is habitual dietary intake. Consuming nutrients such as Ca$^{2+}$ and vitamin D has been proven to increase and maintain bone health (19). If these nutrients are under-consumed, it may result in weaker bones when combined with other risk factors such as low PA level and smoking. The Ca$^{2+}$/vitamin D nutritional questionnaire provided information on the consumption of these nutrients. Of the 83 subjects who participated in this study, 73% reported regularly taking supplemental Ca$^{2+}$ and 65% reported taking supplemental vitamin D. However, the mean levels of total Ca$^{2+}$ (706 mg/day) and vitamin D (309 IU/day) intake were significantly below the suggested RDA for each nutrient (Ca$^{2+}$=1000 mg/day; vitamin D=600 IU/day) (14). When nutrient intake was correlated to WB-BMC and WB-BMD, no relationship was observed. This finding was consistent with previous research that also reported no relationship between Ca$^{2+}$ intake and BMD in young women (16, 18). Similar to this study, the cross-sectional nature of the designs did not account for long-term evaluation of Ca$^{2+}$ intake. Lifetime history of Ca$^{2+}$ intake could be helpful in identifying relationships between lifetime Ca$^{2+}$ intake and BMC/BMD as research has shown (24). While current Ca$^{2+}$ intake provides important information about current habits, the repercussions of under-consuming Ca$^{2+}$ may not be observed until much later in life.

There are several limitations surrounding this study. One limitation is the lack of data regarding past and present habitual PA levels. Additional information about history of PA could aid in better explanations our findings. Another limitation is the use of self-reported questionnaires for obtaining dietary information. A third limitation is the cross-sectional nature of the study design. Other study designs allowing for longitudinal data may offer more to the literature surrounding this topic. Lastly, the women who participated in this study were all college students, limiting the ability to generalize our findings to the common population of young women.
In conclusion, we further examined the potential relationship between aerobic capacity and bone health that has been previously reported in the literature. Overall, we found that VO$_2$max was not a strong predictor of WB-BMC and WB-BMD. Future research should continue to examine the prevalence and prevention of risk factors in younger populations by incorporating longitudinal study designs.

ACKNOWLEDGEMENTS

We would like to gratefully acknowledge all subjects for their participation in this investigation. This investigation was supported by a Bloomsburg University Graduate Thesis Award (BRM) and a Bloomsburg University Margin of Excellence Award (JLA).

REFERENCES

16. Mazess R, Barden H. Bone density in premenopausal women: effects of age, dietary

