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Rational expectations provide people or economic agents making future decision

with available information and past experiences. The first approach to the idea

of rational expectations was given approximately fifty years ago by John F. Muth.

Many models in economics have been studied using the rational expectations idea.

The most familiar one among them is the rational expectations version of the Cagans

hyperinflation model where the expectation for tomorrow is formed using all the

information available today. This model was reinterpreted by Thomas J. Sargent and

Neil Wallace in 1973. After that time, many solution techniques were suggested to

solve the Cagan type rational expectations (CTRE) model. Some economists such

as Muth [13], Taylor [26] and Shiller [27] consider the solutions admitting an infinite

moving-average representation. Blanchard and Kahn [28] find solutions by using a

recursive procedure. A general characterization of the solution was obtained using

the martingale approach by Broze, Gourieroux and Szafarz in [22], [23]. We choose to

study martingale solution of CTRE model. This thesis is comprised of five chapters

where the main aim is to study the CTRE model on isolated time scales.

Most of the models studied in economics are continuous or discrete. Discrete mod-

els are more preferable by economists since they give more meaningful and accurate

results. Discrete models only contain uniform time domains. Time scale calculus en-

ables us to study on m-periodic time domains as well as non periodic time domains.

In the first chapter, we give basics of time scales calculus and stochastic calculus.

The second chapter is the brief introduction to rational expectations and the CTRE

model. Moreover, many other solution techniques are examined in this chapter. After

we introduce the necessary background, in the third chapter we construct the CTRE

Model on isolated time scales. Then we give the general solution of this model in

terms of martingales. We continue our work with defining the linear system and

v



higher order CTRE on isolated time scales. We use Putzer Algorithm to solve the

system of the CTRE Model. Then, we examine the existence and uniqueness of the

solution of the CTRE model. In the fourth chapter, we apply our solution algorithm

developed in the previous chapter to models in Finance and stochastic growth models

in Economics.
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CHAPTER 1

PRELIMINARIES

Many discrete and continuous models have been studied extensively in economics.

Discrete models are more preferable by economists since they give more meaningful

and accurate results. Discrete models only contain uniform time domains such as day,

month, year. Time scale calculus enables us to study on m-periodic time domains as

well as non periodic time domains. Thus it is beneficial to comprehend the time scale

calculus. Also, we introduce stochastic calculus to understand the martingales and

conditional expectations.

1.1 Time Scale Calculus

In this section, we will give some basic definitions and theorems on time scales.

Many of these definitions, theorems and their proofs can be found in the book by

Bohner and Peterson [1].

Definition 1.1. A time scale T is any nonempty closed subset of the real numbers

R.

The real numbers R, the integers Z, the natural numbers N, the Cantor set, and

[2, 3] ∪ N are examples of time scales. On the other hand, the rational numbers Q,

the irrational numbers R \ Q, the complex numbers C, and the open interval (1, 2)

are not time scales.

Definition 1.2. The forward jump operator σ : T → T, and the backward jump

operator ρ : T→ T are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t},

respectively.

The above definition for the empty set ∅ will be inf ∅ = sup T and sup ∅ = inf T.

For a point t ∈ T if σ(t) > t, we say that t is right-scattered, and if ρ(t) < t we say
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that t is left-scattered. Also if σ(t) = t, t is called right-dense, and if ρ(t) = t, t is

called left-dense. Points that are right-scattered and left scattered at the same time

are called isolated i.e., ρ(t) < t < σ(t). Points that are right-dense and left-dense at

the same time are called dense i.e., ρ(t) = t = σ(t). If sup T < ∞ and sup T is

left-scattered, we let Tκ = T \ sup T; otherwise Tκ = T.

Definition 1.3. The graininess function µ : T→ [0,∞) is defined by

µ(t) = σ(t)− t.

A time scale T is called an isolated time scale if every t ∈ T is an isolated point.

For example, if T = Z, then for any t ∈ Z σ(t) = inf{s ∈ Z : s > t} = t + 1 and

similarly ρ(t) = sup{s ∈ Z : s < t} = t−1. Thus every point t ∈ Z is isolated. Hence

the graininess function is µ(t) = 1. The natural numbers N, and qN = {qn | n ∈ N}

where q > 1 are other examples of isolated time scales.

Definition 1.4. For f : T → R and t ∈ Tκ, we define the delta derivative of f(t),

f∆(t), to be the number (provided it exists) with the property that, for any ε > 0,

there exists a neighborhood U of t such that∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ ≤ ε |σ(t)− s| for all s ∈ U .

Moreover if f is delta differentiable for every t ∈ Tκ, then we say that it is

delta differentiable on Tκ. If f is continuous at t and t is right-scattered, then f is

differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
. (1.1.1)

If f is differentiable at t ∈ T, then

f(σ(t)) = f(t) + µ(t)f∆(t),

where f(σ(t)) = fσ(t) for all t ∈ T.

2



Note that when T = R, f∆ is precisely f ′ and if T = Z, then f∆ = ∆f =

f(t+ 1)− f(t) is the forward difference operator.

Assume f, g are differentiable at t ∈ Tκ. Then the product rule on time scale T is

given by

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)) (1.1.2)

and the quotient rule is given by

(
f

g
)∆(t) =

f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
. (1.1.3)

Definition 1.5. A function f : T→ R is called rd-continuous provided it is contin-

uous at right-dense points in T and its left-sided limits exist (i.e. finite) at left-dense

points in T. The set of rd-continuous functions f : T→ R will be denoted by

Crd = Crd(T) = Crd(T,R).

Definition 1.6. The Cauchy integral is defined by∫ b

a

f(t)∆t = F (b)− F (a) for all a, b ∈ T.

where a function F : T → R is called an antiderivative of f : T → R provided

F∆(t) = f(t) for all t ∈ T.

Theorem 1.1. Let a, b ∈ T and f ∈ Crd.

(i) If [a, b] consists of only isolated points, then∫ b

a

f(t)∆t =
∑
t∈[a,b)

µ(t)f(t) if a < b.

(ii) If T = R, then ∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.
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(iii) If T = Z, then ∫ b

a

f(t)∆t =
b−1∑
t=a

f(t), if a < b.

If f, g ∈ Crd and a, b ∈ T, then the integration by parts formula on the time scales

is given by

∫ b

a

f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t)∆t. (1.1.4)

Definition 1.7. The function p : T→ R is regressive if

1 + µ(t)p(t) 6= 0 for all t ∈ Tκ.

Definition 1.8. The operation “circle minus” 	 defined by

(	p)(t) := − p(t)

1 + µ(t)p(t)
for all t ∈ Tκ.

The generalized exponential function on time scales is given as ep(., t0) where

p ∈ R and R is the set of all regressive and rd-continuous functions f : T→ R.

Definition 1.9. The exponential function ep(., t0) is the unique solution of the initial

value problem

y∆ = p(t)y, y(t0) = 1. (1.1.5)

Now we will list some basic but important properties of the exponential function

ep(., t0).

Lemma 1.1. If p, q ∈ R, then

(i) e0(t, s) ≡ 1

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s)

(iii)
1

ep(t, s)
= e	p(t, s)

(iv) ep(t, s) =
1

ep(s, t)
= e	p(s, t)

(v) (
1

ep(., s)
)∆ = − p(t)

eσp(., s)
.
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Definition 1.10. If p ∈ R and f : T→R is rd-continuous, then the dynamic equation

y∆(t) = p(t)y(t) + f(t) (1.1.6)

is called regressive.

Theorem 1.2. (Variation of Constants) Suppose (1.1.6) is regressive. Let t0 ∈ T

and y0 ∈ R, then the unique solution to the first order dynamic equation on T

y∆(t) = p(t)y(t) + f(t), y(t0) = y0

is given by

y(t) = y0ep(t, t0) +

∫ t

t0

ep(t, σ(t))f(τ)∆τ ,

Next, we will list some definitions for the linear system of dynamic equations,

y∆ = A(t)y (1.1.7)

where A is an n× n matrix -valued function.

Definition 1.11. An n × n matrix -valued function A on a time scale T is called

regressive provided

I + µ(t)A(t) is invertible for all t ∈ Tκ,

and the class of all such regressive and rd-continuous functions is denoted by,

R = R(T) = R(T,Rn×n).

We say that the system (1.1.7) is regressive provided A ∈ R.

Definition 1.12. Let t0 ∈ T and assume that A(t) ∈ R is an n × n matrix-valued

function. The unique matrix-valued solution of IVP

Y ∆ = A(t)Y Y (t0) = I,
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where I denotes as usual the n × n identity matrix, is called the matrix exponential

function at t0, and it is denoted by eA(., t0).

Lemma 1.2. If A ∈ R are matrix-valued functions on T, then

(i) e0(t, s) ≡ I

(ii) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s)

(iii)
1

eA(t, s)
= e	A(t, s)

(iv) eA(t, s) =
1

eA(s, t)
= e	A(s, t)

(v) [eA(t, .)]∆ = −[eA(t, .)]σA.

The following two results can be found in a paper [4] by C. Peterson and his

students.

Theorem 1.3. (Variation of Constants for First Order Recurrence Relations)

Assume p(t) 6= 0, for every t ∈ Tκ. Then the unique solution to the IVP

yσ − p(t)y = r(t), y(t0) = y0

is given by

y(t) = e p−1
µ

(t, t0)y0 +

∫ t

t0

e p−1
µ

(t, σ(s))
r(s)

µ(s)
∆s.

Lemma 1.3. The exponential function e p−1
µ

(t, t0) is given by

e p−1
µ

(t, t0) =
∏

τ∈[t0,t)
p(τ) if t ≥ t0

e p−1
µ

(t, t0) =
∏

τ∈[t,t0)
1

p(τ)
if t < t0.

Let 0 < p < 1 be a constant number, and for t > t0, let t = tn on time scale

T = {t0, t1, ..., tn, tn+1, ...}. Also, let nt be a function of t that counts the number

of isolated points on the interval [t0, t) ∩ T. Then by Lemma 1.3, the exponential

function becomes

e p−1
µ

(t, t0) =
∏

τ∈[t0,t)

p(τ) = pnt , (1.1.8)
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where the counting function nt on isolated time scales, is given as

nt(t, s) :=

∫ t

s

∆(τ)

µ(τ)
. (1.1.9)

Next we refer the Putzer Algorithm given by W. G. Kelley and A. C. Peterson in

[6] to calculate At for t ∈ Z, where A is n× n matrix.

Theorem 1.4. (Putzer Algorithm) Let A be a n× n-matrix. If λ1, λ2, ..., λn are the

eigenvalues of A, then

At =
n−1∑
i=0

ri+1(t)Pi,

where ri(t), (i = 1, 2, ..., n) are chosen to satisfy the system:



r1(t+ 1)

r2(t+ 1)

.

.

.

rn(t+ 1)


=



λ1 0 0 ... 0

1 λ2 0 ... 0

0 1 λ3 ... 0

. .

. .

. .

0 ... 0 1 λn





r1(t)

r2(t)

.

.

.

rn(t)


,



r1(0)

r2(0)

.

.

.

rn(0)


=



1

0

.

.

.

0


and the Pi are defined by

P0 = I

Pi = (A− λiI)Pi−1, (1 ≤ i ≤ n).

Next, we continue with properties of the nabla dynamic equation whose definition

and some related theorems can be found in the text by Bohner and Peterson [7].

Definition 1.13. If T has a right-scattered minimum m, define Tκ := T − {m}:

otherwise, set Tκ = T. The backward graininess ν : Tκ → R+
0 is defined by

ν(t) = t− ρ(t).

7



If f is nabla differentiable for every t ∈ Tκ then f is continuous at t and if f is

continuous at a left-scattered point t, then f is nabla differentiable at t with

f∇(t) =
f(t)− f(ρ(t))

ν(t)
. (1.1.10)

If a, b ∈ T and f, g : T→ R are ld-continuous; then the integration by parts formula

for nabla integration is given by

∫ b

a

h(t)g∇(t)∇t = (hg)(b)− (hg)(a)−
∫ b

a

h∇(t)g(ρ(t))∇t. (1.1.11)

Definition 1.14. The exponential function ê(., t0) is the unique solution of the initial

value problem

y∇ = p(t)y, y(t0) = 1.

Now we will list some basic properties of the exponential function ê(., t0), which is

known as the nabla exponential function.

Lemma 1.4. If p ∈ Rν and s, t, r ∈ T. Then

(i) êp(ρ(t), s) = (1− ν(t)p(t))êp(t, s)

(i)
1

êp(t, s)
= ê	p(t, s)

(iii) (
1

êp(t, s)
)∇ = − p(t)

êp(t, s)
.

Theorem 1.5. (Equivalence of Delta and Nabla Exponential Functions) If p is con-

tinuous and regressive, then

ep(t, t0) = ê pρ

1+pρν
(t, t0) = ê	ν(−pρ)(t, t0)

If q is continuous and ν- regressive, then

êq(t, t0) = e qσ

1−qσµ
(t, t0) = e	(−qσ)(t, t0).

Next, we state the relationship between the delta derivative and the nabla derivative.

8



Theorem 1.6. (i) Assume that f : T → R is delta differentiable on Tκ. Then f is

nabla differentiable at t and

f∇(t) = f∆(ρ(t))

for t ∈ Tκ such that σ(ρ(t)) = t.

(ii) Assume that f : T → R is nabla differentiable on Tκ. Then f is delta

differentiable at t and

f∆(t) = f∇(σ(t))

for t ∈ Tκ such that ρ(σ(t)) = t.

Throughout this study, we assume that T is an isolated scale.

1.2 Stochastic Calculus

In this section, we give some definitions and properties from stochastic calculus so

that the reader can follow our work easily. Many of these definitions and properties

can be found in the books by Mikosch [2] and Klebaner [3]. We start with the

definition of a random variable. The outcome of an experiment or game is random.

Consider a coin tossing; the possible outcomes ”head” or ”tail”. We can write “1”

for “head” and “0” for “tail”. Hence we get a random variable X = X(w) ∈ {0, 1}

where w belongs to the outcome space Ω = {head, tail}. In mathematical language

X = X{w} is a real-valued function defined on Ω, such that

X : Ω→ R.

If we consider xt, a random variable on isolated time scales as

X : Ω× T→ R.

This means xt = x(w, t) where w ∈ Ω and t ∈ T.

A partition of Ω is a collection of exhaustive and mutually exclusive subsets,

{D1, ..., Dk} such that Di ∩Dj = ∅ and
⋃
i

Di = Ω.

The field generated by the partition is the collection of all finite unions of Dj’s

and their complements.

9



Definition 1.15. Let X take values x1, ..., xp and A1 = {X = x1}, ..., Ap = {X =

xp}. Let the field F be generated by a partition {D1, D2, ..., Dk} of Ω. Then the

conditional expectation of X given F is defined by

E(X|F) =

p∑
t=1

xiP (Ai|F),

where P (Ai|F) is the conditional probability of A given F .

Basic Properties of Conditional Expectation

(i) The conditional expectation is linear : For random variables X1, X2 and con-

stants c1, c2,

E([c1X1 + c2X2]|F) = c1E(X1|F)) + c2E(X2|F).

(ii) The expectation law: The expectation of X and the expectation of E(X|F)

are the same, i.e.

EX = E[E(X|F)].

(iii) Positivity: If X ≥ 0, then E(X|F) ≥ 0.

(iv) Independence law: If X is independent of F , then E(X|F) = E(X).

(iv) Tower Property: If F and F ′ are two field with F ⊂ F ′, then

E(E(X|F ′)|F) = E(X|F)

or

E(E(X|F)|F ′) = E(X|F).

(v) Stability: If X is F measurable, then E(XZ|F) = XE(Z|F).

(vi) Constants: For any scalar a, E(a|F) = a.

Before giving the definition and properties of martingales, we define the σ− field

and filtration.

10



Definition 1.16. A set of subsets of Ω, denote it by F , is called a σ − field if

1. Ω ∈ F

2. If A ∈ F , then Ac ∈ F

3. If A1, A2, ... is a sequence of elements of F , then

∞⋃
j=1

Aj ∈ F .

Example 1.(Examples of fields)

It is easy to verify that any of the following is a field of sets.

1. {Ω, ∅} is called the trivial field F0.

2. {Ω, ∅, A,Ac} is called the field generated by set A, and denoted by FA.

3. {A : A ⊆ Ω} the field of all the subsets of Ω. It is denoted by 2Ω.

Assume that (Ft, t ≥ 0) is a collection of σ−fields on the same space Ω and that

all Fts are subsets of a larger σ − field F on Ω.

The collection F = (Ft, t ≥ 0) of σ − fields on Ω is called a filtration if

Fs ⊂ Ft for all 0 ≤ s ≤ t.

Thus one can think a filtration, an increasing stream of information.

Example 2. F = {F0,FA, 2Ω} is an example of filtration.

Definition 1.17. (Field Generated by a Random Variable)

Let (Ω, 2Ω) be a sample space with the field of all events, and X be a random

variable with values xi, i = 1, 2, ..., k. Consider sets

Ai = {w : X(w) = xi} ⊆ Ω.

These sets form a partition of Ω, and the field generated by this partition is called

the field generated by X. It is the smallest field that contains all the sets of the form

Ai = {X = xi} and it is denoted by σ(X).

The discrete-time process Y = (Yt, t = 0, 1, ...) is said to be adapted to the filtration

(Ft, t = 0, 1, ...) if

11



σ(Yt) ⊂ Ft for all t = 0, 1, 2, ...

where σ(Yt) is the field generated by random variable Yt.

Definition 1.18. The stochastic process X = (Xn, n = 0, 1, ...) is called a discrete-

time martingale with respect to the filtration (Fn, n = 0, 1, ...), we write (X, (Fn)),

if

(i) E|Xn| <∞ for all n = 0, 1, ...

(ii) X is adapted to (Fn).

(iii) E(Xn+1|Fn) = Xn for all n = 0, 1, ...,

i.e. Xn is the best prediction of Xn+1 given Fn.

The continuous-time process Y = (Yt, t ≥ 0) is said to be adapted to the filtration

(Ft, t ≥ 0) if

σ(Yt) ⊂ Ft for all t ≥ 0

where σ(Yt) is the field generated by random variable Yt.

Definition 1.19. The stochastic process X = (Xt, t ≥ 0) is called a continuous-time

martingale with respect to the filtration (Ft, t ≥ 0), we write (X, (Ft)), if

(i) E|Xt| <∞ for all t ≥ 0

(ii) X is adapted to (Ft).

(iii) E(Xt|Fs) = Xs for all 0 ≤ s < t,

i.e. Xs is the best prediction of Xt given Fs.

Example 3. Let X1, X2, ... be independent random variables with E[Xn] = 1 for

all n. Let Zn =
n∏
i=1

Xi, n ≥ 1. Then E|Zn| =
n∏
i=1

E|Xi| <∞ for every n, and

E[Zn+1|Z1, ...Zn] = E[(Xn+1Zn|Z1, ...Zn)]

= ZnE[Xn+1|Z1, ...Zn]

= Zn,

so that {Zn} is a martingale.

12



Before giving the definition of lag and forward operators on isolated time scales,

we will give the invariance property on the conditional expectations. The following

result can be found in the paper [9] by Broze, Gourieroux and Szafarz. A conditional

expectation is written by

E[yt+h−k|It−k] = Et−k[yt+h−k]

where the information It is increasing with t and composed of the current and past

observations. The condition k ≥ 0 implies that one cannot make predictions using

future observations of the variables. There is at most, for k = 0, a simultaneity

between the dates at which yt and the expectations are determined. This assumptions

implies that yt is a function of the variables appearing in It. Thus we have

Et−k[yt+h−k] = yt+h−k if h ≤ 0.

This invariance property allows us to consider, in the case h = 0, we have

Et−k[yt−k] = yt−k.

Definition 1.20. Let L and F denote respectively, a lag operator and a forward

operator. L and F are defined as

Lyt ≡ F−1yt ≡ yρt , Lnyt ≡ F−nyt ≡ yρ
n

t ,

L−1yt ≡ Fyt ≡ yσt , L−nyt ≡ F nyt ≡ yσ
n

t . (1.2.1)

For example, the equation yt + byρ
2

t = axρt can be written as yt + bL2yt = aLxt.

Then, we can divide throughout by L2 and use the fact that L−2 = F 2 to get F 2yt +

byt = aFxt, or yσ
2

t + byt = axσt .

Next, we state a lemma which provides us a significant result for our future work.

Lemma 1.5. Let yt be a random variable so that y∆
t = xt where ∆ derivative is with

respect to t, then

13



∫
xt∆t = yt +M∗(t)

where M∗(t) is any arbitrary martingale.

Proof. ∫
xt∆t = yt +M∗(t)

means that

(yt +M∗(t))∆ = xt.

Using the invariance property of conditional expectation we rewrite M∗(t) as

(yt + Et[M
∗(t)])∆ = xt

where E[M∗(t)|It] = Et[M
∗(t)].

y∆
t + (EtM

∗(t))∆ = xt.

By the assumption we know that y∆
t = xt, then this implies that

(Et[M
∗(t)])∆ = 0.

Indeed, by the definition of ∆-derivative and the property of martingale on the LHS

of the above equation we obtain

Et[(M
∗)σ(t)]− Et[M∗(t)]

µ(t)
=
M∗(t)−M∗(t)

µ(t)
= 0.

2

Lemma 1.6. Let yt be a random variable so that y∇t = xt, then∫
xt∇t = yt + (M∗∗ ◦ σ)(t)

where (M∗∗ ◦ σ)(t) is any arbitrary martingale.
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Proof. ∫
xt∇t = yt + (M∗∗ ◦ σ)(t)

means that

(yt + (M∗∗ ◦ σ)(t))∇ = xt

Using the invariance property of conditional expectation we rewrite (M∗∗ ◦ σ)(t) as

(yt + Et[(M
∗∗ ◦ σ)(t)])∇ = xt

y∇t + (Et[(M
∗∗ ◦ σ)(t)])∇ = xt

By the assumption we know that y∇t = xt, then this implies that

(Et[(M
∗∗ ◦ σ)(t)])∇ = 0

Indeed, by the definition of ∇-derivative and the property of martingale on the LHS

of the above equation we obtain

Et[(M
∗∗ ◦ σ)(t)]− Et[M∗∗(t)]

ν(t)
=
M∗∗(t)−M∗∗(t)

ν(t)
= 0.

2

The treatment of the notations M∗(t) and M∗∗(t) are similar to the notation of

arbitrary constant in deterministic setting.
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CHAPTER 2

A BRIEF INTRODUCTION TO RATIONAL EXPECTATIONS

In economics, expectations are defined as the prediction of future economic events

or economists’ opinions about the future prices, incomes, taxes or other important

variables. According to modern economic theory, there is an important difference

between economics and natural sciences which is the forward-looking decisions made

by economic agents. Expectations are included in many areas of economics such as

wage bargaining in the labor market, cost benefit analysis, exchange rates, financial

market investment, etc.

In this thesis we are considering the rational expectations which is commonly used

in literature. Rational expectations is an economic theory which provides the people

or economic agents making future decision with available information and past ex-

periences. The first approach of the rational expectations was begun approximately

fifty years ago. At that time, rational expectations and forecast of future development

were not clear nor perfect. Even though, proven forecasts are not exactly rational, still

it has ring of truth. The purpose of the rational expectations is to give the optimal

forecast of the future which means that rational expectations should have the best

guess of the future with all information available such as weather conditions, market

conditions, supply demand curves, etc. The result of the expectations depends on

other available information, thus it changes as external factors change and affect the

situation. For instance, assume that part of a crop was destroyed due to bad weather

condition, so that typical price of the crop rises above normal. Depending on this

situation, if the farmer expects that this high price will prevail, he will plant more

than usual. Eventually, more planting will cause the price of the harvested crops to

fall below normal. Referring to this example, forecasting the future will not be clear

for rational expectations. In economics, agents form expectations that are accepted

rationally because they are based on past experiences. These expectations must be

adjusted when external influences change the situation, as in our example. Equilib-

16



rium of a dynamic model can be described by a probability distribution over order of

data. Also, data for every agent is consistent with this equilibrium probability distri-

bution, so that there is relation between outcomes which are generated by the model

and expectations. On field rational expectations, there have been three influential

economists: John F. Muth, Robert E. Lucas, and Thomas J. Sargent.

Rational expectations was proposed by John F. Muth in the early 1960s. He

is an American Economist and is known as the father of the rational expectations

idea. He gave the idea of rational expectations in his linear microeconomic model. He

published the first paper [13] in this area. John F Muth got his Ph.D. degree in Math-

ematical Economics from the Carnegie Mellon University and was the first recipient of

the Alexander Henderson Award. Eventually, rational expectations was established

by Muth, and it has become the way of other economists. In the 1970s, Robert E.

Lucas, another American Economist, began working on rational expectations equilib-

rium for a model whose agents have a different approach for determining the rational

expectations [see [17]]. He obtained his Ph.D. degree in Economics in 1964 from the

University of Chicago. Lucas received the Nobel Prize in 1995 for developing and

applying the theory of rational expectations to an econometric hypothesis. Rational

expectations have been transformed from micro-economics to macro-economics by

Robert E. Lucas. Although, the first rational expectations hypothesis was introduced

by John Muth, the process of the rational expectations did not gain too much atten-

tion until Lucas extended this approach. Another well-known economist is Thomas

J. Sargent who focuses on the field of macroeconomics. Additionally, he specializes in

the area of rational expectations and developed the rational expectations revolution.

He also argued that decision makers cannot systematically manipulate the economy

through predictable variables. According to Sargent’s article, which was published

at the Library Economics Liberty, “The concept of rational expectations asserts that

outcomes do not differ systematically (i.e., regularly or predictably) from what peo-

ple expected them to be. The concept is motivated by the same thinking that led

Abraham Lincoln to assert, ‘You can fool some of the people all of the time, and
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all of the people some of the time, but you cannot fool all of the people all of the

time.’ From the viewpoint of the rational expectations doctrine, Lincoln’s statement

gets things right. It does not deny that people often make forecasting errors, but it

does suggest that errors will not persistently occur on one side or the other”. Also

rational expectations has been updated by economists over the last three decades

through articles and books by Sargent in [14], Lucas and Sargent in [15], and Hansen

and Sargent [16]. Rational expectations is not only used in one specific economic

field, but it has also been extended to many other fields of economics such as finance,

labor economics, and industrial organization. Therefore, all influential economists

who have studied rational expectations, have had a different approach and focus re-

lated to rational expectations. Cagan’s hyperinflation model is an example of such

an approach. Phillip D. Cagan is an American scholar, author and economist. He

got his MA degree in 1951 and his Ph.D. in Economics in 1954 from the University

of Chicago. Cagan’s work focuses on controlling the inflation model. In 1956, he

wrote a book [18] about the demand for money during hyperinflation. The demand

for cash balance is a future inflation expectations, for which Cagan suggested the

adaptive expectations. Cagan’s model was a catalyst for a significant body of work

in microeconomics and leading economists extended this idea and used it for their

model. Sargent and Wallace transformed Cagan’s model into a rational expectations

model in 1973 [20], by adding three assumptions which are 1. conditions are such that

adaptive expectations of inflation are rational, 2. the money demand disturbance is

econometrically exogenous with respect to money growth and inflation, and 3. the

money demand disturbance follows a random walk [see [19]]. Then, the Cagan’s

Hyperinflation model has the following form

yt = aE[yt+1|It] + cxt, (2.0.1)

where yt is endogenous variable which is known as the independent variable gen-

erated within a model and zt is exogenous variable which is known as the dependent

variable generated within a model, E[yt+1|It] ≡ Et[yt+1] is the conditional expecta-
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tion.

There are several techniques for solving the equation (2.0.1). We examine three

techniques: repeated substitution, undetermined coefficients and Sargent’s factoriza-

tion method which are taken from Thompson’s lecture notes [25]. Even though they

were used extensively in literature, we detect some weaknesses in these three solution

techniques.

METHOD 1. Repeated Substitution

Rewrite the equation (2.0.1) for t+ 1 :

yt+1 = aE[yt+2|It+1] + cxt+1,

and take conditional expectation on It:

E[yt+1|It] = aE[yt+2|It] + cE[xt+1|It],

where, in the first term on the right hand side, applied the tower property of condi-

tional expectation. Now substitute this expression for E[yt+1|It] into (2.0.1):

yt = a2E[yt+2|It] + acE[xt+1|It] + cxt.

Repeat this substitution up to time t+ T :

yt = c
T∑
i=0

aiE[xt+i|It] + aT+1E[yt+T+1|It].

Now if yt is bounded, then as |a| < 1 we have,

lim
T→∞

aT+1E[yt+T+1|It] = 0 (2.0.2)

and so,

yt = c

∞∑
i=0

aiE[xt+i|It] (2.0.3)

which is the solution of the problem under assumption (2.0.2). At this point, one

might ask “ what if |a| ≥ 1 or yt is unbounded? ”. Thus, we cannot use this method

for any coefficients.
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METHOD 2. Undetermined Coefficients

As in the deterministic case, we guess a functional form for the solution and then

verify it. Let’s guess a form for the solution

yt =
∞∑
i=0

λiE[xt+i|It] (2.0.4)

where λi = 1, 2, 3, ... are coefficients to be determined. If the guess is correct, then

imposing rational expectations give us

E[yt+1|It] =
∞∑
i=0

λiE[xt+i+1|It]. (2.0.5)

If we substitute guesses (2.0.4) and (2.0.5) into the original equation (2.0.1) to obtain

∞∑
i=0

λiE[xt+i|It] = a
∞∑
i=0

λiE[xt+i+1|It] + cxt.

This equation should hold for any realizations of the sequences xt+i for i = 1, 2, 3, ....,

and the only way this can happen is if for every i, the coefficient on xt+i on the LHS

of the equation is identical to the coefficient on xt+i on the RHS. Matching up the

coefficients, we get

λ0 = c and λi+1 = aλi = aic

and this again yields (2.0.4).

We, mathematicians, do not prefer to use guessing method if there is an accurate

method to solve the equation.

METHOD 3. Sargent’s Factorization Method

1) Lag and forward operators were used in solving stochastic rational expectations

model by Sargent in (1975).

2) With the introduction of expectations operators, it is important to note that

the lag and forward operators work on the time-subscript of the variable and not on

the time subscript of the information set. That is,
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LE[pt+i|It] ≡ E[pt+i−1|It]

LE[pt+1|It] ≡ E[pt|It] ≡ pt.

Series expansions of forward operator is given as

(1− αF )−1 =
∞∑
i=0

αiF i, forall |α| < 1, (2.0.6)

(1− αF )−1 = −
∞∑
i=0

α−iF−i, for all |α| > 1,

Same expansions are also valid for lag operator.

Sargent’s factorization method first involves taking expectations on both sides of the

equations conditional on the oldest information set that appears anywhere in the

equation. In the equation (2.0.1), there is only one information set,It, so we take

expectations over the entire equation based on It

E[yt|It] = aE[yt+1|It] + cE[xt|It]. (2.0.7)

The second step in Sargent’s method is to write (2.0.7) in terms of the lag and forward

operators:

E[yt|It] = aFE[yt|It] + cE[xt|It]

which implies

(1− aF )E[yt|It] = cE[xt|It],

or

E[yt|It] = c(1− aF )−1E[xt|It].

Using forward operator expansion (2.0.6), we obtain

E[yt|It] = c
∞∑
i=0

aiF iE[xt|It].
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Sargent’s method is the most powerful one, particularly for problems with multiple

solutions. On the other hand, it is often to be the most conceptually challenging since

one needs to make a decision to use either forward shift operator or backward shift

(lag) operator.

For the model (2.0.1), it was also put forward that the general solution may

be expressed in terms of martingales (see Broze, Jansen, and Szafarz [21], Broze

and Szafarz [22], Gourieroux, Laffont, Monfort [23], Pesaran [24]). The method we

develop in this study is based on the calculus of time scales and martingales solution

of the model.
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CHAPTER 3

GENERALIZATION OF CAGAN TYPE RATIONAL EXPECTATIONS MODEL

In this chapter, we study the Cagan Type Rational Expectations (CTRE) model.

For our purposes, we assume T is an isolated time scale. In section 3.1, we introduce

the Cagan’s hyperinflation model and explain how to convert it to the rational expec-

tations model. In Section 3.2, we construct the (CTRE) model on T. We continue

our work with defining the linear system and higher order (CTRE) on T in Section

3.3. Afterwards, in Section 3.4, we consider a second order (CTRE) model. Then

we use the discrete Putzer Algorithm to find the general solution for the second or-

der (CTRE) model. In Section 3.5, we examine the existence and uniqueness of the

solution of the (CTRE) model.

3.1 The Cagan’s Hyperinflation Model

A simple model which contains a future expectation of the endogenous variable

(the independent variable generated within a model) is called the Cagan’s (1956)

hyper-inflation model. This is a model on the money market that ascribes an impor-

tant role on the expected inflation. The real demand for money is given by

md
t − yt = α(y∗t+1 − yt), (3.1.1)

where md
t is the logarithm of the nominal money demand at the date t, yt is the

logarithm of the price level at date t and y∗t+1 is the price level expected by agent at

time t + 1 given all information available at time t. The nominal money demand is

defined by stochastic process;

md
t = z̃t.

Thus the demand on the money market yields;

α(y∗t+1 − yt) = z̃t − yt
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αy∗t+1 − αyt = z̃t − yt

(1− α)yt = z̃t − αy∗t+1

yt =
z̃t

1− α
− α

1− α
y∗t+1

yt =
α

α− 1
y∗t+1 −

z̃t
α− 1

let a =
α

α− 1
and f(t, zt) = − z̃t

α− 1
.

Hence the Cagan’s model can be written as

yt = aE[yt+1|It] + f(t, zt), (3.1.2)

with yt is endogenous variable which is known as the independent variable gener-

ated within a model and zt is exogenous variable which is known as the dependent

variable generated within a model, E[yt+1|It] ≡ Et[yt+1] is the subjective expectation

formed by the only one economic agent. Following the rational expectation (RE)

hypothesis, it is assumed that this expectation is identical to the conditional math-

ematical expectation of yt+1 with respect to all the information available at time t

and included in It. The information set contains the observations on yt, zt and their

past values, i.e. It = (zt, zt−1, ...). Consequently, it represents a increasing set with

It ⊃ It−1 ⊃ It−2 ⊃ ..... This implies that the economic agent has infinite mem-

ory. Furthermore, under the RE hypothesis, the agent “knows the model, namely

its formal structure and the true values of the parameters”(L. Broze and A. Szafarz

[10]).

For further reading we refer the reader to the book by M. P. Tucci [8].

3.2 First Order CTRE Model on Isolated Time Scales

Let yt be an endogenous variable and zt be an exogenous variable, a be the param-

eter associated with the future expectation and E[yσt |It] ≡ Et[y
σ
t ] is the conditional

expectation at time σ(t) given all information available at time t. The first order
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CTRE model is given as

yt = aEt[y
σ
t ] + f(t, zt), (3.2.1)

where t ∈ T.

Before giving the solution of the equation (3.2.1), we state a useful lemma.

Lemma 3.1. Let yt be a random variable, then∫
Et[y

σ
t ]∆t = Et[

∫
yσt ∆t] +M∗(t)

where M∗(t) is an arbitrary martingale.

Proof. To prove the lemma we show that

(Et[

∫
yσt ∆t] +M∗(t))∆ = Et[y

σ
t ].

By the invariance property of conditional expectation we write M∗(t) = Et[M
∗(t)] on

the LHS of the above equation, then we get

(Et[

∫
yσt ∆t] + Et[M

∗(t)])∆

(Et[

∫
yσt ∆t])∆ + (Et[M

∗(t)])∆.

By Lemma 1.5 we have (Et[M
∗(t)])∆ = 0, thus we obtain

(Et[

∫
yσt ∆t])∆.

We define

∫
yσt ∆t = Gt and using the definition of ∆ derivative we get

(Et[Gt])
∆ =

FEt[Gt]− Et[Gt]

µ(t)

By the properties of forward operator (1.2.1), we obtain

(Et[Gt])
∆ =

Et[FGt]− Et[Gt]

µ(t)
.
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(Et[Gt])
∆ =

Et[G
σ
t ]− Et[Gt]

µ(t)
.

The linearity property of conditional expectation on the RHS of the above equation

gives

Et[
Gσ
t −Gt

µ(t)
] = Et[G

∆
t ],

writing back the Gt =

∫
yσt ∆t on the above equation, we obtain

Et[G
∆
t ] = Et[(

∫
yσt ∆t)∆] = Et[y

σ
t ].

Thus we conclude that

∫
Et[y

σ
t ]∆t = Et[

∫
yσt ∆t] +M∗(t). This completes the proof.

2

Theorem 3.1. Let T be an isolated time scale. Then the solution of the first order

CTRE model (3.2.1) is given by

yt = e 1−a
aµ

(t, 0)M(t)− e 1−a
aµ

(t, 0)

∫
e	 1−a

aµ
(t, 0)

1

µ(t)
f(t, zt)∆t

where t ∈ T and the M(t) is an arbitrary martingale, i.e. satisfies the martingale

property

Et[M
σ(t)] = M(t).

Proof. If we rewrite yt using the invariance property of conditional expectation with

the information set It, that is, Et[yt] = yt, on the equation (3.2.1), we have

Et[yt] = aEt[y
σ
t ] + f(t, zt)

Et[y
σ
t ]− 1

a
Et[yt] = −1

a
f(t, zt).

Then, dividing both side by eσ1−a
aµ

(t, 0)µ(t) we get

Et[y
σ
t ]− 1

a
Et[yt]

eσ1−a
aµ

(t, 0)µ(t)
=

−1

a
f(t, zt)

eσ1−a
aµ

(t, 0)µ(t)
,
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by Lemma 1.1(ii) we obtain that eσ1−a
aµ

(t, 0) =
1

a
e 1−a
aµ

(t, 0). Thus, it follows that

eσ	 1−a
aµ

(t, 0)Et[y
σ
t ]− e	 1−a

aµ
(t, 0)Et[yt]

µ(t)
= −e	 1−a

aµ
(t, 0)

1

µ(t)
Et[f(t, zt)].

By the invariance property of the conditional expectation we rewrite the LHS of the

above equation as

Et[e
σ
	 1−a

aµ

(t, 0)yσt ]− Et[e	 1−a
aµ

(t, 0)yt]

µ(t)
= −e	 1−a

aµ
(t, 0)

1

µ(t)
Et[f(t, zt)].

Then the linearity property of the conditional expectation on the LHS of the equation

gives

Et[e
σ
	 1−a

aµ

(t, 0)yσt − e	 1−a
aµ

(t, 0)yt]

µ(t)
= −e	 1−a

aµ
(t, 0)

1

µ(t)
Et[f(t, zt)].

LHS of the above equation is ∆-derivative of e	 1−a
aµ

(t, 0)yt, that is

Et[(e	 1−a
aµ

(t, 0)yt)
∆] = −e	 1−a

aµ
(t, 0)

1

µ(t)
f(t, zt).

Taking the integral both of side of the above equation and by Lemma 1.5 we obtain∫
Et[(e	 1−a

aµ
(t, 0)yt)

∆]∆t = M∗∗(t)−
∫
e	 1−a

aµ
(t,0)

1

µ(t)
f(t, zt)∆t

using Lemma 3.1 on the LHS of the above equation we have

Et[

∫
(e	 1−a

aµ
(t, 0)yt)

∆∆t] +M∗(t) = M∗∗(t)−
∫
e	 1−a

aµ
(t,0)

1

µ(t)
f(t, zt)∆t

Et[e	 1−a
aµ

(t, 0)yt] = (M∗∗(t)−M∗(t))−
∫
e	 1−a

aµ
(t,0)

1

µ(t)
f(t, zt)∆t

where M∗∗(t)−M∗(t) = M(t) is a martingale. Then we have

e	 1−a
aµ

(t, 0)yt = M(t)−
∫
e	 1−a

aµ
(t,0)

1

µ(t)
f(t, zt)∆t,

dividing both side of the above equality by e	 1−a
aµ

(t, 0) we obtain

yt = e 1−a
aµ

(t, 0)M(t)− e 1−a
aµ

(t, 0)

∫
e	 1−a

aµ
(t, 0)

1

µ(t)
f(t, zt)∆t.
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2

Next, we derive the nabla solution of the equation (3.2.1).

Theorem 3.2. Let T be an isolated time scale. Then the nabla solution of the equation

(3.2.1) is given by

yt = ê	a−1
aν

(t, 0)M̂(t)− ê	a−1
aν

(t, 0)

∫
1

ν(t)
êa−1
aν

(ρ(t), 0)f(ρ(t), zρt )∇t

where t ∈ T and the M̂(t) is an arbitrary martingale, i.e. satisfies the martingale

property

Et[M
σ(t)] = M(t).

Proof. We rewrite yt using the invariance property of conditional expectation on It,

on the equation (3.2.1), then we have

Et[yt] = aEt[y
σ
t ] + f(t, zt)

Et[y
σ
t ]− 1

a
Et[yt] = −1

a
f(t, zt).

To obtain the nabla derivative on the RHS of the above equation we multiply both

sides by
1

ν(t)
êσa−1
aν

(t, 0), we get

êσa−1
aν

(t, 0)Et[y
σ
t ]− 1

a
êσa−1
aν

(t, 0)Et[yt]

ν(t)
= − 1

aν(t)
êσa−1
aν

(t, 0)f(t, zt)

Et[ê
σ
a−1
aν

(t, 0)yσt ]− Et[
1

a
êσa−1
aν

(t, 0)yt]

ν(t)
= − 1

aν(t)
êσa−1
aν

(t, 0)f(t, zt). (3.2.2)

.

By Theorem 1.5 we have

êσa−1
aν

(t, 0) = eσa−1
µ

(t, 0),

by Lemma 1.1(ii) we have
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eσa−1
µ

(t, 0) = aea−1
µ

(t, 0),

and using Theorem 1.5 we get an useful equality

êσa−1
aν

(t, 0) = aêa−1
aν

(t, 0).

Then it follows that the equation (3.2.2) becomes

Et[ê
σ
a−1
aν

(t, 0)yσt ]− Et[
1

a
aêa−1

aν
(t, 0)yt]

ν(t)
= − 1

aν(t)
aêa−1

aν
(t, 0)f(t, zt).

By the linearity property of conditional expectation we have

Et[ê
σ
a−1
aν

(t, 0)yσt −
1

a
aêa−1

aν
(t, 0)yt]

ν(t)
= − 1

aν(t)
aêa−1

aν
(t, 0)f(t, zt)

which is equivalent to

Et[(ê
σ
a−1
aν

(t, 0)yσt )∇] = − 1

ν(t)
êa−1
aν

(t, 0)f(t, zt). (3.2.3)

Integrating both sides of the equation (3.2.3) and using Lemma 1.6, we obtain

∫
Et[(ê

σ
a−1
aν

(t, 0)yσt )∇]∇t = (M∗∗ ◦ σ)(t)−
∫

1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t,

by Lemma 3.1 on the LHS of the above equation we get

Et[

∫
(êσa−1

aν
(t, 0)yσt )∇∇t] +M∗(t) = (M∗∗ ◦ σ)(t)−

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t

Et[ê
σ
a−1
aν

(t, 0)yσt ] = ((M∗∗ ◦ σ)(t)−M∗(t))−
∫

1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t

êσa−1
aν

(t, 0)Et[y
σ
t ] = M̂(t)−

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t,
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where M̂(t) = (M∗∗ ◦ σ)(t)−M∗(t) is a martingale.

Hence we find Et[y
σ
t ] as

Et[y
σ
t ] = êσ	a−1

aν

(t, 0)M̂(t)− êσ	a−1
aν

(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t

Since our aim is to find yt, we solve the equation (3.2.1) for Et[y
σ
t ] as

Et[y
σ
t ] =

yt − f(t, zt)

a
, then we substitute this in the above equation and obtain

yt − f(t, zt)

a
= êσ	a−1

aν
(t, 0)M̂(t)− êσ	a−1

aν
(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t.

By the property of exponential function we write the equality êσ	a−1
aν

(t, 0) =
1

a
ê	a−1

aν
(t, 0)

which gives us

yt − f(t, zt)

a
=

1

a
ê	a−1

aν
(t, 0)M̂(t)− 1

a
ê	a−1

aν
(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t

yt − f(t, zt) = ê	a−1
aν

(t, 0)M̂(t)− ê	a−1
aν

(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t

yt = ê	a−1
aν

(t, 0)M̂(t)− ê	a−1
aν

(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t+ f(t, zt).

Now, we use the integration by part formula in

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t by the

equation (1.1.11)

g∇(t) =
1

ν(t)
êa−1
aν

(t, 0) and h(t) = f(t, zt), hence we get g(t) =
a

a− 1
êa−1
aν

(t, 0) and by

the definition of nabla (f(t, zt))
∇ =

f(t, zt)− f(ρ(t), zρt )

ν(t)
, then we have

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t =
a

a− 1
êa−1
aν

(t, 0)f(t, zt)

− a

a− 1

∫
êρa−1
aν

(t, 0)
f(t, zt)− f(ρ(t), zρt )

ν(t)
∇t
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∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t =
a

a− 1
êa−1
aν

(t, 0)f(t, zt)

− a

a− 1

∫
êρa−1
aν

(t, 0)f(t, zt)
1

ν(t)
∇t

+
a

a− 1

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t.

By the property of the nabla exponential function êρa−1
aν

(t, 0) = 1
a
êa−1
aν

(t, 0), which

implies ∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t =
a

a− 1
êa−1
aν

(t, 0)f(t, zt)

− a

a(a− 1)

∫
êa−1
aν

(t, 0)f(t, zt)
1

ν(t)
∇t

+
a

a− 1

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t.

Then it follows from algebraic steps

(1 +
1

a− 1
)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t =
a

a− 1
êa−1
aν

(t, 0)f(t, zt)

+
a

a− 1

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t.

By doing elementary algebra we have,∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t = êa−1
aν

(t, 0)f(t, zt)

+

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t.

Multiplying both side of the above equation by −ê	a−1
aν

(t, 0) we obtain

−ê	a−1
aν

(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t = −ê	a−1
aν

(t, 0)êa−1
aν

(t, 0)f(t, zt)

−ê	a−1
aν

(t, 0)

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t

Using the property of exponential function, ê	a−1
aν

(t, 0)êa−1
aν

(t, 0) = 1, we get

−ê	a−1
aν

(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t+ f(t, zt) =

−ê	a−1
aν

(t, 0)

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t.
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Hence we can conclude that

yt = ê	a−1
aν

(t, 0)M̂(t)− ê	a−1
aν

(t, 0)

∫
1

ν(t)
êa−1
aν

(t, 0)f(t, zt)∇t+ f(t, zt)

which equals to

yt = ê	a−1
aν

(t, 0)M̂(t)− ê	a−1
aν

(t, 0)

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t. 2

Lemma 3.2. Delta and nabla solution of the equation (3.2.1) are the same.

Proof. We obtained the ∆ solution of the equation (3.2.1) as

yt = e 1−a
aµ

(t, 0)M(t)− e 1−a
aµ

(t, 0)

∫
e	 1−a

aµ
(t, 0)

1

µ(t)
f(t, zt)∆t (3.2.4)

and ∇ solution as

yt = ê	a−1
aν

(t, 0)M̂(t)− ê	a−1
aν

(t, 0)

∫
êρa−1
aν

(t, 0)f(ρ(t), zρt )
1

ν(t)
∇t. (3.2.5)

By the property of the exponential function and Theorem 1.5 we have

ê	a−1
aν

(t, 0) =
1

êa−1
aν

(t, 0)
=

1

ea−1
µ

(t, 0)
= e	a−1

µ
(t, 0).

Then by the definition of the circle minus 	a− 1

µ
=

1− a
aµ

, which shows that the

exponential functions on the equation (3.2.4) and (3.2.5) are equals

ê	a−1
aν

(t, 0) = e	a−1
µ

(t, 0) = e 1−a
aµ

(t, 0).

It remains to show equivalence of the integrals and the martingales on the equation

(3.2.4) and (3.2.5). To show that, we give a lemma.
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Lemma 3.3. Let f : T→ R be given function. Then∫
f(t)∆t =

∫
f(ρ(t))∇t.

Proof. Assume that ∫
f(ρ(t))∇t = F (t) + C

If we take the nabla derivative of both side we have

(

∫
f(ρ(t))∇(t))∇ = (F (t) + C)∇

f(ρ(t)) = F∇(t).

If we apply forward shift operator to each side of the above equation, we have

f(σ(ρ(t))) = F∇(σ(t))

f(t) = F∇(σ(t)).

By Theorem 1.6 (ii) F∆(t) = F∇(σ(t)), then we have

f(t) = (F (t))∆,

taking integral of the both sides with respect ∆ operator we obtain

∫
f(t)∆(t) =

∫
F∆(t)∆(t)∫

f(t)∆(t) = F (t) +D.

Then we have
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∫
f(t)∆(t) =

∫
f(ρ(t))∇(t) +D − C.

Notice that M̂(t) = M(t) − D + C. Thus we conclude that the equivalence of the

equation (3.2.4) and (3.2.5). 2

Notice that for T = Z, we have σ(t) = t + 1. Thus the equation (3.2.1) becomes

as

yt = aEt[yt+1] + f(t, zt). (3.2.6)

Corollary 3.1. yt = a−tM(t)−a−t
∑
atf(t, zt) is the solution of the equation (3.2.6).

Corollary 3.2. yt = a−tM(t) − a−t
∑

at−1f(t − 1, zt−1) is the backward difference

solution of the equation (3.2.6).

3.3 Linear Systems and Higher Order CTRE Model on Isolated Time Scales

As mentioned in the text [8], it may happen that several future expectations

appear as explanatory variables on the right-hand side of the Cagan type rational

expectation model (REM) (3.1.2). Thus the general form of the CTRE Model (3.1.2)

is given by

yt = anEt[yt+n] + an−1Et[yt+n−1] + ...+ a1Et[yt+1] + f(t, zt)

where yt, zt are endogenous and exogenous variables, respectively, Et[yt+n] is the con-

ditional expectation and an, an−1, ... are constants. The presence of more than future

expectations means that economic agent suffers the consequences of the rational pre-

diction errors.

We define the general CTRE Model on isolated time scales T as

yt = anEt[y
σn

t ] + an−1Et[y
σn−1

t ] + ...+ a1Et[y
σ
t ] + f(t, zt). (3.3.1)
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The next goal is to find the solution of this new formulation of CTRE Model

(3.3.1). At this point, we can consider the equation (3.3.1) as a nonlinear stochastic

equation. The idea is similar to solution techniques of differential equations.

The nth order nonhomogenous CTRE and homogenous CTRE models are given

by the following, respectively,

yt = anEt[y
σn

t ] + an−1Et[y
σn−1

t ] + ...+ a1Et[y
σ
t ] + f(t, zt)

yt = anEt[y
σn

t ] + an−1Et[y
σn−1

t ] + ...+ a1Et[y
σ
t ]. (3.3.2)

We characterize the general solution of the equation (3.3.1) through a sequence of

theorems. Without loss of generality we consider a second order equation, i.e.

yt = a2Et[y
σ2

t ] + a1Et[y
σ
t ].

Theorem 3.3.

(i) If u1(t), u2(t) are solutions of the homogenous equation yt = a2y
σ2

t + a1y
σ
t .

Then u(t) = M1tu1(t) + M2tu2(t) ,where the Mit, i = 1, 2 are arbitrary martingales,

is a solution for yt = a2Et[y
σ2

t ] + a1Et[y
σ
t ]

(ii) If w(t) solves the equation

yt = a2Et[y
σ2

t ] + a1Et[y
σ
t ] (3.3.3)

and v(t) solves the equation

yt = a2Et[y
σ2

t ] + a1Et[y
σ
t ] + f(t, zt) (3.3.4)

then w(t) + v(t) solves the equation (3.3.4).

(iii) If y1(t) and y2(t) solve the equation (3.3.4), then y1(t) − y2(t) solves the

equation (3.3.3).

35



Proof.

(i) Let u1(t) and u2(t) be solutions of

yt = a2y
σ2

t + a1y
σ
t .

Thus u1(t) and u2(t) satisfy the above equation, then we get

u1(t) = a2u
σ2

1 (t) + a1u
σ
1 (t)

u2(t) = a2u
σ2

2 (t) + a1u
σ
2 (t).

If we define u(t) = M1tu1(t) +M2tu2(t), then

M1tu1(t) +M2tu2(t) = a2Et[M1tu
σ2

1 (t) +M2tu
σ2

2 (t)] + a1Et[M1tu
σ
1 (t) +M2tu

σ
2 (t)],

where M1(t) and M2(t) are martingales.

The LHS of the above equation can be written with conditional expectation as

Et[M1tu1(t)] + Et[M2tu2(t)] = a2Et[M1tu
σ2

1 (t) + M2tu
σ2

2 (t)] + a1Et[M1tu
σ
1 (t) +

M2tu
σ
2 (t)].

By the linearity property of conditional expectation we have

Et[M1t (u1(t)− a2u
σ2

1 (t)− a1u
σ
1 (t))︸ ︷︷ ︸]+Et[M2t (u2(t)− a2u

σ2

2 (t)− a1u
σ
2 (t))︸ ︷︷ ︸]

zero zero

= 0

(ii) If w(t) + v(t) solves the equation (3.3.4) then,

w(t) + v(t) = a2Et[w
σ2

(t) + vσ
2
(t)] + a1Et[w

σ(t) + vσ(t)] + f(t, zt)

using the linearity property of conditional expectation, above equation can be

written as

w(t)− a2Et[w
σ2

(t)]− a1Et[w
σ(t)]︸ ︷︷ ︸+ v(t)− a2Et[v

σ2

(t)]− a1Et[v
σ(t)]− f(t, zt)︸ ︷︷ ︸.

Since w(t) solves the equation (3.3.3) we have
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w(t)− a2Et[w
σ2

(t)]− a1Et[w
σ(t)] = 0

and v(t) solves the equation (3.3.4) we have

v(t)− a2Et[v
σ2

(t)]− a1Et[v
σ(t)]− f(t, zt) = 0

this shows w(t) + v(t) solves the equation (3.3.4).

(iii) If y1(t)− y2(t) solves (3.3.3), then

y1(t)− y2(t) = a2Et[y
σ2

1 (t)− yσ2

2 (t)] + a1Et[y
σ
1 (t)− yσ2 (t)]

y1(t)− a2Et[y
σ2

1 (t)]− a1Et[y
σ
1 (t)]︸ ︷︷ ︸− y2(t)− a2Et[y

σ2

2 (t)]− a1Et[y
σ
2 (t)]︸ ︷︷ ︸

both parts of the above equation are solutions of equation (3.3.4) so they are equal

to f(t, zt), then this provide that y1(t)− y2(t) is a solution of the equation (3.3.3).

Up to this point we have focused on the single CTRE on isolated time scales.

However, many CTRE models frequently involve several unknown quantities with an

equal number of equations. We consider a system of the form

y1(t) = a11Et[y
σ(t)] + ...+ a1nEt[y

σn(t))] + f1(t, zt)

y2(t) = a21Et[y
σ(t)] + ...+ a2nEt[y

σn(t)] + f2(t, zt)

.

.

.

yn(t) = an1Et[y
σ(t)] + ...+ ann(t)Et[y

σn(t)] + fn(t, zt)

This system can be written as an equivalent vector equation,

Yt = AEt[Y
σ
t ] + F (t, Zt) (3.3.5)

where A is invertible n× n matrix and
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Yt =



y1(t)

y2(t)

.

.

.

yn(t)


, A =



a11 ... a1n

a21 ... a2n

.

.

.

an1 ... ann


, F (t, Zt) =



f1(t, zt)

f2(t, zt)

.

.

.

fn(t, zt)


.

Theorem 3.4. The solution of (3.3.5) is given as

Yt = e(I−A)A−1 1
µ
(t, 0)M(t)− e(I−A)A−1 1

µ
(t, 0)

∫
e	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t

(3.3.6)

where t ∈ T and I is the n× n identity matrix.

Proof. We prove using substitution method. Then, Yt solves the equation (3.3.5)

and we have

e(I−A)A−1 1
µ
(t, 0)M(t)− e(I−A)A−1 1

µ
(t, 0)

∫
e	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t (3.3.7)

= AEt[e
σ
(I−A)A−1 1

µ

(t, 0)Mσ(t)−eσ
(I−A)A−1 1

µ

(t, 0)

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(σ(t))
F (σ(t), Zσ

t )σ∆(t)∆t]

+F (t, Zt).

We rearrange the RHS of the equation (3.3.7) then we get,

= AEt[e
σ
(I−A)A−1 1

µ

(t, 0)Mσ(t)]

−AEt[eσ(I−A)A−1 1
µ

(t, 0)

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(σ(t))
F (σ(t), Zσ

t )σ∆(t)∆t]

+e(I−A)A−1 1
µ
(t, 0)Et[e	(I−A)A−1 1

µ
(t, 0)F (t, Zt)].

By Lemma 1.2(ii) we obtain that eσ
(I−A)A−1 1

µ

(t, 0) = A−1e(I−A)A−1 1
µ
(t, 0) and by the

martingale property Et[M
σ(t)] = M(t) we have,

= AA−1e(I−A)A−1 1
µ
(t, 0)M(t)
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−AA−1e(I−A)A−1 1
µ
(t, 0)Et[

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(σ(t))
F (σ(t), Zσ

t )σ∆(t)∆t]

+e(I−A)A−1 1
µ
(t, 0)Et[e	(I−A)A−1 1

µ
(t, 0)F (t, Zt)]

= e(I−A)A−1 1
µ
(t, 0)M(t)

−e(I−A)A−1 1
µ
(t, 0)Et[

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(σ(t))
F (σ(t), Zσ

t )σ∆(t)∆t+e	(I−A)A−1 1
µ
(t, 0)F (t, Zt)].

To show the equality of RHS and LHS of the equation (3.3.7) it remains to show∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(σ(t))
F (σ(t), Zσ

t )σ∆(t)∆t+ e	(I−A)A−1 1
µ
(t, 0)F (t, Zt)

=

∫
e	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t.

By Lemma 1.2(ii) and (v) we have

Pt =

∫
e	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆(t) = A−1

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t

(3.3.8)

= A−1

∫
(e	(I−A)A−1 1

µ
(t, 0))∆(−(I−A)−1)Aµ(t)

1

µ(t)
F (t, Zt)∆t

= −(I − A)−1

∫
(e	(I−A)A−1 1

µ
(t, 0))∆F (t, Zt)∆t.

After applying the integration by parts for the above last delta integral, we obtain

Pt = −(I − A)−1[e	(I−A)A−1 1
µ
(t, 0)F (t, Zt)−

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F∆(t, Zt)∆t]

= −(I−A)−1e	(I−A)A−1 1
µ
(t, 0)F (t, Zt)+(I−A)−1

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F∆(t, Zt)∆t].

By the definition of ∆− derivative, we have F∆(t, Zt) =
F (σ(t), Zσ

t )− F (t, Zt)

µ(t)
and

by the equation (3.3.8)

Pt = A−1

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t, hence we get

A−1

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t = −(I − A)−1e	(I−A)A−1 1

µ
(t, 0)F (t, Zt)

+(I−A)−1

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F (σ(t), Zσ(t))

1

µ(t)
∆t

−(I−A)−1

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F (t, Zt)

1

µ(t)
∆(t).

Multiplying both side by (I − A) we get
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(A−1 − I)

∫
eσ	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t = −e	(I−A)A−1 1

µ
(t, 0)F (t, Zt)

+

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F (σ(t), Zσ(t))

1

µ(t)
∆t

−
∫

(eσ	(I−A)A−1 1
µ
(t, 0))F (t, Zt)

1

µ(t)
∆t.

After rearranging the above equation we have

A−1

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F (t, Zt)

1

µ(t)
∆t = −e	(I−A)A−1 1

µ
(t, 0)F (t, Zt)

+

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F (σ(t), Zσ(t))

1

µ(t)
∆t.

Here note that
1

µ(t)
=

σ∆(t)

µ(σ(t))
. Then, we have

∫
(e	(I−A)A−1 1

µ
(t, 0))F (t, Zt)

1

µ(t)
∆t = −e	(I−A)A−1 1

µ
(t, 0)F (t, Zt)

+

∫
(eσ	(I−A)A−1 1

µ
(t, 0))F (σ(t), Zσ(t))

σ∆(t)

µ(σ(t))
∆t.

This last expression is what we need to see to finish the proof. This indicates the

RHS of the equation (3.3.7) can be given as

e(I−A)A−1 1
µ
(t, 0)M(t)− e(I−A)A−1 1

µ
(t, 0)

∫
e	(I−A)A−1 1

µ
(t, 0)

1

µ(t)
F (t, Zt)∆t

This completes the proof. 2

For T = Z, the equation (3.3.5) will be

Yt = AEt[Yt+1] + F (t, Zt). (3.3.9)

Corollary 3.3. Yt = A−tM(t)−A−t
∑
AtF (t, Zt) is the general solution of equation

(3.3.9).

3.4 Second Order Linear CTRE Model

In this section we consider the second order CTRE with constant coefficients

a2Et(y
σ2

t ) + a1Et(y
σ
t ) + a0yt = 0 (3.4.1)
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with a2, a1, a0 ∈ R on a isolated time scale T.

The characteristic equation of the (3.4.1) is given as

a2λ
2 + a1λ+ a0 = 0

Now without loss of generality we write the equation (3.4.1) as

Et(y
σ2

t )− (λ1 + λ2)Et(y
σ
t ) + (λ1λ2) = 0 (3.4.2)

where λ1 and λ2 are roots of the characteristic equation.

Next, we convert the equation (3.4.2) to the system, using the reduction of order,

that is

y1(t) = yt yσ1 (t) = yσt Et(y
σ
1 (t)) = Et(y

σ
t )

y2(t) = Et(y
σ
t ) yσ2 (t) = Et(y

σ2

t ) Et(y
σ
2 (t)) = Et(y

σ2

t ).

Thus in terms of y1(t) and y2(t), the system of the equation (3.4.2) is given as

Et(y
σ
1 (t)) = y2(t)

Et(y
σ
2 ) = (λ1 + λ2)y2 − λ1λ2y1

Et

 yσ1 (t)

yσ2 (t)

 =

 0 1

−λ1λ2 λ1 + λ2

  y1(t)

y2(t)



where A−1 =

 0 1

−λ1λ2 λ1 + λ2

 . we have already stated that solution of the equa-

tion (3.3.6). Then the solution of the equation (3.4.2) can be given as

Yt = e(A−1−I) 1
µ
(t, 0)M(t) (3.4.3)

where M(t) is an arbitrary martingale.

To write the solution explicitly we need to calculate e(A−1−I) 1
µ
(t, 0). We refer the paper

by Merrell, Ruger and Severs [4]. According to the paper the exponential function

e(A−1−I) 1
µ
(t, 0) can be given as

e(A−1−I) 1
µ
(t, 0) =

∏
s∈[0,t) A

−1 = (A−1)nt

41



where nt(t, 0) :=

∫ t

0

∆(τ)

µ(τ)
is a counting function for any isolated time scale T. Next,

we calculate (A−1)t by using the Putzer algorithm by Theorem (1.4) for T = Z. First,

we find the characteristic roots of A−1.

det

∣∣∣∣∣∣ −λ 1

−λ1λ2 λ1 + λ2 − λ

∣∣∣∣∣∣ = 0

or

λ2 − (λ1 + λ2)λ+ λ1λ2 = 0

(λ− λ1)(λ− λ2) = 0.

Hence, λ1 and λ2 are the characteristic roots.

CASE I. If λ1 6= λ2 and λ1, λ2 ∈ R

P0 = I

P1 = (A−1 − λ1I)I =

 −λ1 1

−λ1λ2 λ2


.

and  r1(t+ 1)

r2(t+ 1)

 =

 λ1 0

1 λ2

 r1(t)

r2(t)

 ,
 r1(0)

r2(0)

 =

 1

0


The initial value problem

r1(t+ 1) = λ1r1(t) , r1(0) = 1

has the solution r1(t) = λt1, and

r2(t+ 1) = λt1 + λ2r2(t), r2(0) = 0
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has the solution r2(t) =
λt1 − λt2
λ1 − λ2

. Then

(A−1)t = P0r1(t) + P1(t)r2(t)

=


−λ2λ

t
1 + λt2λ1

λ1 − λ2

λt1 − λt2
λ1 − λ2

−λ2λ
t+1
1 + λ1λ

t+1
2

λ1 − λ2

λt+1
1 − λt+1

2

λ1 − λ2


Since nt is an positive integer, we can write

(A−1)nt =


−λ2λ

nt
1 +λ

nt
2 λ1

λ1−λ2
λ
nt
1 −λ

nt
2

λ1−λ2

−λ2λ1λ
nt
1 +λ1λ2λ

nt
2

λ1−λ2
λ1λ

nt
1 −λ2λ

nt
2

λ1−λ2


Finally we obtain the solution of the equation (3.4.2) as,

 y1(t)

y2(t)

 =


−λ2λ

nt
1 +λ

nt
2 λ1

λ1−λ2
λ
nt
1 −λ

nt
2

λ1−λ2

−λ2λ1λ
nt
1 +λ1λ2λ

nt
2

λ1−λ2
λ1λ

nt
1 −λ2λ

nt
2

λ1−λ2



M1(t)

M2(t)



where M(t) =

 M1(t)

M2(t)

 is an arbitrary bivariate martingale.

Therefore, we can conclude that,

y(t) = [
−M1(t)λ2 +M2(t)

λ1 − λ2

]λnt1 + [
M1(t)λ1 −M2(t)

λ1 − λ2

]λnt2

is the general solution of the equation (3.4.2).

CASE II. If λ = λ1 = λ2 and λ1, λ2 ∈ R

P0 = I
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P1 = (A−1 − λ1I)I =

 −λ 1

−λ2 λ


and

 r1(t+ 1)

r2(t+ 1)

 =

 λ 0

1 λ

 r1(t)

r2(t)

 ,
 r1(0)

r2(0)

 =

 1

0


The initial value problem

r1(t+ 1) = λr1(t) , r1(0) = 1

has the solution r1(t) = λt, and

r2(t+ 1) = λr2(t) + λt, r2(0) = 0

has the solution r2(t) = tλt−1. Then

(A−1)t = P0r1(t) + P1(t)r2(t)

=


λt − tλt tλt−1

−tλt+1 λt + tλt


Since nt is a positive integer, we can write

(A−1)nt =


λnt − ntλnt

nt
λ
λnt

−ntλλnt λnt + ntλ
nt


Therefore, we can conclude that,

y(t) = λntM1(t) + ntλ
nt [
M2(t)

λ
−M1(t)]
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is the general solution of the equation (3.4.2).

CASE III. If λ1 6= λ2 and λ1, λ2 ∈ C that is λ1 = a+ ib and λ2 = a− ib or using

the polar form

λ1,2 = re±iθ = r(cosθ ± isinθ),

where a2 + b2 = r2 and tanθ = b
a
. Then

λt1,2 = rte±iθt = rt(cosθt± isinθt).

P0 = I

P1 = (A−1 − λ1I)I =

 −reiθ 1

−r2 re−iθ


.

and  r1(t+ 1)

r2(t+ 1)

 =

 reiθ 0

1 re−iθ

 r1(t)

r2(t)

 ,
 r1(0)

r2(0)

 =

 1

0


The initial value problem

r1(t+ 1) = reiθr1(t) , r1(0) = 1

has the solution r1(t) = rteiθt, and

r2(t+ 1) = rteiθt + re−iθr2(t), r2(0) = 0

has the solution r2(t) =
rt−1

1− e2iθ
[eiθ(1−t) − eiθ(t+1)]. Then
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(A−1)t = P0r1(t) + P1(t)r2(t)

=


rteiθt − rteiθ[eiθ(1−t) − eiθ(t+1)]

1− e2iθ

rt−1[eiθ(1−t) − eiθ(t+1)]

1− e2iθ

−rt+1[eiθ(1−t) − eiθ(t+1)]

1− e2iθ
rteiθt +

rteiθt[eiθ(1−t) − eiθ(t+1)]

1− e2iθ


Since nt is a positive integer, we can write

(A−1)nt =


rnteiθnt − rnteiθ[eiθ(1−nt) − eiθ(nt+1)]

1− e2iθ

rnt−1[eiθ(1−nt) − eiθ(nt+1)]

1− e2iθ

−rnt+1[eiθ(1−nt) − eiθ(nt+1)]

1− e2iθ
rnteiθnt +

rnteiθnt [eiθ(1−nt) − eiθ(nt+1)]

1− e2iθ


 y1(t)

y2(t)

 = (A−1)nt


M1(t)

M2(t)


Therefore, we can conclude that,

y(t) = rntcos(θnt)M1(t) + rntsin(θnt)[
rcos(θ)M1(t)−M2(t)

rsin(θ)
]

is the general solution of the equation (3.4.2).

If we sum up three cases, we have

1. If λ1 6= λ2 and λ1, λ2 ∈ R, then the general solution of the equation (3.4.2) is

given as

y(t) = M∗
1 (t)λnt1 +M∗

2 (t)λnt2

where M∗
1 (t) and M∗

2 (t) are arbitrary martingales.
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2. If λ = λ1 = λ2 and λ1, λ2 ∈ R, then the general solution of the equation (3.4.2)

is given as

y(t) = M∗
1 (t)λnt1 +M∗

2 (t)ntλ
nt
2

where M∗
1 (t) and M∗

2 (t) are arbitrary martingales.

3. If λ1 6= λ2 and λ1, λ2 ∈ C that is λ1 = a+ ib and λ2 = a− ib, then the general

solution of the equation (3.4.2) is given as

y(t) = M∗
1 (t)rntcos(θnt) +M∗

2 (t)rntsin(θnt)

where M∗
1 (t) and M∗

2 (t) are arbitrary martingales.

These three cases for T = Z were studied on the paper by L. Broze, C. Gourieroux

and A. Szafarz [9]. They found characteristic roots, λ1 and λ2, as inverse of ours.

The authors obtained the similar results as we had here. Despite they claimed the

results are in general form, they did not prove them.

3.5 An Observation About the Uniqueness of CTRE Model

At a first glance the CTRE model with an initial condition seems to have an

unique solution. This observation forces us to examine the uniqueness of the CTRE

model. Thus we add the initial value to the CTRE model. Then the first order IVP

of CTRE on isolated time scale is given as

Yt = AEt[Y
σ
t ]

Yt0 = 0.

We have already pointed out the solution of

Yt = AEt[Y
σ
t ]

is

47



Yt = e(A−1−I) 1
µ
(t, t0)M(t).

Next we try to prove Yt = 0 is the only solution for the above IVP. We have

Yt0 = e(I−A)A−1 1
µ
(t0, t0)M(t0) = 0 (3.5.1)

M(t0) = 0.

To show M(t) = 0 for all t ∈ T we begin with a lemma,

Lemma 3.4. If A(t) : t ∈ [0, T ] is continuous-parameter martingale satisfying

(i) It is almost surely continuous,

(ii) It is almost surely of bounded variation, and

(iii) A(0) = 0,

then A(t) ≡ 0.

If we consider the constraints on M(t) such that almost surely continuous and almost

surely of bounded variation, then by the lemma we can conclude that Yt0 = 0 is the

only solution for IVP.
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CHAPTER 4

APPLICATIONS

In this section we apply the solution techniques developed in Section 3 to three

examples drawn from the literature. In the first example, we apply our solution

algorithm to a model in Finance. In the second and third examples we apply our

solution method to a model which is known as Stochastic Growth Model in Economics.

4.1 An Example in Finance: Wealth of a Self-Financing Trading Strategy

First, we shall introduce the trading strategy and self-financing trading strategy

in Finance.

A trading strategy is a predictable process (a process Ht is called predictable if

for each t, Ht is Ft−1 measurable) with initial investment, V0(θ) = θ0S0 and wealth

process Vt(θ) = θtSt. Every trading strategy has an associated gains process defined

by

Gt(θ) =
t−1∑
k=0

θt(Sk+1 − Sk)

where Sk is price of the security.

A trading strategy θ is called self financing if the change in wealth is determined

solely by capital gains and losses, i.e. if and only if Vt(θ) = V0(θ) +Gt(θ).

For further reading we refer the book by M. Ammann [5].

In general, trading can be explained as buying and selling securities, commodities,

goods or services. Demand of a stock or commodities may change over a time, some-

times monthly, daily or even hourly. Due to trading is not periodic or a continuous

action in a certain time, we formulate the self-financing trading strategy formula on

isolated time domains.
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In the absence of arbitrage, every one-period model has a risk-neutral probability

such that

Rf = EQ[Ri], for all i

whereRi is the return of asset i and the letterQ in EQ denotes risk-neutral probability.

Consider one generic asset with return Rt and price St. Therefore the risky return

between t and σ(t) is simply

Rσ
t =

Sσt
St

.

Within the multi-period set-up the one-period pricing equation can be written by

using the conditional expectation,

Rft = EQ
t [
Sσt
St

]. (4.1.1)

Example 1. Consider a self-financing strategy with cash value Vt and risky invest-

ment θt,

V σ
t = RftVt + θtSt(

Sσt
St
−Rft).

And if we apply EQ
t [.] both sides of the above equation we obtain

EQ
t [V σ

t ] = EQ
t [RftVt] + EQ

t [θtSt(
Sσt
St
−Rft)].

By the invariance property of the conditional expectation we acquire

EQ
t [V σ

t ] = RftVt + θtSt{EQ
t [
Sσt
St

]−Rft}.

By the equation (4.1.1) we have EQ
t [
Sσt
St

]−Rft = 0, thus we get

EQ
t [V σ

t ] = RftVt, (4.1.2)
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and after dividing both sides of (4.1.2) by Rft we obtain

Vt =
1

Rft

EQ
t [V σ

t ]. (4.1.3)

Equation (4.1.3) is the first order homogenous CTRE and its solution by Theorem

(3.1) is obtained as

Vt = eRft−1

µ

(t, 0)M(t). (4.1.4)

As a special case if we consider T = Z, the equation (4.1.4) is given as

Vt =
1

Rft

M(t).

By virtue of the equation (4.1.4), we can conclude that the wealth of any self-financing

strategy is a martingale under Q.

Next, we continue giving examples for the case T = Z. The social planner’s

problem is one of the common ones among the optimization problems in economics.

The CTRE model arise from the second constraints of the social planner’s problem.

In the next example, we solve the second order CTRE on the social planner’s problem.

4.2 The Stochastic Growth Models

Example 2. The social planner’s problem is given by

sup
k(t+1)

E

∞∑
t=0

βtU(k(t), c(t))

s.t. k(t+ 1) ∈ Γ(t, k(t), c(t), A(t)).

where E is the expectation, ∈ means inclusion.

First using Bellman optimality principle, the value function was obtained. Second,

from the first order conditions they got the Euler-Lagrange equation and then log-

linearized the Euler-Lagrange equation around the steady state. Linearization of the

Euler equation is equivalent to maximizing a quadratic (second order) expansion of
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the objective function. It was given as

a1Et[kt+2] + a2Et[kt+1] + a3Et[kt] + a4At+1 + a5At = 0. (4.2.1)

This is the second order nonhomogenous CTRE model. We rewrite the equation

(4.2.1) as

a1Et[kt+2] + a2Et[kt+1] + a3Et[kt] + zt = 0 (4.2.2)

where zt = a4At+1 + a5At.

Next, we convert the equation (4.2.2) to the system, using the reduction of order,

that is

k1
t = kt, k1

t+1 = kt+1, Et(k
1
t+1) = Et(yt+1),

k2
t = Et(kt+1), k2

t+1 = Et+1(kt+2), Et(k
2
t+1) = Et(yt+2),

Et

 k1
t+1

k2
t+1

 =

 0 1

−a3
a1
−a2
a1

  k1
t

k2
t

 and Zt =

 z1
t

z2
t

.

By Corollary 3.3, solution of the equation (4.2.2) can be given as

Kt = A−tM(t)− A−t
∑

AtZt. (4.2.3)

Next, using the Putzer algorithm [by Theorem (1.4)] we calculate A−t, where

A−1 =

 0 1

−a3
a1
−a2
a1

.

The matrix A−1 has the eigenvalues λ1 = 1
1.005

and λ2 = − 1
0.503

. These values were

given in the notes by N. C. Mark [11].

By the Case I which was derived in Chapter 3, λ1 6= λ2 and λ1, λ2 ∈ R. We can

conclude that
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A−t =


−λ2λ

t
1 + λt2λ1

λ1 − λ2

λt1 − λt2
λ1 − λ2

−λ2λ
t+1
1 + λ1λ

t+1
2

λ1 − λ2

λt+1
1 − λt+1

2

λ1 − λ2



=


−(1.98)(1.005)−t − (0.99)(−0.503)−t

2.98

−(1.005)−t + (−0.503)−t

2.98

−(1.97)(1.005)−t + (1.97)(−0.503)−t

2.98

−(0.99)(1.005)−t − (1.98)(−0.503)−t

2.98

 .

Thus first part of the solution (4.2.3) is given as

A−tM(t)

=


−(1.98)(1.005)−t − (0.99)(−0.503)−t

2.98

−(1.005)−t + (−0.503)−t

2.98

−(1.97)(1.005)−t + (1.97)(−0.503)−t

2.98

−(0.99)(1.005)−t − (1.98)(−0.503)−t

2.98

×

M1(t)

M2(t)



=


−(1.98)(1.005)−t − (0.99)(−0.503)−t

2.98
M1(t) +

−(1.005)−t + (−0.503)−t

2.98
M2(t)

−(1.97)(1.005)−t + (1.97)(−0.503)−t

2.98
M1(t) +

−(0.99)(1.005)−t − (1.98)(−0.503)−t

2.98
M2(t)

 .

In addition to the above part, we calculate second part of the solution (4.2.3), that is

−A−t
∑

AtZt
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=


−(1.98)(1.005)−t − (−0.503)−t(0.99)

2.98

−(1.005)−t + (−0.503)−t

2.98

−(1.97)(1.005)−t + (1.97)(−0.503)−t

2.98

−(0.99)(1.005)−t − (1.98)(−0.503)−t

2.98

×


∑ (1.98)(1.005)t + (−0.503)t(0.99)

2.98
z1
t +

∑ (1.005)t − (−0.503)t

2.98
z2
t

∑ (1.97)(1.005)t − (1.97)(−0.503)t

2.98
z1
t +

∑ (0.99)(1.005)t + (1.98)(−0.503)t

2.98
z2
t



=


−(1.98)(1.005)−t − (−0.503)−t(0.99)

2.98
f(t) +

−(1.005)−t + (−0.503)−t

2.98
g(t)

−(1.97)(1.005)−t + (1.97)(−0.503)−t

2.98
f(t) +

−(0.99)(1.005)−t − (1.98)(−0.503)−t

2.98
g(t)


where

f(t) =
∑ (1.98)(1.005)t + (−0.503)t(0.99)

2.98
z1
t +

∑ (1.005)t − (−0.503)t

2.98
z2
t

and

g(t) =
∑ (1.97)(1.005)t − (1.97)(−0.503)t

2.98
z1
t +
∑ (0.99)(1.005)t + (1.98)(−0.503)t

2.98
z2
t

Thus, we obtained the explicit solutions as

k1
t =
−(1.98)(1.005)−t − (0.99)(−0.503)−t

2.98
M1(t) +

−(1.005)−t + (−0.503)−t

2.98
M2(t)

+
−(1.98)(1.005)−t − (−0.503)−t(0.99)

2.98
f(t) +

−(1.005)−t + (−0.503)−t

2.98
g(t)

and

k2
t =
−(1.97)(1.005)−t + (1.97)(−0.503)−t

2.98
M1(t)+

−(0.99)(1.005)−t − (1.98)(−0.503)−t

2.98
M2(t)

+
−(1.97)(1.005)−t + (1.97)(−0.503)−t

2.98
f(t)+

−(0.99)(1.005)−t − (1.98)(−0.503)−t

2.98
g(t).

where M1(t) and M2(t) are arbitrary martingales.
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Next we consider another stochastic growth model was studied in E. Sims’ [12]

lecture notes.

Example 3. The non-linear system of difference equation was given as

c−σt = βEtc
−σ
t+1(αat+1k

α−1
t+1 + (1− δ))

kt+1 = atk
α
t − ct + (1− δ)kt

ln at = ρ ln at−1 + et.

After log-linearization around the steady state, the below system was given

Et


ct+1

kt+1

at+1

 =


1.035 −0.102 0.092

−0.362 1.052 0.462

0 0 0.95



ct

kt

at

 .

By Corollary 3.3, the solution of the above system can be given as

Yt = A−tM(t) (4.2.4)

where Yt =


ct

kt

at

 and M(t) =


M1(t)

M2(t)

M3(t)

 is a vector valued martingale.

Next we calculate the A−t using the Putzer algorithm by Theorem 1.4, where

A−1 =


1.035 −0.102 0.092

−0.362 1.052 0.462

0 0 0.95

.

The matrix A−1 has the eigenvalues λ1 = 0.95, λ2 = 0.85 and λ3 = 1.23. By Theorem

1.4, we obtain

P0 = I
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P1 =


0.085 −0.102 0.092

−0.362 0.102 0.462

0 0 0



P2 =


0.052 −0.029 −0.03

−0.103 0.057 0.06

0 0 0


and 

r1(t+ 1)

r2(t+ 1)

r3(t+ 1)

 =


0.95 0 0

1 0.85 0

0 1 1.23



r1(t)

r2(t)

r3(t)

 ,

r1(0)

r2(0)

r3(0)

 =


1

0

0

.

The initial value problem

r1(t+ 1) = (0.95)r1(t), r1(0) = 1

has the solution r1(t) = (0.95)t, and

r2(t+ 1) = (0.95)t + (0.85)r2(t), r2(0) = 0

has the solution r2(t) = 10(0.95)t − 10(0.85)t, and

r3(t+ 1) = 10(0.95)t − (0.85)t + (1.23)r3(t), r3(0) = 0

has the solution r3(t) =
100

28
((1.23)t − (0.95)t) +

100

38
((1.23)t − (0.85)t).

Thus we obtain A−t as

A−t =


a11 a12 a13

a21 a22 a23

a31 a32 a33


where
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a11 = (−0.00714)(0.95)t − (2.70714)(0.85)t + (3.71429)(1.23)t

a12 = (0.01571)(0.95)t + (2.05571)(0.85)t − (2.07143)(1.23)t

a13 = (1.99143)(0.95)t + (0.15143)(0.85)t − (2.14286)(1.23)t

a21 = (0.05857)(0.95)t + (7.29857)(0.85)t − (7.35714)(1.23)t

a22 = (−0.01571)(0.95)t + (3.05571)(0.85)t − (4.07143)(1.23)t

a23 = (2.47714)(0.95)t − (6.76286)(0.85)t + (4.28571)(1.23)t

a31 = 0, a32 = 0, a33 = (0.95)t

Therefore, the solution of the equation (4.2.4) is obtained as,

ct = a11M1(t) + a12M2(t) + a13M3(t)

kt = a21M1(t) + a22M2(t) + a23M3(t)

at = a31M1(t) + a32M2(t) + a33M3(t).

As a conclusion, we calculated variables ct, kt and at explicitly. However, in the note

[12] the following statement was given as a solution

ct = 0.5557kt + 0.5728at.

In addition, our solutions ct, kt and at satisfy the above relation.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Rational expectations has been studied since 1960 by the many economists. The

purpose of the rational expectations is to give the optimal forecast of the future

with all information available. The idea of rational expectations has been important

for both understanding macroeconomics, financial markets and having essential and

remarkable implications to other areas. Despite the rational expectations has impact

to develop the macroeconomics, there are still many open questions in this newly

developing theory. In this thesis, we developed a new aspect to rational expectations

using the time scale calculus. We formulated Cagan type rational expectations model

on isolated time scales. Using the martingale approach we proved the theory about

the general solution of CTRE model. There are two main findings in our study: 1.

Our model unified and generalized the existing model. 2. The solution method we

developed works for any given parameters. We also developed the linear system and

higher order CTRE model on isolated time scales. We used the Putzer Algorithm to

solve the system of CTRE model. Then, we examined the existence and uniqueness of

the solution of CTRE model. We applied our solution algorithm to a finance problem

and stochastic growth model problems.

For future work, we would like to apply the ideas that we presented for CTRE

model to other rational expectations models. For instance,

yt = a0E[yt+1|It] + a1yt−1 + a2E[yt|It−1] + a3pt + et

or

Dt = −βpt (demand)

St = γE[pt|It−1] + εt (supply)

It = α(E[pt+1|It]− pt) (inventory demand)

St = Dt + (It − It−1). (market clear)
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Moreover, up to this time martingales are defined on discrete-time and continuous-

time, we would like to generalize and unify the martingales on time scales.
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[2] T. Mikosch, Elementary Stochastic Calculus with Finance in View, World Sci-
entific Publishing, Singopore, 1998.

[3] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, Impe-
rial College Press, 2005.

[4] E. Merrell, R. Ruger, J. Severs, First-Order Recurrence Relations on
Isolated Time Scales, PanAmerican Mathematical Journal, 14 No.1 (2004) 83-
104.

[5] M. Ammann, Credit Risk Valuation: Methods, Models and Applications,
Springer- Verlag, 2001.

[6] W. G. Kelley, A. C. Peterson, Difference Equations: An Introduction with
Applications, Academic Press, 2001.

[7] M. Bohner, A. C. Peterson, Advances in Dynamic Equations on Time
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