
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-25-2012

Dynamic Scoping for Browser Based Access
Control System
Vinaykumar Nadipelly
Western Kentucky University, vinaykumar.nadipelly408@topper.wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Databases and Information Systems Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Nadipelly, Vinaykumar, "Dynamic Scoping for Browser Based Access Control System" (2012). Masters Theses & Specialist Projects.
Paper 1149.
http://digitalcommons.wku.edu/theses/1149

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.wku.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages

DYNAMIC SCOPING FOR BROWSER BASED ACCESS CONTROL SYSTEM

A Thesis

Presented to

The Faculty of the Department of Mathematics and Computer Science

Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Vinaykumar Nadipelly

May 2012

iii

 ACKNOWLEDGMENTS

 I would like to express my gratitude to all those who gave the possibility to

complete this thesis. I would like to thank my thesis advisor, Dr. Guangming Xing for his

guidance, and immense trust and patience he has over me.

 I would also like to thank Dr. Huanjing Wang and Dr. Qi Li for their valuable

time and suggestions on my thesis.

 Finally, I would like to thank my family for their constant love, support and

motivation.

iv

 TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

1.1 Nature of the web .. 2

1.2 Contents of the web .. 3

1.2.1 Trusted contents ... 4

1.2.2 Untrusted contents ... 4

1.2.3 Partially trusted contents .. 4

1.3 Attacks on web .. 5

1.3.1 Access control system .. 7

1.3.2 Web components .. 7

CHAPTER 2: THE PURPOSE FOR PROTECTION ENHANCEMENT 9

2.1 Same origin policy .. 9

2.1.1 Cross Site Scripting (XXS) .. 11

2.2 Same session policy .. 13

2.2.1 Cross Site Request Forgery (CSRF) .. 13

2.3 Failure to support design principles .. 15

2.3.1 Separation of privilege ... 15

2.3.2 Least privilege .. 16

CHAPTER 3: RELATED WORK .. 17

CHAPTER 4: TWO-WAY SECURITY MODEL ... 20

CHAPTER 5: EFFECTUATION OF TWO-WAY SECURITY MODEL 27

v

5.1 Lobo Architecture ... 27

5.1.1 User Interface ... 27

5.1.2 Browser Engine .. 28

5.1.3 Cobra HTML Rendering Engine .. 29

5.1.4 Rhino JavaScript Interpreter .. 29

5.1.5 Object Wrapper .. 30

5.2 Identifying subsystems of the Lobo browser architecture for

implementation .. 30

5.3 Two-way security model implementation .. 32

5.3.1 Extracting and Tracking security groups ... 32

5.3.2 Enforcing access control policy ... 33

CHAPTER 6: CONCLUSION .. 36

BIBLIOGRAPHY ... 37

vi

 LIST OF FIGURES

Figure 1: Example for different types of web contents... 5

Figure 2: Without same origin policy ... 10

Figure 3: With same origin policy .. 11

Figure 4: Illustrate XSS Attack ... 12

Figure 5: Illustrate CSRF Attack .. 14

Figure 6: Two-way security model ... 21

Figure 7: Difference between static and dynamic scoping. .. 24

Figure 8: Complete example demonstrates working of a two-way security model 26

Figure 9: Architecture of Lobo browser ... 28

vii

 DYNAMIC SCOPING FOR BROWSER BASED ACCESS CONTROL SYSTEM

Vinaykumar Nadipelly May 2012 39 Pages

Directed by: Dr. Guangming Xing, Dr. Huanjing Wang and Dr. Qi Li

Department of Mathematics and Computer Science Western Kentucky University

We have inorganically increased the use of web applications to the point of using

them for almost everything and making them an essential part of our everyday lives. As a

result, the enhancement of privacy and security policies for the web applications is

becoming increasingly essential. The importance and stateless nature of the web

infrastructure made the web a preferred target of attacks. The current web access control

system is a reason behind the victory of attacks. The current web consists of two major

components, the browser and the server, where the effective access control system needs

to be implemented. In terms of an access control system, the current web has adopted the

inadequate same origin policy and same session policy for the browser and server,

respectively. The current web access control system policies are sufficient for the earlier

day‟s web, which became inadequate to address the protection needs of today‟s web.

In order to protect the web application from un-trusted contents, we provide an

enhanced browser based access control system by enabling the dynamic scoping. Our

security model for the browser will allow the client and trusted web application contents

to share a common library and protect web contents from each other, while they still get

executed at different trust levels. We have implemented a working model of an enhanced

browser based access control system in Java, under the Lobo browser.

1

CHAPTER 1: INTRODUCTION

The Internet is a global system of interconnected computer networks that uses the

standard Internet protocol suite to serve billions of users worldwide [29]. It allows us to

provide easy and efficient communication between any place in the world, work from

remote locations, locate and retrieve the useful information within seconds, and access

services and entertainment via World Wide Web (Web). It is a very common mistake for

most people to treat the terms “Internet” and „World Wide Web” as interchangeable. The

words “Internet” and “World Wide Web” are not the same thing but related things. The

Internet is a global network of networks. In contrast, the Web is one of the applications

that run on the Internet. For example, the Internet is a restaurant and the Web is the most

popular dish on the menu.

The volume of traffic moving over the Internet, as well as corporate networks, is

expanding exponentially every day. It is estimated that there are over 2.26 billion people

worldwide with Internet access as of December 31, 2011 [1]. While communication

companies contend frantically to bring faster transmissions into homes, and with the

Internet evolving to deliver new forms of services and entertainment, many experts

predict that the best is yet to come.

The Web has a tremendous impact on our personal lives, through which large

volumes of personal and business communications are taking place. It has now evolved to

account for large portions of corporate revenue. There was tremendous progress in its

development since the Web was invented. The current Web is no longer a platform for

2

simple static pages; it has evolved to highly dynamic and interactive ones. The Web is

indispensable in education, security, modern commerce, entertainment, and social

interaction. It became a complex delivery platform for sophisticated, distributed

applications with multifaceted security requirements. Analysts are constantly trying to

find out the number of web pages available on the Web. However, it is quite impossible

to analyze. Even by the time they are analyzed, the final number of pages would have

increased by many thousands, since thousands of pages pour in every minute. Google

claims to have indexed over a trillion pages as of July 25, 2008 [2]. As of February 27,

2012, over 139.2 million websites are hosting these web pages [3].

1.1 Nature of the web

The Web is stateless by nature. Stateless protocol is a communication protocol in

computing, which treats each request as an independent request, even if two requests are

related to each other. Hypertext Transfer Protocol (HTTP) [5] is the best example of the

stateless protocol [4]. Web servers are designed to be stateless [28] in nature which uses

the HTTP for the data communication. It treats or processes each HTTP request by an

independent process, even if two requests are related to each other. These servers do not

store any user data during processing the HTTP request. This is in contrast with the

traditional File Transfer Protocol (FTP) [6] servers, which are stateful. In traditional

client/server applications, a process will be assigned for each client, until the client

terminates. All the requests generated by the client are processed by a single process

respectively. These servers will store the client‟s details during processing each request.

The main cause for the Web‟s stateless nature is performance. The web servers needed to

3

address the large number of clients than traditional client/server applications, so they do

not want any process to be tied up with a single client.

Shopping cart is one of the most common web applications, which requires the

application to keep track of the items in the cart during the traverses from one page to

another. This makes most of the web applications to be stateful. The web servers support

these applications by using session concept. For example, for the Amazon shopping cart

application, when the web server notices a new user browsing, it assigns a session ID to

the user which will be stored in the browser cookie. This cookie will be sent along with

each HTTP request so that the server indentifies the request session. This is how a

stateless web server will support a stateful application.

Building stateful applications on the stateless web infrastructure has raised many

security problems [7]. Furthermore complicating matters, the Web continues to evolve

with new browser features, protocols and standards added at rapid pace. The

specifications of new features are often complex, lack of security models and the security

of the applications is overlooked. As a result, large numbers of vulnerabilities and

security threats are raised for the web applications.

1.2 Contents of the web

Web had been designed for serving static contents; initially, this originated from a

single trusted source. It has now evolved into quite dynamic contents and requests

derived from multiple sources with varying levels of trustworthiness. Contents may be

included by the Web itself, derived from user supplied text or from partially third parties.

4

Web contents are divided into three types based on the varying levels of trustworthiness

[7].

1.2.1 Trusted contents

The contents which are originated from the web application itself are considered

as trusted contents. Trustworthiness of these contents depends on the nature of the

application and the procedure followed by the application developer. For example, to

update status, to write on a wall, to ask a question, to add photos or videos and confirm

friend requests on Facebook, all of these are the trusted contents which are generated and

maintained by the Facebook application.

1.2.2 Untrusted contents

Many web applications now include the user provided contents such as blogs,

comments, feedback, user profiles, etc., in their pages. These contents are the third-party

data and less trustworthy than the first-party contents generated by the web application

itself. For example, untrusted contents include advertisements and fake profiles in social

networks like Facebook and Orkut. The current web, due to its stateless nature, cannot

restrict in assigning access privileges to the contents based on their trustworthiness.

1.2.3 Partially trusted contents

Many web applications allow extensions to their pages i.e., they include the links

to third-party programs or directly include third-party programs in their pages and run

those programs in the browser. For example, third-party applications like CastleVille are

embedded in a user‟s Facebook page, which will collect information from a user‟s

5

account and run on the third-party application servers. These contents can be dangerous if

they are vulnerable or malicious.

 Figure 1: Example for different types of web contents

Figure 1 shows the Facebook application with different types of web contents. If

these contents are not carefully handled, malicious code can be injected into the web

application. However, Facebook has its own mechanism to handle these contents without

any security issues.

1.3 Attacks on web

The Web, due to its importance and stateless nature has become a preferred target

of attacks. Web attacks are apparently more serious when they are inflicted upon

businesses that store sensitive data, such as personal, military, confidential, medical,

governmental, and financial records. The consequences of attacks on any entity range

from mildly inconvenient to completely debilitating. According to the Norton

6

Cybercrime Report 2011 [8], the total cost of cybercrime is at $388 billion per year,

which includes $114 billion in direct theft and time spent resolving attacks, plus another

$274 billion for productive time victims lost due to cybercrimes being committed against

them.

The top ten web attacks according to the OWSAP Top 10, 2007 [9] are

1. Cross Site Scripting (XSS).

2. Injection Flaws.

3. Malicious File Execution.

4. Insecure Direct Object Reference.

5. Cross Site Request Forgery (CSRF).

6. Information Leakage and Improper Error Handling.

7. Broken Authentication and Session Management.

8. Insecure Cryptographic Storage.

9. Insecure Communications.

10. Failure to Restrict URL Access.

Most of the Web vulnerabilities appear to be caused by the mistakes made during

the design and development of the application by the developer. However, when we take

a deep look at the architecture and functionalities of the Web, we come to the conclusion

that the main cause for web vulnerabilities is the access control system of the Web, not

the developer.

7

1.3.1 Access control system

Access control system refers to a security enforcement model that has the ability

to decide who can do what to whom in a system. Access control system consists of three

components: principals, objects and the access control model. Principals (who) are the

entities in the system that can manipulate resources. Objects (whom) are the resources in

the system that require controlled access. The access control model tells how decisions

are made in the system. For example, consider an online exam application for school.

Alice is a professor who teaches CS600 and wants to conduct an online exam for

students. To avoid plagiarism, she designed an exam pattern in such a way that each

student will get his or her own exam paper based on their ID numbers i.e., Bob with ID

number 1 will get paper set 1 and John with ID number 21 gets paper set 21. Here the

access control system comes into play, which decides who can do what to whom in a

system. When the students login to the application with their ID numbers, the access

control system first checks their ID numbers, and then assigns the exam paper to each

student respectively.

1.3.2 Web components

The current web consists of two major components, the browser and the server,

where the effective access control system needs to be implemented. In terms of access

control system, the current web has adopted the inadequate same origin policy (SOP) and

same session policy (SSP) for the browser and server respectively. This was sufficient for

the earlier day‟s web, which became inadequate to address the protection needs of

today‟s web. Web applications that embed third party content in their web pages cannot

8

restrict the permissions of the third party code due to the failures of the access control

system. In order to overcome this fundamental problem, we have developed an enhanced

browser based access control system by enabling dynamic scoping. The objective of our

work is to make the access control system address the current web content problems,

which will allow the client and trusted web application contents to share the common

library and protect web contents from each other, while they still get executed at different

trust levels.

9

CHAPTER 2: THE PURPOSE FOR PROTECTION ENHANCEMENT

This chapter describes the drawbacks of the current access control system and

need of its enhancement. The access control system has been implemented on web

components, browsers and servers, by adopting the same origin policy (SOP) and the

same session policy (SSP) respectively.

2.1 Same origin policy

The same origin policy (SOP) is also called single origin policy. SOP prevents

documents or scripts loaded from one origin from getting or setting properties of a

document from a different origin. It also allows scripts running on pages originating from

the same site to access each other‟s methods and properties with no specific restrictions

[10]. The term “origin” is defined as a combination of the domain name, protocol and

port number of the HTML document. Two documents or scripts are considered to be of

the same origin if and only if all these values are exactly the same. For instance,

http://www.abc.com/jobs.html and http://www.abc.com/price.html belong to the same

origin, but http://www.xyz.com/jobs.html and http://www.abc.com/jobs.html don‟t

belong to the same origin as they had different domains. Similarly,

http://www.abc.com/jobs.html and https://www.abc.com/price.html don‟t belong to the

same origin as they had different protocols.

The following example will illustrate the importance of the same origin policy of

a browser. Assume that you are logged into Facebook and visit a malicious website in

another browser tab. Without the same origin policy, JavaScript on a malicious website

10

could do anything to your Facebook account. For example, the hacker could read private

messages, post status updates, and change security questions. In Figure 2, www.abc.com

can access the contents of the www.facebook.com the user page.

In order to avoid this illegal access to Facebook, it is important for the browser to

detect trusted and untrusted Java Scripts to access Facebook resources. That's where the

same origin policy comes into play. If the JavaScript is included in Facebook HTML

page, it may access facebook.com resources; otherwise it cannot access facebook.com

resources.

 Figure 2: Without same origin policy

In Figure 3 www.abc.com cannot access the contents of the www.facebook.com

user page due to the same origin policy. Privileges should be assigned to contents based

on the trustworthiness even if they belong to the same origin and this is indispensable in

the current web. Cross Site Scripting (XXS) [11] is one of the side effects of the same

origin policy

11

 Figure 3: With same origin policy

2.1.1 Cross Site Scripting (XXS)

Cross Site Scripting attack is an injection type of attack that takes advantage of

website vulnerability in which the site displays content that includes un-sanitized user-

provided data. XSS allows the user to inject a malicious code into trusted websites, which

provides attackers a way to bypass client-side security mechanisms (i.e., same origin

policy) normally imposed on the web content by modern web browsers. On the

successful injection of the code, the attacker can gain elevated access privileges to the

entire page based on the same origin policy, i.e., scripts running on pages originating

from the same site are allowed to access each other‟s methods and properties without

considering trustworthiness of contents.

For instance, a victim website which allows users to create communities with

their own rules, ranks, chat boards and polls. These communities may be designed with

12

images, graphics, animations and text to make their community look better and more fit

the theme. For example, a community that protests against a war might be designed with

pictures of recent wars and their consequences. The attacker can inject a malicious code

in to the victim website while creating the user communities. As a malicious code

originating from the same site, it has access to other scripts or contents in the page based

on the same origin policy.

On successful injection of a malicious code and browsing of attackers

communities by users, the attacker can take control of user accounts and either use a

malicious code to automatically manipulate the user accounts, such as forcing the user to

post comments or join the community whether they want to or not, or stealing the credit

card and private information. This could also be used to redirect the user to websites that

places virii, spyware, adware, or other malicious content on computer.

 Figure 4: Illustrate XSS Attack

13

The cause of this attack is due to the inadequacy of current same origin policy

which cannot provide the security based on the trustworthiness of current web page

contents. Figure 4 will illustrate the sequence of actions performed by XSS attack.

2.2 Same session policy

Similarly, on the server side access control is primarily based on the same session

policy. When a user logs into a web application, the server creates a dedicated session for

this user, separating him or her from the other users. Sessions are implemented using

session cookies; as long as a request carries a session cookie, it will be given all the

privileges associated with that session. Namely within each session, all requests are given

the same privileges, regardless of whether they are initiated by first-party or third-party

contents. In the current access control system, it is difficult to allow the request from the

same web page to access the same session, while preventing some of them from invoking

certain server-side services [12]. Cross Site Request Forgery (CSRF) [13] is one of the

side effects of the same session policy.

2.2.1 Cross Site Request Forgery (CSRF)

Cross Site Request Forgery is also known as the one-click attack, sea surf attack

or confused deputy attack. CSRF is a type of attack on a website in which an intruder

masquerades as a legitimate and trusted user. A CSRF attack can be executed by stealing

the identity of an existing user and then hacking into a web server using that identity. An

attacker can masquerade as a legitimate user by sending HTTP requests that return

sensitive user data to the intruder. CSRF exploits the trust that a site has in a user's

14

browser where as XSS exploits the trust a user has for a particular site [14]. CSRF uses

the vulnerabilities in same session policy to perform an attack successfully, i.e., requests

or actions which are originating from the same session will be given the same privileges

regardless of whether they are originated from first party or third party contents.

 Figure 5: Illustrate CSRF Attack

A real world example of this is the ability of attackers to commandeer certain

banking websites. The required steps to gain ownership and perform fraudulent financial

transaction are shown in the following example:

1. Once a user logs into an online banking account, the banking server

assigns a session to the user.

2. Before the session expires or the user logs off from the banking

account, he or she surfs the internet by opening a new tab in the

browser.

3. The website surfed by the user contains a hidden code. User browsing

activates the code and sends a HTML request to the bank web server

with authentication details from browser cookies.

15

4. So the attacker can make fraudulent transaction to his or her account.

This attack will be successful only when the request is made from a session.

Figure 5 will illustrate the sequence of actions performed by a CSRF attack.

2.3 Failure to support design principles

Both the same origin policy and the same session policy failed to fulfill the

fundamentals proposed by Saltzer and Schroeder [15] in “The Protection of Information

in Computer Systems”. Separation of privilege and least privilege are the two of eight

design principles summarized by Saltzer and Schroeder, which are violated by the current

web access control system polices. In order to provide efficient security on the Web, the

following two principles must be supported by current web access control system.

2.3.1 Separation of privilege

According to the principle of a separation of privilege, privileges in a system

should be divided into less powerful privileges, such that no single accident or breach of

trust is sufficient to compromise the protected information. For instance, this principle is

most commonly used in the banking system for bank safety deposit boxes, where two

physical keys are needed to lock and unlock the boxes. Once the box is locked, two keys

are separated and maintained, one by a user and another by the bank manager to avoid

unauthorized access due to loss of keys.

16

2.3.2 Least privilege

According to the principle of least privilege, each user in the system should be

least privileged to complete their jobs without any interruption based on their

trustworthiness. For instance, in UNIX the normal user should not be given the privileges

of a root user unless they are required for its legitimate purpose.

The current web access control systems are inadequate to address the protection

needs of today‟s web because it is violating the above mentioned design principles. So

there is need for redesigning the access control system of the Web to provide efficient

security. We have enhanced the access control system of the Web by enabling the

dynamic scoping for the browser, which overcomes the inadequacies in the same origin

and the same session policies and also provides support for the Saltzer and Schroeder

design principles.

17

 CHAPTER 3: RELATED WORK

The need for enhancing the fine-grained access control system for the Web has

been recognized earlier by many researchers. A number of approaches are proposed by

researchers in two ways: either to modify the browser or rewrite the entire script, which

can be done either statically or dynamically.

By using the iframe [16], we can easily isolate the third-party contents or script by

putting them in the iframe from the host page. Scripts included in the iframe will be

considered as originating from the different origin, so those scripts cannot access any

script or contents in the host domain. This will have a severe effect on the web

application‟s functionality. To avoid this all-or-nothing model, several solutions were

proposed for a browser-based access control system.

Crites et al.‟s proposed Mashup solutions [24]. Mashup solutions brought a policy

that abandons the same origin policy by allowing the integrator to specify public and

private data including DOM access. Completely abandoning the SOP would require a

significant change to websites. This is going to be expensive work.

To avoid completely abandoning the SOP, Miller proposed a Caja method [25].

This approach is based on a concept of rewriting the program source code to enforce the

security policies. The rewriting procedure of Caja is very complicated and cannot always

preserve original script functionality.

In contrast to Caja, Barth et al.‟s isolated world mechanism [23] replaces the one-

to-one context mapping with a one-to-many map where each context maintains a

18

mapping table to the DOM elements of the host page. This ensures that only host objects

are shared among all worlds but not native or custom objects. We have adopted this

isolated world mechanism idea to isolate the contents‟ execution.

Zhou and Evans proposed a solution [26] in extension to isolated world

mechanism. It is a one-way trust model with a goal to protect user content from untrusted

scripts rather than to protect embedded scripts from the host page or each other. This

approach doesn‟t consider the JavaScript frameworks like jQuery and other attacks like

cross site scripting, which are very important to provide the security to web applications.

This fine-grained access control system aims to protect the trusted content from the

untrusted content, but not to protect the contents from each other.

Du et al.‟s proposed SCUTA [12]. It is based on the ESCUDO [27], which was

their earlier work in protecting privacy for web applications. SCUTA uses the new

concept called sub-session for web applications, which is based on the ring concept in the

ESCUDO, so the requests from trusted client-side contents can be separated from those

of untrusted contents; such a separation enables web applications to enforce a fine-

grained access control system. This approach provides security measures against various

attacks like cross site scripting, which are not addressed in the Zhou and Evans approach.

 In both solutions, the JavaScript code in different worlds or rings will not interact

with each other. In a real world application, especially in many social networking sites, it

would be ideal that the hosting applications have the capability to provide a shared

library, which can be used by third party users. Based on this observation, we propose to

19

use the origin of the function call, instead of the location of the function, to decide the

privileges of the JavaScript code.

20

CHAPTER 4:TWO-WAY SECURITY MODEL

The objective of our work is to make the access control system address the current

web content problems. The proposed approach will allow the client and trusted web

application contents to share the common library and protect web contents from each

other by executing at different trust levels. We assume a two-way security model since

our goal is to protect web contents from each other and allow sharing the common library

among the web contents.

We need to make fundamental changes to the current web protection model to

address the protection needs of modern applications. The two-way security model can be

obtained by enabling dynamic scoping for the current web access control system. The

two-way security model doesn‟t target in changing the today‟s web architecture but

focuses on fundamental changes to the access control system.

Our model doesn‟t make any changes to the basic policies of current access

control system but enhances it with dynamic scoping, i.e., our model will use the existing

same origin and same session policies without any changes. Our model allows the

developer to configure their application by appropriately specifying the shared library

and other contents with their trustworthiness. Web applications communicate the

configuration to the web browser, where the proposed access control model enforces

access decisions based on the configuration. Figure 6 will illustrate our two-way security

model.

21

1. Let us consider Group 1 and Group 2 are the client and trusted contents, and the

shared library is a collection of some trusted contents.

2. The application developer specifies the shared library and other contents with

their trustworthiness to the browser.

3. Group 1 and Group 2 can access (read-only access) shared library but cannot

manipulate it, i.e., Group 1 and Group 2 can get the resources from the shared

library and use them, but cannot make any changes to the shared library. This

proposal is based on a very simple principle: If one would like to manipulate his

own work, it is allowed to proceed; if one would like to manipulate something

outside his work, the actions will be prohibited.

4. Group 1 and Group 2 cannot access each other.

 Figure 6: Two-way security model

22

 In modern web applications, different web contents are needed to access each

other to perform their task successfully. The complete isolation of contents will not fit for

modern web applications, so there is a need for the web applications to share some

common things among the web contents irrespective of trustworthiness. To avoid the

burden and complexities in defining relationships among the web contents and protecting

them from each other, our model defines the shared library and allows web contents to

access them. To differentiate and designate the trustworthiness of different components in

a web application, we introduce the group concept for different components in a web

page. This concept is very similar to the ring concept in SCUTA. The key difference is

that the defining access control is based on where the JavaScript code is initiated, not

where the code is located.

Our two-way security model places all the web contents in different groups based

on their trustworthiness except the shared library. Shared library contents are placed in

the default group. Our model allows web developers to choose the total number of groups

that fit their application needs. The number of groups for one application is independent

from others.

This two-way security model can be achieved by enforcing dynamic scoping for

web based access control system. In computer programming, scope is the range within a

computer program in which a variable name or other identifier is valid and can be used,

or within which a declaration has effect. Computer programming has two different types

of scoping: they are static and dynamic scoping.

23

Static scope is determined at compile time by the compiler using a sequential

processing of program and remains the same throughout the program. Static scoping

determines the occurrence of an identifier by first checking the local block in which the

name appears, then the block construct that declares the block (i.e., its static parent). This

process is repeated until a definition is found. That is, the compiler first searches

(searching for variable or identifier) in the local function (the function which is running

now), then searches in the function in which that function was defined, then searches in

the function in which that function was defined, and so forth until a definition is found.

By default C, C++ and JavaScript uses static scoping.

In contrast, dynamic scoping is determined at runtime. In dynamic scoping,

processing of program statements follows the execution order of different statements and

can change during the execution of the program. Dynamic scoping determines the

definition for an occurrence of the identifier or a variable by examining the calling

sequence, rather than the program block declaration hierarchy as in static scoping. That

is, the search for identifier starts first in local function, then search in the function

that called the local function, then search in the function that called that function, and so

on, up the call stack until the definition is found. "Dynamic" refers to change, in that the

call stack can be different every time a given function is called, and so the function might

hit different variables depending on where it is called from. Figure 7 will illustrate the

difference between the static and dynamic scoping.

24

 Figure 7: Difference between static and dynamic scoping.

1. Bob‟s function returns the 15 by fetching value from its lexically

enclosing scope i.e. a=10, when it is called directly. The Function Alice()

which calls Bob(), returns different values in static and dynamic scoping.

2. In static scoping the function, Alice () calls Bob (), which fetches the

variable “a” value from its lexically enclosing scope i.e., a=10 and

returns 15.

3. In dynamic scoping the function, Alice () calls Bob (), which fetches the

variable “a” value from the initiated function i.e., a=20 and returns 25.

Execution of JavaScript requires a scope for top-level script variable storage as

well as a place to find standard objects like function and object. Calls to functions in

JavaScript use static scope, which means that variables are first looked up in the function

and then, if not found there, in the lexically enclosing scope. This causes problems if

25

functions you define in your shared library need access to variables you define in your

instance scope as illustrated in Figure 7. For better understanding of how scoping affects

functionalities of shared library consider Bob() as shared library function and Alice() as

initiated function in Figure 7. Therefore our two-way security model can be achieved

only by enforcing dynamic scoping for web based access control system.

In order to get better understanding of our two-way security model, we use the

more complete example shown in Figure 8 to demonstrate working of our model. In this

example, shared library contains variables a=6, b=9, and functions product(), and reset().

The product() function calculates and returns the product of two numbers. The reset()

function will manipulate the contents of documents such as making the document empty

or setting different values to the variables. The remaining scripts are grouped into group1

and group2 according to their trustworthiness.

Group1 contains the variables a=1, b=2, and a call to the product() function in the

shared library. The product() function initiated from group1 will fetch values of the

variables a and b from the group1, and returns 2 rather than 54.

Group2 contains the variables a=1, b=2, and a call to the reset() and product()

functions in the shared library. The product() function initiated from group2 will fetch

values of the variables a and b from the group1 and returns 2 rather than 54. When the

dynamic scoping is used, DOM root is the root of scripts scope that initiates the function

rather than the scripts which contain the function. The reset() function initiated from

group2, will manipulate the contents of group2 only, not the shared library as the

document root is the root of group2 rather than the root of the shared library.

26

 Figure 8: Complete example demonstrates working of a two-way security model

27

CHAPTER 5: EFFECTUATION OF TWO-WAY SECURITY MODEL

This chapter describes a prototype implementation of the two-way security model

on the Lobo browser [17] based on the requirements and design presented in Chapter 4.

The Lobo open source project aims to develop an extensible browser and RIA platform

written completely in Java that not only supports HTML and JavaScript, but also enables

rendering of arbitrary Rich Internet Application (RIA) languages [18]. The Lobo browser

is built on the Cobra HTML Rendering engine, which is a pure Java HTML renderer and

DOM parser that is being developed to support HTML 4, JavaScript and CSS 2. Cobra

uses the Rhino 1.6R5 JavaScript engine, which is released by the Mozilla Foundation

[19].

5.1 Lobo Architecture

The architecture of the Lobo browser which we derived is shown in Figure 9

[20]. Lobo is intended to be a platform for building new client-side web languages.

Therefore, the browser architecture is designed to be easily extensible. It comprises

five major subsystems plus the dependencies between them.

5.1.1 User Interface

The User Interface subsystem is the layer between the user and the browser

engine. It provides features such as toolbars, page services, navigation, preferences,

and printing. It may be integrated with the desktop environment to provide browser

session management or communication with other desktop applications.

28

 Figure 9: Architecture of Lobo browser

5.1.2 Browser Engine

The Browser Engine subsystem is an embeddable component that provides a

high-level interface to the rendering engine. It consists of three important

components: the Request Engine, Extensions Manager, and Cache Manager. User

requests are forwarded to the servers by the Request Engine from the user

interface. The Request Engine uses the Extensions Manager to choose an

appropriate extension to render the response. The Extensions Manager uses the

Cobra HTML Rendering Engine for rendering web pages. The Cache Manager is

responsible for caching responses based on the instructions specified in the

HTTP cache-control header. The Request Engine interacts or contacts with the

29

Cache Manager before issuing a network request, and serves the response from

the cache if possible.

5.1.3 Cobra HTML Rendering Engine

The Cobra HTML Rendering Engine subsystem is a pure Java HTML

renderer and DOM parser that produces a visual representation for a given URL. It is

capable of displaying HTML and Extensible Markup Language documents, styled

with CSS, as well as embedded content such as images. It consists of five major

components, which are HTML parser, Layout or Graphics Engine, Document Object

Model (DOM), Window and XMLHttpRequest objects. Cobra uses the HTML

parser, which can be used independently of the Cobra HTML Rendering Engine to

parse the web page to page and construct a DOM tree corresponding to the page.

Each web page is assigned a distinct DOM and a Window, which is an abstraction of

the window in which the web page is displayed. The XMLHttpRequest object is used

by JavaScript programs to send HTTP requests. The Layout or Graphics Engine is

used to render the graphic contents of web pages.

 5.1.4 Rhino JavaScript Interpreter

Cobra uses the Rhino 1.6R5 JavaScript engine, which is released by the Mozilla

Foundation [19]. Rhino JavaScript interpreter executes JavaScript code, which may be

embedded in web pages. Rhino doesn‟t contain any objects or methods for manipulating

HTML documents but it is only an implementation of core language [21].

30

Rhino includes the following features [21]

1. All the features of JavaScript 1.5

2. Allows direct scripting of Java

3. A JavaScript shell for executing JavaScript scripts

4. A JavaScript compiler to transform JavaScript source files into

Java class files.

5.1.5 Object Wrapper

The Rhino JavaScript Interpreter accesses the DOM, Window, and

XMLHttpRequest objects via the Object Wrapper. All the requests to the three objects are

mediated through Object Wrapper.

5.2 Identifying subsystems of the Lobo browser architecture for

implementation

This section describes the identification of the subsystems of Lobo browser

architecture to make modification for enforcement of two-way security model. JavaScript

is a dynamic scripting language, which is one of the sources for the attackers to violate

the security policies of web page. In Lobo browser, JavaScript is parsed by HTML parser

and executed by the Rhino JavaScript engine. Rhino was completely written in Java and

enforces its own security policies. It is very important to understand the terms context

and scopes in Rhino.

31

The Rhino context object is used to store thread-specific information about the

execution environment [22]. A thread executing JavaScript should be associated with

only one context.

Execution of JavaScript requires a scope to find a place where it can access and

store the variables or objects. In Rhino it is important to understand that scope is

independent of context that created it, i.e., creating a scope for JavaScript can be done

using one context and executing the script using that scope and different context is

allowed.

Rhino follows the same origin policy, which assigns the privileges based on the

origin. Rhino provides the ability to keep track of the origin of a code in webpage. Rhino

provides a security-channel to enforce its security features in web application. The

security channel needs to do two things.

First, every context that is created must be supplied an instance of an object that

implements the SecuritySupport interface. This will provide Rhino the support

functionality it needs to perform security-related tasks [21].

Second, the value of the property security.requireSecurityDomain should be

changed to true in the resource bundle org.mozila.javascript.resources.Security. The

value of this property can be determined at runtime by calling the

isSecurityDomainRequired method of context. Setting this property to true requires that

any calls that compile or evaluate JavaScript must supply a security domain object of any

object type that will be used to identify JavaScript code [21].

32

 The security-channel provided by Rhino will be sufficient for overcoming the

current web access control drawbacks; by implementing our two-way security model

without any modifications to the current security policy of Rhino. We need to make

modification to the Cobra HTML Rendering Engine subsystem rather than the Rhino

engine security features to implement the two-way security model.

5.3 Two-way security model implementation

This section describes a prototype implementation of a two-way security model

on the Lobo browser. Our two-way security model implementation was involved in

adding or modifying approximately 900 lines of code to the Cobra HTML Rendering

Engine. We did not make any modification to the Rhino JavaScript engine security

features. Hence, our implementation can be used with any pure Java based web browser

that uses the Rhino JavaScript engine. Our implementation involved two phases:

1. Extracting and Tracking security groups.

2. Enforcing access control policy.

5.3.1 Extracting and Tracking security groups

This phase deals with the Extracting and Tracking security groups of two-way

security model. Whenever web application or page is called from Lobo web browser,

Cobra HTML Rendering Engine parser parses the web page and constructs the DOM

objects. We have modified the Lobo browser to recognize a new attribute group in script

tags. During this process our two-way security model extracts the security group from

script tags and stores it in the DOM elements for the respective HTML tags. If a group

33

element is not found in the script tags our model assigns a default group to that content.

The contents with a default group are categorized as shared contents. It is the

responsibility of the developer to configure their application with different security

groups.

 Two-way security model tracks the security groups during the execution of

scripts. It maintains a webpage-specific table, which is used for maintaining security

groups of current executing web contents. Our model dynamically updates the table

according to the flow of execution. Our model does not make any changes to the order of

parsing and execution of the web contents. Normally, the parsing and execution of the

web contents will be done in the order of their appearance and dependencies on the web

page. The common processing work of the Cobra HTML Rendering Engine parser is

creating DOM elements and adding them to the DOM tree. Some web contents can

momentarily create HTTP request for accessing other web contents during the processing

work of the Cobra HTML Rendering Engine. Before answering those requests, our model

retrieves the security group of HTTP requests content origin from the DOM and updates

the web-page specific table and then answers the request. As a result the new requests

generated dynamically can still execute in the origin context.

5.3.2 Enforcing access control policy

Two-way security model enforces the access control policy based on principle

that the contents of web application share the common library and protect from each

other, while they still get executed at different trust levels. Two-way security model

enforcement comprises three parts.

34

First, our model isolates all the web contents based on their group values. In order

to isolate the web contents we adopted the isolated world mechanism idea from Adam

Barth‟s Protecting Browsers from Extensions Vulnerabilities [23]. The isolated world

mechanism replaces the one-to-one context mapping with a one-to-many map where each

context maintains mapping table to the DOM elements of the host page. This ensures that

only host objects are shared among all worlds, but not native or custom objects.

We adopted and modified this mechanism to implement the two-way security

model. Our model creates a separate context for each group. Each time the Rhino

JavaScript engine is invoked by the Cobra HTML parse to execute JavaScript program, it

passes the JavaScript context corresponding to the programs group. As a result,

JavaScript programs belonging to a group can access only the custom and native objects

that reside in the context belonging to the group. This isolation is necessary to protect the

web contents from each other.

Second, our model supports the dynamic scoping and scripting as we are

enforcing access control policies at runtime. As our model creates separate context for

each scripts, the dynamically generated scripts will run in different context from the

scripts that created them. This will break the functionality since variables and functions

that should be shared are now isolated. We made modifications to the Lobo Browser in

such a way that dynamically generated scripts will inherit the group from their creator,

thus executing within the same context.

Third, our model supports the library sharing by modifying the prototype chain of

scope and restricting any modification to the shared library by using sealObject() method.

35

Our model enables the sharing of contents by creating a new context and calling scope

object by setting its setprototype method to sharedscope object and parent to null. Our

model restricts others making changes to shared library by calling the sealObject method.

sealObject method will not allow to add or delete properties to the object and make

changes to the existing objects. Our model assigns the default group to the contents that

don‟t carry the group element in the script tags. The content with default group is

categorized as shared library. It is the responsibility of the developer to specify the type

of content by configuring the web applications.

We have implemented two phases of the two-way security model without any

compatibility issues.

36

 CHAPTER 6: CONCLUSION

We strongly believe that the access control system in the current web is

inadequate to satisfy the protection needs of today‟s web. The web technology is still

evolving, so a good access control system design should not only be able to satisfy

today‟s needs, it should also be extensible to satisfy the unknown protection needs that

will inevitably come up during the technology evolution. So we outlined the two

characteristics that a security model of the access control system should adapt, to address

the current web problems and provide support to the security model evolution that

address the future web problems. We have presented a browser based access control by

enabling the dynamic scoping. This access control model is systematically designed to

fulfill the two characteristic requirements using mandatory access-control principles. We

implemented a prototype of a new browser based access control in the Lobo web browser

and illustrated how web applications can use this new access control system.

Future research in browser access control should consider how to facilitate richer

web applications while enforcing the principle of least privilege. In the future, web

applications will feature richer and more interactive clients executing in the web browser.

So the future research should focus on architecture improvements of the Web and design

of API methods, to facilitate JavaScript programs to enforce the least privilege principle

of the access control in the richer applications.

37

BIBLIOGRAPHY

[1] World Internet Usage and Population Statistics. Retrieved from Internet World

Stats: http://www.internetworldstats.com/stats.htm

[2] We knew the Web was Big. Retrieved from Google Official Blog:

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

[3] Domain Counts and Internet Statistics. (2012, March 25). Retrieved from Domain

Tools: http://www.domaintools.com/internet-statistics/

[4] Stateless Protocol. Retrieved from: http://en.wikipedia.org/wiki/Stateless_server

[5] Wong. C, HTTP Pocket Reference: Hypertext transfer Protocol (p. 80). O'Reilly

Media.

[6] FTP – The File Transfer Protocol. (2006). Retrieved from South River

Technologies webdrive: http://www.webdrive.com/docs/geninfo/wpftpbasics.pdf

[7] Wenliang, D., Karthick, J., Tan, X., Tongbo, L., & Chapin, a. S. Position paper:

Why are There so Many Vulnerabilities in Web Applications? Dept. of Electrical

Engineering & Computer Science, Syracuse University, Syracuse, New York, USA.

[8] Norton Study Calculates Cost of Global cybercrime. Retrieved from

http://www.symantec.com/about/news/release/article.jsp?prid=20110907_02

[9] Top 10 2007. Retrieved from OWSAP the Open Web Application Security

Project: https://www.owasp.org/index.php/Top_10_2007.

38

[10] Sullivan, B., & Liu, V. (2001). Web Application Security. McGraw-Hill

Professional.

[11] Top 10 2007-Cross site scripting. Retrieved from OWSAP the Open Web

Application Security Project: https://www.owasp.org/index.php/Top_10_2007-A1.

[12] Wenliang, D., Karthick, D., Tan, X., & Tongbo, L., (2011). SCUTA: A Server-

Side Access Control System for Web Applications.

[13] Burns, J. Cross Site Request Forgery-An Introduction to a Common Web

Application Weakness. Information Security Partners, LLC.

[14] Cross-site Request Forgery. Retrieved from http://en.wikipedia.org/wiki/Cross-

site_request_forgery

[15] Saltzer, J. H., & Schroeder, M. D. (1975). The Protection of Information in

Computer Systems. Proceedings of the IEEE.

[16] WHATWG community. HTML Living Standard iframe Element. Retrieved from

whatwg: http://www.whatwg.org/specs/web-apps/current-work/#the-iframe-element.

[17] Lobo: Java Web Browser. Retrieved from lobobrowser:

http://lobobrowser.org/java-browser.jsp

[18] Lobo Project. Retrieved from lobobrowser: http://lobobrowser.org/index.jsp

[19] Cobra: Java HTML Renderer & Parser. Retrieved from lobobrowser:

http://lobobrowser.org/cobra.jsp

[20] Karthick, J. (2011). Protection Models for Web Application. Syracuse University.

39

[21] RhinoOverview. Retrieved from Mozila :

http://www.mozilla.org/rhino/overview.html

[22] Rhino Scopes and Context. Retrieved from Mozilla:

 http://www.mozilla.org/rhino/scopes.html

[23] Adam, B., Adrienne, P., Prateek, S., & Aaron, B. (2010). Protecting Browsers

from Extension Vulnerabilities. 17th Network and Distributed System Security

Symposium.

[24] Steven, C., Francis, H. & Hao, C. (2008). OMash:Enabling Secure Web Mashups

via Object Abstractions. 15th ACM Conference on Computer and Communication

security.

[25] Mark, S., Mike, S., Ben, L., Ihab, A., & Mike, S. (2007). Caja Safe Active

Content in Sanitized JavaScript.

[26] Yuchen, Z., & David, E. (2011). Protecting Private Web Content from Embedded

Scripts. ESORICS, (pp. 60-79).

[27] Karthick, J., Wenliang, D., Balamurugan, R., & Steve, J. C. (2010). ESCUDO: A

Fine-Grained Protection Model for Web Browsers. 30th IEEE International

Conference on Distributed Computing Systems.

[28] Cooper, S. B. What is a Stateful Protocol. Retrieved from ehow tech:

http://www.ehow.com/facts_7454206_stateful-protocol_.html

[29] Internet. Retrieved from http://en.wikipedia.org/wiki/Internet

	Western Kentucky University
	TopSCHOLAR®
	5-25-2012

	Dynamic Scoping for Browser Based Access Control System
	Vinaykumar Nadipelly
	Recommended Citation

	tmp.1337954790.pdf.gEX7s

