Western Kentucky University

TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-21-2012

Development of Nabla Fractional Calculus and a
New Approach to Data Fitting in Time Dependent
Cancer Therapeutic Study

Nihan Acar

Western Kentucky University, tangoniac@windowslive.com

Follow this and additional works at: http://digitalcommons.wku.edu/theses
b Part of the Mathematics Commons

Recommended Citation

Acar, Nihan, "Development of Nabla Fractional Calculus and a New Approach to Data Fitting in Time Dependent Cancer Therapeutic
Study" (2012). Masters Theses & Specialist Projects. Paper 1146.
http://digitalcommons.wku.edu/theses/1146

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by

an authorized administrator of TopSCHOLAR?®. For more information, please contact topscholar@wku.edu.


http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.wku.edu%2Ftheses%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages




DEVELOPMENT OF NABLA FRACTIONAL CALCULUS AND A NEW
APPROACH TO DATA FITTING IN TIME DEPENDENT CANCER
THERAPEUTIC STUDY

A Thesis
Presented to
The Faculty of the Department of Mathematics and Computer Science
Western Kentucky University
Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science

By
Nihan Acar

May 2012



DEVELOPMENT OF NABLA FRACTIONAL CALCULUS AND A NEW
APPROACH TO DATA FITTING IN TIME DEPENDENT CANCER
THERAPEUTIC STUDY

Date Becommended 0 q‘ ,I 23 / 2012

|aa Al

Dr. Ferhan Atici, Director of Thesis

quc Nq,ww/v

Dr. Ng.ncy Rlc

W W (9- Ma.qfﬂd/z.

Degn Graduate Studies and Research Date




ACKNOWLEDGMENTS

I am heartily thankful to my advisor and mentor, Dr. Ferhan Atici, whose guidance
and support from the initial to the final level enabled me to complete this thesis. I
attribute the level of my Masters degree to her encouragement and effort. Without her,
this work would not have been done. One simply could not wish for a better or friendlier
advisor. Also, I would like to express my gratitude and appreciation to my committee
members: Dr. Ngoc Nguyen and Dr. Nancy Rice. It is a pleasure to thank my dearest
friends Sinem Ayse Karatas and Sefa Anil Sezer for their unconditional support and love.
With good friends, you can handle everything. Finally, my special thanks go to, my dad,
my mom and my beautiful sister, who unremittingly supported me during this

challenging process.

il



CONTENTS

ABSTRACT

Chapter 1. INTRODUCTION AND PRELIMINARIES

1.1.

1.2.

1.3.

1.4.

1.5.

Historical Background of Discrete Fractional Calculus
Special Functions of Fractional Calculus

Falling and Rising Factorials

The Fractional Sum and Difference Operators

Nabla Fractional Exponential and Trigonometric Functions

Chapter 2. NABLA COMPLETELY MONOTONIC FUNCTIONS

2.1.

2.2.

2.3.

Definition of Nabla Operator and Some Properties
Introduction to Completely Monotonic Functions

Theorems on Nabla Completely Monotonic Functions

Chapter 3. N-TRANSFORM TABLE

3.1.

3.2.

3.3.

3.4.

3.5.

A Brief Introduction to Laplace Transform

Definition of N-Transform and Some Properties

N-Transform of Discrete Fractional Exponential Function

N-Transform of Discrete Fractional Trigonometric Functions

Solutions of up to First Order Nonhomogeneous Nabla Fractional Difference

Equations

Chapter 4. SEQUENTIAL FRACTIONAL DIFFERENCE EQUATIONS

4.1.

4.2.

Casoration and Linear Independence

Up to Second Order Linear Homogeneous Nabla Fractional Equations

v

vi

13

13

14

15

21

21

21

22

23

27

30

30

35



Chapter 5.  PARAMETER ESTIMATIONS OF SIGMOIDAL MODELS

5.1. Parameter Estimation with Fractional Gompertz and Logistic Curves

5.2. A Technique for Estimating the Performance of a Predictive Model:

Cross-Validation

5.3. Graphical Results and Comparisons

Chapter 6. CONCLUSION AND FUTURE WORK

BIBLIOGRAPHY

46

46

48

51

99

61



DEVELOPMENT OF NABLA FRACTIONAL CALCULUS AND A NEW
APPROACH TO DATA FITTING IN TIME DEPENDENT CANCER
THERAPEUTIC STUDY

Nihan Acar May 2012 62 Pages
Directed by: Dr. Ferhan Atici, Dr. Ngoc Nguyen, Dr. Nancy Rice

Department of Mathematics and Computer Science  Western Kentucky University

The aim of this thesis is to develop discrete fractional models of tumor growth for a
given data and to estimate parameters of these models in order to have better data
fitting. We use discrete nabla fractional calculus because we believe the discrete

counterpart of this mathematical theory will give us a better and more accurate outcome.

This thesis consists of five chapters. In the first chapter, we give the history of the
fractional calculus, and we present some basic definitions and properties that are used in
this theory. We define nabla fractional exponential and then nabla fractional
trigonometric functions. In the second chapter, we concentrate on completely monotonic
functions on R, and we introduce completely monotonic functions on discrete domain.
The third chapter presents discrete Laplace N-transform table which is a great tool to
find solutions of a-th order nabla fractional difference equations. Furthermore, we find
the solution of nonhomogeneous up to first order nabla fractional difference equation
using N-transform. In the fourth chapter, first we give the definition of Casoration for the
set of solutions up to n-th order nabla fractional equation. Then, we state and prove
some basic theorems about linear independence of the set of solutions. We focus on the
solutions of up to second order nabla fractional difference equation. We examine these
solutions case by case namely, for the real and distinct characteristic roots, real and same,

and complex ones. The fifth chapter emphasizes the aim of this thesis. First, we give a

vi



brief introduction to parameter estimation with Gomperts and Logistic curves. In
addition, we recall a statistical method called cross-validation for prediction. We state
continuous, discrete, continuous fractional and discrete fractional forms of Gompertz and
Logistic curves. We use the tumor growth data for twenty-eight mice for the comparison.
These control mice were inoculated with tumors but did not receive any succeeding
treatment. We claim that the discrete fractional type of sigmoidal curves have the best

data fitting results when they are compared to the other types of models.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

In the last few decades, fractional calculus has become a research area where we see
its applications in bioscience, engineering and applied mathematics
(30, 31, 32, 33, 34, 35]. Fractional calculus is a branch of mathematical analysis that
allows integrals and derivatives to have any positive real order. Discrete fractional
calculus is the discrete version of fractional calculus which concerns any positive real
order of sum and difference. For instance, one can calculate the 1/3 —th order difference

or /5 — th sum of a function.

In Section 1.1, we present the historical background of fractional calculus. Then, in
Section 1.2, we consider some important special functions such as Gamma function and
Mittag-Leffler function. In addition, we introduce nabla fractional exponential and

trigonometric functions.

1.1. Historical Background of Discrete Fractional Calculus

The idea of Fractional Calculus goes back to years when Marquis de L’Hospital
(1661 — 1704) and Gottfried Wilhelm Leibniz (1646 — 1716) exchanged ideas through
letters about the notations and basics of calculus. In L’Hospital’s note, he was wondering
of Leibniz’s notation d"y/dxz™ for the derivative of integer order n >0 when n =1/2. In
Leibniz’s reply, dated 30 September 1695, he wrote to L’Hospital as follows: “This is an
apparent paradox from which, one day, useful consequences will be drawn.” Thus,
fractional calculus was born. In the following years, some famous mathematicians, such as

Euler, Lagrange, Lacroix, Fourier, Liouville and Riemann, developed the theory of
1



fractional calculus. In fact, in his 700- page textbook, S. F. Lacroix devoted two pages to

fractional calculus, showing eventually that

dVr  2\x
dz\2 /7

This important result is the same as Riemann-Liouville definition of fractional derivative.
Furthermore, differences of fractional order were initially defined by Kuttner in 1957 [36].
The first work, devoted exclusively to the subject of fractional calculus, is the book
published by Oldham and Spanier in 1974 [29]. Currently, the mathematicians,

(3, 6, 23, 24, 25] have made many developments in the theory of fractional and discrete

fractional calculus.

1.2. Special Functions of Fractional Calculus

In this section, we concentrate on some fundamental special functions which are
quite important in the study of the theory of fractional calculus. First, we recall Gamma

function and some basic properties of this function.

1.2.1. Gamma Function. Euler’s Gamma function I'(x), which generalizes the
factorial n! and allows n to take also non-integer and even complex values, is one of the
basic functions of the discrete fractional calculus. The Gamma function is defined by the

integral

[(z) = f e~ Ldt, xr e R*.
0
The Gamma function satisfies the following functional difference equation

[(z+1)=2l(x).

This can be proved by using integration by parts, so we have

D(z+1)= /e‘ttxdt
0
2



b
= limf ettt dt

b—oo 0

b—oo b—o0

b
= lim [e‘tx]g + lim [xf e‘ttm‘ldt]
0

=z [ ettt

=zl'(z).
In addition, for any natural number n, we have the following property
['(n)=(n-1).
Figure 1.2.1, shows the graph of I'(z), for the real values of x.

Gamma function

e e emecccscssssssssgfeeeassssssssssssssssssssss

FIGURE 1.2.1. Gamma Function

For further reading about Gamma function, we refer to a book by Igor Podlubny [26].

1.2.2. Mittag-Leffler Function. The Mittag-Leffler function, which plays a
significant role in the solutions of non-integer order differential equations, was first

introduced by Gosta Mittag-Leffler in [27]. The Mittag-Leffler functions with one and
3



two-parameters are defined by the series expansion as the following form

E,
() = Z F(ak; +1)’
oo :L,k;
E.p(x)=) ———,
where «, f are positive real numbers. The two parameter function of Mittag-Leffler type

was initially defined by Ravi P. Agarwal in 1953 [28].

Note that, for a =1 and 3 =1, we obtain exponential function given as the following

form

k.
}: Zﬁ.: e,

k=0

E
() = Z r(m 1)
Therefore, it can be concluded that the Mittag-Leffler function is the generalization of the

exponential function e*.

In the literature, the discrete Mittag-Leffler functions with one and two parameters

were defined as

aktk

Falat) = Zr( FeD)

aktk

t
Fas(at) = Z F(ak+ﬁ)
where «, § are positive real numbers and |a| < 1. In addition, for any real number v, the

discrete Mittag-LefHler is defined in [3] in the following way

aktku

Fop(at”) = Z « T'(ak + ﬁ)

1.3. Falling and Rising Factorials

The falling and rising factorial powers are the basic notions used in the theory of
fractional calculus. Whereas, falling factorial is defined in delta (forward) fractional

calculus, rising factorial is used in nabla (backward) fractional calculus. In our study, we
4



are interested in using nabla fractional calculus, therefore we frequently see the notation

of rising factorial power.

1.3.1. Falling Factorial. The falling factorial power ¢~ (read ‘to the r falling’) is

defined as

L(t+1)

B VY N.
Tit+1-r) '€

1= t(t-1)(t-2)(t-r+1) = ﬁ(t— k) =

The properties of the falling factorial (factorial polynomial) can be found in [16].

1.3.2. Rising Factorial. The rising factorial power ¢ (read ‘to the r rising’) is

defined in [4] as
-~ n—1
=t +1)(E+2)(t+r-1)=][(t+k), reN.
k=0
and t0 = 1. This function is also known as the Pochhammer symbol in the theory of

special functions.

Let a be any number. Then, ¢t is defined as

z T(t+a)
t —W7

where ¢t € R\ {---,-2,-1,0}, and 0% = 0.

Next, we recall some basic properties of the rising factorial power function. For

further reading, we refer to the readers [3].

LEMMA 1.3.1. (i)V{® = ato L,

(i))to(t + )P = to+B,

(iid) Vg (t + 1)P = F(Fgf;i)l) (t +1)o*B. (Power Rule)
)



After seeing all the graphs and approximations, one can conclude that the closer to
the continuous case is, the better job it does. In Figures (1.3.1), (1.3.2), (1.3.3), (1.3.4) we

consider ¢ttt for different values of o (=1, =.98, ¢ = .96, = .94).
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a =0.96
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FIGURE 1.3.4. t* t* t¢ for a=0.94

1.4. The Fractional Sum and Difference Operators

In this section, we recall definition of the fractional sum of a function f an arbitrary
order a > 0, denoted by Vv, f, starting from a. In addition, V¢ f will denote the fractional

difference of a function f. First, we consider the a—fractional sum of a function f.
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DEFINITION 1.4.1. Let a be any real number and o be any positive real number. The

a —th order fractional sum of f is defined [6] as

va o) = 3 R ), (1)

where t=a+1,a+2,... and p(t) =t -1 is backward jump operator on the time scale

calculus [15].

REMARK 1.4.2. Note that for a =1, the equation (1.1) turns into discrete sum

operator as given in this form

t
Vol ()= f(s).
Next, we proceed to the fractional difference of a function f(t).

DEFINITION 1.4.3. Let a be any real number and o be any positive real number such
that 0 <n—1< a<n where n is an integer. The oo —th order fractional difference (a

Riemann-Liouville fractional difference) of f is defined [6] by

Vir) = v ) - v 3 A ),

where [ is defined on N, = {a,a+1,a+2,...}.

THEOREM 1.4.4. (Commutative Property of the Fractional Sum and Difference) For

any a >0, the following equality holds:

)_(t—a+1)ﬁ

VAV () = VIO - s

f(a)7

where f 1s defined on N,.

This property allows us to interchange the order of sum and difference operators and
as you can see above, the result is slightly different as a constant. We refer to the readers

[37] for the proof of this basic property.



THEOREM 1.4.5. (Leibniz Rule) For any o > 0, a—th order fractional difference of

the product fg is given in this form

Yer@a0 = 35 (N[ ¥ e w] L era)

where a be any real number and f, g are defined on N, = {a,a+1,a+2,...}. For the proof

of Leibniz Rule, we refer to the readers [5].

1.5. Nabla Fractional Exponential and Trigonometric Functions

DEFINITION 1.5.1. For any o >0 , nabla exponential function is defined as the

following form

>, an(t+1)mha-t

Caala, %) = n; T((n+1)a)

)

where |a| <1 and t > 0.

L PR -- @=l
"
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Ficure 1.5.1. Nabla Exp. Growth Function
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FiGure 1.5.2. Nabla Exp. Decay Function
We know that trigonometric functions can be represented by the exponential
function. In discrete fractional calculus, we employ the same idea to obtain nabla

fractional trigonometric functions.

DEFINITION 1.5.2. (Nabla Fractional Sine Function) For any o > 0, nabla fractional

sine function is given as

) [Cova(ai, %) = 0 0(-ai, 1%)]
sing o (a,t) = 5 ;
2

where |a| <1 and t is defined on Ny ={1,2,3,...}.

DEFINITION 1.5.3. (Nabla Fractional Cosine Function) For any o >0, nabla

fractional cosine function is given as

) [éa,a(az', 17) + €0.0(—ai, ta)]
COSa,a(a,t) = ’

2

where |a| <1 and t is defined on Ny ={1,2,3,...}.
10
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FIGURE 1.5.4. Fractional Cosine Function

Since we use the Putzer algorithm in Chapter 4, we recall this theorem and for

further reading, we refer to the readers [3].
11



THEOREM 1.5.4. (Putzer Algorithm) Let A be a 2 x 2 matriz. If A1, Ay are the
eigenvalues of A, then
(A, t) = Mopi(t) + Mipa(t)
where p1(t) and pa(t) are chosen to satisfy the following system:
Bl ) b
Vopy(t) L Xaf|p2(t) " |p2(0)] |0

and My, My are defined by

12



CHAPTER 2

NABLA COMPLETELY MONOTONIC FUNCTIONS

Completely monotonic functions play an important role in a variety of branches of
mathematics such as potential theory [7], probability theory [8, 9], physics [10],
numerical and asymptotic analysis [11]. The theory on completely monotonic functions
whose all order derivative exist was first given by Felix Hausdorff in 1921 [1]. Such a
concept helps us to understand the qualitative behavior of a function in the given domain.
In our study, we are interested in complete monotonicity of functions on a discrete

domain in order to analyze the discrete Mittag-Lefler function.

In this chapter, we first consider nabla operator, also known as backwards difference
operator. Then we give some properties about nabla operator, and we recall some
theorems such as fundamental theorem of nabla calculus. We give the definition of
completely monotonic functions on R and then we introduce completely monotonic
functions on Z with nabla operator. In this study, we entitle such functions as “nabla
completely monotonic functions”. Then we state and prove some theorems about nabla

completely monotonic functions.

2.1. Definition of Nabla Operator and Some Properties

In this section, we summarize basic definitions and notations from the nabla

difference calculus.

DEFINITION 2.1.1. The backward difference operator, or nabla operator (V) , for a

function f:N, — R is defined by
13



(V) (@) =f(t) = f(p(t)) = f(t) - f(t-1),
where N, ={a, a+1, a+2,...} and p(t) =t -1, known as backward jump operator on

time scale calculus [15].

DEFINITION 2.1.2. The definite nabla sum of f: N, — R s given by

d
d :Z;rlf(t)’ ZfC<d
ff(t)Vt= 0, if c=d where ¢, deN,.
C S ¥ ), ifd<c
t=c+1

Next, we state the fundamental theorem of nabla calculus.
THEOREM 2.1.3. Let f:N, — R and F' be an anti-nabla difference of f on N, ,
that is VE(t) = f(t) for t € Nyy1, then for any ¢, d € N,, we have
d
f F(O)VE = F(d) - F().

DEFINITION 2.1.4. The nabla product of two functions u,v:N, — R and t € N ,1, is

given by

V (u(t)v(t)) = u(t)Vo(t) + v(p(t))vVu(t).

LEMMA 2.1.5. If Vf(t) <0, then f(t) is decreasing for all t € Ng,;1.

2.2. Introduction to Completely Monotonic Functions

In this section, we give a brief introduction to completely monotonic functions on R
and then we proceed to complete monotonicity of a real valued function on a discrete

domain.
14



DEFINITION 2.2.1. A function f:(0,00) — R is said to be completely monotonic, if

f has derivatives of all orders and if it satisfies the following condition
(-1)"f™(x)>0 andn=0,1,2,3,...

for all z > 0.

Many examples and theorems about completely monotonic functions can be found in

a paper by Miller and Samko. [2].

Now, we define completely monotonic functions on a discrete domain.

DEFINITION 2.2.2. A function f:N, — R is said to be nabla completely monotonic,

for any function f on N, (with nabla derivatives of all orders) and if it satisfies for each
n=0,1,2,...

(-1)"V" f(z) >0

where xe{n+1,n+2 -}, and a is a real number.

REMARK 2.2.3. If a real valued function f on a discrete domain is nabla completely

monotonic, then it can be easily seen for m=0,1,2,--- and for x e {m+1,m+2,---}
v f(x) and -V f(x)

are also nabla completely monotonic.

2.3. Theorems on Nabla Completely Monotonic Functions

In this section, we will state and prove some basic theorems for nabla completely
monotonic functions to have some ideas about how the concept is related to the stability

of fractional difference equations.
15



THEOREM 2.3.1. If f(x) and g(x) are nabla completely monotonic real valued

functions, then

i) af(x) +bg(x) is also nabla completely monotonic where a and b are nonnegative

constants.

ii) f(x)g(x) is nabla completely monotonic.

Proor. i) If f(x) and g(x) are nabla completely monotonic functions, then by

Definition 2.2.2 we have
(-1)"v"f(xz) >0 and (-1)"V"g(x) >0

forn=0,1,2,3,--and x e {n+1,n+2,--}.

Since a and b are nonnegative constants, the following holds,
a(-1)"V"f(x) >0 and b(-1)"V"g(z) >0
Therefore we have,
a(-1)"V"f(x) +b(-1)"V"g(z) >0

forn=0,1,2,3,--and r e {n+1,n+2-}.

Thus, af(x) + bg(x) is nabla completely monotonic.

ii) To prove this part, we use Leibniz formula for fractional discrete calculus.

Leibniz rule [5] states, If m is a nonnegative integer,

v @() = 3 () (97 - m) [ 779(a).
We need to show that

(-1)"v™f(x)g(x) 20
16



form=0,1,2,3,--and x e {m+1,m+2,---}.

By using Leibniz rule we have

m

(D" f@)g(a) = ()" . () [T =] V().

n=0

We expand our series and thus we get
Com{ () Lo @g@)+ () [ v - D] vgta) + -
()0 -m] 770 )

Let z € {m+1,m+2,---}, so the nonnegativity holds and we obtain the following

—_———

(o)L v s@ow () L0196 - D)) vee) -

>0 <0 <0

+(m) flz-m)[(-1)" V"g(x)].

m

>0
Also, note that
f(x)>0and g(z) >0 for all zeN, where N, ={a, a+1,---}.
Thus, we get
(-1)"Vv"f(x)g(x) 20 for ze {m+1,m+2,-}.

This implies that f(x)g(z) is nabla completely monotonic. O

THEOREM 2.3.2. Let y = f(x) be a nabla completely monotonic function and let the

power series

e(y)=> ay®
k=0

17



converge for all y in the range of the function y=f(x). If ap >0 for allk=0,1,2,...,

then o[ f (x)] is nabla completely monotonic.

PROOF. We need to show that (-1)"V"( po f)(z)>0forallze{n+1, n+2,...}.

By Definition 2.2.2 we have

o0

(1" " (po f) (@) = ()" V" Y x| £ (@)].

k=0
Since the power series is convergent, we can take the n'* order nabla difference operator

inside the sum notation. So, we obtain
> ai(-1) [ £ (@)
k=0
It is sufficient to prove that f* is nabla completely monotonic. We will prove this by
Mathematical induction.
For k=1, f1is nabla completely monotonic.
For k=2, f2=f(f+1)=f2+f isnabla completely monotonic using Theorem 2.3.1.

Let’s assume that for k£ =n is true. By Induction assumption, f™ is nabla completely

monotonic.

For k =n + 1, we will use the Lemma 1.3.1 and by the Induction assumption we have

= f7(f +n)" is nabla completely monotonic.

So, f* (z) is nabla completely monotonic.

Thus, we obtain
(17" 5 (@)] 20 andgak(—l)"vn [/ (@)] >0

This implies that ¢ [f (x)] is nabla completely monotonic.
18



Next, we prove nabla complete monotonicity of generalized Mittag-LefHler functions.
In our study, we are interested in discrete Mittag-Leffler function using complete
monotonicity so that one can examine the stability of nonlinear fractional difference
equation, in addition, such a study will help us to decide the range of o in our sigmoidal

models for tumor growth data in Chapter 5.

THEOREM 2.3.3. The generalized discrete Mittag-Leffler function F, g (/\ l) 18

x

nabla completely monotonic for all >0, f>0 and X > 0.

PRrROOF. Recall that the generalized discrete Mittag-Lefler function is given in the

following form

1y & A 1\
FoglN\—|=) —— -] -
’6( x) ,;)F(ozk+ﬁ) (z)
We use the same idea that we had in the previous theorem. Therefore, it is sufficient to

show that % is nabla completely monotonic.

For m =1, the following holds,

s (B~ s

For m = 2, the nonnegativity also holds,

5 (3)-v () - emem

For m =n, we have

(—1)my" (é) _ (-1)*" ! 5

ers)
Thus, % is nabla completely monotonic and since we have the following

B -OEG (o)
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So, (%)k is also nabla completely monotonic using Theorem 2.3.1.
Also, we know that Gamma function is nonnegative on the interval (0, 00). Finally, we
obtain
oo )\]g 1 k
2 [y ()]0
k;] [(ak+p) [( x ]
This implies that, the generalized discrete Mittag-Leffler function Fj, g (%) is nabla

completely monotonic. O

From the literature, we see that the papers give a connection between the concept of
complete monotonicity of a function and the generalized Mittag-Leffler stability [13, 14].
Thus, this chapter will lead us or even others to find the stability of discrete

Mittag-Leffler function.

20



CHAPTER 3

N-TRANSFORM TABLE

3.1. A Brief Introduction to Laplace Transform

The Laplace Transform is a well-known mathematical method for solving differential
equations which arise in physics, biology, economics and engineering problems. By
applying the Laplace transform, one can convert an ordinary differential equation into an
algebraic equation and obviously, an algebraic equation is generally easier to deal with. In
addition, thanks to the availability of large computers, its applications have become
increasingly significant tools in the numerical solution of mathematical problems [12]. In

order to make this mathematical method clear, we present Laplace transform:

DEFINITION 3.1.1. The Laplace transform of a function f(t) of a real variable

t e Rt =(0,00) is defined by

LUFWNs) = [ et fBdt=F(s),  (s€C).

In the next section, we recall the discrete Laplace transform also known as A/
transform in order to find the solutions of nabla fractional difference equation. For further

reading about N transform, we refer to the readers [3].

3.2. Definition of N-Transform and Some Properties
In this section, we give a table called N —transform table for functions which are
defined on Z. This table is a great tool for us to find solutions of nabla fractional

difference equations. First, we recall the definition of N transform:
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DEFINITION 3.2.1. Discrete Laplace transform (N -transform) for a function

f:N, =R is defined by

Na(f(£))(s) = Z =) ().

We use the notation N for N, If domain of the function f is N;. Now we proceed

the following properties which can be found in [3].

LEMMA 3.2.2. ForanyaeR\ {...,-2,-1,0},

(i) N1 (to1)(s) = ( ) ,[1-s|<1, and

a-17"
1/—(04)0” I1-s|<v.
(s+v-1)

(i) Ni(F7)(s) = SAG(ET)(s).

(i1) Ni(t T t)(s) =

(iv) Na(f(o(t)) = (1= 5) " Naur f(2).
(v) Na(Vf(1)(s) = s Na(f(£))(5)-

(1) Nawt (V2 F(D)(5) = 5N (F(£))(s) - (1= )2 f(a), where 0 < a < 1.

3.3. N-Transform of Discrete Fractional Exponential Function

First, recall the nabla exponential function as the following

© \(t—q+1)ma-1

aalA, (- 3.1
aal (b= )7) - (3)
We apply the N-transform to each side of (3.1) to obtain
_ 00 /\n(t —a+ 1)(n+1)a—1
Coa (A (t—a)” = 2
Expand our series on the right hand side of (3.2), thus we get
(t-a+1)>1 At-a+1)221 N\2(t-q+1)31
a . 3.3
N ({ I'(«) ! I'(2a) ’ I (3c) ’ (5) (3:3)
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By the linearity property of N -transform, (3.3) can be written as

(t-a+1)>1 At —a+1)2-1 N(t-a+1)3T
(S o (M e (Mg e

Using the Lemma 3.2.2, we have

{(1 -9 (-9 (-9t +}

s« 82a 53(1
1 _ a-1
Factor -s) out, thus we get
Sa
1 _ a—1 )\ /\2
¢{1+_+T“.}7 |)\|<1
s« s ge@

Finally, the infinite sum above can be written in the following form by using the

geometric series expansion

(1-9)"" _(1-N(0-9""
w3 A

Thus, we have the following result

Na (é\a,a (>‘7 (t - a)a)) (8) = %'

3.4. N-Transform of Discrete Fractional Trigonometric Functions

From the literature, we see that trigonometric functions play a significant role in a
variety of branches of mathematical analysis. Of particular importance is their place in
Fourier analysis which has a broad range in mathematics and especially applications in
engineering. Fourier transform is an important tool to separate an image into its sine and
cosine components. Recently, we encounter the discrete Fourier transform which is a
discrete version of Fourier transform. The discrete Fourier transform requires an input
function that is discrete. Therefore, discrete trigonometric functions are quite essential in
Fourier analysis as well. In this section, we define nabla fractional trigonometric

functions. Furthermore, we consider N-Transform of discrete fractional trigonometric
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functions. We start proving N,-transform of nabla fractional sine function. Apply the

N, -transform to each side of the nabla fractional sine function to obtain

A@({giwxht—ayn(s)ZA@({EQQU&(t_aPO;f@aﬁ%@(t_ayo})(@.

For simplicity, we call I for the right hand side of the equation above. We just follow the

same steps as we did in the previous section and we get

::/V;{€b¢x(ﬂ%(t-a)a)}(8)-—{VL{EQ¢X(—457(t—-a)a)}(8)

I
21
(1_8)a—1 (1 _S)a—l
(s*—ib) (s +ib)
- 2i
b(1-s)""
= o

Thus, we conclude that

b(1- s)a_l.

522 + 12

N, ({s’iﬁa@(b, t- a)}) (s) =

Next, we proceed to N,-transform of cosine fractional function. We apply the method as

we did for sing . (b,t —a). So we have

R L e ] O]

We use the linearity property of N-transform to the right hand side of the equation above

to obtain

_ Na (B (b, (t = a)*)) (5) + Na (Eaa (=ib, (t = a))) (5)
2

Using the Lemma 3.2.2, we obtain
(1_5)61—1 . (1_8)0,—1
_ (s*—ib) (s +ib)
- 2

which equals to

5" (1- s)a_1
S sz
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Thus, we conclude that

N (B0t - )} () = S0

We continue our proofs with A/-transform of fractional hyperbolic functions namely,
(58\110476,(1), t—a) and s?ﬂla,a(b, t —a). We apply N,-transform to each side of the definition

of fractional hyperbolic cosine function to obtain

Toa 80200+ B Ch 0

N, (CGS\ha,a(b, t—a))(s) =N, ({

Using the same steps for the previous proofs above, we conclude

se(1-s)""
s20 _p2

Na (@a,a(bvt_ a)) (5) =

Similarly, we follow the same steps to prove the N -transform of fractional hyperbolic sine

function, thus we have

Ca,a (b, (t—a)®) _2€a,a (=b, (t-a)*) }) ().

N (bt - @)) (5) = N ({

Finally, we get
b(1-5)""

82a _ b?

Na (STIElma(b,t— CL)) (S) =
In order to see the method of N -transform to solve fractional equations easier, we

proceed to an example.

ExXAMPLE 3.4.1. Consider the following initial value problem

1
Viy(t) =4, fort=1,2,...

_2
3

Vol y(t)iz0 = y(0) = 1.

Applying Ni—transform to each side of the equation (3.4), we have
Ni(Vgy(t))(s) = Ni(4)(s).

Using Lemma 3.2.2 , we obtain

4
S

siNo(y (1)) (s) = (1= ) 'y(0) =
25



f(t) F(s)

(t—a+1)""! (1-s5)""
I'(a) s*
(t—a+1)*"pt | pol(1-5)""
I'(«) (s+v-1)
_ 7 (1 _ S)a—l
o, 9 - 1 @ a2y
Coa( A, (t—a+1)9) Y
_ b(1-s)""
sing o (b,t—a+1) G 07)
se(1-s)""
COSaa(bt —a+1
€080 ( a+1) G )
— b(1-s)""
hoo(b,t—a+1
sinhg g ( a+1) G 1)
— se(1-s)""
coshy o (b,t—a+1) %)
( 1 )t—a+1 (1 _ S)G—l
1—a? s —a?

TABLE 3.4.1. N-Transform Table

Since y(0) = 1, the equation above can be written as

No(D)(®) = <5+ =57

Next, we use (Table 3.4.1) to obtain

4

) 1
- T(4/3)

No(y(1))(s) No(t)(3) + gy Mot + D) ()

Apply the inverse Ny—transform to each side of the equation, finally we conclude the

solution of the initial value problem in the given form

4 AT 1

st s

y(t) =

wheret=0,1, 2,....
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3.5. Solutions of up to First Order Nonhomogeneous Nabla Fractional

Difference Equations

Consider the up to first order nonhomogeneous initial value problem.

Sy(t)=-ay(t-1)+b fort=1,2,...
(3.5)

Vo "y () o = y(0) = ¢
where 0 << 1 and |a| < 1.

First, apply the Ni-transform to each side of the equation (3.5) to have

Ni(V5y(8))(s) = —aNi(y(t =1))(s) + bN1(1)(s).

By using the Lemma 3.2.2 we have

s"No(y())(s) = (1= 5)"'y(0) = —aN1(y(t - 1))(s) + g

Doing some algebra, we get the following

(3 o) M-y = 202

(1-s) s
and finally
0 b(l-s
Mt -1)(s) = — LDy M=)
s (1 + as—as) 58 (1 + as—as)
1 . .
Expand as a geometric series and we have

1-(-a)(1-s)s™

Nt 1)) - (LD L ML) (), (o) CaPOos) ),

S 358 S 520

Since y(0) = ¢ we obtain

Nyl - D)) = (e ) (L =0 CAPQsR ) g

s e SQa 83a
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By using Lemma 3.2.2 (i), the right hand side of the equation (3.6) yields
_ M) Ni(#2271)(s) 2 L, Nt (s)
= C{W +(—a)(1- S)W +(—a)*(1-s) “TGa) + }

b(1-s)7 [Ni(t°)(s) N (t%71) (s) 5 LML) (s)
+[ - ]{ o +(—a)(1—s)W+(—a)(l—s)W+---}

and apply Lemma 3.2.2 (iv) to have the following form

{Nl(t“‘l)(s) Nal(t= ")) | (oMol =2" () }

1 T B R Y o) '(30)

(A=) | M=) |
s I'(«) ['(2a)

(-a)®

Na((£=3)"")(s) }
I'(3«)

Again, by employing Lemma 3.2.2 () to obtain

L JMEDE) | N DTE) | M-2T6)
I'(a) ['(2a) I'(3a)

+b{Nz((t— D) , (22l =27, (el =) }
T(a+1) L(2a+1) P@Bra+1)

Similar to the previous proof, it can easily be seen that
No((=1)") () = Mt = 1)) (5), Ma((E=2)")(8) =M1 =2)" ) (s),..-.

by using the definition of A'—transform, we have the following

M) | NE=D"6) | N2 |
I'(«) I'(2x) I'(3c)

+b{N1((t— D7) | (—a)Nl((t_z)%)(S) + (—a)QNl((t_g)T&)(S) +}
Ia+1) ['(2a+1) ['(3a+1)

+(-a)

Ni(y(t=1))(s) = C{

Employing the inverse N;—transform to each side of the equation above to obtain

_ et (t-1)"" (L= 2T
y(t_l)_c{r(a)+(_a) T'(2q) +(-a) T(3a) +}

(t-1) (t-2)" ) (t-3)"
' b{F(a+ 5 2 Y TEar ) }

which can be written as the following form

B G0 Gt LR o Ut i
y(t_l)_CT;) [((n+1)a) +an::1 I'(na+1) ‘
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Shift one unit left to conclude the solution of the initial value problem as the following

form

& (—a)M(t-n+1)mraet = (—a)r(t—n+ 1)
y(t)_c,;) T((n+1)a) Tar D)

Note that, for b = 0, we obtain the discrete Mittag-Leffler function.

n=1
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SEQUENTIAL FRACTIONAL DIFFERENCE EQUATIONS

CHAPTER 4

In this chapter, we state and prove some theorems on the solutions of nabla

fractional difference equations being linearly independent or linearly dependent. Then, we
introduce the Casoration for discrete functions. Finally, we find the solutions of up to

second order nabla fractional difference equation considering the characteristic roots of its

characteristic equation as distinct and real, same and real, and complex.

In this section, we define the Casoration for discrete functions. Casoration helps us
to examine whether the set of solutions of homogeneous linear fractional equations are
linearly independent or dependent. In relation to these solutions, we state and prove some

fundamental theorems about the general solution of a nabla fractional difference equation

4.1. Casoration and Linear Independence

to support our claims.

DEFINITION 4.1.1. The n x n matriz of Casorati is given by

v (1) vy (0)

V. vey (1) ASERAZIN G

Va -(1- a)v(2o‘)y (t) Va -(1- O‘)v(QO‘)y (t)

V(;(17&)v((l(nfl)oz)yl (t) v;(lfoc)v((l(nfl)cvz)yQ(t)

30

V" (t)
v;(““)vayn(t)

v -(1- a)v(Qa) Y (1)

v TIvETy, (1)




where V{"Vy(t) = vevevey(t) and yi ys, ..., ya are given functions. The

_—
determinant n—1 times
V. (1) Vo) T0(0)
v van(t) VoIV v vew(t)
Clyrya, -y yn ] = YASERA SR () VaIvEy ) TNyt

V;(l—a)vg(n—l)a)yl(t) v;(l—a)vg(n—l)a)w(t) v;(l—a)vg(n—l)a)yn(t)

18 called Casoration.

THEOREM 4.1.2. Let {y1 ya,....Yn } be a set of n solutions of an up to n—th order

fractional linear homogeneous nabla difference equation.

The set is linearly independent <= Casoration is not identically equal to zero on a

discrete interval 1.

PROOF. We prove for the case n = 2. Let y1(t) and y»(¢) be a solution of the following

initial value problem

pVevey(t) + qvey(t) + ry(t) =0, for t=a+1, a+2,...
(4.1)

Va"y() 1= =y(a) =0 and v.""Vvey(a) =0
on a discrete interval I, for 0 < a < 1, and where p, ¢, r are constants.

We need to show the Casoration of y; and ys, C'[y1,y2] # 0 in order to prove that

y1(t) and yo(t) are linearly independent. The Casoration is given by

V) va ()
C [Z/l,?/Q] =

Vo vey (1) Vit vey,(t)
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= Vo () VTV (1) - iV () VRV Ve (1),

To start our proof, first we need to consider the linear system of nabla fractional

difference equations using the method of change of variables such that

yi(t) =y(t) = Vo (t) = Vay(t) = ya(1)

(1) = Vay(t) = Vays(t) = VoVay(t) = —gvgym - gyo&) = —%m(t) - gyxt)

Thus, we have the following matrix form
Vay (1) 0 1 [[y:(®)

Vet | [=5 -5 v2(®)
Also the initial conditions turn into the following form
Ve | | v 0

v;(l—a)y(t) — - = . (42)
Va0 | | vat O vey(t) 0

t=a

(<) We prove by contradiction, that is, y; and y are linearly dependent, then

Casoration is identically equal to zero. If y; and y, are linearly dependent, then
Yo = kyy (4.3)
holds for some k. Thus,
C lype) = (Va" ™y () (Ve Vekyn (D) = (V2 k(D) (V2" Van (1))
Using (4.3), we have
C ) = KV (D) (V2" V5 (1) = k(2" (D) (Ve VEw (1) = 0.
Thus, y;, and y, are linearly dependent.

(=)Assume that y; # 0, yo # 0 and let C'[y1,y2] (a) = 0.
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Then the system

9.y (a) + kv ys(a) = 0

(4.4)
k1 V" vey(a) + kv veys(a) = 0
can be represented by the matrix form as the following
V') va"V(a) ||k
=0 (4.5)

V. vey(a) VoV vays(a) || ks

[A]

By Cramer’s Theorem, if det A =0, then the system (4.4) has nontrivial solution, that is
k1 and ky are both nonzero. So, y(t), a solution of linear system of the equation can be
represented in this form

y(t) = kayi (1) + kaya ().
Since y(t) is a solution, it satisfies the initial value problem (4.1). By the theorem in [3],
the linear system of equation (4.2) has the trivial solution considering the theorem of

existence and uniqueness of a solution. Therefore, we obtain

kiyi(t) + kaya(t) =0
on an interval I. Since k; and ko are both nonzero, y; and ¥y, are linearly dependent. [
We finish our section with a theorem about the general solution of up to the n —th
order linear homogeneous fractional nabla difference equation. Furthermore, we use this
theorem to find the general solution of second order nabla fractional difference equation

in Section 4.2.

THEOREM 4.1.3. The up to n—th order linear homogeneous fractional nabla

difference equation is given as the following form

Pa(t)VEy(1) +pua (VT Vy(8) + -+ pr () VEY(0) + po(B)y(t) =0 (4.6)
33



forany t in I. Let yi(t),y2(t),...,yn(t) be independent solutions of (4.6). Then every

solution y(t) of (4.6) can be written as

y(t) = c1y1(t) + coya(t) + -+ + cuyn(t),  for some constants ci,ca, ..., Cp.

PROOF. Let y(t) be a solution of (4.6). Consider the system of fractional nabla

difference and sum equations for a fixed point ¢t = m.

V" (m) + VeV ya(m) + o+ 6, VeV, (m) = vy (m)

V"IV (m) + eV Ve (m) + -+ e, VY vay, (m) = VU vay(m)

C1V;(1_Q)V£(n_l)a)y1(M) " C2v;(1—a)vg(n—1)a)y2(m) T+t Cnv;(l—a)vg(n—l)a)yn(m) _

va—(l—a)vg(n—l)a)y(m)
The system above can be represented as matrix form such that
va""y(m)
v vay(m)
v;(l—a)vg(n—l)a)y(m)
[Y]=
Va1 (m) Val"ya(m) v Ty, (m) e
V. vey (m) Vo Yveg(m) e v v (m) || e
v, gl Doy () w0 ) e w0y ) | e
[A] [C]
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For a given fixed point m, Casoration C [y1 y2,...,Yn | # 0, since the set of solutions is
linearly independent. Therefore, det A # 0 which means the matrix A is invertible. Apply
[A]™" to each side of the system above from the left, we have

[C]=[A]" [Y].

Thus, the system of equations has a unique solution C7, Cs,. .., C,. Note that the solution
of (4.6) is uniquely determined by its values at t = m, so for all ¢ we conclude the general

solution as

y(t) = Crya(t) + Caya(t) + - + Cryu(t).

4.2. Up to Second Order Linear Homogeneous Nabla Fractional Equations

In this section, we consider up to second order linear nabla fractional equation and
develop its solutions. The second order nabla fractional equation is given by
pVOvey(t) + qVoy(t) +ry(t) =0 fort=a+1,a+2,... (4.7)
where 0 < a < 1 and where p, q,r are constant coefficients. The characteristic equation of
(4.7) is given as
pAZ+gh+7=0.
Assume that A; and Ay are the roots of the characteristic equation. By using the fact that

any given equation can be represented by its characteristic roots, we have
VaVay (t) = (A1 + A2)Vay(t) + (MA2)y(t) = 0. (4.8)
We assume the initials
V" Y1) |z = y(a) = A and V"V VEY(t) e = B

exist that is A < o0 and B < oo.
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CASE 1. If )\1 * )\2 and )\1,)\2 e R.

We assume that &, (A1, (f — a)¥) and €, o (A2, (t — a)®) are solutions of up to the
second order linear nabla fractional equation (4.8). We prove that these are solutions of
(4.8) for any Ai, Ao. In this case, we consider that a = 0. By using the fact that €, o (A1, %)
is the solution of V §y(t) = Ay(¢t) for ¢ =0,1,2,..., we can rewrite the first and second
nabla fractional derivative of €, ,(A1,t%). In order to consider €, ,(A1,t%) is the solution

of equation (4.8), we need to show that it satisfies (4.8). So we have,
(M) %80 (A1, %) = (A1 + A2) MCaa (A1, %) + M Ao (A1, %)
which equals to
(AM)%Caa (A1, %) = (A1) % B0 (A1, 1%) = Ao iBaa (A1, 1%) + A AeCua (A1, 1) = 0

Thus, €, (A1, 1Y) is the solution of equation (4.8).

Similarly, we can find the first and second nabla fractional derivative of €, o (A2, %)
considering it is also a solution of V §y(t) = Ay(t) for t =0,1,2,.... In addition,
Cu.a(A2, 1) satisfies the equation (4.8). By the Theorem 4.1.3, If the set of solutions is
linearly independent, then the general solution can be written as a linear combination of
these solutions. In order to show whether the set of solutions is linearly independent, we

will check Casoration given in the following form

Vo 0 (M, 17) Ve 0 (Mg, 1)
C [y1,y2] =

Vo088, o (AL t7) Ve TYVEE, 0 (Ne, 17)

va(l—a)'éa’a()\l’ ta) va(l—a)/e\a’a()\% ta)

Alva(lia)/e\a,a(Ala ta) >\2 Va(lia)é\a,a(A% tE)
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Calculating the determinant above, we have
Do = M)V VM, 1)V 8 0 (Ma, 17) 2 0-

Because \; # Ay and we can show that the nabla sum of discrete exponential function is

nonzero. Nabla sum of discrete exponential function is given in this form

0 \n (n+1)a-1
(ra)s gy g g AT(E+D) ,
Voo TPaalA ) = Vo T Y T

Nabla sum can move into the infinite sum, so the right hand side of (4.9) yields

) i N ()
= T((n+1)a)

By using Power Rule, Lemma 1.3.1 (7it), we obtain

S ARt + 1)@

-3

=T (na+1) .

Thus, we obtain the discrete Mittag-Leffler function
= F,(\, (£ +1)%).

We know that Mittag-LefHler function is nonzero. Therefore, the sum of the discrete
fractional exponential function is nonzero. Thus, C' [y, y2] # 0 and the set of solutions
{Ca.a(A1,19), €ha(A2,t¥)} is linearly independent and by the Theorem 4.1.3, we conclude

the general solution of (4.8) as the following form
Y(t) = 180 (A1, 1%) + 28 o (A2, 1%).
CASE II. If A\ =Xy and A\, My € R.
Similar to the previous case, we consider that a = 0. In addition, we claim that
€u.a(A1,19) and te, o(A1,1%) are solutions of (4.8). Since they are solutions, they satistfy

the equation (4.8). In Case I we determined that €, ,(\,t®) is a solution of the equation

(4.8). We also need to show that t€, (), t¥) is a solution of (4.8). To continue the proof,
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we use Leibniz rule [5]

IOPORS M (| CETC] [RRO))

For a = 0 we have,

toeaa(/\ t*)t = le (2)[ vg " ’e‘aa()\,t“)][ v'i]. (4.10)

n=0

The right hand side of the equation (4.10) can be written as

(3) [ %8‘ é\a,a()\,ta)] t+ (T) [ v /e\aa()\,ta):l vt (4.11)

by using the Lemma [4],

(_l?) ) L'k +1;)(1:?—;1—)k +1)

we obtain

() ()

Thus, the equation (4.11) has the following form

¢ _ t-1 _

[ V§ Caa(A, t“)] t+a Vi Eha(A 7).

Since €, (A, t9) is the solution of V §y(t) = A\y(t) for t =0,1,2,... we can rewrite the first
nabla fractional derivative of te}, (A, %) as the following form

New.a (M)t + V ol Coa (A 1Y),
Next, we consider the second nabla fractional derivative of €, ,(A1,t%) to obtain

— t t-1 —
N (N )+ a) v ot Coa( MY +av v et oA\ 17).

We need to show that the solution t€, ,(A1,t*) satisfies the equation (4.8), so we have the
following
_ t t-1 —
NN )+ a)’ V e M) +av iV et Eha (A tY)
_ t-1 _ _
o) [xe\w(x, Tt +a'T8 B w0 17) | + X220 (0, 7) = 0.

If we prove our following claim, it finishes the proof.
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Claim:
vg‘vg ' e\ 1) = Ava D Caa (N 1). (4.12)

We start to prove our claim by writing the left side of the equation (4.12) as

t-1

t _
vV iV e Ea(A ). (4.13)

Then, we use the Lemma [37]

—a+1)ﬁ

I'(a)
Call V oA t%) = f(t). So, for a=0, f(0) =0 and we conclude

- - t
Vanv () = 99 f () - f(a).
b a1 L a1
VITVI() =vVET ().
Thus, (4.13) can be written as
t 1 t—1 1 ~ _
VITVVET @A t?)
which can be easily seen as the following form
t 1t—1
VI'VE Cna(AtY).
By subclaim that we prove below, we obtain
t _
VY Nen (A, (E-1)%).
Using the definition of nabla sum, we have

Ay LT OG- 1)

By using substitution method, we have

)\Z (t_r}(lp(;t))) A aa(}\ U )

which equals to

-1 _
AV G (0 1),
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Thus, we conclude

t t-1 — t—1 _
VoVeT CuaMt?) = AV Eha(A, %) (4.14)

t-1 _ _
Subclaim:  V§ €, (A 1Y) = Xe, o (A, (E-1)%)
Consider the first order nabla fractional difference equation with initial condition,

t
Voy(t) =Ay(t), t=0,1,... (4.15)

y(0) = 1.
It is concluded in the paper [3] that €, (A, %) satisfies (4.15). Shift (4.15) one unit left,

we have the following
t-1
ng(t):)\y(t_l)v t:1727"'
Thus, we obtain
t-1 _ _
V3§ Caa(AtY) = Ael o (A, (E-1)7).
We now return to the proof and by using (4.14), we conclude that
_ t-1 _ t-1 _
N oM+ oAV B0 M) + AV T Eaa(N, tY)
_ t-1 _
=202 (N ) =200V §71 T a (A, 1)

+A%8 (N, 1)t =0

As a result, €, (A, 1)t satisfies (4.8) and thus €, (A, ®)t is also a solution of (4.8). We
know from Theorem 4.1.3 that if the set of solutions are linearly independent, then the
general solution can be written as a linear combination of these solutions. So, it is
sufficient to show that the set of solutions are linearly independent. By the Theorem
4.1.2, if the Casoration is not identically equal to zero, then the set of solutions are

linearly independent.
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Casoration of the set of solutions {€, (A, t%)t, €,.a(A, 1)} is given in this form

ARSI AN O W) W N SN O W )
AN OWE B Sl AN O L))

which equals to

Va(l_a)té\a,a(/\vta) Vo e, (A1)

Vs M a(M17) + 0V 8 Taa(M 7)) AV, 08, 0 (A, 1)

By calculating the determinant, we have

[avo(l a) voc 1 gaa()\7ta):|v (1 a)Aaa(A ta)

We use the definition of nabla fractional sum, thus we get

vy [S O T )] w07

a # 0 and VO(I a)Ea oA, 1%) 0. So it follows, the Casoration is not identically equal to

zero. Finally, by the Theorem 4.1.3, the general solution of (4.8) is given in this form
y(t) = c{e\ma()\, ta) + Cgt’e\a,a()\, ta)

where cq, ¢y are constants.
CASE III. If Ay # Ay and A\, Ay € C.

Consider up to second order linear fractional nabla equation.
vevey(t) + b*y(t) = 0, where t=a+1,a+2,.... (4.16)

and 0 < < 1.
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The equation (4.16) can be transformed into system of nabla fractional difference

equations by the change of the variables, such that

(1) =y(t) = Vou(t) = Vy(t) = y2(1)

ya(t) =V°y(t) = vovy(t) = -b*y(t) = -b’y: (¢)
and

Y1(t) =0 =0, y2(t) [t-a = 0.

So, we have the following linear system of fractional difference equations

Ve (t) 0 1|fw(t)
VeY(t) = AY (¢) = ) (4.17)
Vya(t) =b% 0] ya(t)

The characteristic equation of (4.16) is given as
AM+p2=0

and the roots of the characteristic equation are
A1,2 = Fib.

To find the solution of (4.16), we will use Putzer Algorithm.
MO = ]

bi 1
M1 = (A - )\1]) =
-b? b

and the vector valued function p(t) is defined by

pi(t)
p(t) = :

pa2(t)
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p(t) is the solution of the initial value problem

A0
Vey(t) = y(t), fort=1,2,... (4.18)
1 X
-(1-a) 1
Vo Py(t) li=a = y(a) =
0

Thus, we have the following system of nabla fractional difference equation with initial

condition

vapi(t) ib 0 []pu(t) pi(a) 1
- , -] (4.19)
Vapa(t) 1 —ib||p2(t) p2(a) 0

The first component p;(t) of p(t) solves the initial value problem (4.19)

Vapi(t) = (ib)pi(t), pi(a)=1.

We proved the generalized form of the nabla exponential function in (Table 3.4.1). So, we

have the solution of (4.19) as

pi(t) = (L= ib)eaa(ib, (t - a)®).

Also, the second component py(t) of p(t) solves the initial value problem (4.19), thus we

have

Vap2(t) = pi(t) = (ib) p2(t), p2(a) =0, (4.20)

In order to find py(t), we use N-transform, and with this application we see how
N-transform works for discrete functions. Apply N, i-transform to each side of (4.20) to

obtain

Na(Vap2(t))(5) = Nava(p1(£)) () = (10)Nasa (p2(t)) (5)-
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By using Lemma 3.2.2, we get

s"Na(p2())(s) = (1-5)""'pa(a) =

Na(pr(1))(s) = (1 = 5)*'pa(a) = (i) {Nalp2(t))(5) = (1= 5)* "p2(a) }. (4.21)

Since py(a) =1 and py(a) =0, we simplify the equation (4.21) to have

(5% +ib)Na(p2(t))(s) = Na(pr () (s) = (1 = 5)* 7.

From (Table 3.4.1) , we get

(1-ib)(1-s)t (1-s)!

NaleO)) = o rm i)~ (m e i) (4.22)

By applying the method of partial fraction decomposition, we can write the equation

(5.2) as

_(@-id)(d-s)t (1-ib)(1-s)>t (1-s)*
2ib(s* - ib) 2ib(s* + ib) (52 + ib)

Na(p2(t))(s)

Again, from the (Table 3.4.1), we have the following

(1 -ib)
2ib

pa(t) = {’e\ma(ib, (t-a)®) —Cua(-ib, (t - a)a)} — o (=ib, (t —a)®)

which equals to
pa(t) = (1 = ib)sing o (b, t — a) — Ty o(=ib, (t — a)%).
Since, ®(t) = p;(t) My + p2(t) My is a solution of initial value problem (4.16), ®(t) can be

written as

(1= ib)Ba.a(ib, (t - a)7) 0
O(t) =

0 (1= ib)Bua(ib, (t - a)7)

bi 1
+1[(1 = ib)sig,a (b, — @) ~Caa(=ib, (t -~ a)™)] x
-b% bi
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Doing some algebra and using (Table 3.4.1), we obtain
TOBa,0(b,t—a) = bsing (bt —a)  1singq(b,t - a) + @8aa(b,t —a)

~bSiNg.o(D,t — @) = b2C084 o (bt —a)  COBua(D,t — a) = bsing o (D, t — a)

Thus, the solution to (4.17) is given by Y'(¢) as the following form
T80 (b, t — a) — bsing o (b, —a) 38iN4,o (b, — @) + TO8a,a (b, t - a)

V* (&08a,a(b,t — a) — bsing o (bt —a)) V* (1sing,a(b,t - a) + 08a,a (bt —a))

Therefore, the general solution to (4.16) has the following form
U(£) = 1 (a(by t — @) = biie (b, £ = a)) + o (%s’iﬁa,a(b, L= ) + &bt - a))
which is equivalent to
Y(1) = (c1+ ¢2)Tan(by t —a) + (—bcl . %2) e a (bt - a)

where ¢q, ¢y are constants.
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CHAPTER 5

PARAMETER ESTIMATIONS OF SIGMOIDAL MODELS

5.1. Parameter Estimation with Fractional Gompertz and Logistic Curves

In life and health sciences, there is an urgent need for the advancement and the
widespread use of predictive and quantitative methods to improve delivery of health care
and decrease economical and ethical costs. Although there are many ongoing
developments in cancer research, there is still a lot to be known about its causes and
treatments. Cancer is a class of diseases characterized by unregulated cell growth. There
are many different kinds of cancers which can develop in almost any organ or tissue, such
as the lung, colon, breast, skin, bones, or nerve tissue. Although there are many of
treatment methods, such as surgery, radiotherapy and chemotherapy, the medical doctors
should consider one significant parameter: Time. If researchers know which treatment
method will lead to a better outcome in advance, the treatment will be easier and more
successful. For a treatment to have a better outcome, mathematical models which
simulate the rate of given tumor growth data need to be developed. Mathematical models
provide theoretical insight into the underlying processes and improve the analysis and
interpretation of experimental measurements and observations in biological and
biomedical phenomena. Therefore, recent collaboration with mathematicians gives more
insight on the scientific innovations for the clinical trials of the cancer research and the

development of new treatments.

Tumor growth gives a special relationship between tumor size and time so it can be

best described by sigmoidal curves. There are many approaches used in modeling growth
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behavior in biosciences. Gompertz, Logistic, Richards and Weibull curves are the ones
which we will consider in our project. The aim of our project is to develop discrete
fractional models of tumor growth for a given data set and to estimate parameters of
these models in order to have better data fitting. We use discrete fractional calculus
because we think the discrete counterpart of this mathematical theory will give a better
and more accurate outcome. Discrete fractional calculus was first introduced by Kenneth
S. Miller and Bertram Ross in 1988. More recently, the theory of nabla and delta

fractional calculus have been developed [6, 23, 24, 25].

In [5], the following Gompertz fractional difference equation has been introduced

with the A-operator:
Ay(t-a+1)=(b-1)y(t)+a (5.1)

where a, b are parameters and « € (0,1] is the order of the fractional difference equation.
« can also be considered as the third parameter. The graph of solution of equation (5.1)
is a Gompertz curve and represents a sigmoid function. In this study, we model
Gompertz and Logistic curves with a— order V- difference equations. In this project, we
prefer to use V—operator instead of A operator since the A~ maps functions defined on
positive integers to functions defined on non-integers. This nature of the operator forces
us to use a fractional delay difference equation. However, we will not have delay equations
if we use V-operator. Therefore, we claim that nabla fractional calculus will give us

better data fitting than delta fractional calculus.

In order to estimate parameters for discrete nabla fractional Gompertz and Logistic
curves, we use Mathematica. Then we compared continuous, discrete, continuous
fractional and discrete fractional forms of these sigmoidal curves by using the tumor

growth data for twenty-eight control mice. These control mice had inoculated tumors but
47



did not receive any subsequent treatment. Tumor size was measured at 14HALO (hours
after light on) daily until day 17. For these data, we collaborated with Dr. William J.M.
Hrushesky who gave us permission to use his published data obtained in Medical

Chronobiology Laboratory, University of South Carolina [38].

In addition, we used statistical computation techniques such as residual sum of
squares and cross-validation to access and compare fitting and predictive performance of
these models. Cross-validation method is a statistical method to show that our
parameters serve for the best prediction of the tumor growth. We refer to this method in
Section 5.3. At the end of our project, by interpreting these outcomes in a manner of
biomedical science, we hope that our results will enhance time dependent cancer

therapeutic study.

5.2. A Technique for Estimating the Performance of a Predictive Model:

Cross-Validation

Cross-validation is one of the approaches to estimate the performance of a statistical
model. This approach was first introduced in the 1930s [19]. Mosteller and Turkey [20],
and then other scientists further developed the idea. A clear statement of cross-validation,
which is similar to the current version of k-fold cross-validation, first appeared in [21]. In
the 1970s, both Stone [22] and Geisser [18] employed the cross-validation method by
choosing proper model parameters to estimate the performance of the model.
Cross-validation is widely accepted in the data mining and machine learning community;,

and serves as a standard procedure for performance estimation and model selection.

In this chapter, we consider k-fold cross-validation. In k-fold cross-validation, the

data is partitioned into k£ subsets. One of the k subsets is chosen for testing the model,
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namely validation set, and the remaining k — 1 subsets are used as training data so it is
called training set. The k-fold cross-validation process repeats k times. The advantage of
this method is that all observations are used for both training and validation, and each

observation is used for validation exactly once.

In our study, we use tumor growth data of 28 control mice for 17 days [38].
Therefore, we have k = 17 independent observations as a training set. In order to present
an example, we consider rat id 140. In (Table 5.2.1), we give the experimental values
Y1,Y2, - - -, Yy17. By using FindFit in Mathematica, we obtain the parameters and then we
use these parameters in fractional Gompertz and Logistic curves, we have our observed
values, which is the training set for cross-validation method. However, we divided these
experimental values into 1000 since it is more convenient to obtain our parameters. We
repeat this program 17 times, so we call it 17—fold cross validation. Each time we leave
one experimental data, so our training set G; = 16. (Table 5.2.2) helps us to visualize the

training set GG, and validation set T" for a random one (id 140) among 28 mice.

This statistical method is considered for both Gompertz and Logistic curves. First,

we consider the Gompertz model which is given as the following form

y(t) = ae=e=<t), (5.2)

Take log of each side of the equation (5.2) to obtain
A
Y(t) =Ina-e’(e™®),

A A
where Y (t) = logy(t).

Using FindFit in Mathematica, we recalculate our parameters a, b, c and we do this

process 17 times. Then, we use the same parameters in discrete fractional Gompertz
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Days 1d 140
Experimental Values

Dayl yp = 23.275
Day?2 Yo = 62.953
Day3 ys = 112.665
Day4 yq =124.712
Dayb ys = 215.730
Day6 Ys = 325.260
Day7 yr = 285.120
Day8 ys = 354.760
Day9 Yo = 218.295
Day10 Y10 = 406.575
Dayl1 y11 = 481.665
Day12 Y12 = 555.270
Dayl3 Y13 = 643.552
Dayl4 Y14 = 666.000
Dayl1b Y15 = 893.000
Day16 116 = 1050.000
Dayl7 Y17 = 1209.600

TABLE 5.2.1. Experimental Values Table of Rat id 140

curve. The discrete fractional Gompertz curve is given as

kel n+1)+ha-1
t) =lna- T;J ot F((n?l)a) (5.3)

\%
After estimating «, we set a,b,c and « in Y (t) for each iteration. Finally, we use square
\
residual sum method by considering y; as observed value and Y'(¢) as predicted value,

therefore we have

v 2
eiz(yi—Y(t)) , for1<i<17.
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The minimum square residual sum among 17 training set is our best data fitting for an
exact value of a. We do the same steps for Logistic curve and we will compare the results

in the following section.

5.3. Graphical Results and Comparisons

In this section, we visualize our claims by demonstrating table and graphs. First, we
give continuous, discrete, continuous fractional and discrete fractional types of Gompertz
and Logistic curves. In the previous section, using FindFit, we find our parameters a, b, ¢
for continuous type of these sigmoidal curves. We use these parameters for discrete,
continuous fractional and discrete fractional types of Gompertz and Logistic curves to
estimate the range of . Then, we compare our square residual sum results for these 4
types of Gompertz curve in (Table 5.3.1) and we follow the same route for the Logistic
curve as shown in (Table 5.3.2). As a result, we state which sigmoidal curve serves better
data fitting. In addition, we present the mean of data and we examine the minimum
square residual sum and the value of a among the mean of continuous, discrete,
continuous fractional and discrete fractional types of these sigmoidal models. Finally, we
show the results of cross-validation for each control mice in (Table 5.3.1) and in (Table
5.3.2). Consider the continuous, discrete, continuous fractional and discrete fractional

types of Gompertz curve.

Y(t) =Ina-e’(e©)". (continuous)

Y(t) =Ina-e"(1-c). (discrete)

t(n+1)a-1

Y(t)=Ina-é")’ (—c)"F (continuous fractional)
n=0

((n+1)a)
p(t=n+ 1)1
I'((n+1)a)

(discrete fractional)

Y(t)=Ina-e° 2}(—0)

where 0 < o < 1.
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We use the tumor growth data for 28 control mice and we did the data fitting for
these four types of Gompertz curves above . As shown in (Table 5.3.1) we compare our
square residual sum and the bold one indicates the minimum square residual sum. It is
clearly seen that 21 of 28 mice have the better data fitting. Therefore, we can conclude
that the other types (discrete, continuous fractional, discrete fractional) work better than
the continuous type for Gompertz curve. Also, we obtain a range of a. For continuous
fractional type, we concluded 0.9999 < o < 0.99998 and for discrete fractional type, we had
0.99941 < ar < 0.99998. In some cases, we observe up to 5.44% better data fitting in
fractional curves when they are compared to continuous case. Similarly, consider the

continuous, discrete, continuous fractional and discrete fractional types of Logistic curve.

y(t) = #(e_c)t : (continuous)
a :
y(t) = m . (dlSCT€t€)

a

x n (n+l)a-1
L+e" 3 (=)t

y(t) =

(continuous fractional)

a

1 n eb § (_C)n (t_n+1)(n+l)o¢71
n=0

y(t) = (discrete fractional)

T'((n+l)a)

where 0 < o < 1.

By following the same method that we used in Gompertz curve, which is based on
data fitting for Logistic curves above, we can demonstrate (Table 5.3.2). Then we
compare our square residual sum, we conclude that 19 of 28 mice have the minimum
square residual sum. Again, we have the same result for Logistic curve: The other 3 types
(discrete, continuous fractional, discrete fractional) work better than the continuous case.
Also, we obtain a range of a.. For continuous fractional type, we concluded that
0.9999 < ar < 0.99998 and for discrete fractional type, we had 0.99955 < o < 0.99998. Note

that we had better data fitting up to 0.01% in fractional curves when it is compared to
52



continuous case. As shown in (Table 5.3.3), among 28 mice, 22 of them have better data
fitting in Logistic curve. Thus, we conclude that Logistic curve has better data

fitting than Gompertz curve.

Our last comparison is about mean of data as shown in (Table 5.3.4). We plotted all
the data for Gompertz curve, we obtained the minimum square residual sum in
continuous fractional type with a = 0.99996. Also, we followed the same steps for Logistic
curve and we had the minimum square residual sum in continuous fractional type with

a =0.99989, as well. As shown in (Figure 5.3.1), the red line indicates the mean of data.
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Training Set

Selected Observations

Test Set

Selected Observations

iv/ Y4,V Vs, Y BV/ YeYoY y
Gl { 29 37 4a 57 6,14 7, 8 97 10, Tl {Yl}
Yll;Y127Y137Y147Y157Y167Y17}
Y Y Y Y Y Y Y Y Y Y
G2 { 1, 37 47 57 6,4 7, 8 97 10, T2 {YZ}
YllaY127Y137Y147Y15aY167Y17}
Y Y Y Y Y Y Y Y Y Y,
G3 { 1 27 47 57 6,14 7, 8 97 10, T3 {Yg}
Y117Y127Y137Y147Y157Y167Y17}
R :
G4 { 1 27 57 57 6,1 7, 8 97 10, T4 {Y4}
Y11,Y12,Y137Y14,Y15,Y16,Y17}
Y Y Y Y Y Y Y Y Y Y,
G5 { 1, 27 37 47 6,4 7, 8 97 10, T5 {Y5}
Y117Y127Y137Y147Y157Y167Y17}
Y Y Y Y Y Y Y Y Y Y,
GG { 1, 27 3a 47 5,14 7, 8 97 105 TG {YG}
Yll;Y127Y137Y147Y157Y167Y17}
Y Y Y Y Y Y Y Y Y Y
G7 { 1 27 37 47 5,4 6, 8 97 10, T7 {Y7}
YllaY127Y137Y147Y15aY167Y17}
Y Y Y Y Y Y Y Y Y Y,
GB { 1, 27 37 47 5,4 6, 7 97 10, TS {Yg}
Yll;Y127Y137Y147Y157Y167Y17}
Y1,V Va, Y0 V5 Ve, Vi Vs,V y
Gg {\/1’ \/27 5\/7 47\/ 57\/6) \/7, 8\/7 10, Tg {Yg}
Y11, Y12, Y13, Y14, Y15, Y16, Yz}
Y.,Y,, V3, Y, Y5 Y Y Ys Y Y,
GlO { 1, 27 37 47 57 6,4 7, 87 9, TlO {YIO}
Y117Y127Y137Y147Y157Y167Y17}
\
Gll {Y17Y2,Y3,Y4,Y5,Y6,Y7Yg,Yg, Tll {Yll}
Y10,Y12,Y137Y14,Y15,Y16,Y17}
Y Y Y Y Y Y Y Y Y Y
GlQ { 1, 27 37 47 57 6y 4 7, 87 9, T12 {Y12}
YlOaY117Y137Y147Y15aY167Y17}
Y Y Y Y Y Y Y Y Y Y
G13 { 1 27 37 47 5a 6,4 7, 87 9 T13 {Y13}
YlO;Y117Y127Y147Y157Y167Y17}
Y1,V Vi, Y0 V5 Ve, YrYs, Y y
G14 {\/ 1 \/27 l\’)/v 4\7/ 57\/ 65 \/7, %7 9 T14 {Y14}
Y10, Y11, Y12, Y13, Y15, Y16, Yz}
Y.,Yy, V3, Y, Y5 Y Y Ys Y Y,
G15 { 1 27 37 47 57 6,4 7, 87 9 T15 {Y15}
Y107Y117Y127Y13aY147Y167Y17}
\
G16 {Y17Y27Y37Y47Y5ay67y7Y8aY97 T16 {Ylﬁ}
Y10,Y11,Y127Y13,Y15,Y15,Y17}
\
Gl7 {Y17Y27Y37Y47Y57Y67Y7 Y87Y97 Tl7 {Y17}

YlOa Y117 Y127 Ylda Yl4a Yl57 Y16}

TABLE 5.2.2. Seventeen-fold cross-validation
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id# Continuous Discrete Continuous Discrete Cross
(=1) (a=1) Fractional Fractional Validation
. 4 . .
o1 | ovuzomorass | osazosurass | | OOR0HIS | ovsss | za0ios
.3334575178 .3530311101 .5214368910
22 .3334771319 3526360961 o - 0.99993 o0 = 0.99998 0 = 0.99998
Nl 2 .09979266879 .1532421764
23 .1000671774 .09980773376 QOZO((])6§’)796998§ o = 0.99993 a5=30.995;7§8
.015042 .0154251431 .023512 1
26 .01504232035 .01504232032 (())c i00-922225 2 50.959958 0a3=50.95$;)$9 3
.0512 .0512 1 . 124
27 .05130023627 .05130023802 Oj: Oggggggs ?15: (?2892(;% 26i00‘99i0529
.09928736635 .09877841550 .1337456556
28 .09931601289 09880263381 o = 0.99993 o - 0.99994 o0 = 0.99959
. 2 2 006858511228 .01613621271
29 .006923511052 .006860205304 026303955555 o = 0.9999 (; i 529902
.081 12 .081 11 1 1
30 | osmoorzions | osteorazero || OSWOTOOIE | OSIGOSOL | ise07Ions
. 41 11 . 41 2 .1102
31 .08094058644 .08094056469 ?290.922;8 28290'9;2280 o (i 523328
.009827870273 .009779888886 .01453112764
32 .009827763484 009782246634 o0 = 0.99998 o - 0.99994 o = 0.99968
.04981 492 .04977301896 . 207452
33 | .049822386468 .04977585660 (()1 280'22(;995 o - 0.99996 (;6260.(;;95;58
31 4. 31 42931 . 1
u | atorosroaz | aiorowoss | P0ne’ | U000 | e ooomos
.041554274 .0415542 1 246814
35 | .04155372344 .04155372350 (; :5599;9;0 (; :5(?99;;;0 a0=5i()’),996:98
.02069676294 .02069675329 .03282944107
136 | .02069668479 02069668480 o = 0.99998 o = 0.99998 o = 0.99962
.2 2 2 . 2
137 .2605491124 .2605491124 aﬁfgs)ggggs a632539832 iBiB(igii;?
Nl 1 1 2722 . 2 21
138 1698807616 1689739478 a63§).5§§997§ 0653.97999928 2050?.;959897
.144447524 1444474 291 4
.05352726755 .05338370310 .06674413808
140 | .05353688898 05339484131 o = 0.99998 o - 0.99993 o = 0.99971
.02861367403 .02861 1 .
141 .02861370688 .02861370722 o - 0.99998 ((Jl §60.?S’).?)2($))86 (;32052265;28
. 1 2094 . 1 . 1614 1
142 .003715603052 | .003657090481 0((]31 522939 023:62799655855 025: ggé);sﬁ 6
12 184 12 234 .2004571352
143 1279857712 1279857720 o 19592929 o Zg:';:)gilo a0=00,5979:958
.2024473515 .2024473387 .2781483417
144 .2024468349 .2024468349 o = 0.99998 o = 0.99998 o = 0.99213
.2808836341 2 4 A4 21
145 .2808836510 .2808836504 o - 0.99998 a8=0(8].8:9699780 a5:62‘998§§g
.242 2 241951 1 .3914.
| o | | 2w | s e
.03264852011 .03264 . 102
147 | .03264913983 .03264913977 02 :60'8959;)9 03 :60.'97:2250 0235(())?9:))653
1113385662 11113384961 2.025038476
148 11113379847 .1113379834 o0 = 0.99998 o0 = 0.99998 o = 0.9987
.13949882 .1394 21 . 17
o | osaososor | asesesoso | WL | WU | avomems
.3029542604 .3029547992 412 41
150 .3029550047 .3029550052 zoz 359996901 20: ?)595335 o = 29555519

TABLE 5.3.1. Data Analysis for Gompertz Curve
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id# Continuous Discrete Continuous Discrete Cross
(=1) (a=1) Fractional Fractional Validation
. 34 . 1014491 1 4
21 .07720652926 .07720652925 Z722§229§)386 (;712039992 a6=2’(7)§§§83;
3258699296 3258699296 5278740791
22 3258675033 3258675032 a =0.99998 a =0.99998 a =0.99203
.094 42 .09474 1 .14 42
23 .09475605652 .09474826414 ?:7(?;?)9920 (;9:70 2’;’;928 o :7?)69697299
.013252 .013252 291 .020409131
26 .01325261841 .01325261841 (())c i 05922329 0a3= 2535989 (; S (?.?)9‘236;8
.0524 452 .0524 4 . 1 4
27 .05247847498 .05247847533 Oi _ 3%992)95 (fz 5232279 (()17i70.2298923
.09270298592 .09270103236 1239232970
28 .09270204942 .09269992014 o = 0.99998 o = 0.99998 o = 0.99973
. 2344394 . 227461 1
29 .006022851218 | .006022041787 02630?995386 026:00.5959836 a5j?)39598939885
. 194294 . 1 12 1
w0 | ororersuos | oromorsion | OO | 0roiotons | i
.07472871314 .074 1 1 22
31 .07471839928 .07471837868 (;7:702’;938 2[7:73222927 a03§).5€§)59728
.008850727738 .008848923819 .01210642602
32 .008850530144 | .008848677223 o = 0.99998 o = 0.99998 o = 0.99998
.04 291 .04 22 . 2516252
33 | 04950751166 | 04950751171 PP T e O oo
312 1 312 727824582
34 | 3125807050 | 3125897049 o T os fbei
.031501 .031501 . 272
35 .03150005505 .03150005506 0043:58959(;223 ?:5(?922223 (;7?:) (’)792966736’53
.02091409925 .02091415007 .02948826642
136 .02091431694 .02091431701 o = 0.9999 o = 0.99993 o = 0.99998
.2552 1 .2552 . 101
137 .2552786642 .2552786642 a5;50’.7§5)85978 a5=50890§;§)85 316237255
.1512054 .15119344 .2661 2
138 1511995277 1511871712 045= 009599855 a5= 0?5)999685 aﬁfoi?ggggo
1 4712 1 2 2768472
139 .1389586529 1389586533 a3=8[9).5§99798 QBE?)B;;Q;;) a7280.;8(;913
.05156662982 .05156530341 .06323411271
140 .05156900468 .05156691145 o = 0.9999 o - 0.99978 o = 0.99998
.02903328519 .02 21 .04179439341
141 .02903359507 .02903359504 o = 0.99991 (; 303332938 (; =7(?.93;;z;1
. 27114 . 264 2 .1504494
142 | .003026763981 | .003026069415 023:00.7999;):6 0(23:00.6995959587 o¢5:00.597f455’)7
13011 1301131682 2 4
P e e S B
.1942958863 1942961157 2895154726
144 .1942945348 .1942945349 o = 0.99998 o = 0.99998 o = 0.98774
.2850144884 .2 14 1 .44894 7
145 2850180223 2850180223 o = 0.9999 QSE:)OO.QE;?)?) o 5235355
232604104 23259941 . 4 1
146 2326031700 .2325981230 043= ?),099595 03: 29399587 29:0079050(?;
. 2 1 . 2 4 .082614
147 .03703599137 .03703599146 027:0:;96;:9 9 05:(:).323316 (;8:60.9(;:;2586
.1077958616 .1077959516 .1601409647
148 1077952924 1077952925 o = 0.99998 o = 0.99998 o= 0.9972
1242 4 124251401 A4 7
o | azazarsone | azazarsose | T | TRl | Glossas
. 4 2 . 407 2 A 262
150 .3004093946 3004093948 ‘ZO:OO_%ZYS?QSI zO:OOf:)99799985 aojgi?gsg:gzo
TABLE 5.3.2. Data Analysis for Logistic Curve
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id# | Gompertz Curve Logistic Curve
21 09320807348 .07720652925
.33345751
22 3334575178 .3258675032
a =0.99993
.09979266879
23 .09474826414
a =0.99993
26 .01504232032 .01325261841
o7 .05129960785 .05247699452
a=0.99995 a =0.9999
.09877841550
28 .09269992014
a =0.99994
.006858511228
29 .006022041787
a =0.9999
30 .08160721610 .07976180993
31 .08094056469 .07471837868
32 009779888886 .008848677223
a =0.99994
.04 1
33 04977301896 .04950751166
a =0.99996
34 3197937942 .3125897049
35 04155372344 .03150005505
.02091409925
136 .02069668479
a =0.9999
137 .2605491124 2552786642
16892722
138 089272298 1511871712
a =0.99992
139 .1444468940 .1389586529
140 .05338370310 .05156530341
a =0.99993 a=0.99978
141 .02861367403 02903328519
o =0.99998 o =0.99991
142 .003657090481 .003026069415
143 .1279762340 1301131682
a=0.99941 o =0.99955
144 .2024468349 1942945348
145 .2808836341 .2850144884
o =0.99998 a =0.9999
.2419516991
146 951699 2325981230
a =0.99998
147 .03264789880 03702966546
a=0.99967 a=0.99971
148 1113379834 .1077952924
149 1394980990 1242478059
150 .3029542604 .3004077982
a=0.99991 a=0.99991
TABLE 5.3.3. Gompertz vs.Logistic
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Gompertz Curve Logistic Curve
copmions | 0.01467378953 0.01511114565
D(i;i’”f)te 0.01467353864 0.01511114569
Continuous | 0-01467346239 0.01511043545
Fractional o = 0.99996 a =0.99989
Discrete 0.01467360877 0.01511068031
Fractional o = 0.99997 a =0.99993

TABLE 5.3.4. Gompertz and Logistic Curve Mean Table
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Discrete fractional calculus is an extended form of discrete calculus. More
particularly, discrete calculus considers integer order, but fractional calculus enhance the
order to include all positive real numbers. In this mathematical theory, there are still
many open questions waiting to be studied. In this thesis, we continued to develop nabla
fractional calculus. We also showed our developments by demonstrating the graphs of
te te te. We were interested in the following sigmoidal curves: Gompertz and Logistic. In
order to estimate the parameters of Gompertz and Logistic curves, we used Mathematica.
After obtaining these parameters, we compared continuous, discrete, continuous fractional
and discrete fractional type of these sigmoidal curves. As a result, we concluded that the
discrete version of these curves have better data fitting. In addition, we used some
statistical methods such as square residual sum and k—fold cross validation because
making a prediction will enlighten our time dependent cancer therapeutic study. On the
other hand, in Chapter 2, we focused on completely monotonic functions on discrete
domain using nabla operator. Furthermore, we proved some basic theorems of this
concept. Then, by using N -transform, we proved some important results and then we
established N-transform table. This table is a great tool for us to find the solutions of up
to first or second order of nabla fractional difference equation. Finally, in Chapter 4, we
proved some basic theorems about nabla fractional calculus. We proved that, if the set of
solutions of up to n —th order nabla fractional equation is linearly independent, then the

Casoration is not identically equal to zero. Then, we considered up to second order linear
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nabla fractional equation and we examined the solutions of the equation by considering

the characteristic roots of the characteristic equation case by case.

For the future work, there are still some open questions to be considered. First, we
will concentrate on completely monotonic functions on discrete domains. From the
literature, we see some papers which claim that there is a relationship between the
concept of complete monotonicity and the stability of Mittag-Leffler function. We plan to
enhance this idea to the stability of discrete Mittag-Leffler function using complete
monotonicity of this special function on discrete domain. Also, in Section 4.2, we stated
the discrete fractional exponential function is nonzero. Our goal is to prove this claim,
but this work requires some effort. On the other hand, our project will continue next
year. Richards and Weibull models will be considered in the same route. At the end of
the project, among four main sigmoidal curves, it will be stated which model works best

or has the best data fitting.
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