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The aim of this thesis is to develop discrete fractional models of tumor growth for a

given data and to estimate parameters of these models in order to have better data

fitting. We use discrete nabla fractional calculus because we believe the discrete

counterpart of this mathematical theory will give us a better and more accurate outcome.

This thesis consists of five chapters. In the first chapter, we give the history of the

fractional calculus, and we present some basic definitions and properties that are used in

this theory. We define nabla fractional exponential and then nabla fractional

trigonometric functions. In the second chapter, we concentrate on completely monotonic

functions on R, and we introduce completely monotonic functions on discrete domain.

The third chapter presents discrete Laplace N -transform table which is a great tool to

find solutions of α-th order nabla fractional difference equations. Furthermore, we find

the solution of nonhomogeneous up to first order nabla fractional difference equation

using N -transform. In the fourth chapter, first we give the definition of Casoration for the

set of solutions up to n-th order nabla fractional equation. Then, we state and prove

some basic theorems about linear independence of the set of solutions. We focus on the

solutions of up to second order nabla fractional difference equation. We examine these

solutions case by case namely, for the real and distinct characteristic roots, real and same,

and complex ones. The fifth chapter emphasizes the aim of this thesis. First, we give a

vi



brief introduction to parameter estimation with Gomperts and Logistic curves. In

addition, we recall a statistical method called cross-validation for prediction. We state

continuous, discrete, continuous fractional and discrete fractional forms of Gompertz and

Logistic curves. We use the tumor growth data for twenty-eight mice for the comparison.

These control mice were inoculated with tumors but did not receive any succeeding

treatment. We claim that the discrete fractional type of sigmoidal curves have the best

data fitting results when they are compared to the other types of models.
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Chapter 1

INTRODUCTION AND PRELIMINARIES

In the last few decades, fractional calculus has become a research area where we see

its applications in bioscience, engineering and applied mathematics

[30, 31, 32, 33, 34, 35]. Fractional calculus is a branch of mathematical analysis that

allows integrals and derivatives to have any positive real order. Discrete fractional

calculus is the discrete version of fractional calculus which concerns any positive real

order of sum and difference. For instance, one can calculate the 1/3 − th order difference

or
√

5 − th sum of a function.

In Section 1.1, we present the historical background of fractional calculus. Then, in

Section 1.2, we consider some important special functions such as Gamma function and

Mittag-Leffler function. In addition, we introduce nabla fractional exponential and

trigonometric functions.

1.1. Historical Background of Discrete Fractional Calculus

The idea of Fractional Calculus goes back to years when Marquis de L’Hospital

(1661 − 1704) and Gottfried Wilhelm Leibniz (1646 − 1716) exchanged ideas through

letters about the notations and basics of calculus. In L’Hospital’s note, he was wondering

of Leibniz’s notation dny/dxn for the derivative of integer order n > 0 when n = 1/2. In

Leibniz’s reply, dated 30 September 1695, he wrote to L’Hospital as follows: “This is an

apparent paradox from which, one day, useful consequences will be drawn.” Thus,

fractional calculus was born. In the following years, some famous mathematicians, such as

Euler, Lagrange, Lacroix, Fourier, Liouville and Riemann, developed the theory of
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fractional calculus. In fact, in his 700− page textbook, S. F. Lacroix devoted two pages to

fractional calculus, showing eventually that

d1/2x

dx1/2
=

2
√
x

√
π
⋅

This important result is the same as Riemann-Liouville definition of fractional derivative.

Furthermore, differences of fractional order were initially defined by Kuttner in 1957 [36].

The first work, devoted exclusively to the subject of fractional calculus, is the book

published by Oldham and Spanier in 1974 [29]. Currently, the mathematicians,

[3, 6, 23, 24, 25] have made many developments in the theory of fractional and discrete

fractional calculus.

1.2. Special Functions of Fractional Calculus

In this section, we concentrate on some fundamental special functions which are

quite important in the study of the theory of fractional calculus. First, we recall Gamma

function and some basic properties of this function.

1.2.1. Gamma Function. Euler’s Gamma function Γ(x), which generalizes the

factorial n! and allows n to take also non-integer and even complex values, is one of the

basic functions of the discrete fractional calculus. The Gamma function is defined by the

integral

Γ(x) =

∞

∫
0

e−ttx−1dt, x ∈ R+.

The Gamma function satisfies the following functional difference equation

Γ(x + 1) = xΓ(x).

This can be proved by using integration by parts, so we have

Γ(x + 1) =

∞

∫
0

e−ttxdt
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= lim
b→∞

b

∫
0

e−ttxdt

= lim
b→∞

[e−tx]
b
0 + lim

b→∞
[x

b

∫
0

e−ttx−1dt]

= x
∞

∫
0

e−ttx−1dt

= xΓ(x).

In addition, for any natural number n, we have the following property

Γ(n) = (n − 1)!.

Figure 1.2.1, shows the graph of Γ(x), for the real values of x.

Figure 1.2.1. Gamma Function

For further reading about Gamma function, we refer to a book by Igor Podlubny [26].

1.2.2. Mittag-Leffler Function. The Mittag-Leffler function, which plays a

significant role in the solutions of non-integer order differential equations, was first

introduced by Gösta Mittag-Leffler in [27]. The Mittag-Leffler functions with one and

3



two-parameters are defined by the series expansion as the following form

Eα(x) =
∞

∑
k=0

xk

Γ(αk + 1)
,

Eα,β(x) =
∞

∑
k=0

xk

Γ(αk + β)
,

where α,β are positive real numbers. The two parameter function of Mittag-Leffler type

was initially defined by Ravi P. Agarwal in 1953 [28].

Note that, for α = 1 and β = 1, we obtain exponential function given as the following

form

E1,1(x) =
∞

∑
k=0

xk

Γ(k + 1)
=

∞

∑
k=0

xk

k!
= ex.

Therefore, it can be concluded that the Mittag-Leffler function is the generalization of the

exponential function ex.

In the literature, the discrete Mittag-Leffler functions with one and two parameters

were defined as

Fα(at) =
∞

∑
k=0

aktk

Γ(αk + 1)
,

Fα,β(at) =
∞

∑
k=0

aktk

Γ(αk + β)
,

where α,β are positive real numbers and ∣a∣ < 1. In addition, for any real number ν, the

discrete Mittag-Leffler is defined in [3] in the following way

Fα,β(at
ν) =

∞

∑
k=0

aktkν

Γ(αk + β)
⋅

1.3. Falling and Rising Factorials

The falling and rising factorial powers are the basic notions used in the theory of

fractional calculus. Whereas, falling factorial is defined in delta (forward) fractional

calculus, rising factorial is used in nabla (backward) fractional calculus. In our study, we

4



are interested in using nabla fractional calculus, therefore we frequently see the notation

of rising factorial power.

1.3.1. Falling Factorial. The falling factorial power tr (read ‘to the r falling’) is

defined as

tr = t(t − 1)(t − 2)⋯(t − r + 1) =
n−1

∏
k=0

(t − k) =
Γ(t + 1)

Γ(t + 1 − r)
, r ∈ N.

The properties of the falling factorial (factorial polynomial) can be found in [16].

1.3.2. Rising Factorial. The rising factorial power tr (read ‘to the r rising’) is

defined in [4] as

tr = t(t + 1)(t + 2)⋯(t + r − 1) =
n−1

∏
k=0

(t + k), r ∈ N.

and t0 = 1. This function is also known as the Pochhammer symbol in the theory of

special functions.

Let α be any number. Then, tα is defined as

tα =
Γ(t + α)

Γ(t)
,

where t ∈ R/ {⋯,−2,−1,0} , and 0α = 0.

Next, we recall some basic properties of the rising factorial power function. For

further reading, we refer to the readers [3].

Lemma 1.3.1. (i)∇tα = αtα−1.

(ii)tα(t + α)β = tα+β.

(iii)∇−α
0 (t + 1)β = Γ(β+1)

Γ(β+α+1)(t + 1)α+β. (PowerRule)

5



After seeing all the graphs and approximations, one can conclude that the closer to

the continuous case is, the better job it does. In Figures (1.3.1), (1.3.2), (1.3.3), (1.3.4) we

consider tα, tα, tα for different values of α (α = 1, α = .98, α = .96, α = .94) .

Figure 1.3.1. tα, tα, tα for α=1

Figure 1.3.2. tα, tα, tα for α=0.98
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Figure 1.3.3. tα, tα, tα for α=0.96

Figure 1.3.4. tα, tα, tα for α=0.94

1.4. The Fractional Sum and Difference Operators

In this section, we recall definition of the fractional sum of a function f an arbitrary

order α > 0, denoted by ∇−α
a f, starting from a. In addition, ∇α

af will denote the fractional

difference of a function f. First, we consider the α−fractional sum of a function f .

7



Definition 1.4.1. Let a be any real number and α be any positive real number. The

α − th order fractional sum of f is defined [6] as

∇−α
a f(t) =

t

∑
s=a

(t − ρ(s))α−1

Γ(α)
f(s), (1.1)

where t = a + 1, a + 2, . . . and ρ(t) = t − 1 is backward jump operator on the time scale

calculus [15].

Remark 1.4.2. Note that for α = 1, the equation (1.1) turns into discrete sum

operator as given in this form

∇−1
a f(t) =

t

∑
s=a

f(s).

Next, we proceed to the fractional difference of a function f(t).

Definition 1.4.3. Let a be any real number and α be any positive real number such

that 0 < n − 1 < α < n where n is an integer. The α − th order fractional difference (a

Riemann-Liouville fractional difference) of f is defined [6] by

∇α
af(t) = ∇

n∇
−(n−α)
a f(t) = ∇n

t

∑
s=a

(t − ρ(s))n−α−1

Γ(n − α)
f(s),

where f is defined on Na = {a, a + 1, a + 2, . . .} .

Theorem 1.4.4. (Commutative Property of the Fractional Sum and Difference) For

any α > 0, the following equality holds:

∇−α
a+1∇f(t) = ∇∇

−α
a f(t) −

(t − a + 1)α−1

Γ(α)
f(a),

where f is defined on Na.

This property allows us to interchange the order of sum and difference operators and

as you can see above, the result is slightly different as a constant. We refer to the readers

[37] for the proof of this basic property.

8



Theorem 1.4.5. (Leibniz Rule) For any α > 0, α − th order fractional difference of

the product fg is given in this form

t
∇α
af(t).g(t) =

t−a

∑
n=0

(
α

n
) [

t−n
∇ α−nf(t − n)] [ ∇ng(t)]

where a be any real number and f, g are defined on Na = {a, a + 1, a + 2, . . .} . For the proof

of Leibniz Rule, we refer to the readers [5].

1.5. Nabla Fractional Exponential and Trigonometric Functions

Definition 1.5.1. For any α > 0 , nabla exponential function is defined as the

following form

∧

eα,α(a, t
α) =

∞

∑
n=0

an(t + 1)(n+1)α−1

Γ((n + 1)α)
,

where ∣a∣ < 1 and t ≥ 0.

Figure 1.5.1. Nabla Exp. Growth Function
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Figure 1.5.2. Nabla Exp. Decay Function

We know that trigonometric functions can be represented by the exponential

function. In discrete fractional calculus, we employ the same idea to obtain nabla

fractional trigonometric functions.

Definition 1.5.2. (Nabla Fractional Sine Function) For any α > 0, nabla fractional

sine function is given as

∧

sinα,α(a, t) =
[
∧

eα,α(ai, tα) −
∧

eα,α(−ai, tα)]

2i
,

where ∣a∣ < 1 and t is defined on N1 = {1,2,3, . . .} .

Definition 1.5.3. (Nabla Fractional Cosine Function) For any α > 0, nabla

fractional cosine function is given as

∧

cosα,α(a, t) =
[
∧

eα,α(ai, tα) +
∧

eα,α(−ai, tα)]

2
,

where ∣a∣ < 1 and t is defined on N1 = {1,2,3, . . .} .

10



Figure 1.5.3. Fractional Sine Function

Figure 1.5.4. Fractional Cosine Function

Since we use the Putzer algorithm in Chapter 4, we recall this theorem and for

further reading, we refer to the readers [3].
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Theorem 1.5.4. (Putzer Algorithm) Let A be a 2 × 2 matrix. If λ1, λ2 are the

eigenvalues of A, then

Φ(A, t) =M0p1(t) +M1p2(t)

where p1(t) and p2(t) are chosen to satisfy the following system:

[
∇α
ap1(t)

∇α
ap2(t)

] = [
λ1 0
1 λ2

] [
p1(t)
p2(t)

] , [
p1(0)
p2(0)

] = [
1
0
]

and M0, M1 are defined by

M0 = I,

M1 = (A − λ1I)M0.

12



Chapter 2

NABLA COMPLETELY MONOTONIC FUNCTIONS

Completely monotonic functions play an important role in a variety of branches of

mathematics such as potential theory [7], probability theory [8, 9], physics [10],

numerical and asymptotic analysis [11]. The theory on completely monotonic functions

whose all order derivative exist was first given by Felix Hausdorff in 1921 [1]. Such a

concept helps us to understand the qualitative behavior of a function in the given domain.

In our study, we are interested in complete monotonicity of functions on a discrete

domain in order to analyze the discrete Mittag-Lefler function.

In this chapter, we first consider nabla operator, also known as backwards difference

operator. Then we give some properties about nabla operator, and we recall some

theorems such as fundamental theorem of nabla calculus. We give the definition of

completely monotonic functions on R and then we introduce completely monotonic

functions on Z with nabla operator. In this study, we entitle such functions as “nabla

completely monotonic functions”. Then we state and prove some theorems about nabla

completely monotonic functions.

2.1. Definition of Nabla Operator and Some Properties

In this section, we summarize basic definitions and notations from the nabla

difference calculus.

Definition 2.1.1. The backward difference operator, or nabla operator (∇) , for a

function f ∶ Na Ð→ R is defined by

13



(∇f) (t) = f(t) − f (ρ(t)) = f(t) − f(t − 1),

where Na = {a, a + 1, a + 2, . . .} and ρ(t) = t − 1, known as backward jump operator on

time scale calculus [15].

Definition 2.1.2. The definite nabla sum of f ∶ Na Ð→ R is given by

d

∫
c

f(t)∇t =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d

∑
t=c+1

f(t), if c < d

0, if c = d

−
d

∑
t=c+1

f(t), if d < c

where c, d ∈ Na.

Next, we state the fundamental theorem of nabla calculus.

Theorem 2.1.3. Let f ∶ Na Ð→ R and F be an anti-nabla difference of f on Na ,

that is ∇F (t) = f(t) for t ∈ Na+1, then for any c, d ∈ Na, we have

d

∫
c

f(t)∇t = F (d) − F (c).

Definition 2.1.4. The nabla product of two functions u, v ∶ Na Ð→ R and t ∈ Na+1, is

given by

∇ (u(t)v(t)) = u(t)∇v(t) + v(ρ(t))∇u(t).

Lemma 2.1.5. If ∇f(t) ≤ 0, then f(t) is decreasing for all t ∈ Na+1.

2.2. Introduction to Completely Monotonic Functions

In this section, we give a brief introduction to completely monotonic functions on R

and then we proceed to complete monotonicity of a real valued function on a discrete

domain.

14



Definition 2.2.1. A function f ∶ (0,∞)Ð→ R is said to be completely monotonic, if

f has derivatives of all orders and if it satisfies the following condition

(−1)nf (n)(x) ≥ 0 and n = 0,1,2,3, . . .

for all x > 0.

Many examples and theorems about completely monotonic functions can be found in

a paper by Miller and Samko. [2].

Now, we define completely monotonic functions on a discrete domain.

Definition 2.2.2. A function f ∶ Na Ð→ R is said to be nabla completely monotonic,

for any function f on Na (with nabla derivatives of all orders) and if it satisfies for each

n=0,1,2,. . .

(−1)n∇nf(x) ≥ 0

where x ∈ {n + 1, n + 2,⋯} , and a is a real number.

Remark 2.2.3. If a real valued function f on a discrete domain is nabla completely

monotonic, then it can be easily seen for m = 0,1,2,⋯ and for x ∈ {m + 1,m + 2,⋯}

∇2mf(x) and −∇2m+1f(x)

are also nabla completely monotonic.

2.3. Theorems on Nabla Completely Monotonic Functions

In this section, we will state and prove some basic theorems for nabla completely

monotonic functions to have some ideas about how the concept is related to the stability

of fractional difference equations.

15



Theorem 2.3.1. If f(x) and g(x) are nabla completely monotonic real valued

functions, then

i) af(x) + bg(x) is also nabla completely monotonic where a and b are nonnegative

constants.

ii) f(x)g(x) is nabla completely monotonic.

Proof. i) If f(x) and g(x) are nabla completely monotonic functions, then by

Definition 2.2.2 we have

(−1)n∇nf(x) ≥ 0 and (−1)n∇ng(x) ≥ 0

for n = 0,1,2,3,⋯ and x ∈ {n + 1, n + 2,⋯}.

Since a and b are nonnegative constants, the following holds,

a(−1)n∇nf(x) ≥ 0 and b(−1)n∇ng(x) ≥ 0

Therefore we have,

a(−1)n∇nf(x) + b(−1)n∇ng(x) ≥ 0

for n = 0,1,2,3,⋯ and x ∈ {n + 1, n + 2,⋯}.

Thus, af(x) + bg(x) is nabla completely monotonic.

ii) To prove this part, we use Leibniz formula for fractional discrete calculus.

Leibniz rule [5] states, If m is a nonnegative integer,

∇mf(x)g(x) =
m

∑
n=0

(
m

n
) [ ∇m−nf(x − n)] [ ∇ng(x)] .

We need to show that

(−1)m∇mf(x)g(x) ≥ 0

16



for m = 0,1,2,3,⋯ and x ∈ {m + 1,m + 2,⋯} .

By using Leibniz rule we have

(−1)m∇mf(x)g(x) = (−1)m
m

∑
n=0

(
m

n
) [ ∇m−nf(x − n)] [ ∇ng(x)] .

We expand our series and thus we get

(−1)m {(
m

0
) [ ∇mf(x)] g(x) + (

m

1
) [ ∇m−1f(x − 1)]∇g(x) +⋯

+(
m

m
) [ f(x −m)]∇mg(x)} .

Let x ∈ {m + 1,m + 2,⋯}, so the nonnegativity holds and we obtain the following

(
m

0
) [ (−1)m∇mf(x)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g(x) + (
m

1
) [ (−1)m−1∇m−1f(x − 1)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(−1)∇g(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+⋯

≥ 0 ≤ 0 ≤ 0

+(
m

m
) f(x −m) [(−1)m ∇mg(x)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
.

≥ 0

Also, note that

f(x) ≥ 0 and g(x) ≥ 0 for all x ∈ Na where Na = {a, a + 1,⋯} .

Thus, we get

(−1)m∇mf(x)g(x) ≥ 0 for x ∈ {m + 1,m + 2,⋯} .

This implies that f(x)g(x) is nabla completely monotonic. �

Theorem 2.3.2. Let y = f(x) be a nabla completely monotonic function and let the

power series

ϕ (y) =
∞

∑
k=0

aky
k

17



converge for all y in the range of the function y = f (x). If ak ≥ 0 for all k = 0,1,2, . . . ,

then ϕ [f (x)] is nabla completely monotonic.

Proof. We need to show that (−1)
n
∇n ( ϕ ○ f) (x) ≥ 0 for all x ∈ {n + 1, n + 2, . . .}.

By Definition 2.2.2 we have

(−1)
n
∇n ( ϕ ○ f) (x) = (−1)

n
∇n

∞

∑
k=0

ak [f
k (x)] .

Since the power series is convergent, we can take the nth order nabla difference operator

inside the sum notation. So, we obtain

∞

∑
k=0

ak(−1)n∇n [fk (x)] .

It is sufficient to prove that fk is nabla completely monotonic. We will prove this by

Mathematical induction.

For k = 1, f 1 is nabla completely monotonic.

For k = 2, f 2 = f (f + 1) = f 2 + f is nabla completely monotonic using Theorem 2.3.1.

Let’s assume that for k = n is true. By Induction assumption, fn is nabla completely

monotonic.

For k = n + 1, we will use the Lemma 1.3.1 and by the Induction assumption we have

fn+1 = fn (f + n)
1

is nabla completely monotonic.

So, fk (x) is nabla completely monotonic.

Thus, we obtain

(−1)n∇n [fk (x)] ≥ 0 and
∞

∑
k=0

ak(−1)n∇n [fk (x)] ≥ 0.

This implies that ϕ [f (x)] is nabla completely monotonic. �
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Next, we prove nabla complete monotonicity of generalized Mittag-Leffler functions.

In our study, we are interested in discrete Mittag-Leffler function using complete

monotonicity so that one can examine the stability of nonlinear fractional difference

equation, in addition, such a study will help us to decide the range of α in our sigmoidal

models for tumor growth data in Chapter 5.

Theorem 2.3.3. The generalized discrete Mittag-Leffler function Fα,β (λ,
1
x
) is

nabla completely monotonic for all α > 0, β > 0 and λ ≥ 0.

Proof. Recall that the generalized discrete Mittag-Leffler function is given in the

following form

Fα,β (λ,
1

x
) =

∞

∑
k=0

λk

Γ (αk + β)
(

1

x
)
k

⋅

We use the same idea that we had in the previous theorem. Therefore, it is sufficient to

show that 1
x is nabla completely monotonic.

For m = 1, the following holds,

(−1)∇ (
1

x
) = −(

1

x
−

1

x − 1
) =

1

x (x − 1)
=

1

x2
≥ 0.

For m = 2, the nonnegativity also holds,

(−1)2∇2 (
1

x
) = ∇(−

1

x2
) =

2

x (x − 1) (x − 2)
=

2

x3
≥ 0.

For m = n, we have

(−1)n∇n (
1

x
) =

(−1)
2n
n!

xn+1
≥ 0.

Thus, 1
x is nabla completely monotonic and since we have the following

(
1

x
)
k

= (
1

x
)(

1

x
+ 1)(

1

x
+ 2)⋯(

1

x
+ k − 1) .
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So, ( 1
x
)
k

is also nabla completely monotonic using Theorem 2.3.1.

Also, we know that Gamma function is nonnegative on the interval (0,∞). Finally, we

obtain

∞

∑
k=0

λk

Γ (αk + β)

⎡
⎢
⎢
⎢
⎢
⎣

(−1)n∇n (
1

x
)
k⎤⎥
⎥
⎥
⎥
⎦

≥ 0.

This implies that, the generalized discrete Mittag-Leffler function Fα,β (
1
x
) is nabla

completely monotonic. �

From the literature, we see that the papers give a connection between the concept of

complete monotonicity of a function and the generalized Mittag-Leffler stability [13, 14].

Thus, this chapter will lead us or even others to find the stability of discrete

Mittag-Leffler function.
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Chapter 3

N -TRANSFORM TABLE

3.1. A Brief Introduction to Laplace Transform

The Laplace Transform is a well-known mathematical method for solving differential

equations which arise in physics, biology, economics and engineering problems. By

applying the Laplace transform, one can convert an ordinary differential equation into an

algebraic equation and obviously, an algebraic equation is generally easier to deal with. In

addition, thanks to the availability of large computers, its applications have become

increasingly significant tools in the numerical solution of mathematical problems [12]. In

order to make this mathematical method clear, we present Laplace transform:

Definition 3.1.1. The Laplace transform of a function f(t) of a real variable

t ∈ R+ = (0,∞) is defined by

L{f(t)}(s) =

∞

∫
0

e−stf(t)dt = F (s), (s ∈ C) .

In the next section, we recall the discrete Laplace transform also known as N

transform in order to find the solutions of nabla fractional difference equation. For further

reading about N transform, we refer to the readers [3].

3.2. Definition of N -Transform and Some Properties

In this section, we give a table called N−transform table for functions which are

defined on Z. This table is a great tool for us to find solutions of nabla fractional

difference equations. First, we recall the definition of N transform:
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Definition 3.2.1. Discrete Laplace transform (N -transform) for a function

f ∶ Na → R is defined by

Na(f(t))(s) =
∞

∑
t=a

(1 − s)
t−1
f(t).

We use the notation N for N1, If domain of the function f is N1. Now we proceed

the following properties which can be found in [3].

Lemma 3.2.2. For any α ∈ R / {. . . ,−2,−1,0} ,

(i) N1(tα−1)(s) =
Γ(α)

sα
, ∣1 − s∣ < 1, and

(ii) N1(tα−1ν−t)(s) =
να−1Γ(α)

(s + ν − 1)
α , ∣1 − s∣ < ν.

(iii) N1(tα)(s) =
α

s
N1(t

α−1)(s).

(iυ) Na(f(σ(t)) = (1 − s)−1Na+1f(t).

(υ) Na(∇α
af(t))(s) = s

−αNa(f(t))(s).

(υi) Na+1(∇
α
af(t))(s) = s

−αNa(f(t))(s) − (1 − s)a−1f(a), where 0 < α < 1.

3.3. N -Transform of Discrete Fractional Exponential Function

First, recall the nabla exponential function as the following

êα,α(λ, (t − a)
α) =

∞

∑
n=0

λn(t − a + 1)(n+1)α−1

Γ ((n + 1)α)
⋅ (3.1)

We apply the N -transform to each side of (3.1) to obtain

Na (êα,α (λ, (t − a)α)) (s) = Na (
∞

∑
n=0

λn(t − a + 1)(n+1)α−1

Γ ((n + 1)α)
) (s). (3.2)

Expand our series on the right hand side of (3.2), thus we get

Na ({
(t − a + 1)α−1

Γ (α)
+
λ(t − a + 1)2α−1

Γ (2α)
+
λ2(t − a + 1)3α−1

Γ (3α)
+⋯})(s). (3.3)
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By the linearity property of N -transform, (3.3) can be written as

Na (
(t − a + 1)α−1

Γ (α)
) (s) +Na (

λ(t − a + 1)2α−1

Γ (2α)
) (s) +Na (

λ2(t − a + 1)3α−1

Γ (3α)
) (s) +⋯.

Using the Lemma 3.2.2, we have

{
(1 − s)

a−1

sα
+

(1 − s)
a−1

λ

s2α
+

(1 − s)
a−1

λ2

s3α
+⋯} ⋅

Factor
(1 − s)

a−1

sα
out, thus we get

(1 − s)
a−1

sα
{1 +

λ

sα
+
λ2

s2α
⋯} , ∣λ∣ < 1.

Finally, the infinite sum above can be written in the following form by using the

geometric series expansion

(1 − s)
a−1

sα (1 − λ
sα

)
=

(1 − λ) (1 − s)
a−1

sα − λ
,

Thus, we have the following result

Na (êα,α (λ, (t − a)α)) (s) =
(1 − s)

a−1

sα − λ
⋅

3.4. N -Transform of Discrete Fractional Trigonometric Functions

From the literature, we see that trigonometric functions play a significant role in a

variety of branches of mathematical analysis. Of particular importance is their place in

Fourier analysis which has a broad range in mathematics and especially applications in

engineering. Fourier transform is an important tool to separate an image into its sine and

cosine components. Recently, we encounter the discrete Fourier transform which is a

discrete version of Fourier transform. The discrete Fourier transform requires an input

function that is discrete. Therefore, discrete trigonometric functions are quite essential in

Fourier analysis as well. In this section, we define nabla fractional trigonometric

functions. Furthermore, we consider N -Transform of discrete fractional trigonometric
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functions. We start proving Na-transform of nabla fractional sine function. Apply the

Na-transform to each side of the nabla fractional sine function to obtain

Na ({ŝinα,α(b, t − a)}) (s) = Na ({
êα,α (ib, (t − a)α) − êα,α (−ib, (t − a)α)

2i
})(s)⋅

For simplicity, we call I for the right hand side of the equation above. We just follow the

same steps as we did in the previous section and we get

I =
Na {êα,α (ib, (t − a)α)} (s) −Na {êα,α (−ib, (t − a)α)} (s)

2i

=

(1 − s)
a−1

(sα − ib)
−

(1 − s)
a−1

(sα + ib)

2i

=
b (1 − s)

a−1

s2α + b2
⋅

Thus, we conclude that

Na ({ŝinα,α(b, t − a)}) (s) =
b (1 − s)

a−1

s2α + b2
⋅

Next, we proceed to Na-transform of cosine fractional function. We apply the method as

we did for ŝinα,α(b, t − a). So we have

Na ({ĉosα,α(b, t − a)}) (s) = Na ({
êα,α (ib, (t − a)α) + êα,α (−ib, (t − a)α)

2
})(s).

We use the linearity property of N -transform to the right hand side of the equation above

to obtain

=
Na (êα,α (ib, (t − a)α)) (s) +Na (êα,α (−ib, (t − a)α)) (s)

2
⋅

Using the Lemma 3.2.2, we obtain

=

(1 − s)
a−1

(sα − ib)
+

(1 − s)
a−1

(sα + ib)

2

which equals to

=
sα (1 − s)

a−1

s2α + b2
.
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Thus, we conclude that

Na ({ĉosα,α(b, t − a)}) (s) =
sα (1 − s)

a−1

s2α + b2
⋅

We continue our proofs with N -transform of fractional hyperbolic functions namely,

ĉoshα,α(b, t − a) and ŝinhα,α(b, t − a). We apply Na-transform to each side of the definition

of fractional hyperbolic cosine function to obtain

Na (ĉoshα,α(b, t − a)) (s) = Na ({
êα,α (b, (t − a)α) + êα,α (−b, (t − a)α)

2
})(s).

Using the same steps for the previous proofs above, we conclude

Na (ĉoshα,α(b, t − a)) (s) =
sα (1 − s)

a−1

s2α − b2
⋅

Similarly, we follow the same steps to prove the N -transform of fractional hyperbolic sine

function, thus we have

Na (ŝinhα,α(b, t − a)) (s) = Na ({
êα,α (b, (t − a)α) − êα,α (−b, (t − a)α)

2
})(s).

Finally, we get

Na (ŝinhα,α(b, t − a)) (s) =
b (1 − s)

a−1

s2α − b2
⋅

In order to see the method of N -transform to solve fractional equations easier, we

proceed to an example.

Example 3.4.1. Consider the following initial value problem

∇
1
3
0 y(t) = 4, for t = 1,2, . . .

∇
−

2
3

0 y(t)t=0 = y(0) = 1.

(3.4)

Applying N1−transform to each side of the equation (3.4), we have

N1(∇
1
3
0 y(t))(s) = N1(4)(s).

Using Lemma 3.2.2 , we obtain

s
1
3N0(y(t))(s) − (1 − s)−1y(0) =

4

s
⋅
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f(t) F (s)

(t − a + 1)α−1

Γ(α)

(1 − s)a−1

sα

(t − a + 1)α−1 ν−t

Γ(α)

να−1 (1 − s)a−1

(s + ν − 1)α

êα,α(λ, (t − a + 1)α)
(1 − s)a−1

(sα − λ)

ŝinα,α(b, t − a + 1)
b (1 − s)a−1

(s2α + b2)

ĉosα,α(b, t − a + 1)
sα (1 − s)a−1

(s2α + b2)

ŝinhα,α(b, t − a + 1)
b (1 − s)a−1

(s2α − b2)

ĉoshα,α(b, t − a + 1)
sα (1 − s)a−1

(s2α − b2)

(
1

1 − a2
)
t−a+1 (1 − s)a−1

s − a2

Table 3.4.1. N -Transform Table

Since y(0) = 1, the equation above can be written as

N0(y(t))(s) =
4

s4/3
+

1

(1 − s)s1/3
⋅

Next, we use (Table 3.4.1) to obtain

N0(y(t))(s) =
4

Γ(4/3)
N0(t

1/3)(s) +
1

Γ(1/3)
N0((t + 1)−2/3)(s).

Apply the inverse N0−transform to each side of the equation, finally we conclude the

solution of the initial value problem in the given form

y(t) =
4

Γ(4/3)
t1/3 +

1

Γ(1/3)
(t + 1)−2/3,

where t = 0, 1, 2, . . . .
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3.5. Solutions of up to First Order Nonhomogeneous Nabla Fractional

Difference Equations

Consider the up to first order nonhomogeneous initial value problem.

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇α
0y(t) = −ay(t − 1) + b for t = 1,2, . . .

∇
−(1−α)
0 y(t) ∣t=0 = y(0) = c

(3.5)

where 0 < α < 1 and ∣a∣ < 1.

First, apply the N1-transform to each side of the equation (3.5) to have

N1(∇
α
0y(t))(s) = −aN1(y(t − 1))(s) + bN1(1)(s).

By using the Lemma 3.2.2 we have

sαN0(y(t))(s) − (1 − s)−1y(0) = −aN1(y(t − 1))(s) +
b

s
⋅

Doing some algebra, we get the following

(
sα

1 − s
+ a)N1(y(t − 1))(s) =

y(0)

(1 − s)
+
b

s

and finally

N1(y(t − 1))(s) =
y(0)

sα (1 + a(1−s)
sα )

+
b(1 − s)

ssα (1 + a(1−s)
sα )

⋅

Expand
1

1 − (−a)(1 − s)s−α
as a geometric series and we have

N1(y(t − 1))(s) = (
y(0)

sα
+
b(1 − s)

ssα
)(1 +

(−a)(1 − s)

sα
+

(−a)2(1 − s)

s2α
+⋯) ⋅

Since y(0) = c we obtain

N1(y(t − 1))(s) = (c +
b(1 − s)

s
)(

1

sα
+

(−a)(1 − s)

s2α
+

(−a)2(1 − s)2

s3α
+⋯) ⋅ (3.6)
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By using Lemma 3.2.2 (i), the right hand side of the equation (3.6) yields

= c{
N1(tα−1)(s)

Γ(α)
+ (−a)(1 − s)

N1(t2α−1)(s)

Γ(2α)
+ (−a)2(1 − s)2N1(t3α−1)(s)

Γ(3α)
+⋯}

+ [
b(1 − s)

s
]{
N1(tα−1)(s)

Γ(α)
+ (−a)(1 − s)

N1(t2α−1)(s)

Γ(2α)
+ (−a)2(1 − s)2N1(t3α−1)(s)

Γ(3α)
+⋯}

and apply Lemma 3.2.2 (iv) to have the following form

= c

⎧⎪⎪
⎨
⎪⎪⎩

N1(tα−1)(s)

Γ(α)
+ (−a)

N2((t − 1)
2α−1

)(s)

Γ(2α)
+ (−a)2N3((t − 2)

3α−1
)(s)

Γ(3α)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

+
b

s

⎧⎪⎪
⎨
⎪⎪⎩

N2((t − 1)α−1)(s)

Γ(α)
+ (−a)

N2((t − 2)
2α−1

)(s)

Γ(2α)
+ (−a)2N2((t − 3)

3α−1
)(s)

Γ(3α)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

⋅

Again, by employing Lemma 3.2.2 (i) to obtain

= c

⎧⎪⎪
⎨
⎪⎪⎩

N1(tα−1)(s)

Γ(α)
+ (−a)

N1((t − 1)
2α−1

)(s)

Γ(2α)
+ (−a)2N1((t − 2)

3α−1
)(s)

Γ(3α)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

+ b

⎧⎪⎪
⎨
⎪⎪⎩

N2((t − 1)α)(s)

Γ(α + 1)
+ (−a)

N2((t − 2)
2α
)(s)

Γ(2α + 1)
+ (−a)2N2((t − 3)

3α
)(s)

Γ(3να + 1)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

⋅

Similar to the previous proof, it can easily be seen that

N2((t − 1)
2α−1

)(s) = N1((t − 1)
2α−1

)(s), N3((t − 2)
3α−1

)(s) = N1((t − 2)
3α−1

)(s), . . .

by using the definition of N−transform, we have the following

N1(y(t − 1))(s) = c

⎧⎪⎪
⎨
⎪⎪⎩

N1(tα−1)(s)

Γ(α)
+ (−a)

N1((t − 1)
2α−1

)(s)

Γ(2α)
+ (−a)2N1((t − 2)

3α−1
)(s)

Γ(3α)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

+ b

⎧⎪⎪
⎨
⎪⎪⎩

N1((t − 1)α)(s)

Γ(α + 1)
+ (−a)

N1((t − 2)
2α
)(s)

Γ(2α + 1)
+ (−a)2N1((t − 3)

3α
)(s)

Γ(3α + 1)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

⋅

Employing the inverse N1−transform to each side of the equation above to obtain

y(t − 1) = c

⎧⎪⎪
⎨
⎪⎪⎩

tα−1

Γ(α)
+ (−a)

(t − 1)
2α−1

Γ(2α)
+ (−a)2 (t − 2)

3α−1

Γ(3α)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

+ b

⎧⎪⎪
⎨
⎪⎪⎩

(t − 1)α

Γ(α + 1)
+ (−a)

(t − 2)
2α

Γ(2α + 1)
+ (−a)2 (t − 3)

3α

Γ(3α + 1)
+⋯

⎫⎪⎪
⎬
⎪⎪⎭

which can be written as the following form

y(t − 1) = c
∞

∑
n=0

(−a)n(t − n)(n+1)α−1

Γ((n + 1)α)
+ b

∞

∑
n=1

(−a)n−1(t − n)nα

Γ(nα + 1)
⋅
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Shift one unit left to conclude the solution of the initial value problem as the following

form

y(t) = c
∞

∑
n=0

(−a)n(t − n + 1)(n+1)α−1

Γ((n + 1)α)
+ b

∞

∑
n=1

(−a)n−1(t − n + 1)nα

Γ(nα + 1)
⋅

Note that, for b = 0, we obtain the discrete Mittag-Leffler function.
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Chapter 4

SEQUENTIAL FRACTIONAL DIFFERENCE EQUATIONS

In this chapter, we state and prove some theorems on the solutions of nabla

fractional difference equations being linearly independent or linearly dependent. Then, we

introduce the Casoration for discrete functions. Finally, we find the solutions of up to

second order nabla fractional difference equation considering the characteristic roots of its

characteristic equation as distinct and real, same and real, and complex.

4.1. Casoration and Linear Independence

In this section, we define the Casoration for discrete functions. Casoration helps us

to examine whether the set of solutions of homogeneous linear fractional equations are

linearly independent or dependent. In relation to these solutions, we state and prove some

fundamental theorems about the general solution of a nabla fractional difference equation

to support our claims.

Definition 4.1.1. The n × n matrix of Casorati is given by

c(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇
−(1−α)
a y1(t) ∇

−(1−α)
a y2(t) ⋯ ∇

−(1−α)
a yn(t)

∇
−(1−α)
a ∇α

ay1(t) ∇
−(1−α)
a ∇α

ay2(t) ⋯ ∇
−(1−α)
a ∇αyn(t)

∇
−(1−α)
a ∇

(2α)
a y1(t) ∇

−(1−α)
a ∇

(2α)
a y2(t) ⋯ ∇

−(1−α)
a ∇

(2α)
a yn(t)

⋮ ⋮

∇
−(1−α)
a ∇

((n−1)α)
a y1(t) ∇

−(1−α)
a ∇

((n−1)α)
a y2(t) ⋯ ∇

−(1−α)
a ∇

((n−1)α)
a yn(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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where ∇
((n−1)α)
a y(t) = ∇α

a∇
α
a⋯∇

α
a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y(t) and y1, y2, . . . , yn are given functions. The

determinant n − 1 times

C [y1,y2, . . . , yn ] =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∇
−(1−α)
a y1(t) ∇

−(1−α)
a y2(t) ⋯ ∇

−(1−α)
a yn(t)

∇
−(1−α)
a ∇α

ay1(t) ∇
−(1−α)
a ∇α

ay2(t) ⋯ ∇
−(1−α)
a ∇α

ayn(t)

∇
−(1−α)
a ∇

(2α)
a y1(t) ∇

−(1−α)
a ∇

(2α)
a y2(t) ⋯ ∇

−(1−α)
a ∇

(2α)
a yn(t)

⋮ ⋮

∇
−(1−α)
a ∇

((n−1)α)
a y1(t) ∇

−(1−α)
a ∇

((n−1)α)
a y2(t) ⋯ ∇

−(1−α)
a ∇

((n−1)α)
a yn(t)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

is called Casoration.

Theorem 4.1.2. Let {y1,y2, . . . , yn } be a set of n solutions of an up to n − th order

fractional linear homogeneous nabla difference equation.

The set is linearly independent ⇐⇒ Casoration is not identically equal to zero on a

discrete interval I.

Proof. We prove for the case n = 2. Let y1(t) and y2(t) be a solution of the following

initial value problem

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

p∇α
a∇

α
ay(t) + q∇

α
ay(t) + ry(t) = 0, for t=a+1, a+2,. . .

∇
−(1−α)
a y(t) ∣t=a = y(a) = 0 and ∇

−(1−α)
a ∇α

ay(a) = 0

(4.1)

on a discrete interval I, for 0 < α ≤ 1, and where p, q, r are constants.

We need to show the Casoration of y1 and y2, C [y1,y2] ≠ 0 in order to prove that

y1(t) and y2(t) are linearly independent. The Casoration is given by

C [y1,y2] =

RRRRRRRRRRRRRRRRRRRR

∇
−(1−α)
a y1(t) ∇

−(1−α)
a y2(t)

∇
−(1−α)
a ∇α

ay1(t) ∇
−(1−α)
a ∇α

ay2(t)

RRRRRRRRRRRRRRRRRRRR
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= ∇
−(1−α)
a y1(t)∇

−(1−α)
a ∇α

ay2(t) −∇
−(1−α)
a y2(t)∇

−(1−α)
a ∇α

ay1(t).

To start our proof, first we need to consider the linear system of nabla fractional

difference equations using the method of change of variables such that

y1(t) = y(t) Ô⇒ ∇α
ay1(t) = ∇

α
ay(t) = y2(t)

y2(t) = ∇α
ay(t)Ô⇒ ∇α

ay2(t) = ∇
α
a∇

α
ay(t) = −

q

p
∇α
ay(t) −

r

p
y(t) = −

q

p
y2(t) −

r

p
y1(t)

Thus, we have the following matrix form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇α
ay1(t)

∇α
ay2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

− rp −
q
p

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(t)

y2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Also the initial conditions turn into the following form

∇
−(1−α)
a y(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇
−(1−α)
a y1(t)

∇
−(1−α)
a y2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇
−(1−α)
a y(t)

∇
−(1−α)
a ∇α

ay(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦t=a

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.2)

(⇐Ô) We prove by contradiction, that is, y1 and y2 are linearly dependent, then

Casoration is identically equal to zero. If y1 and y2 are linearly dependent, then

y2 = ky1 (4.3)

holds for some k. Thus,

C [y1,y2] = (∇
−(1−α)
a y1(t))(∇

−(1−α)
a ∇α

aky1(t)) − (∇
−(1−α)
a ky1(t))(∇

−(1−α)
a ∇α

ay1(t)).

Using (4.3), we have

C [y1,y2] = k(∇
−(1−α)
a y1(t))(∇

−(1−α)
a ∇α

ay1(t)) − k(∇
−(1−α)
a y1(t))(∇

−(1−α)
a ∇α

ay1(t)) = 0.

Thus, y1 and y2 are linearly dependent.

(Ô⇒)Assume that y1 ≠ 0 , y2 ≠ 0 and let C [y1,y2] (a) = 0.
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Then the system
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

k1∇
−(1−α)
a y1(a) + k2∇

−(1−α)
a y2(a) = 0

k1∇
−(1−α)
a ∇α

ay1(a) + k2∇
−(1−α)
a ∇α

ay2(a) = 0

(4.4)

can be represented by the matrix form as the following

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇
−(1−α)
a y1(a) ∇

−(1−α)
a y2(a)

∇
−(1−α)
a ∇α

ay1(a) ∇
−(1−α)
a ∇α

ay2(a)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1

k2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (4.5)

[A]

By Cramer’s Theorem, if detA = 0, then the system (4.4) has nontrivial solution, that is

k1 and k2 are both nonzero. So, y(t), a solution of linear system of the equation can be

represented in this form

y(t) = k1y1(t) + k2y2(t).

Since y(t) is a solution, it satisfies the initial value problem (4.1). By the theorem in [3],

the linear system of equation (4.2) has the trivial solution considering the theorem of

existence and uniqueness of a solution. Therefore, we obtain

k1y1(t) + k2y2(t) = 0

on an interval I. Since k1 and k2 are both nonzero, y1 and y2 are linearly dependent. �

We finish our section with a theorem about the general solution of up to the n − th

order linear homogeneous fractional nabla difference equation. Furthermore, we use this

theorem to find the general solution of second order nabla fractional difference equation

in Section 4.2.

Theorem 4.1.3. The up to n − th order linear homogeneous fractional nabla

difference equation is given as the following form

pn(t)∇
(nα)
a y(t) + pn−1(t)∇

((n−1)α)
a y(t) +⋯ + p1(t)∇

α
ay(t) + p0(t)y(t) = 0 (4.6)
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for any t in I. Let y1(t), y2(t), . . . , yn(t) be independent solutions of (4.6). Then every

solution y(t) of (4.6) can be written as

y(t) = c1y1(t) + c2y2(t) +⋯ + cnyn(t), for some constants c1, c2, . . . , cn.

Proof. Let y(t) be a solution of (4.6). Consider the system of fractional nabla

difference and sum equations for a fixed point t =m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1∇
−(1−α)
a y1(m) + c2∇

−(1−α)
a y2(m) +⋯ + cn∇

−(1−α)
a yn(m) = ∇

−(1−α)
a y(m)

c1∇
−(1−α)
a ∇α

ay1(m) + c2∇
−(1−α)
a ∇α

ay2(m) +⋯ + cn∇
−(1−α)
a ∇α

ayn(m) = ∇
−(1−α)
a ∇α

ay(m)

⋮

c1∇
−(1−α)
a ∇

((n−1)α)
a y1(m) + c2∇

−(1−α)
a ∇

((n−1)α)
a y2(m) +⋯ + cn∇

−(1−α)
a ∇

((n−1)α)
a yn(m) =

∇
−(1−α)
a ∇

((n−1)α)
a y(m)

The system above can be represented as matrix form such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇
−(1−α)
a y(m)

∇
−(1−α)
a ∇α

ay(m)

⋮

∇
−(1−α)
a ∇

((n−1)α)
a y(m)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=

[Y ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇
−(1−α)
a y1(m) ∇

−(1−α)
a y2(m) ⋯ ∇

−(1−α)
a yn(m)

∇
−(1−α)
a ∇α

ay1(m) ∇
−(1−α)
a ∇α

ay2(m) ⋯ ∇
−(1−α)
a ∇α

ayn(m)

⋮ ⋮

∇
−(1−α)
a ∇

((n−1)α)
a y1(m) ∇

−(1−α)
a ∇

((n−1)α)
a y2(m) ⋯ ∇

−(1−α)
a ∇

((n−1)α)
a yn(m)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1

c2

⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

±

.

[A] [C]
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For a given fixed point m, Casoration C [y1,y2, . . . , yn ] ≠ 0, since the set of solutions is

linearly independent. Therefore, detA ≠ 0 which means the matrix A is invertible. Apply

[A]
−1

to each side of the system above from the left, we have

[C] = [A]
−1

[Y ] .

Thus, the system of equations has a unique solution C1, C2,. . . ,Cn. Note that the solution

of (4.6) is uniquely determined by its values at t =m, so for all t we conclude the general

solution as

y(t) = C1y1(t) +C2y2(t) +⋯ +Cnyn(t).

�

4.2. Up to Second Order Linear Homogeneous Nabla Fractional Equations

In this section, we consider up to second order linear nabla fractional equation and

develop its solutions. The second order nabla fractional equation is given by

p∇α
a∇

α
ay(t) + q∇

α
ay(t) + ry(t) = 0 for t = a + 1, a + 2, . . . (4.7)

where 0 < α < 1 and where p, q, r are constant coefficients. The characteristic equation of

(4.7) is given as

pλ2 + qλ + r = 0.

Assume that λ1 and λ2 are the roots of the characteristic equation. By using the fact that

any given equation can be represented by its characteristic roots, we have

∇α
a∇

α
ay (t) − (λ1 + λ2)∇

α
ay(t) + (λ1λ2)y(t) = 0. (4.8)

We assume the initials

∇
−(1−α)
a y(t) ∣t=a = y(a) = A and ∇

−(1−α)
a ∇α

ay(t) ∣t=a = B

exist that is A <∞ and B <∞.
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CASE I. If λ1 ≠ λ2 and λ1, λ2 ∈ R.

We assume that êα,α(λ1, (t − a)α) and êα,α(λ2, (t − a)α) are solutions of up to the

second order linear nabla fractional equation (4.8). We prove that these are solutions of

(4.8) for any λ1, λ2. In this case, we consider that a = 0. By using the fact that êα,α(λ1, tα)

is the solution of ∇ α
0y(t) = λy(t) for t = 0,1,2, . . ., we can rewrite the first and second

nabla fractional derivative of êα,α(λ1, tα). In order to consider êα,α(λ1, tα) is the solution

of equation (4.8), we need to show that it satisfies (4.8). So we have,

(λ1)
2êα,α(λ1, t

α) − (λ1 + λ2)λ1êα,α(λ1, t
α) + λ1λ2êα,α(λ1, t

α)

which equals to

(λ1)
2êα,α(λ1, t

α) − (λ1)
2êα,α(λ1, t

α) − λ2λ1êα,α(λ1, t
α) + λ1λ2êα,α(λ1, t

α) = 0

Thus, êα,α(λ1, tα) is the solution of equation (4.8).

Similarly, we can find the first and second nabla fractional derivative of êα,α(λ2, tα)

considering it is also a solution of ∇ α
0y(t) = λy(t) for t = 0,1,2, . . .. In addition,

êα,α(λ2, tα) satisfies the equation (4.8). By the Theorem 4.1.3, If the set of solutions is

linearly independent, then the general solution can be written as a linear combination of

these solutions. In order to show whether the set of solutions is linearly independent, we

will check Casoration given in the following form

C [y1, y2] =

RRRRRRRRRRRRRRRRRRRR

∇
−(1−α)
0 êα,α(λ1, tα) ∇

−(1−α)
0 êα,α(λ2, tα)

∇
−(1−α)
0 ∇α

0 êα,α(λ1, tα) ∇
−(1−α)
0 ∇α

0 êα,α(λ2, tα)

RRRRRRRRRRRRRRRRRRRR

.

=

RRRRRRRRRRRRRRRRRRRR

∇
−(1−α)
0 êα,α(λ1, tα) ∇

−(1−α)
0 êα,α(λ2, tα)

λ1∇
−(1−α)
0 êα,α(λ1, tα) λ2∇

−(1−α)
0 êα,α(λ2, tα)

RRRRRRRRRRRRRRRRRRRR

.
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Calculating the determinant above, we have

(λ2 − λ1)∇
−(1−α)
0 êα,α(λ1, t

α)∇
−(1−α)
0 êα,α(λ2, t

α) ≠ 0⋅

Because λ1 ≠ λ2 and we can show that the nabla sum of discrete exponential function is

nonzero. Nabla sum of discrete exponential function is given in this form

∇
−(1−α)
0 êα,α(λ1, t

α) = ∇
−(1−α)
0

∞

∑
n=0

λn1(t + 1)(n+1)α−1

Γ ((n + 1)α)
⋅ (4.9)

Nabla sum can move into the infinite sum, so the right hand side of (4.9) yields

=
∞

∑
n=0

λn1∇
−(1−α)
0 (t + 1)(n+1)α−1

Γ ((n + 1)α)
⋅

By using Power Rule, Lemma 1.3.1 (iii), we obtain

=
∞

∑
n=0

λn1(t + 1)nα

Γ (nα + 1)
⋅

Thus, we obtain the discrete Mittag-Leffler function

= Fα(λ1, (t + 1)α).

We know that Mittag-Leffler function is nonzero. Therefore, the sum of the discrete

fractional exponential function is nonzero. Thus, C [y1, y2] ≠ 0 and the set of solutions

{êα,α(λ1, tα), êα,α(λ2, tα)} is linearly independent and by the Theorem 4.1.3, we conclude

the general solution of (4.8) as the following form

y(t) = c1êα,α(λ1, t
α) + c2êα,α(λ2, t

α).

CASE II. If λ1 = λ2 and λ1, λ2 ∈ R.

Similar to the previous case, we consider that a = 0. In addition, we claim that

êα,α(λ1, tα) and têα,α(λ1, tα) are solutions of (4.8). Since they are solutions, they satisfy

the equation (4.8). In Case I we determined that êα,α(λ, tα) is a solution of the equation

(4.8). We also need to show that têα,α(λ, tα) is a solution of (4.8). To continue the proof,
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we use Leibniz rule [5]

t
∇α
af(t).g(t) =

t−a

∑
n=0

(
α

n
) [

t−n
∇ α−nf(t − n)] [ ∇ng(t)] .

For a = 0 we have,

t
∇α

0 êα,α(λ, t
α)t =

1

∑
n=0

(
α

n
) [

t−n
∇ α−n

0 êα,α(λ, t
α)] [ ∇nt] . (4.10)

The right hand side of the equation (4.10) can be written as

(
α

0
) [

t
∇ α

0 êα,α(λ, t
α)] t + (

α

1
) [

t−1
∇ α−1

0 êα,α(λ, t
α)]∇t (4.11)

by using the Lemma [4],

(
−α

k
) =

Γ(−α + 1)

Γ(k + 1)Γ(−α − k + 1)
,

we obtain

(
α

0
) = 1, (

α

1
) = α.

Thus, the equation (4.11) has the following form

[
t
∇ α

0 êα,α(λ, t
α)] t + α

t−1
∇ α−1

0 êα,α(λ, t
α).

Since êα,α(λ, tα) is the solution of ∇ α
0y(t) = λy(t) for t = 0,1,2, . . . we can rewrite the first

nabla fractional derivative of te∧α,α(λ, t
α) as the following form

λêα,α(λ, t
α)t + α

t−1
∇ α−1

0 êα,α(λ, t
α).

Next, we consider the second nabla fractional derivative of têα,α(λ1, tα) to obtain

λ2êα,α(λ, t
α)t + αλ

t−1
∇ α−1

0 êα,α(λ, t
α) + α

t
∇ α

0

t−1
∇ α−1

0 êα,α(λ, t
α).

We need to show that the solution têα,α(λ1, tα) satisfies the equation (4.8), so we have the

following

λ2êα,α(λ, t
α)t + αλ

t−1
∇ α−1

0 êα,α(λ, t
α) + α

t
∇ α

0

t−1
∇ α−1

0 êα,α(λ, t
α)

−2λ [λêα,α(λ, t
α)t + α

t−1
∇ α−1

0 êα,α(λ, t
α)] + λ2têα,α(λ, t

α) = 0.

If we prove our following claim, it finishes the proof.
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Claim:

t
∇ α

0

t−1
∇ α−1

0 êα,α(λ, t
α) = λ

t−1
∇ α−1

0 êα,α(λ, t
α). (4.12)

We start to prove our claim by writing the left side of the equation (4.12) as

∇
t
∇ α−1

0

t−1
∇ α−1

0 êα,α(λ, t
α). (4.13)

Then, we use the Lemma [37]

∇−α
a+1∇f(t) = ∇∇

−α
a f(t) −

(t − a + 1)α−1

Γ(α)
f(a).

Call
t−1
∇ α−1

0 êα,α(λ, tα) = f(t). So, for a = 0 , f(0) = 0 and we conclude

t
∇ α−1

1 ∇f(t) = ∇
t
∇ α−1

0 f(t).

Thus, (4.13) can be written as

t
∇ α−1

1 ∇
t−1
∇ α−1

0 êα,α(λ, t
α)

which can be easily seen as the following form

t
∇ α−1

1

t−1
∇ α

0 êα,α(λ, t
α).

By subclaim that we prove below, we obtain

t
∇ α−1

1 λêα,α(λ, (t − 1)α).

Using the definition of nabla sum, we have

λ
t

∑
s=1

(t − ρ(s))−α

Γ(1 − α)

∧

eα,α(λ, (s − 1)α).

By using substitution method, we have

λ
t−1

∑
u=0

(t − 1 − ρ(u))−α

Γ(1 − α)

∧

eα,α(λ,u
α)

which equals to

λ
t−1
∇ α−1

0 êα,α(λ, t
α).
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Thus, we conclude

t
∇ α

0

t−1
∇ α−1

0 êα,α(λ, t
α) = λ

t−1
∇ α−1

0 êα,α(λ, t
α) (4.14)

Subclaim:
t−1
∇ α

0 êα,α(λ, t
α) = λêα,α(λ, (t − 1)α)

Consider the first order nabla fractional difference equation with initial condition,

t
∇ α

0y(t) = λy(t), t = 0,1, . . . (4.15)

y(0) = 1.

It is concluded in the paper [3] that êα,α(λ, tα) satisfies (4.15). Shift (4.15) one unit left,

we have the following

t−1
∇ α

0y(t) = λy(t − 1), t = 1,2, . . .

Thus, we obtain

t−1
∇ α

0 êα,α(λ, t
α) = λe∧α,α(λ, (t − 1)α).

We now return to the proof and by using (4.14), we conclude that

λ2êα,α(λ, t
α)t + αλ

t−1
∇ α−1

0 êα,α(λ, t
α) + αλ

t−1
∇ α−1

0 êα,α(λ, t
α)

−2λ2êα,α(λ, t
α)t − 2αλ

t−1
∇ α−1

0 êα,α(λ, t
α)

+λ2êα,α(λ, t
α)t = 0

As a result, êα,α(λ, tα)t satisfies (4.8) and thus êα,α(λ, tα)t is also a solution of (4.8). We

know from Theorem 4.1.3 that if the set of solutions are linearly independent, then the

general solution can be written as a linear combination of these solutions. So, it is

sufficient to show that the set of solutions are linearly independent. By the Theorem

4.1.2, if the Casoration is not identically equal to zero, then the set of solutions are

linearly independent.
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Casoration of the set of solutions {êα,α(λ, tα)t, êα,α(λ, tα)} is given in this form

RRRRRRRRRRRRRRRRRRRR

∇
−(1−α)
0 têα,α(λ, tα) ∇

−(1−α)
0 êα,α(λ, tα)

∇
−(1−α)
0 ∇α

0 têα,α(λ, t
α) ∇

−(1−α)
0 ∇α

0 êα,α(λ, t
α)

RRRRRRRRRRRRRRRRRRRR

which equals to

RRRRRRRRRRRRRRRRRRRR

∇
−(1−α)
0 têα,α(λ, tα) ∇

−(1−α)
0 êα,α(λ, tα)

∇
−(1−α)
0 (λtêα,α(λ, tα) + α

t−1
∇ α−1

0 êα,α(λ, tα)) λ∇
−(1−α)
0 êα,α(λ, tα)

RRRRRRRRRRRRRRRRRRRR

.

By calculating the determinant, we have

− [α∇
−(1−α)
0

t−1
∇ α−1

0 êα,α(λ, t
α)]∇

−(1−α)
0 êα,α(λ, t

α).

We use the definition of nabla fractional sum, thus we get

−α∇
−(1−α)
0 [

t−1

∑
s=0

(t − 1 − ρ(s))
−α

Γ(1 − α)
êα,α(λ, s

α)]∇
−(1−α)
0 êα,α(λ, s

α).

α ≠ 0 and ∇
−(1−α)
0 êα,α(λ, tα) ≠ 0. So it follows, the Casoration is not identically equal to

zero. Finally, by the Theorem 4.1.3, the general solution of (4.8) is given in this form

y(t) = c1êα,α(λ, t
α) + c2têα,α(λ, t

α)

where c1, c2 are constants.

CASE III. If λ1 ≠ λ2 and λ1, λ2 ∈ C.

Consider up to second order linear fractional nabla equation.

∇α
a∇

α
ay(t) + b

2y(t) = 0, where t = a + 1, a + 2, . . . . (4.16)

and 0 < α < 1.
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The equation (4.16) can be transformed into system of nabla fractional difference

equations by the change of the variables, such that

y1(t) = y(t) Ô⇒ ∇αy1(t) = ∇
αy(t) = y2(t)

y2(t) =∇αy(t)Ô⇒ ∇α∇αy(t) = −b2y(t) = −b2y1(t)

and

y1(t) ∣t=a = 0, y2(t) ∣t=a = 0.

So, we have the following linear system of fractional difference equations

∇α
aY (t) = AY (t)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇α
ay1(t)

∇α
ay2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

−b2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(t)

y2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.17)

The characteristic equation of (4.16) is given as

λ2 + b2 = 0

and the roots of the characteristic equation are

λ1,2 = ∓ib.

To find the solution of (4.16), we will use Putzer Algorithm.

M0 = I

M1 = (A − λ1I) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bi 1

−b2 bi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the vector valued function p(t) is defined by

p(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1(t)

p2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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p(t) is the solution of the initial value problem

∇α
ay1(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0

1 λ2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

y(t), for t = 1,2, . . . (4.18)

∇
−(1−α)
a y(t) ∣t=a = y(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus, we have the following system of nabla fractional difference equation with initial

condition
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇α
ap1(t)

∇α
ap2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ib 0

1 −ib

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1(t)

p2(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1(a)

p2(a)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.19)

The first component p1(t) of p(t) solves the initial value problem (4.19)

∇α
ap1(t) = (ib)p1(t), p1(a) = 1.

We proved the generalized form of the nabla exponential function in (Table 3.4.1). So, we

have the solution of (4.19) as

p1(t) = (1 − ib)êα,α(ib, (t − a)
α).

Also, the second component p2(t) of p(t) solves the initial value problem (4.19), thus we

have

∇α
ap2(t) = p1(t) − (ib)p2(t), p2(a) = 0. (4.20)

In order to find p2(t), we use N -transform, and with this application we see how

N -transform works for discrete functions. Apply Na+1-transform to each side of (4.20) to

obtain

Na+1(∇
α
ap2(t))(s) = Na+1(p1(t))(s) − (ib)Na+1(p2(t))(s).
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By using Lemma 3.2.2, we get

sαNa(p2(t))(s) − (1 − s)a−1p2(a) =

Na(p1(t))(s) − (1 − s)a−1p1(a) − (ib) {Na(p2(t))(s) − (1 − s)a−1p2(a)} . (4.21)

Since p1(a) = 1 and p2(a) = 0, we simplify the equation (4.21) to have

(sα + ib)Na(p2(t))(s) = Na(p1(t))(s) − (1 − s)a−1.

From (Table 3.4.1) , we get

Na(p2(t))(s) =
(1 − ib)(1 − s)a−1

(sα + ib)(sα − ib)
−

(1 − s)a−1

(sα + ib)
⋅ (4.22)

By applying the method of partial fraction decomposition, we can write the equation

(5.2) as

Na(p2(t))(s) =
(1 − ib)(1 − s)a−1

2ib(sα − ib)
−

(1 − ib)(1 − s)a−1

2ib(sα + ib)
−

(1 − s)a−1

(sα + ib)
⋅

Again, from the (Table 3.4.1), we have the following

p2(t) =
(1 − ib)

2ib
{êα,α(ib, (t − a)

α) − êα,α(−ib, (t − a)
α)} − êα,α(−ib, (t − a)

α)

which equals to

p2(t) = (1 − ib)ŝinα,α(b, t − a) − êα,α(−ib, (t − a)
α).

Since, Φ(t) = p1(t)M0 + p2(t)M1 is a solution of initial value problem (4.16), Φ(t) can be

written as

Φ(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − ib)êα,α(ib, (t − a)α) 0

0 (1 − ib)êα,α(ib, (t − a)α)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

[(1 − ib)ŝinα,α(b, t − a) − êα,α(−ib, (t − a)
α)] ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bi 1

−b2 bi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

.
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Doing some algebra and using (Table 3.4.1), we obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉosα,α(b, t − a) − bŝinα,α(b, t − a)
1
b ŝinα,α(b, t − a) + ĉosα,α(b, t − a)

−bŝinα,α(b, t − a) − b2ĉosα,α(b, t − a) ĉosα,α(b, t − a) − bŝinα,α(b, t − a)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thus, the solution to (4.17) is given by Y (t) as the following form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĉosα,α(b, t − a) − bŝinα,α(b, t − a) 1
b ŝinα,α(b, t − a) + ĉosα,α(b, t − a)

∇α (ĉosα,α(b, t − a) − bŝinα,α(b, t − a)) ∇α (1
b ŝinα,α(b, t − a) + ĉosα,α(b, t − a))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore, the general solution to (4.16) has the following form

y(t) = c1(ĉosα,α(b, t − a) − bŝinα,α(b, t − a)) + c2 (
1

b
ŝinα,α(b, t − a) + ĉosα,α(b, t − a))

which is equivalent to

y(t) = (c1 + c2)ĉosα,α(b, t − a) + (−bc1 +
c2

b
) ŝinα,α(b, t − a)

where c1, c2 are constants.
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Chapter 5

PARAMETER ESTIMATIONS OF SIGMOIDAL MODELS

5.1. Parameter Estimation with Fractional Gompertz and Logistic Curves

In life and health sciences, there is an urgent need for the advancement and the

widespread use of predictive and quantitative methods to improve delivery of health care

and decrease economical and ethical costs. Although there are many ongoing

developments in cancer research, there is still a lot to be known about its causes and

treatments. Cancer is a class of diseases characterized by unregulated cell growth. There

are many different kinds of cancers which can develop in almost any organ or tissue, such

as the lung, colon, breast, skin, bones, or nerve tissue. Although there are many of

treatment methods, such as surgery, radiotherapy and chemotherapy, the medical doctors

should consider one significant parameter: Time. If researchers know which treatment

method will lead to a better outcome in advance, the treatment will be easier and more

successful. For a treatment to have a better outcome, mathematical models which

simulate the rate of given tumor growth data need to be developed. Mathematical models

provide theoretical insight into the underlying processes and improve the analysis and

interpretation of experimental measurements and observations in biological and

biomedical phenomena. Therefore, recent collaboration with mathematicians gives more

insight on the scientific innovations for the clinical trials of the cancer research and the

development of new treatments.

Tumor growth gives a special relationship between tumor size and time so it can be

best described by sigmoidal curves. There are many approaches used in modeling growth
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behavior in biosciences. Gompertz, Logistic, Richards and Weibull curves are the ones

which we will consider in our project. The aim of our project is to develop discrete

fractional models of tumor growth for a given data set and to estimate parameters of

these models in order to have better data fitting. We use discrete fractional calculus

because we think the discrete counterpart of this mathematical theory will give a better

and more accurate outcome. Discrete fractional calculus was first introduced by Kenneth

S. Miller and Bertram Ross in 1988. More recently, the theory of nabla and delta

fractional calculus have been developed [6, 23, 24, 25].

In [5], the following Gompertz fractional difference equation has been introduced

with the ∆−operator:

∆αy(t − α + 1) = (b − 1)y(t) + a (5.1)

where a, b are parameters and α ∈ (0,1] is the order of the fractional difference equation.

α can also be considered as the third parameter. The graph of solution of equation (5.1)

is a Gompertz curve and represents a sigmoid function. In this study, we model

Gompertz and Logistic curves with α− order ∇− difference equations. In this project, we

prefer to use ∇−operator instead of ∆ operator since the ∆−α maps functions defined on

positive integers to functions defined on non-integers. This nature of the operator forces

us to use a fractional delay difference equation. However, we will not have delay equations

if we use ∇−operator. Therefore, we claim that nabla fractional calculus will give us

better data fitting than delta fractional calculus.

In order to estimate parameters for discrete nabla fractional Gompertz and Logistic

curves, we use Mathematica. Then we compared continuous, discrete, continuous

fractional and discrete fractional forms of these sigmoidal curves by using the tumor

growth data for twenty-eight control mice. These control mice had inoculated tumors but
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did not receive any subsequent treatment. Tumor size was measured at 14HALO (hours

after light on) daily until day 17. For these data, we collaborated with Dr. William J.M.

Hrushesky who gave us permission to use his published data obtained in Medical

Chronobiology Laboratory, University of South Carolina [38].

In addition, we used statistical computation techniques such as residual sum of

squares and cross-validation to access and compare fitting and predictive performance of

these models. Cross-validation method is a statistical method to show that our

parameters serve for the best prediction of the tumor growth. We refer to this method in

Section 5.3. At the end of our project, by interpreting these outcomes in a manner of

biomedical science, we hope that our results will enhance time dependent cancer

therapeutic study.

5.2. A Technique for Estimating the Performance of a Predictive Model:

Cross-Validation

Cross-validation is one of the approaches to estimate the performance of a statistical

model. This approach was first introduced in the 1930s [19]. Mosteller and Turkey [20],

and then other scientists further developed the idea. A clear statement of cross-validation,

which is similar to the current version of k-fold cross-validation, first appeared in [21]. In

the 1970s, both Stone [22] and Geisser [18] employed the cross-validation method by

choosing proper model parameters to estimate the performance of the model.

Cross-validation is widely accepted in the data mining and machine learning community,

and serves as a standard procedure for performance estimation and model selection.

In this chapter, we consider k-fold cross-validation. In k-fold cross-validation, the

data is partitioned into k subsets. One of the k subsets is chosen for testing the model,
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namely validation set, and the remaining k − 1 subsets are used as training data so it is

called training set. The k-fold cross-validation process repeats k times. The advantage of

this method is that all observations are used for both training and validation, and each

observation is used for validation exactly once.

In our study, we use tumor growth data of 28 control mice for 17 days [38].

Therefore, we have k = 17 independent observations as a training set. In order to present

an example, we consider rat id 140. In (Table 5.2.1), we give the experimental values

y1, y2, . . . , y17. By using FindFit in Mathematica, we obtain the parameters and then we

use these parameters in fractional Gompertz and Logistic curves, we have our observed

values, which is the training set for cross-validation method. However, we divided these

experimental values into 1000 since it is more convenient to obtain our parameters. We

repeat this program 17 times, so we call it 17−fold cross validation. Each time we leave

one experimental data, so our training set G1 = 16. (Table 5.2.2) helps us to visualize the

training set G, and validation set T for a random one (id 140) among 28 mice.

This statistical method is considered for both Gompertz and Logistic curves. First,

we consider the Gompertz model which is given as the following form

∧

y(t) = ae−e(b−ct). (5.2)

Take log of each side of the equation (5.2) to obtain

∧

Y (t) = lna − eb(e−c)t,

where
∧

Y (t) = log
∧

y(t).

Using FindFit in Mathematica, we recalculate our parameters a, b, c and we do this

process 17 times. Then, we use the same parameters in discrete fractional Gompertz
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Days
id 140

Experimental V alues

Day1 y1 = 23.275

Day2 y2 = 62.953

Day3 y3 = 112.665

Day4 y4 = 124.712

Day5 y5 = 215.730

Day6 y6 = 325.260

Day7 y7 = 285.120

Day8 y8 = 354.760

Day9 y9 = 218.295

Day10 y10 = 406.575

Day11 y11 = 481.665

Day12 y12 = 555.270

Day13 y13 = 643.552

Day14 y14 = 666.000

Day15 y15 = 893.000

Day16 y16 = 1050.000

Day17 y17 = 1209.600

Table 5.2.1. Experimental Values Table of Rat id 140

curve. The discrete fractional Gompertz curve is given as

∨

Y (t) = lna − eb
∞

∑
n=0

(−c)n
(t − n + 1)(n+1)α−1

Γ((n + 1)α)
⋅ (5.3)

After estimating α, we set a, b, c and α in
∨

Y (t) for each iteration. Finally, we use square

residual sum method by considering yi as observed value and
∨

Y (t) as predicted value,

therefore we have

ei = (yi −
∨

Y (t))
2

, for 1 ≤ i ≤ 17.
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The minimum square residual sum among 17 training set is our best data fitting for an

exact value of α. We do the same steps for Logistic curve and we will compare the results

in the following section.

5.3. Graphical Results and Comparisons

In this section, we visualize our claims by demonstrating table and graphs. First, we

give continuous, discrete, continuous fractional and discrete fractional types of Gompertz

and Logistic curves. In the previous section, using FindFit, we find our parameters a, b, c

for continuous type of these sigmoidal curves. We use these parameters for discrete,

continuous fractional and discrete fractional types of Gompertz and Logistic curves to

estimate the range of α. Then, we compare our square residual sum results for these 4

types of Gompertz curve in (Table 5.3.1) and we follow the same route for the Logistic

curve as shown in (Table 5.3.2). As a result, we state which sigmoidal curve serves better

data fitting. In addition, we present the mean of data and we examine the minimum

square residual sum and the value of α among the mean of continuous, discrete,

continuous fractional and discrete fractional types of these sigmoidal models. Finally, we

show the results of cross-validation for each control mice in (Table 5.3.1) and in (Table

5.3.2). Consider the continuous, discrete, continuous fractional and discrete fractional

types of Gompertz curve.

Y (t) = lna − eb(e−c)t. (continuous)

Y (t) = lna − eb(1 − c)t. (discrete)

Y (t) = lna − eb
∞

∑
n=0

(−c)n
t(n+1)α−1

Γ((n + 1)α)
⋅ (continuous fractional)

Y (t) = lna − eb
∞

∑
n=0

(−c)n
(t − n + 1)(n+1)α−1

Γ((n + 1)α)
⋅ (discrete fractional)

where 0 < α < 1.
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We use the tumor growth data for 28 control mice and we did the data fitting for

these four types of Gompertz curves above . As shown in (Table 5.3.1) we compare our

square residual sum and the bold one indicates the minimum square residual sum. It is

clearly seen that 21 of 28 mice have the better data fitting. Therefore, we can conclude

that the other types (discrete, continuous fractional, discrete fractional) work better than

the continuous type for Gompertz curve. Also, we obtain a range of α. For continuous

fractional type, we concluded 0.9999 < α < 0.99998 and for discrete fractional type, we had

0.99941 < α < 0.99998. In some cases, we observe up to 5.44% better data fitting in

fractional curves when they are compared to continuous case. Similarly, consider the

continuous, discrete, continuous fractional and discrete fractional types of Logistic curve.

y(t) =
a

1 + eb(e−c)t
⋅ (continuous)

y(t) =
a

1 + eb(1 − c)t
⋅ (discrete)

y(t) =
a

1 + eb
∞

∑
n=0

(−c)n t(n+1)α−1
Γ((n+1)α)

⋅ (continuous fractional)

y(t) =
a

1 + eb
∞

∑
n=0

(−c)n (t−n+1)(n+1)α−1
Γ((n+1)α)

⋅ (discrete fractional)

where 0 < α < 1.

By following the same method that we used in Gompertz curve, which is based on

data fitting for Logistic curves above, we can demonstrate (Table 5.3.2). Then we

compare our square residual sum, we conclude that 19 of 28 mice have the minimum

square residual sum. Again, we have the same result for Logistic curve: The other 3 types

(discrete, continuous fractional, discrete fractional) work better than the continuous case.

Also, we obtain a range of α. For continuous fractional type, we concluded that

0.9999 < α < 0.99998 and for discrete fractional type, we had 0.99955 < α < 0.99998. Note

that we had better data fitting up to 0.01% in fractional curves when it is compared to
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continuous case. As shown in (Table 5.3.3), among 28 mice, 22 of them have better data

fitting in Logistic curve. Thus, we conclude that Logistic curve has better data

fitting than Gompertz curve.

Our last comparison is about mean of data as shown in (Table 5.3.4). We plotted all

the data for Gompertz curve, we obtained the minimum square residual sum in

continuous fractional type with α = 0.99996. Also, we followed the same steps for Logistic

curve and we had the minimum square residual sum in continuous fractional type with

α = 0.99989, as well. As shown in (Figure 5.3.1), the red line indicates the mean of data.

Figure 5.3.1. The Graph of Mean
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Table 5.2.2. Seventeen-fold cross-validation
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id# Continuous Discrete Continuous Discrete Cross

(α = 1) (α = 1) Fractional Fractional Validation

21 .09320807348 .09320807348
.09320888453

α = 0.99998

.09320888858

α = 0.99998

.2207892335

α = 0.99998

22 .3334771319 .3526360961
.3334575178

α = 0.99993

.3530311101

α = 0.99998

.5214368910

α = 0.99998

23 .1000671774 .09980773376
.1000676287

α = 0.99998

.09979266879

α = 0.99993

.1532421764

α = 0.99998

26 .01504232035 .01504232032
.01504253965

α = 0.99998

.0154251431

α = 0.99998

.02351250813

α = 0.9979

27 .05130023627 .05130023802
.05129960785

α = 0.99995

.05129989001

α = 0.99996

.06801248089

α = 0.99558

28 .09931601289 .09880263381
.09928736635

α = 0.99993

.09877841550

α = 0.99994

.1337456556

α = 0.99959

29 .006923511052 .006860205304
.006923537032

α = 0.99998

.006858511228

α = 0.9999

.01613621271

α = 0.99906

30 .08160721616 .08160721610
.08160739012

α = 0.99998

.08160739711

α = 0.99998

.1360715953

α = 0.9222

31 .08094058644 .08094056469
.08094155711

α = 0.99998

.08094179820

α = 0.99998

.1102760978

α = 0.9906

32 .009827763484 .009782246634
.009827870273

α = 0.99998

.009779888886

α = 0.99994

.01453112764

α = 0.99968

33 .049822386468 .04977585660
.04981980492

α = 0.99995

.04977301896

α = 0.99996

.06762074528

α = 0.99975

34 .3197937942 .3197937956
.3197943089

α = 0.99998

.3197942931

α = 0.99998

.8865530616

α = 0.99998

35 .04155372344 .04155372350
.04155427470

α = 0.99998

.04155427770

α = 0.99998

.1053246814

α = 0.99998

136 .02069668479 .02069668480
.02069676294

α = 0.99998

.02069675329

α = 0.99998

.03282944107

α = 0.99962

137 .2605491124 .2605491124
.2605500776

α = 0.99998

2605502035

α = 0.99998

.3833529677

α = 0.9433

138 .1698807616 .1689739478
.1698590173

α = 0.99994

.1689272298

α = 0.99992

.3082635821

α = 0.99997

139 .1444468940 .1444468941
.1444475246

α = 0.99998

.1444474669

α = 0.99998

.2919893664

α = 0.99998

140 .05353688898 .05339484131
.05352726755

α = 0.99998

.05338370310

α = 0.99993

.06674413808

α = 0.99971

141 .02861370688 .02861370722
.02861367403

α = 0.99998

.02861368016

α = 0.99998

.03905906798

α = 0.99583

142 .003715603052 .003657090481
.003713752094

α = 0.9999

.003657168955

α = 0.99998

.005161409916

α = 0.99936

143 .1279857712 .1279857720
.1279818439

α = 0.9999

.1279762340

α = 0.99941

.2004571352

α = 0.99998

144 .2024468349 .2024468349
.2024473515

α = 0.99998

.2024473387

α = 0.99998

.2781483417

α = 0.99213

145 .2808836510 .2808836504
.2808836341

α = 0.99998

.2808836470

α = 0.99998

.4565218530

α = 0.99998

146 .2426379750 .2419522531
.2425953572

α = 0.99993

.2419516991

α = 0.99998

.3914378973

α = 0.99998

147 .03264913983 .03264913977
.03264852011

α = 0.9999

.03264789880

α = 0.99967

.06370510263

α = 0.9964

148 .1113379847 .1113379834
.1113385662

α = 0.99998

.1113384961

α = 0.99998

2.025038476

α = 0.9987

149 .1394980991 .1394980990
.1394988266

α = 0.99998

.1394988321

α = 0.99998

.6069317878

α = 0.99998

150 .3029550047 .3029550052
.3029542604

α = 0.99991

.3029547992

α = 0.99995

.4128975419

α = 0.99551

Table 5.3.1. Data Analysis for Gompertz Curve
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id# Continuous Discrete Continuous Discrete Cross

(α = 1) (α = 1) Fractional Fractional Validation

21 .07720652926 .07720652925
.07720928346

α = 0.99998

.07721014491

α = 0.99998

.1627499337

α = 0.99085

22 .3258675033 .3258675032
.3258699296

α = 0.99998

.3258699296

α = 0.99998

.5278740791

α = 0.99203

23 .09475605652 .09474826414
.09475734260

α = 0.99998

.09474977198

α = 0.99998

.1478667342

α = 0.99499

26 .01325261841 .01325261841
.01325289039

α = 0.99998

.013252893291

α = 0.99998

.02040913168

α = 0.99637

27 .05247847498 .05247847533
.05247699452

α = 0.9999

.05247709649

α = 0.99987

.07871369483

α = 0.99898

28 .09270204942 .09269992014
.09270298592

α = 0.99998

.09270103236

α = 0.99998

.1239232970

α = 0.99973

29 .006022851218 .006022041787
.006023443946

α = 0.99998

.006022746136

α = 0.99998

.1535358385

α = 0.99998

30 .07976180993 .07976181000
.07976194294

α = 0.99998

.07976199099

α = 0.99998

.1283931650

α = 0.97403

31 .07471839928 .07471837868
.07472871314

α = 0.99998

.07473636197

α = 0.99998

.1098503228

α = 0.99972

32 .008850530144 .008848677223
.008850727738

α = 0.99998

.008848923819

α = 0.99998

.01210642602

α = 0.99998

33 .04950751166 .04950751171
.04950755291

α = 0.99998

.04950759522

α = 0.99998

.07332516252

α = 0.99926

34 .3125897050 .3125897049
.3125907150

α = 0.99998

.3125909360

α = 0.99998

.7278245829

α = 0.96914

35 .03150005505 .03150005506
.03150150833

α = 0.99998

.03150195893

α = 0.99998

.07327269633

α = 0.99676

136 .02091431694 .02091431701
.02091409925

α = 0.9999

.02091415007

α = 0.99993

.02948826642

α = 0.99998

137 .2552786642 .2552786642
.2552798771

α = 0.99998

.2552803705

α = 0.99998

.3765101063

α = 0.97436

138 .1511995277 .1511871712
.1512054896

α = 0.99998

.1511934465

α = 0.99998

.2661900260

α = 0.99998

139 .1389586529 .1389586533
.1389594712

α = 0.99998

.1389596259

α = 0.99998

.2768472093

α = 0.9821

140 .05156900468 .05156691145
.05156662982

α = 0.9999

.05156530341

α = 0.99978

.06323411271

α = 0.99998

141 .02903359507 .02903359504
.02903328519

α = 0.99991

.02903335218

α = 0.99993

.04179439341

α = 0.99851

142 .003026763981 .003026069415
.003027114096

α = 0.99998

.003026455572

α = 0.99998

.1504494057

α = 0.57145

143 .1301209917 .1301209917
.1301175368

α = 0.9999

.1301131682

α = 0.99955

.2003043765

α = 0.98872

144 .1942945348 .1942945349
.1942958863

α = 0.99998

.1942961157

α = 0.99998

.2895154726

α = 0.98774

145 .2850180223 .2850180223
.2850144884

α = 0.9999

.2850148061

α = 0.9999

.4489403977

α = 0.98795

146 .2326031700 .2325981230
.2326041047

α = 0.99998

.2325994137

α = 0.99998

.3904706165

α = 0.99063

147 .03703599137 .03703599146
.03703265619

α = 0.9999

.03702966546

α = 0.99971

.08261403356

α = 0.99998

148 .1077952924 .1077952925
.1077958616

α = 0.99998

.1077959516

α = 0.99998

.1601409647

α = 0.9972

149 .1242478059 .1242478059
.1242503947

α = 0.99998

.1242514016

α = 0.99998

.4630737389

α = 0.96316

150 .3004093946 .3004093948
.3004077982

α = 0.99991

.3004077982

α = 0.99995

.4056782620

α = 0.99892

Table 5.3.2. Data Analysis for Logistic Curve
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id# Gompertz Curve Logistic Curve

21 .09320807348 .07720652925

22
.3334575178

α = 0.99993
.3258675032

23
.09979266879

α = 0.99993
.09474826414

26 .01504232032 .01325261841

27
.05129960785

α = 0.99995

.05247699452

α = 0.9999

28
.09877841550

α = 0.99994
.09269992014

29
.006858511228

α = 0.9999
.006022041787

30 .08160721610 .07976180993

31 .08094056469 .07471837868

32
.009779888886

α = 0.99994
.008848677223

33
.04977301896

α = 0.99996
.04950751166

34 .3197937942 .3125897049

35 .04155372344 .03150005505

136 .02069668479
.02091409925

α = 0.9999

137 .2605491124 .2552786642

138
.1689272298

α = 0.99992
.1511871712

139 .1444468940 .1389586529

140
.05338370310

α = 0.99993

.05156530341

α = 0.99978

141
.02861367403

α = 0.99998

.02903328519

α = 0.99991

142 .003657090481 .003026069415

143
.1279762340

α = 0.99941

.1301131682

α = 0.99955

144 .2024468349 .1942945348

145
.2808836341

α = 0.99998

.2850144884

α = 0.9999

146
.2419516991

α = 0.99998
.2325981230

147
.03264789880

α = 0.99967

.03702966546

α = 0.99971

148 .1113379834 .1077952924

149 .1394980990 .1242478059

150
.3029542604

α = 0.99991

.3004077982

α = 0.99991

Table 5.3.3. Gompertz vs.Logistic
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Gompertz Curve Logistic Curve
Continuous
(α=1) 0.01467378953 0.01511114565
Discrete
(α=1) 0.01467353864 0.01511114569

Continuous
Fractional

0.01467346239

α = 0.99996

0.01511043545

α = 0.99989

Discrete
Fractional

0.01467360877

α = 0.99997

0.01511068031

α = 0.99993
Table 5.3.4. Gompertz and Logistic Curve Mean Table
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Chapter 6

CONCLUSION AND FUTURE WORK

Discrete fractional calculus is an extended form of discrete calculus. More

particularly, discrete calculus considers integer order, but fractional calculus enhance the

order to include all positive real numbers. In this mathematical theory, there are still

many open questions waiting to be studied. In this thesis, we continued to develop nabla

fractional calculus. We also showed our developments by demonstrating the graphs of

tα, tα, tα. We were interested in the following sigmoidal curves: Gompertz and Logistic. In

order to estimate the parameters of Gompertz and Logistic curves, we used Mathematica.

After obtaining these parameters, we compared continuous, discrete, continuous fractional

and discrete fractional type of these sigmoidal curves. As a result, we concluded that the

discrete version of these curves have better data fitting. In addition, we used some

statistical methods such as square residual sum and k−fold cross validation because

making a prediction will enlighten our time dependent cancer therapeutic study. On the

other hand, in Chapter 2, we focused on completely monotonic functions on discrete

domain using nabla operator. Furthermore, we proved some basic theorems of this

concept. Then, by using N -transform, we proved some important results and then we

established N -transform table. This table is a great tool for us to find the solutions of up

to first or second order of nabla fractional difference equation. Finally, in Chapter 4, we

proved some basic theorems about nabla fractional calculus. We proved that, if the set of

solutions of up to n − th order nabla fractional equation is linearly independent, then the

Casoration is not identically equal to zero. Then, we considered up to second order linear
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nabla fractional equation and we examined the solutions of the equation by considering

the characteristic roots of the characteristic equation case by case.

For the future work, there are still some open questions to be considered. First, we

will concentrate on completely monotonic functions on discrete domains. From the

literature, we see some papers which claim that there is a relationship between the

concept of complete monotonicity and the stability of Mittag-Leffler function. We plan to

enhance this idea to the stability of discrete Mittag-Leffler function using complete

monotonicity of this special function on discrete domain. Also, in Section 4.2, we stated

the discrete fractional exponential function is nonzero. Our goal is to prove this claim,

but this work requires some effort. On the other hand, our project will continue next

year. Richards and Weibull models will be considered in the same route. At the end of

the project, among four main sigmoidal curves, it will be stated which model works best

or has the best data fitting.
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