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Tornadoes are one of Mother Nature’s deadliest phenomena.  They affect a large 

region of the United States.  The risk of tornadoes is contingent on dynamic atmospheric 

conditions that are most likely during spring but which can occur anytime of the year, 

making the storms challenging to forecast.  Using geographical information systems 

(GIS), a web-based spatial decision support system (SDSS) was created to help 

understand the spatial dimension of tornado risk assessment.  The risk values are 

calculated using Tornado Days rather than taking a crude density measurement.  The 

SDSS hosts GIS web services that are displayed on an Adobe Flex application.  The web 

application allows users to view, research, query and extract information from the 

attributes of the GIS files.  There is also a dynamic risk tool which gives users the ability 

to click anywhere inside the study area and get the percentage of risk that a tornado will 

occur within 25 miles of that very point.  The web application eliminates users and 

viewers from conducting their own research and GIS work.  In addition, automated 

updating models and macros were created to update the tornado database on an annual 

basis. 
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CHAPTER 1 

INTRODUCTION 

Many facets of life are determined and affected by the climate system.  Climate is 

a factor in what crops we choose to grow, what activities in which people choose to 

participate, the type of clothing people wear, the architectural design of buildings, and the 

consumption of energy.  The climate system defines not just the average temperature and 

precipitation patterns of an area, but also the range in weather and climate-related natural 

hazards people experience in a region.  An aspect of climate that affects society 

negatively is severe weather. The American Meteorological Society broadly defines 

severe weather as any dangerous meteorological phenomena with the potential to cause 

damage, serious social disruption, or loss of human life (AMS n.d.).   

In a broader sense, severe weather is a type of geophysical hazard (Royal 

Geographical Society 2011).  Hazards refer to events that could occur due to 

environmental conditions of the area and pose a threat to people or property. However if 

there are no people or property in jeopardy, then there is no hazard (APA 2010).  When a 

hazard becomes an actual event and has an ill effect on nature and/or society, it is then a 

disaster.  A disaster can vary in impact based on both the natural intensity of the event 

and the location where it occurs.  Even a weak tornado can cause extensive loss and 

damage in a densely populated urban area.  In contrast, a strong tornado in a very rural 

area can have minimal impact.  The probability of a hazard becoming a disaster is termed 

risk (Godschalk 2003).  Risk is a function of the likelihood that a hazardous event will 

occur.  The exposure of people and property to the event, and the resistance (affected by 

mitigation) to potential impacts of the event are all factors when quantifying risk. 
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Hazards for an area demand planned mitigations, or hazard mitigations.  

According to the FEMA (2010), mitigations are efforts put in place to reduce casualties 

and property damage in the event of disasters.  In the proceeding moments after a 

disaster, planned mitigations become necessary and difficult to implement.  Without 

mitigations, people in affected areas are forced to adapt to the changed environment.  

Socioeconomic and psychological issues arise when people are forced to adapt (Burton 

1997).  The first step in implementing mitigation for natural hazards is through risk 

analysis (FEMA 2010).  The risk component quantifies the probability of a hazard 

becoming a disaster.  Since risk is calculated on two scales, spatial and temporal, 

quantifying accurate assessments can be difficult. 

 There are difficulties in quantifying the risk of severe weather.  One obstacle is 

that severe weather varies over both space and time.  The atmosphere is a fluid and 

dynamic system in a constant state of change.  Conducting risk assessment and 

implementing mitigation efforts become increasingly difficult when concerning 

convective weather systems.  These systems develop extremely fast and have the 

potential to cause significant damage, especially in the event of a tornado, where the 

average lead time for a tornado warning is only 13 minutes (NOAA 2007).  Tornadoes 

can strike with little or no warning and leave behind damage to both communities and 

agriculture (Balluz, et al. 2000).  The area within which tornadoes occur in the United 

States is very extensive, and due to the natural intensity of these storms, having accurate 

risk assessments is important.  However, in order to implement the right mitigation for an 

area, the proper resources for risk analysis must be put in place.  Research on the 

components of tornadoes such as intensity, occurrence by date and time, and duration can 
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be targeted on a spatial scale.  From here, patterns can be identified which lead to better 

decision making for hazard mitigation.  This is achieved only through better 

understanding of the components that quantify the risk assessment for a given area.  It is 

important for individuals and communities to acknowledge the threat of severe weather 

and take appropriate action to understand and mitigate the risk. 

 There is a need for accurate risk analysis of natural hazards.  With accurate risk 

assessments proper mitigations can be put in place to save more lives and protect more 

property in the event of a natural disaster.  Resources can be better allocated to meet the 

demands of mitigations.  Effective preparation can reduce the overall impact of a disaster 

thereby decrease the inevitable risk of the hazards affecting both people and property.  To 

meet this demand, technology such as geographic information systems (GIS) are used to 

create an assortment of products used by the stakeholders to better determine and 

understand the risk of tornadoes.  Risk assessments are used by stakeholders such as 

emergency management agencies to apply mitigation plans and best prepare for the 

inexorable destruction left behind from natural hazards.  By not acknowledging the 

imminent threat of severe weather, a community increases their vulnerability of 

struggling to prepare and recover when these events occur (Comfort, Mosse and Znati 

2009).  The overall mission of an emergency management agency is to promote safer, 

less vulnerable communities with the capacity to cope with hazards and disasters 

(Blanchard, et al. 2007).  To promote safer, less vulnerable communities, risk 

assessments need to be accurate and readily on hand.  There is an obvious importance and 

responsibility in the field of risk assessment to base calculations off accurate data.  

 In addition to creating dependable risk assessments, the information needs to be 
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available to all stakeholders including the general public.  These stakeholders include 

emergency managers and other first responders, elected officials, and resource allocation 

planners.  As of June 2010, there were over 239 million people estimated using the 

internet in the United States alone (International Telecommunication Union 2010). Many 

users rely solely on the internet as a source for news.  There is diminutive argument that 

the internet has become one of the most accessed mediums of news and information over 

the past decade.  The internet also allows for the information to be used whenever 

needed, making the internet one of the most reliable platforms to access information 

(Althaus and Tewksbury 2001).   

The quality of decisions can be expected to increase as more complete 

information is made available.  The best decisions are made when more information is 

readily available.  The decision making process can be difficult if unclear data is not 

perceived correctly.  Time delays in the decision making process can be costly, especially 

when the decision is based around the safety of people.  A product known as a spatial 

decision support system (SDSS) has the capabilities to display and share risk assessment 

data on the internet.  A spatial decision support system is an integrated database 

management system that provides computerized support for decision making where there 

is a geographic or spatial component available (Forgionne and Gupta 2003, 28).  

Compiled into the system, developers can create spatial tools for client-side interaction, 

data evaluation, analysis and extraction.  Providing these services on the internet 

increases the availability to all stakeholders and the general public.  Also, developers of 

the SDSS can work within user-friendly GIS software interfaces such as the 
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Environmental Systems Research Institute’s (ESRI) ArcGIS mapping software and 

technology, making database editing, managing and updating simple.   

 This project is based on the development and operationalization of a web-based 

SDSS for assessing the risk of tornadoes in and near the state of Kentucky by using a 

dataset of recorded tornado events from 1950 to 2010.  Visually, figure 1.1 shows how 

the raw weather data is converted into useful information for decision makers.   

 

Figure 1.1.  This diagram developed by the Kentucky Climate Center (2012) shows how 
the raw weather data can be converted to information for decision making.  This graphic 
simplifies the methodology used in this study. 

 

The SDSS is housed in a tornado database website that can be accessed by anyone with 

an internet connection.  The SDSS eliminates the need for risk assessment stakeholders to 

purchase and understand GIS and web publishing technologies, while providing a 

platform for users to obtain usable and reliable information on Kentucky’s tornado 

climatology.  To do so, the website was designed to provide tools with dynamic 

capabilities that are visually pleasing and analytically powerful.  Dynamic tools do not 

just perform a function but also adapt parameters of the function based on client-side 

criteria.  For example, a search tool can provide useful information on an entity, but only 
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delivers static results.  If the tool was dynamic, the search results would use multiple 

queries to display certain information the client is interested in.  The project also 

develops a series of updating tools and tutorials.  Currently, the tornado dataset contains 

records from 1950 to 2010.  When the annual data is released from the National Oceanic 

and Atmospheric Administration (NOAA), for the calendar year, the dataset will require 

updating.  This goal was met by creating a series of tools which recreates the datasets 

used by the website.  
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CHAPTER 2 

LITERATURE REVIEW 

Tornadoes are capable of being extremely destructive and deadly.  They have 

affected every state in the United States, including Alaska (Fathauer 1977) and Hawaii 

(Carbin 2010), resulting in extensive damages and for most states, loss of life.  Not 

surprisingly, tornadoes have become one of the most feared phenomena of nature.  

Hence, it is important to understand when and where these storms may occur.  Such 

information can lead to a better understanding of risk mitigation and preparedness efforts. 

Tornadoes are enigmatic and difficulties arise when trying to predict them.  

Thunderstorms can be tornadic and show signs of tornadogenesis, but may never spawn a 

tornado.  Tornadogenesis refers to the beginning processes in a storm which lead to the 

formation of a tornado (Steiner 1973, Kelly, et al. 1978, Church 1993, Concannon, 

Brooks and Doswell III 2000).  This unpredictable nature of tornadoes makes them even 

more dangerous and life-threatening.  With a better understanding on tornadogenesis, 

more accurate risk assessments can be calculated which can provide vital information to a 

variety of stakeholders including insurance companies, emergency management agencies, 

law makers, educators and the general public. 

The key is to deliver information that is not only helpful but most importantly 

accurate.  There are varying approaches to establishing a risk value for an area.  Variables 

such as study area, temporal scale, analysis methodology, and result interpretation can all 

impact the resulting value. This section briefly reviews past approaches of calculating 

tornado risk and highlights the progressions made in those studies. 
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2.1 Previous Tornado Studies 

Interest in tornadoes and tornado climatology has been reflected in studies 

published since the 1800s and early 1900s (Hare 1837, Finley 1884, Emery 1900). Many 

offer accounts of individual storms (Redfield 1841, Lloyd 1847, Clayton, Davis and Mils 

1892).  Most studies were limited in their geographic extent.  While they may offer 

accurate local portrayals of tornado events, they do not place those events into a broader 

geographic context.  One of the first extensive tornado datasets was created by Tom 

Grazulis (T. Grazulis 1993).  It compiled tornado records from as early as 1680 and 

included records up to 1991.  Grazulis continued to collect data on significant tornadoes 

(tornadoes with a Fujita scale rating of F2 or higher, or if the tornado resulted in any 

casualties) and he expanded the database to include records through 1995 (T. Grazulis 

1997).  In the 1970s, the National Severe Storms Forecast Center (NSSFC) removed 

nearly 20% of documented tornadoes from the national tornado log due to the reports 

being considered doubtful (Kelly, et al. 1978).  The new dataset was used by Kelly et al. 

(1978) to derive a comprehensive tornado climatology.  Studies including Thom (1963) 

and Schaefer et al. (1986) applied methodologies which calculated the mean annual area 

covered by the tornado paths in 1° of latitude and longitude resolution.  More recently, 

Passe-Smith (2008) examined the effects of topography on tornado development.  The 

study concluded that similar areas of topography, such as Oklahoma and Kansas, also 

experience similar diurnal temperature profiles and land usage, which may lead to similar 

storm development which leads to tornadogenesis. 

 Analysis of tornado datasets has been limited by concerns with the accuracy of 

recorded attribute data of tornadic storms.  Questions exist regarding the accuracy of 
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tornado path length, path width and Fujita rating. The most reliable data are the date and 

absolute coordinate locations recording the location of tornadoes.  Still uncertainty can 

exist when differentiating between a single tornado that produces an intermittent path and 

multiple tornadoes. With the advent of DOPPLER radar technology in 1988, 

meteorologists are better able to pinpoint crucial areas of the storm where tornadic 

circulation is occurring; thereby helping to identify tornadoes that might have previously 

gone undetected (NWS 2010).  Verbout et al. (2006) addresses how over time, tornado 

datasets have become more accurate and reliable for tornado analysis.    

Tornado days have become popular units of analysis.  A tornado day is simply 

defined as a day when one or more tornadoes occurred within a defined area.  Early work 

such as Showalter and Fulks (1943) created maps of tornado days for each state. While 

these maps were useful, they did not adjust the tornado day counts to reflect differences 

in the size of individual states.  All things being equal, larger states in terms of area are 

more likely to have more tornado days than smaller states.  Tornado days have since been 

used as a variable for analysis in many studies (1943) (Changnon Jr. 1982, Concannon, 

Brooks and Doswell III 2000, Brooks, Doswell and Kay 2003, Raddatz and Cummine 

2003, Trapp et al. 2004, C. Doswell III 2007, Dixon et al. 2011).  Using tornado days, 

rather than a raw dataset of tornado events assists in addressing an error in the number of 

reported tornadoes each year, when the same tornado is reported multiple times.  As 

noted by Brooks et al. (2003), using the tornado day methodology reduced the apparent 

doubling in the number of tornadoes reported since 1950, to an increase of only about 10 

to 15 percent.   
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With better analysis, tornado day methodologies started to become the choice for 

many researchers.  According to Changnon (1982), different spatial patterns are evident 

when using tornado days instead of counts of tornadoes.  Rather than just analyzing the 

location of the events, analysis of tornado days addresses the risk of a tornado occurring 

within an area on any given day of the year.  This approach helped atmospheric scientists 

identify the location of seasonal variances in tornado frequencies (Church 1993).  Brooks 

et al. (2003) later took this approach and calculated the probability of a tornado occurring 

within an 80 km by 80 km cell on any day of the year for the lower 48 states.  Dixon et al. 

(2011) then conducted both tornado event and tornado day density analyses, noting their 

differences.  There are some issues when using tornado days rather than attributed data of 

the events.  Dixon et al. (2011) pointed out how using tornado days weights each event 

the same, exemplifying how a short-lived tornado bears the same attribute weight of a 

very long track.  However, if a study is focusing only on the occurrence of tornadoes and 

not their strength or other characteristics, then this approach is appropriate.  

2.2 GIS and Spatial Analysis 

The ability to analyze the spatial distribution of tornado events has been aided by 

advancements in geographic information systems (GIS).  According to the Environmental 

Systems Research Institute (ESRI) (2009), GIS is a technology that integrates both 

hardware and software to capture, manage, analyze and display spatial data.  GIS 

software and application tools make operational methods of spatial analysis possible that 

otherwise would be too difficult to implement on a large scale. When the technological 

breakthrough in GIS occurred in the 1960s with the first mainframe computers housing 
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spatial information, the ability to conduct analysis or even display the data was very 

challenging (M. Goodchild 2000).   

The development of GIS has gone through four phases since the early 1960s.  

Beginning with the pioneering phase, which lasted from the early 1960s to approximately 

1975, the first theoretical ideas for map-making by using computers were developed 

more so by individuals than industrial companies.  The second phase, the governmental 

phase lasting from around 1973 to the early 1980s, saw an increase in governmental 

agencies and local government agencies using mapping and spatial analysis technologies.  

Such agencies included the U.S. Census Bureau and the U.S. Geological Survey.  The 

third phase was the commercial phase.  It began around 1982 and lasted until the late 

1980s.  This phase was dominated by commercial GIS software firms in competition with 

each other.  The commercial phase was replaced by the current user-dominated phase.  

This phase reflects the evolution of desktop GIS software in conjunction with that of the 

internet (Coppock and Rhind, 1991). 

 GIS has created a new approach to cartography or map-making.  On the forefront 

of cartography software in the United States, ESRI has evolved with the many phases to 

emerge as a global leader in geographic information services (GI Services).  ESRI, 

started by current company president Jack Dangermond in 1969, was created to help 

support decision makers, including land use planners and resource managers, by 

providing them with the capability to create, manage, analyze, and display geographic 

data (Esri 2009)  Since then, ESRI has evolved to create and supply products for an array 

of industries.  As part of being a global leader, ESRI has created software that led the 

phase change from commercial-based products to user-based in the 1980s.  ArcGIS 
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software was developed in the late 1990s when ESRI joined two mainframe ideas: a 

complete desktop GIS software and enterprise capabilities.  Desktop GIS software offers 

a user-friendly interface with a suite of programs and extensions that allow for numerous 

analysis operations and a complete cartographic design program.  The enterprise 

capability refers to a network environment that allows for efficient communication 

between servers and clients in a network (Martin-Flatin et al, 1999).  In terms of GIS, the 

servers house the data, tools and software, and the clients access the server.  

Communication is necessary in any network, and enterprise communication within 

ArcGIS software allows for maximum connectivity with all servers and clients (Dueker 

and Butler, 1997). 

 Apart from the networking abilities of ArcGIS, what makes the software a strong 

tool in geographic studies is the collection of advanced extensions and functions the 

software offers.  Collectively, these extensions house hundreds of operations that are used 

for specialized purposes.  For example, the Network Analyst extension for ArcGIS 

software provides tools for navigation analysis, routing, service area calculations, and 

deriving turn-by-turn directions.  As technology started to change the direction of GIS at 

the beginning of the new millennium, the functionality of extensions began to focus on 

statistical operations.  There are now multiple tools that allow users to conduct statistical 

operations within the same GIS software that they are using to conduct their spatial 

analysis.  This flexibility greatly enhances the functional value of the software (McCoy 

and Johnston, 2001). 
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2.3 Internet GIS 

The latest generation of GIS adds internet-based functionality for GIS.  Due to the 

overwhelming increase in the popularity of the internet, there was an inevitable increase 

in ready availability of data that could be shared and manipulated (Peng and Tsou, 2003).  

The internet allows for decisions to be made based on the analysis of server-housed data, 

either spatial or nonspatial.   

The architecture between the client, or user, and the server can be quite complex, 

however there are fundamental components that must be addressed (Berson 1996).  The 

first component is that there must be a provider, known as a server, for a service and a 

request for the service from a client.  The second component is that there must be a 

connection, known as a network, between the client and the server.  The third and most 

important requirement is that the client and server must be able to communicate fluidly. 

This refers to the necessity that the software platform that generates the request and the 

software platform that receives the request must speak the same programming language 

and abide by the same protocols (Sun Microsystems 2009). 

The internet started working with spatial data in the 1970s when the Department 

of Defense (DOD) created a decentralized network system known as ARPANET (Peng 

and Tsou, 2003).  The goal of ARPANET was to develop a telecommunications system 

that was capable of surviving a nuclear attack.  Spatial data was necessary for 

programming the telecommunication system for numerous locations across the United 

States.  However, in 1983, ARPANET adopted a new protocol known as the 

Transmission Control Protocol/Internet Protocol (TCP/IP) which laid the foundation for 
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communication from other networks.  This communication is what enabled people 

outside the DOD to obtain the spatial data within the ARPANET project (Dragicevic 

2004).  When the internet boom occurred in the late 1990s, the possible uses of the 

internet for GIS began to increase. 

 The first internet map was the Xerox PARC Map Viewer (Palo Alto Research 

Center 1997).  The map viewer was created in June 1993 by Steve Putz, and was created 

to promote information retrieval via the internet.  The map viewer hosted static or non-

interactive maps of the world.  Since then maps have migrated from static viewers to 

fully integrated data-driven applications that not only allow the end user to view, but also 

interact with the spatial data. 

The internet has changed GIS in three major areas:  GIS data access, spatial 

information dissemination, and GIS modeling/processing (Peng and Tsou, 2003).  .  

Internet websites now exist specifically to house GIS-ready data.  Increased access to 

spatial data creates greater opportunity for spatial analysis by both the general public and 

geographic educators (Peng, 2001).  The increase in public view and use are due to the 

spatial information dissemination that the internet has made possible.  Further, GIS 

applications are becoming more user-friendly, so more people without extensive spatial 

analysis education or computer programming skills are using GIS to analyze spatial data.  

(Dragicevic 2004).  Companies can now access tools provided over the internet that offer 

a user-friendly interface to conduct spatial analysis.  There is no need for many of these 

companies to obtain a full suite of GIS software or to hire personnel that are trained in 

using GIS, because internet applications have been created to specifically work for 

certain industries (Maguire 1996).  The growth of internet applications helps to further 
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stimulate the increase of GIS data accessibility and the dissemination of spatial 

information (Peng and Tsou, 2003). 

2.4 GIS and Spatial Decision Support Systems 

Rapid growth in the availability of spatial data has spurred the development of 

spatial decision support systems (SDSS). A SDSS is a customized software application 

that processes spatial data to provide information designed to aid decision makers.  A 

well designed SDSS is easy to use and summarizes results in a manner that is easy to 

interpret. (Sprague and Carlson, 1982).  Decision support systems (DSS) were first 

designed in the 1970s, when studies at Massachusetts Institute of Technology began 

explaining the role of calculus-based decisions in model building, and how the 

information systems community can use those decisions (Gorry and Morton, 1971).  For 

the next ten years, many publications on DSS (Alter, 1980, Little, 2004 & Sprague, 2008) 

highlighted the strengths of DSS.  This led to an expansion in use of DSS from the 

business spectrum to the entire information technology community.  As computers 

became more powerful, and more spatial data was being collected, advancements were 

made in computer models to analyze data (Sprague, 2008).  An early example of how 

DSS began using spatial data is the Geodata Analysis and Display System (GADS) 

(Grace 1977).   

It wasn’t until the 1990s that the practicality of SDSS was finally realized on a 

larger scale in the GIS community (Muller 1993).  SDSS applications are now widely 

used in transportation, water management, demographic, and resource management 

industries (Walsh, 1993; McKinney and Cai, 2002; Turoff et al, 2002; Ray, 2007).  The 
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use of GIS in SDSS applications has grown over the past decade, with many systems 

today using the internet to run user-interactive services (Power 2000).   

GIS and the use of SDSS has particularly become a handy tool for emergency 

management agencies over the past decade.  Work done at Pennsylvania State University 

has identified that a major problem with emergency management is that real-time spatial 

data is not available to work with when faced with an emergency situation (Rauschert et 

al. 2002).  The idea of real-time data refers to how the internet can be used as a medium 

for both housing and collecting data.  The work at Pennsylvania State University (2002) 

and work from the University of Kansas (Gunes and and Kovel, 2000) points out how 

GIS can improve disaster preparedness, mitigation, and response of emergency 

management agencies.  These three areas are highlighted in the conceptual model of 

societal response to disaster (Kreps, 1985, Cutter, 1996, Lindell and Prater, 2003 & NRC, 

2006).  This model breaks down the actions of the hazards and disaster management 

system pre-impact, trans-impact, and post-impact.  Using GIS can chronologically assist 

in each of these phases during the emergency event (NRC, 2006).  Although GIS can be 

used in all phases, scholars believe that GIS plays a much larger role in the pre-impact 

with risk assessments and mitigations, and the post-impact with recovery and emergency 

activities (Cutter, 2003). 

Four types of data need to be collected to properly prepare risk assessment 

information.  The first is the actual event data, such as tornado or earthquake data.  Both 

the spatial and the nonspatial attributes of the events need to be collected.  Second, these 

data need to be integrated with supporting data, such as census data, topography data, 

geological data and infrastructure data.  The third type of data needed is ground truth data 
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of the area, such as imagery and aerial photography.  The fourth and final type of data is 

the network and communication links.  These data can be used both for the infrastructure 

and network databases and as the linkup data to make the information available to the 

stakeholders and the public (Esri 2000).  All of these data are analyzed to generate 

information and support decision making.  
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CHAPTER 3 

DATA SOURCES AND METHODOLOGY 

Past research on tornado densities has utilized spatial analysis tools within 

ArcGIS to map the density of tornado occurrence across the United States (Hossain, et al. 

1999, Brooks, Doswell and Kay 2003, C. Doswell III 2007, C. B. Doswell III 2009, 

Dixon, et al. 2011).  Each study has displayed different results based on parameters 

chosen during the analysis.  This study will introduce a methodology of spatial analysis 

that combines two popular approaches. 

Spatial analysis relies heavily on the the input data.  Without understanding the 

input data completely, difficulties may arise when trying to interpret the analytical 

results.  The input data used in this study are tornado track records provided by the SPC.  

The tornado track records date from the beginning of the year 1950 to the end of 2010, a 

total of 61 years.  The tornado data are analyzed using a variety of spatial analysis tools 

in ArcGIS.  Based on previous tornado risk analysis studies, the tornado data are 

reformatted to reflect tornado days rather than raw tornado events.  The tornado day data 

are formatted into classes of risk and then structured to be published on the internet.  The 

entire process can be broke into three phases: 1. Data Collection, 2. Data Analysis, and 3. 

Data Formatting
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3.1 Description of SPC Database 

The first phase of data collection involves collecting tornado information for the 

study area.  The Storm Prediction Center (SPC) within the National Weather Service 

(NWS) of the National Oceanic and Atmospheric Administration (NOAA) prepares and 

maintains the Storm Data publication (NOAA 2010) database.  The data and related 

material are also published through the National Climate Data Center (NCDC), within the 

National Environment Satellite, Data and Information Service (NESDIS) of NOAA.  

These centers are providing a variety of data and information about severe weather and 

maintain a warehouse of data on tornadoes, hail and wind events (Schaefer and Edwards 

1999).  The National Tornado Database is compiled from Storm Data publications.  

Storm Data publications contain only confirmed information on storms, and are printed 

“as is” reported by the NWS.  The publications include 28 storm event categories, 

including reported wall clouds and waterspouts (McCarthy 2003).  When the data are 

forwarded to the SPC, the wall clouds and waterspouts are filtered out before the 

information is added to the National Tornado Database.  The SPC reformats the data into 

27 different attribute fields (Table 3.1.) 
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Figure 3.1. (top) Snippet of tornado database table provided by the SPC. (bottom) 
Remaining fields in the tornado database table. 

 

Table 3.1.  SPC fields of criteria in the National Tornado Database

 
 

In addition to keeping records of storm events, the SPC releases GIS-ready files 

on their SVRGIS website (B. Smith 2011).  This is the initial dataset that will be used in 

this study.  It should be noted that not every record in the SVRGIS file represents an 

entire tornado event.  Some records only exemplify a segment of a tornado, while others 

contain the information for the entire event.  For multi-state tornadoes and tornadoes that 

lift and touchdown numerous times, there are multiple records to breakdown each 
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segment.  Multi-state tornadoes have records for each state the tornado affected and also 

a full event record.  Users of this dataset must recognize this point and remember to 

account for this when conducting analysis.  This study only looks at records that contain 

the entire event information within the study area.   

3.2 Study Area 

The study area for this project consists of the Commonwealth of Kentucky 

surrounded by a 25-mile buffer.  The buffer, created using a simple process in ArcMap 

(figure 3.2), is needed to eliminate edge effects in the study.  Edge effects, also known as 

boundary effects, arise in spatial analysis when entities of measurement exist beyond the 

area boundary but are not included in the analysis.  This creates bias in results of spatial 

analysis operations (Esri 2012).  In this study, tornado tracks lying outside the state of 

Kentucky, but within the buffer area, impact the risk assessment analysis.  Therefore, it is 

important to include those tracks within Kentucky and those within 25 miles of the state. 
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Figure 3.2.  A 25 mile buffer of the state of Kentucky created using the Buffer tool in 
ArcGIS 10. 

 

3.3 Selection of Tornado Records 

Before any analysis can take place, the dataset requires cleaning.  The dataset 

includes a record for each state through which a multi-state tornado passes, and also a 

record for the entire storm.  In total, a multi-state tornado then has at least three records in 

the database.  However, by selecting the records of the entire tornado event, the 

remaining tornadoes can be removed from the dataset.  This removal changed the number 

of tornadoes in the national dataset from 28,916 to 28,111 (a decrease of 2.78%).  This 

task is performed by creating a selection query that searches the tornado dataset fields for 

a specific arrangement of values indexed in the NS, SN, and SG fields of the dataset 

(Table 3.2).   
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Table 3.2. Selecting entire tornado event records from dataset 

 

 

After selecting the tornado records with the entire track data, the tornadoes need to be 

extracted based on their location with respect to the study area.  Rather than just using the 

tornado records that intersected with the study area, tornado records that intersected or 

were within 25 miles of the edge of the study area are extracted (figure 3.3).  The 25-mile 

buffer is needed to control for boundary effects that would otherwise bias results when 

calculating the densities of both tornado events and tornado days.  This reduced the 

dataset size from 28,111 to 675 (a decrease of 97.6%).   
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Figure 3.3.  All tornado tracks that intersect with the 25 mile buffer and the state of 
Kentucky 

 

3.4 Spatial Smoothing 

The next step involves establishing the risk assessment levels and creating the risk 

classes using GIS operations.  The risk assessment levels are based on historical data 

portraying the occurrence of tornadoes in proximity to a given point of interest.  A point 

of interest is defined as the centroid of a grid cell, where the grid cell is 0.0625 square 

mile.  The grid is created using density tools.   

There are three types of density tools offered within the Spatial Analyst Extension 

of ArcGIS software: point, line and kernel.  Point and line density differ from kernel 

density.  Point and line density apply a binary function when calculating values.  Given a 

point of interest, a buffer with a specified radius, commonly referred to as bandwidth, is 

generated around the point.  Point features within the buffer are then selected (figure 3.4). 
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Figure 3.4.  A selection area (area within grey outline) around a centroid (x label), 
created with a 5 unit bandwidth. 

 

A binary weighting system is then used to calculate the density value of the point features 

relative to the point of interest.  If a point is within the selection area, it receives a weight 

value of one, whereas a point that lies outside of the selection area receives a weight 

value of zero (figure 3.5).  The binary weights are then summed, and the sum is divided 

by the area of the buffer.  The result is a measure of the density of points relative to the 

point of interest (figure 3.6). 
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Figure 3.5.  Calculating the weight value of points when conducting a point density 
analysis.  Points within the selection area receive values of one and points outside receive 
values of zero. 

 

 

Figure 3.6.  The point density for the selection area around centroid x. 
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Similar to point density, line density also applies a binary weighted system.  

However, since lines are two-dimensional and have a length, it is possible for a line 

feature to be both inside and outside the selection area.  Instead of weighting an entire 

line feature, line density snips the line at the points where the line intersects the selection 

buffer.  For the portion of the line within the selection area, it is valued with a weight of 

one.  Outside of the selection area, the line segment is given a weight of zero.  Each 

positive weight is then multiplied by the length of the line within the selection buffer.  

These resulting products are then summed and divided by the area of the buffer to 

produce a measure of the line density relative to the point of interest (figure 3.7 and 3.8). 

 

Figure 3.7.  Calculating the weight value of lines when conducting a line density 
analysis.  Line segments within the selection area receive values of one and line segments 
outside receive values of zero. 
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Figure 3.8.  The line density for the selection area around centroid x. 

 

Unlike the binary weighting used to calculate point and line density, kernel 

density estimation (KDE) uses a continuous distance-decay function to calculate weights.  

Based on the distance from the center of the selection area, the function yields values 

between zero and one.  If the value is zero that means the location of the object in regards 

to the center of the selection area is at a distance greater than or equal to the bandwidth 

from the point of interest.  A value of one would indicate that the location of a feature 

coincided with the point of interest.  A variety of distance-decay functions can be used to 

assign weights, including a Gaussian function   (figure 3.9 and 3.10). 



 

29 
 

 

Figure 3.9. Point density (top) measures the density value for each cell value using a 
binary weighting method. KDE (bottom) applies a weighting kernel function which 
creates a smoother output. 
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Figure 3.10. Line density (top) works similar to point density and calculates the density 
value using the binary weighting system. KDE (bottom) can work on both point and line 
features to create a smooth, easy to interpret output. 

 

The The Gaussian kernel function appears as a symmetric bell-curve shape on a 

graph, except that the value of the function at positive or negative the bandwidth value 

equals zero instead of infinity or negative infinity respectfully.  At the peak of the curve, 

the value is one.  The KDE using the Gaussian kernel then sums the values of every cell 

in the analysis extent.  The values are calculated based on the KDE value generated by 
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the Gaussian kernel over each input entity (figure 3.11). The continuous weight function 

logically generates a much smoother output than either the point or line density tools. 

 

Figure 3.11.  KDE example and equations.  Image Source:  Kernel Density (Esri 2010) 

 

In all density measures available in ArcGIS, there are two very important 

parameters.  The more important of these determines the area in which the density will be 

measured.  This is called the bandwidth.  The bandwidth value can be either 

automatically configured by the software, or it can be determined by the user.  Having 

flexibility to choose the bandwidth allows the user to configure the output raster surface 

to meet desired criteria.  The other important parameter is the cell size.  The output of 

density operation is stored in a raster, a rectangular grid of cells.  The cell size determines 
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the resolution of the grid.  By assigning a color to each cell based on its value, the raster 

is viewed as an image. Each value is given a color or tone value which allows the user to 

visually see the distribution of density values. 

3.5 Preparing the Tornado Day Data 

In order to conduct the analysis using tornado days, the dataset first needs to be 

converted from vector format to raster format.  Many of the processes involved in this 

conversion require iterative application of a sequence of operations. This is possible 

through the ModelBuilder application in ArcGIS (figure 3.12).   

 

Figure 3.12.  Model to iterate tornado track records by their date value and create raster 
files from the vector tornado track records. 

 

ModelBuilder allows the user to construct models as sequential sets of operations 

which contain as few or many tools as needed to complete a process.  Models are very 

useful when multiple tools are needed to analyze and process a dataset in order to 

produce the required output.  For calculating tornado days, tools must be used to 

complete six different processes for each individual date value in the dataset.  

ModelBuilder displays a sequential script as a flow chart.  In the background of 

ModelBuilder, a python script is created to execute the proper functions and operations. 
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The first step is to create a separate binary raster of the tornado day values for 

each day on which a tornado occurred somewhere within the study area raster.  This 

requires that the 61-year tornado dataset (records from 1950-2010) be broken down into 

individual files, each containing all of the tornado records from a particular date. This 

results in a total of 267 files.  The next step is to convert each file from a vector format to 

a raster format, in which each cell has a resolution of 0.25 miles.  Binary values will be 

assigned to the cells, with a value of one (indicated by the shaded cells in figure 3.13 if a 

tornado track impacted a cell on the given day, and a value of zero, otherwise.  Even if 

there are multiple tornado track records that intersect a raster cell on the same date, it is 

still counted as one tornado day.  This also eliminates any duplicate records that may 

remain in the dataset.    

 

Figure 3.13.  (Left) A line portraying a tornado track overlying a blank raster.  (Right) 
The overlying cells pixelate to show the tornado track. 

 

 The process shown in figure 3.13 is run on each of the 267 separate files 

representing days on which at least one tornado occurred in the study area.  In order to 

add all of the rasters together, each raster must have the same cell and extent size.  Again, 

iteration was used to make sure each raster was formatted correctly (figure 3.14). 
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Figure 3.14.  Model used to format rasters to calculate tornado days. 

 

With all of the files converted to rasters, the Weighted Sum tool in ArcGIS is used to add 

all of the raster datasets together.  Therein the values of the cells that overlay one another 

in the various files are added together.  The result is a final raster with cell values 

reflecting the number of days on which a tornado track impacted the respective cells over 

the 61 years of the dataset.  These values are then be divided by the number of years in 

the dataset.  Given that no cell was impacted by more than three tornadoes over the 

period, the remaining values are very small.   

The goal of the project is to calculate the tornado impact density which is the total 

area (number of cells) impacted by tornadoes within 25 miles of a point of interest per 

year divided by the area of the 25-mile buffer.  Calculating the risk of a location based on 

the previous tornado events within 25 miles, is consistent with current NWS practices 

(Dixon, et al. 2011).   Therefore, a Focal Statistics function is used in the Raster 



 

35 
 

Calculator of ArcGIS.  This function first creates a neighborhood around each cell.  The 

neighborhood has a specified shape (circle) and size (radius = 25 miles).  Then a 

calculation is done to add all of the values of cells that intersect the neighborhood.  Recall 

that the study area includes a 25-mile buffer around the Kentucky, and this eliminates any 

potential edge effect in the calculation for cells within the boundary of Kentucky.  The 

cells lying outside of Kentucky are then clipped and removed from any further 

processing.  

 The final step involves spatial smoothing of the tornado impact values. Given the 

degree of uncertainty in determining the actual paths of historically documented 

tornadoes, the tornado impact density values are inexact.  Further, when mapping these 

values, the resulting image shows discrete changes in density.  This can result in 

misinterpretation of the actual precision with which risk can be determined.  Thus spatial 

smoothing is used to produce a more effective visual display of risk. 

This is done using two operations.  First, the tornado impact density raster is 

converted into a vector format as a layer of points.  The cell values from the raster are 

then associated with the corresponding points in an attribute table. Each point value is the 

sum of cell values within the buffered area around that point.  As such it is the total 

number of tornado days summed over all cells within the 25-mile buffer.  These points 

are then input into the Kernel Density tool, and the raster cell value field is used as the 

weight.  The KDE tool applies a 25-mile bandwidth, and uses the same output cell size as 

the weighted sum raster.  The KDE output is then clipped to fit inside the study area 

(figure 3.15). 
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Figure 3.15.  KDE output of tornado days in Kentucky. 

 

3.6 Identification of Risk Zones  

 Risk is by definition a calculation of likelihood of a disaster occurring.  

Inevitably, tornadoes are not completely predictable, and therefore quantifying a value of 

risk becomes difficult.  However, using the approach above, nearby areas are compared 

against a constant value, such as an average, to determine if the area has greater or less 

risk than others based on historical tornado events.  By definition of the term risk, if areas 

are calculated to have higher tornado impact densities within 25 miles than the state 

average, then that area in question has an above average risk.  Likewise, areas lower than 

the state average are deemed to be areas below the average amount of occurrences. 

 Understanding the variability in the tornado day values is important for creating 

the class breaks that will define the risk zones.  To statistically determine these zones, the 

standard deviation is used as the variability factor.  Standard deviation is a measure of the 

dispersion of values from the mean of a distribution.  By using the mean minus the 
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standard deviation and the mean plus the standard deviation as break values, three value 

categories are created.  The category containing the smallest values is deemed the low 

risk classification.  The category containing the largest values is deemed the high risk 

classification.  The remaining values are considered average risk since they fall within 

one standard deviation from the mean value (table 3.3).  Using these class values, the risk 

zones create an intuitive symbology of the tornado day events (figure 3.16). 

Table 3.3.  Breakdown of the value thresholds for risk zones of tornado days 

Value Risk Description 

Below Average This zone experiences less than average amount of Tornado Day 
occurrences within 25 miles of a given point. 

Average This zone experiences an average amount of Tornado Day occurrences 
within 25 miles of a given point. 

Above Average This zone experiences an above average amount of Tornado Day 
occurrences within 25 miles of a given point. 

 

 

Figure 3.16.  Risk zone classes of Tornado Day occurrences within Kentucky from 1950-
2010. 
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3.7 Tornado Attribute Data 

 Some of the default attribute data provided by the SPC made it possible to create 

multiple tornado datasets.  Datasets were created based on decade, season, and F-Scale.  

To create these, queries were made on the entire tornado dataset, and the selections were 

exported as a new feature class file.  Another dataset that was created was based on if the 

tornado occurred during daylight or if it occurred at nocturnal.  To achieve this, a 

function was used in Excel, developed by the State of Washington’s Department of 

Ecology, Greg Pelletier (Department of Ecology, State of Washington 2011).  The 

function calculates the sunrise/sunset time for any location on the planet on any day in 

history with an accuracy of +/- one minute (figure 3.17).  The function requires seven 

input parameters; latitude, longitude, year, month, day, time zone, and a binary value 

representing daylight savings time (no=0, yes=1). 
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Figure 3.17.  The Twilight function developed by Greg Pelletier to calculate 
sunrise/sunset times. 

 

By creating a macro in Excel to loop through the tornado dataset the sunrise and 

sunset for each day is calculated.  Then using another macro, the time of the tornado 

event in the dataset is compared to the sunrise and sunset times.  If the time is between 

the sunrise and sunset, then it is given a value of 1 for daylight.  If the time was between 

the sunset and sunrise of the next day, it is given a value of 0 for nocturnal.  This 

calculation makes it possible to query all diurnal and nocturnal tornadoes into individual 

datasets. 
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CHAPTER 4 

WEBSITE APPLICATION DEVELOPMENT 

The goal of this project is to create a powerful website through which users can 

gather historical tornado data information to make constructive decisions.  It is extremely 

important to make a website that has state-of-the-art functionality, an attractive look, and 

ease of use for a variety of end users.  This phase creates the website and configures a 

server to distribute this information to the public and stakeholders.  With the relationship 

between the internet and GIS becoming stronger, the development of using ArcGIS 

server to upload services is quite simple.  By setting up the server/client architecture 

within ArcGIS Server the GIS feature classes the kernel density outputs, all of the 

tornado track files, Kentucky counties, bordering states, and a defined study area, are 

uploaded into a geodatabase.  The geodatabase then works as the storage container for the 

server to create the web services.  These services are then accessed via a URL that the 

web application will call.   

ArcGIS can be configured to deploy desktop, mobile and web mapping 

applications.  ArcGIS Server publishes both web services, which are systems that are 

designed to support communication between machines over a network (W3C 2011), and 

web applications, which are software programs that are accessible on a browser 

controlled environment (W3C 2011).  Essentially, ArcGIS Server allows for geospatial 

data to be accessed, manipulated, edited and obtained via an internet or intranet. 

Rather than using a default client-side web application, which can be less 

attractive and not as powerful, this study creates an Adobe Flex application.  Flex was 

created as an open source, cross-platform application builder.  Compared to the default 
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ArcGIS Server web application, Flex applications are more current in their design and 

interface (figure 4.1).   

 

Figure 4.1.  The ArcGIS Server application (top) and the Flex Viewer application 
(bottom) both showing the same services. 

 

Configuring the web application requires no programming experience, however a basic 

understanding of computer applications is highly recommended.  When the Flex Viewer 
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application is downloaded, by default the application is deployable with sample data 

provided by ESRI (figure 4.2).  There are two major steps that are taken before an 

application can be deployed; 1) Services must be created, and 2) The application interface 

needs to be customized. 

 

Figure 4.2.  Default settings of the Flex Viewer when downloaded and first deployed. 

 

4.1 Service Creation 

Creating services is the first step to adding unique data to the Flex Viewer and 

replacing the sample data provided.  Services can be created using the ArcGIS Server 

Manager and published directly in ArcMap and ArcCatalog.  Many types of services can 

be created, and each is used for different reasons.  The user needs to choose the 

capabilities of their application prior to creating the services because the services are 

what govern the application capabilities.  When choosing a resource for the services, 

there is the option to use either an ArcGIS map document (MXD) or a map service 

definition (MSD).  An MXD contains the layers, layout, and tables of a map resource 
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which can be used for hard copy or digital mapsInvalid source specified..  An MSD file 

is used to publish high-performance ArcGIS map servicesInvalid source specified..  

MSD files are created based on an MXD, but create a cache which breaks parts of the 

map down into images.  These images can load much faster than MXD layers, since 

layers require dynamic properties for symbology purposes such as migrating labels. 

The map on the website is made of separate services for each tornado dataset 

type: All Tornadoes, Tornadoes by Decade, Tornadoes by F-Scale, Tornadoes by Time of 

Day, and Tornado Day Rasters.  There are two advantages to using multiple services.  

The first is if any dataset stops working correctly, that service can be repaired and the 

remaining services and website can run without issue.  The second advantage to using 

multiple services is that if similar websites are developed on the same GIS server, then 

the same services can be shared by both, thus avoiding duplication and helping to 

optimize the server’s performance. 

4.2 Application Customization 

ESRI incorporated Flex capabilities in the ArcGIS Flex Viewer product released 

in 2009.  Flex Viewer is an easy, configurable, non-programming interface that deploys 

ArcGIS Server services on an Adobe Flash application.  Flex products are known for 

their aesthetics and dynamic processing capabilities.  Along with the Flex Viewer 

product, ESRI also created the Flex Viewer Resource Center, which houses tutorials, 

sample data, and a large collection of tools, widgets and sample code for users to 

customize their own Flex Viewer web applications for free. 
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There are two stages of customizing the Flex Viewer.  The first stage is to 

customize the appearance and functionality of the viewer, and the second is to configure 

the tools or widgets the application uses.  For both stages, the customization process is 

done through configurable XML, or extensible markup language.  XML simplifies 

customization of internet applications by using a grouping method (Liu, Novoselsky and 

Arora 2010).  These are then broken into parent and child subgroups (figure 4.3).  The 

groups and subgroups define parameters and then set the parameters by using a very 

simple syntax.  The parent group contains one or more parameters.  The parent group and 

child subgroups are within a root element.  For example, if the root element is tree, then 

subgroups or children elements could be height, tree type, canopy size, etc. (W3C 1998).   

 
Figure 4.3.  This simple XML code shows the relationships between root elements, 
parent parameters and child parameters.  Each parameter must close before the next can 
be started. 
 

Root elements, parent parameters, and child parameters can consist of one or 

more parameters (figure 4.4).  When multiple parameters inside of a single group are 

defined, each parameter is defined, and then the values are set by using quotation marks. 
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Figure 4.4. In this XML code snippet, the child groups become parent parameters. 
 
Note that the syntax for XML is the same as all programming languages where using 

indents to identify child and parent elements with the proper hierarchy. 

 

4.2.1 Main Configuration File 

 The first configuration to the application is to the main interface of the website.  

This is done mostly though the main configuration file.  In the Flex Viewer package, this 

file is called conFigurexml.  The conFigurexml file can be opened and edited in any text 

viewer program such as Windows Notepad.  The file is broken into three major sections 

(root elements): the main configuration, the map section, and the widget section (figure 

4.5). 
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Figure 4.5 (a).  The first part of the main configuration file includes setting the title, 
subtitle, logo, color scheme, transparency (alpha), and User- Interface (UI) elements.  
These widgets control the layout of the application, and require very little customization. 
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Figure 4.5 (b).  The second part of the main configuration page adds the layers of your 
map.  These layers call services created by ArcGIS Server. 
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Figure 4.5 (c).  The third part of the main configuration file adds the widgets or tools of 
the application.  Each of these tools have their own configuration XML files as which 
need configured to work correctly with the layers defined in the map section of the 
conFigurexml. 
 
The main configuration file for the Kentucky Tornado Database defines simple metadata 

of the website, all of the map layers and services used to create the map, and the widgets 

and tools used for analysis and risk identification.  When editing the web application, the 

conFigurexml file is the first file to be read by the internet browser when loading the 

website.  If this file becomes corrupted or edited incorrectly, the entire website will not 

work.  It is very important to keep a copy of the conFigurexml file as backup if the 

original ever becomes corrupted. 
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4.2.2 Widgets/Tools 

 Analytical and dynamic tools are a critical aspect of all web mapping 

applications.  By default, the Flex Viewer package comes with a wide selection of tools, 

or widgets.  Configuring these tools requires similar steps as the main configuration file.  

Each widget contains an XML configuration file, and based on the tools functionality, 

each requires a different amount of editing. 

 The Kentucky Tornado Database website has a primary role as an SDSS to relay 

risk assessment information to stakeholders.  In addition, allowing users to access the 

metadata or attribute data of the tornado tracks helps in any secondary research or 

analysis.  The website was developed using both default and custom designed widgets in 

the Flex Viewer package.  The first widget on the website is a custom Table of 

Contents/Map Legend widget (figure 4.6).  This widget is where users can display the 

array or tornado track layers, and tornado day rasters.  The user can also set the 

transparency of the layers and view the symbology.   
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Figure 4.6.  The Table of Contents/Map Legend widget on the Kentucky Tornado 
Database website. 
 
 

The second widget on the website is an Identify Location Risk tool (figure 4.7).  

This tool is used to identify the calculated risk level at any location in the study area.  The 

value reflects the probability based on available historical data that a tornado day will 

occur within 25 miles of the selected point during the course of a given year.  If the user 

selects to use the line, rectangle, or polygon tool to select an area, the risk value is taken 

from the centroid of the shape.  The tool also returns the census tract and county (when 

selected in Kentucky), and their 2010 populations based on the 2010 Census. 
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Figure 4.7 (a).  The Identify Location Risk tool on the Kentucky Tornado Database 
website. 
 
 

 
Figure 4.7 (b).  The Identify Location Risk tool also returns census data of the selected 
location, if within the state of Kentucky. 
 
 

The third widget is the Advanced Search tool.  This tool is made of predefined 

queries that allow the user to search tornado tracks by F-Scale (equal, greater than or 

equal to, or less than), date, month (exact, before, or after), year (exact, before, or after), 

length (exact, shorter, or longer), or width (exact, shorter, or longer) (figure 4.8).  Once 
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the query is made, a table of the matching records is shown, and the user has the option to 

view the tornado events individually, or export the list as a comma-separated value 

(CSV) table or text file. 

 
Figure 4.8 (a).  The Advanced Search widget on the Kentucky Tornado Database 
website. 
 
 

 
Figure 4.8 (b).  The matching features from the query selected on the Advanced Search 
widget. 
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In addition to query searches, the Advanced Search tool allows the user select features 

using an area define tool. (figure 4.9).  Further, the Advanced Search tool also gives the 

user the option to apply buffers to selected features.  The buffer is then used to select 

additional features based on proximity to the initial feature (figure 4.10). 

 

 
Figure 4.9.  Searching features by pinpointing or selecting an area. 
 
 

 
Figure 4.10.  The selected features can have buffers applied to help with detailed and 
analytical researching. 
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The fourth widget is the Draw and Measure widget.  This tool can be used for 

simple markups or planning situations.  The tool also gives the users the option to save 

the graphics and labels they make as a text file, which can then be loaded at a later time 

and viewed as if they were just drawn (figure 4.11).  The tool also takes spatial 

measurements of graphic objects that are drawn, including area and length of perimeter. 

 
Figure 4.11.  The Draw and Measure widget on the Kentucky Tornado Database website. 
 
 

The fifth widget on the website is a Bookmarks tool.  This widget has predefined 

areas on which the user can click, and the map view will then automatically zoom to that 

specific area (figure 4.12).  The user can also add custom bookmarks that will append to 

the list automatically. 
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Figure 4.12.  The Bookmarks widget on the Kentucky Tornado Database website. 
 
 

Finally, two additional widgets were added to give the website more functionality.  

Both a Print tool and an Export Map tool were added for users to either print their current 

map view or save their current map view as a JPEG file. 

 

4.3 Web Application Examples 

 The web application enables users with different interests to extract information 

from up-to-date tornado data as an aid to decision making.  Upon loading the web 

application, the user is greeted with a splash screen (figure 4.13).  The splash screen 

displays the terms and conditions for using the website, and also goes through the 

legalities which protect Western Kentucky University, the Kentucky Climate Center, and 

the web application users from using the data unlawfully. 



 

56 
 

 
Figure 4.13. The splash screen opens when the user loads the web application.  The user 
can also read the sources of the data, navigate to the Kentucky Climate Center homepage, 
and prompt the web application to never show the splash screen again in the future. 
 
 
When the user selects “Agree” on the splash screen the web application loads the default 

tornado layer, and the Table of Contents/Map Legend widget gathers the symbology for 

each layer from the ArcGIS Server REST page (figure 4.14). 
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Figure 4.14. The initial view of the web application and the location of the different 
widgets and tools. 
 
 
From the initial view, the user has the freedom to use any of the widgets from the widget 

container, or just use the web application as a viewer. 

 When viewing the web application, the user can view metadata for the tornado 

tracks by simply hovering the cursor over the track when the “All Tornadoes” layer is on 

(figure 4.15).  The cursor rest causes a small pop-up window to appear, listing the 

tornado event date, f-scale intensity, number of fatalities, number of injuries and time of 

occurrence. 
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Figure 4.15. The pop-up window (yellow box) appears when the user rests the cursor on 
one of the tornado events and has the “All Tornadoes” layer on. 
 
 

The user does have the option to use the Advanced Search widget to query the 

tornado layer and view only tornado tracks that meet certain criteria.  However, to 

eliminate having to use the widget for some simple queries, individual layers were 

created and hosted.  The simple queries disaggregate the tornado dataset by decade, f-

scale, season, and diurnal and nocturnal events.  The user can select to view these layers 

rather than the entire dataset.  Each group of layers has a parent toggle control which 

allows the user to turn on and off and child toggle (figure 4.16). 
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Figure 4.16. The parent toggle controls all of the child toggles.  The child toggles must 
be turned on (checked) in order for the parent toggle to control its visibility. 
 
 

When using the Advanced Search widget, one is required to either make an 

attribute query or a spatial selection.  Once the tornado tracks are selected, each selected 

record appears red (figure 4.17).  The user still has the capability to export the selected 

tornado tracks as a CSV, or just continue to view the selected records. 

 
Figure 4.17. The selected records from the Advanced Search widget appear red, and the 
user can browse the records from the selection list.  In addition, a pop-up window appears 
when the user clicks on a record in the selection list which displays attribute information 
about the tornado track. 
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The main purpose of the web application is to provide a risk assessment tool for 

decision makers and emergency management professionals.  However, during the 

development stages of the web application, other uses of the web application became 

apparent.  The website can be used as both an SDSS and also a research tool.  For 

example, in addition to assessing tornado risk, a user can also use the site to collect data 

on historical tornado events in Kentucky.  Using the Advanced Search widget, and/or the 

individual layers in the Table of Contents/Map Legend, the user can simply find the 

tornado or tornadoes of interest.  Also, the web application makes it possible for users to 

conduct further research such as tornado destruction path analysis, risk levels by 

populations, and micro-scaled tornado occurrence migration.
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CHAPTER 5 

DATABASE UPDATING PROCESS 

The tornado dataset must be update annually.  However, manually recreating the 

GIS data and website each year would not be most efficient updating process.  To make 

the task manageable, models were created in ArcGIS ModelBuilder and macros were 

written to run in Microsoft Excel to automate various steps in the update process.    

Models are created in ArcGIS ModelBuilder (ArcGIS 2009) and represent workflows 

that connect sequences of geoprocessing tools, feeding the output of one tool into another 

as the input.  Macros are a set of instructions that are programmed to execute a series of 

functions (Walkenbach 2010).  In addition, a step-by-step tutorial was created to guide 

the user through the updating process.   

5.1 – Updating Models and Macros 

 The updating process is comprised of six tasks (figure 5.1).  The first task is to 

download the updated tornado dataset from the SPC website and then setup the 

configurations for the tabular and spatial data to work with the website.  The 

configurations include adding necessary fields that will be populated throughout the 

updating process.  The second task is to take an output table from the first task, and 

populate fields that cannot be populated in ArcGIS.  The third task joins the output from 

the second task to GIS feature classes and populates the remaining fields.  Also, the third 

task creates all of the individual feature classes used by the website, such as the tornado 

tracks by decade, season, and intensity.  The fourth task involves iterating or looping 

through the entire tornado dataset to calculate the tornado day rasters.  These rasters are 

what users see when they are viewing data on the website.  The fifth task takes the 
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resulting output rasters and uses the Weighted Sum tool in ArcGIS to create the input for 

the final task.  This is the only task that is not automated.  The sixth and final task takes 

the output from the fifth task and finishes the tornado day calculation and raster 

generation.  This task also involves an iteration process.   

 

Figure 5.1.  The updating process has a total of six steps. 

 

The first task for the update process is to access the updated tornado tracks GIS 

shapefile from the SVRGIS SPC website, http://www.spc.noaa.gov/gis/svrgis/.  This file 

is usually published in April of the following year.  Once the file is downloaded, 

extracted and viewed in ArcCatalog, the automated updating process can start to run.  

These models are accessed directly in an ArcGIS toolbox.  Each model requires the user 

to set various parameters before the model is executed.  These values are explained in the 

Help dialogue that appears when the model is opened.  

The first model in the toolbox is called Step 1 – Updating Tornado Database.  

There are four parameters that need to be set for the model to run correctly.  The first 

parameter is the name of the Project Folder.  For this, the user selects a current folder or 

creates a new folder to house all files that will be created and required during the update 

process.  The second parameter is the name of the SVRGIS SPC tornado tracks GIS 

shapefile.  The user simply navigates to this file and selects it to populate the parameter 

field.  The third parameter is the New Year value.  Here, the user types the year for which 
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the update is to be added.  The dataset is current through 2010.  The final parameter is the 

value for the radius of the buffer.  The default is a 25-mile study area buffer.  This is a 

feature class in the current tornado database, and the user can navigate to and select it.  

Once each parameter is filled in the user can run the model (figure 5.2).  The model runs 

numerous processes in the background that the end user does not see (figure 5.3). 

 

Figure 5.2.  The first step in the updating process.  Each parameter has an explanation for 
user-guided assistance. 

 

 

Figure 5.3(a).  Background diagram of the multiple processes that run during the Step 1 
model.  A total of 28 processes run. 
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Figure 5.3(b).  The first part of the model creates the final and scratch workspace for the 
updating process.  Also, this section of the model creates a copy of the current data on the 
website. 

 

 

Figure 5.3(b).  The second part of the model selects the new year data and prepares it to 
be joinable with the updated data that is calculated outside of ArcGIS. 

 

 

Figure 5.3(c).  The third part of the model creates a copy of the data for the updating 
processes in Excel and begins to add fields that will be calculated. 
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Figure 5.3(d).  The fourth part of the model continues to add needed fields. 

 

 

Figure 5.3(e).  The fifth part of the model continues to add needed fields. 

 

 

Figure 5.3(f).  The sixth part of the model continues to add needed fields and begins to 
calculate some of those fields. 

 

 

Figure 5.3(g).  The seventh part of the model continues to calculate some of the added 
fields. 

 

 

Figure 5.3(h).  The eighth part of the model populates the remaining fields, deletes 
unneeded fields and exports a text file table in a comma-separated format (CSV). 
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The next process to run is a set of preconfigured macros.  The purpose of the 

macros is to automate the Excel updating process.  The macros are written in Visual 

Basic for Applications and run in Microsoft Excel (Microsoft Office 2010).  The first step 

is to load the twilight.xls spreadsheet in Excel.  This spreadsheet was created by Greg 

Pelletier (2002), and was created to calculate solar position, sunrise and sunset times for a 

specific location on the planet for any day in history.  The spreadsheet has multiple 

preconfigured functions which calculate these values with great accuracy (figure 5.4).   

 

Figure 5.4.  The twilight.xls spreadsheet lets the user input the variables on top and 
calculate the array of solar values. 

 

Although the twilight tool is very useful, manually inputting all of the data needed 

would be time consuming.  To expedite this process, macros were written to read the data 
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from another spreadsheet and calculate the values for each tornado track in the dataset 

(figure 5.5).  The table of tornado tracks is created as a database table (.dbf) and is called 

New_1.dbf.  When the first model completes, this file will be located in the project 

folder. 
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Figure 5.5.  The SunriseSunset macro automates the process of filling in the twilight 
spreadsheet. 

After the macro runs the user needs to run the FormatTagMatch.bas module which is a 

macro that formats the sunrise and sunset values to work in ArcGIS (figure 5.6).  When 
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this macro finishes, the user just needs to save the file as a comma-separated value (.csv) 

with the same name (New_1) in the project folder. 

 

Figure 5.6.  The FormatTagMatch macro formats the time values to decimals which 
work better in ArcGIS. 

 

When finished in Excel, the user needs to navigate back to ArcCatalog and run 

the second model, Step 2 – Updating Tornado Database.  This model also has four 

parameters that need to be set (figure 5.7).  The first is the Scratch File Geodatabase.  

This is created in Step 1, and is located in the project folder.  The second parameter is the 

Published File Geodatabase.  This is also created in the first model, Step 1.  The third 

parameter is the Input CSV table, which is the saved comma-separated-value table from 

the Excel processes.  If the user used the same naming convention it should be called 

New_1.csv in the project folder.  The final parameter is the Study Area.  This can be 

located in the original 2010_Tornado_Database File Geodatabase.  Once the parameters 

are set, the model can run.  Like the first model, the second model also runs multiple 

processes in the background (figure 5.8). 
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Figure 5.7.  The second model, Step 2. 
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Figure 5.8(a).  The background processes for the Step 2 model.  There are a total of 30 
processes that run. 

 

 

Figure 5.8(b).  The first part of the model imports the output table from Excel and 
prepares it to be joined to the GIS file. 
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Figure 5.8(c).  The second part of the model joins the output table from Excel to the GIS 
feature class, and then recalculates some of the values from Excel. 

 

 

Figure 5.8(d).  The third part of the model clips the tornado tracks to inside the study 
area, appends the records to the new year data, and calculates the last field added in the 
update process from the first model. 
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Figure 5.8(e).  The fourth part of the model begins to create the individual GIS feature 
classes. 



   

74 
 

 

Figure 5.8(f).  The fifth part of the model continues to create the GIS feature classes. 
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Figure 5.8(g).  The sixth part of the model continues to create the GIS feature classes. 
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Figure 5.8(h).  The seventh part of the model continues to create the GIS feature classes. 
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Figure 5.8(i).  The eighth part of the model continues to create the GIS feature classes. 

 

At the completion of the second model, the user needs to run the next model, Step 

3 – Updating Tornado Database.  The remaining models, Step 3 and Step 4 are different 

in that they will be run a total of five times each.  Rather than creating individual models 

for each season and the entire dataset, it was best to create a universal model that would 

be used for each.  Step 3 has only three parameters, the Scratch File Geodatabase, the 
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Published File Geodatabase, and a drop down value for the user to select which season or 

if the model needs to run for the entire dataset (figure 5.9).  Step 3 is also the first model 

to run an iteration process.  This iteration process loops through the entire dataset, 

making this step one of the most time consuming.  In development tests, using a 

TOSHIBA laptop with an Intel® Core™ i7 processor CPU, Q720 @ 1.60 GHz and 4.00 

GB RAM, the model took roughly two hours to run completely.  Although the model 

does not have many processes, each takes a great deal of time to run (figure 5.10). 

 

Figure 5.9.  The third model, Step 3, only has three parameters but takes much longer to 
run than some of the other steps due to iteration. 
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Figure 5.10(a).  The background processes for the third model, Step 3.  The hexagon 
shape is the iteration process. 

 

 

Figure 5.10(b).  The first part of the model is where the iterator (hexagon) function 
selects the individual date values in the entire dataset. 
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Figure 5.10(c).  The second part of the model creates the four necessary GIS file 
locations for creating the tornado day rasters. 

 

 

Figure 5.10(d).  The third part of the model starts the tornado day selection process and 
creates individual GIS feature classes for the tornado day calculations. 
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Figure 5.10(e).  The fourth part of the model creates the first rasters used to calculate the 
tornado day values. 

 

 

Figure 5.10(f).  The fifth part of the model converts the first raster files into new rasters 
which have binary values; 0 for areas where no tornadoes impacted, and 1 for areas that 
were impacted. 
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Once completed, the model creates multiple raster files in a folder named 

Conditional.  The raster names are given the same syntax but have a unique number to 

keep them apart.  The next step of the updating process requires an ArcGIS raster 

analysis tool.  In ArcCatalog, the user needs to navigate to the Weighted Sum tool 

(Master ToolboxSpatial Analyst ToolsOverlayWeighted Sum) (figure 5.11).  This 

tool will sum all of the conditional rasters to create the input for the final model.  The 

user is required to navigate to the Conditional folder, select all of the files in the folder, 

and specify the output raster location and name.  The tool can then run and create the 

raster to be used in the last model. 

 

Figure 5.11.  The Weighted Sum tool the user needs to run manually for each 
Conditional folder of rasters from the third model, Step 3. 
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The final model, Step 4 – Updating Tornado Database, also runs an iteration 

process which takes approximately two hours to finish.  As with the previous model, this 

one needs to run a total of five times.  There are six parameters that need to be set prior to 

running the model.  The first parameter is the Scratch File Geodatabase.  The second 

parameter is the Published File Geodatabase.  The third parameter is the drop down list 

the user chooses either a season or “All” for the entire dataset.  The fourth parameter is 

the number of years in the dataset.  As of 2010, there were 61 years in the dataset (61 

years between 1950 and 2010).  The fifth parameter is the output weighted sum raster 

from the third model.  Finally, the last parameter is the Study Area feature class (figure 

5.12).  The last model has the least amount of processes but takes the longest to run 

because of the iteration process (figure 5.13). 

 

Figure 5.12.  The last model, Step 4, for updating the tornado database. 
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Figure 5.13(a).  The background processes for the final model, Step 4. 

 

 

Figure 5.13(b).  The first step in the model takes the output of the Weighted Sum tool, 
converts the rasters to points, and calculates the Kernel Density of the points. 
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Figure 5.13(c).  The second step in the model gives the rasters a spatial reference. 

 

 

Figure 5.13(d).  The third step in the model clips the rasters to the study area and creates 
an attribute table of the raster values. 
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Collectively, the updating process should take six to eight hours with many of the 

processes being automated.  When complete, all of the data will be located in the 

Published File Geodatabase and be ready to be published for the website.
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CHAPTER 6 

CONCLUSIONS 

6.1 – Conclusion 

 In summary, the SDSS created to assess the risk of tornadoes in and around the 

state of Kentucky is a valuable tool for a range of stakeholders including emergency 

management agencies, public safety officials, and the general public.  By creating a 

sophisticated Internet-based GIS application, users can extract valuable information that 

would otherwise not be available.  The website is housed on a Western Kentucky 

University server, and can be accessed at the following web address:  

http://gisapps.wku.edu/kentuckytornadoes.  To view the website, Adobe Flash Player 10 

must be installed. 

 The website is hosted by Western Kentucky University and is managed by both 

the Kentucky Climate Center and the Department of Geography and Geology.  All three 

of these entities provide services for students and the public, both local and abroad.  The 

Kentucky Tornado Database website adds to those services and expands the outreach 

from the university.  In addition to providing services, the website is a true example of 

how GIS has evolved over the past decade.  Internet GIS has allowed for people without 

a background in the science to be hands on with GIS capabilities and functionality. 

 The primary goal of this project was to create a tool which took a readily 

available dataset, and derived critical information which can then be obtained via the 

internet.  Although the importance of such information cannot be quantified, it would be 

difficult to say it does not exist. 
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6.2 – Future Work 

The study shows that the state average Tornado Incident Density value is 121, 

meaning 7.5625 square miles within 25 miles of the given point of interest have been 

affected by a tornado incident since 1950 (121 divided by 16, or the total number raster 

cells in a square mile).  The maximum impacted cell has a Tornado Incident Density 

value of 213 (or 13.3125 square miles impacted within 25 miles). The GIS analysis 

section of this project included a great deal of raster and spatial analysis.  However, 

future work can be done to better understand the output files used in this study.  When 

looking at Tornado Incident Index output raster, it is possible to note some spatial 

patterns within the output.  The northern border of Kentucky is mostly set on the Ohio 

River, and above than average Tornado Incident Index values tend to exist along that 

border (figure 6.1).  Future studies can look further into these patterns and try to 

understand why they exist.  Perhaps the higher density areas also correlate to the 

changing topography across the region near the Ohio River.  Additional raster analysis 

work could be done to find any correlation between the densities and elevation. 
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Figure 6.1.  Above average Tornado Incident Density values tend to exist over the Ohio 
River border and extreme western regions of the state. 

 

Although the website is very handy and useful, technology changes and improves 

upon itself constantly.  With improving technology come the possibilities to improve on 

the website’s functionality and performance.  In addition, the incorporation of individual 

tornado event data such as photos, radar images, and newspaper articles would give the 

website more personal outreach for general public use.  Also, incorporating such data 

would allow for more qualitative research to take place in addition to the quantitative 

abilities. 

A potential update to the website would be to add other types of severe weather.  

The SPC SVRGIS website also has GIS-ready files for significant hail swaths, wind, high 

wind events, and wind swaths.  Adding this data would make the website a great resource 

to gather data and information and a variety of severe weather phenomenon.  In addition, 

stakeholders can use the website as a complete source for severe weather data in the 

Commonwealth. 

The current state of the website offers a great deal of information, and 

functionality for both viewing and analyzing end users.  The hosted data gives decision 

makers and stakeholders the needed information to make constructive choices on tornado 

risk for the state of Kentucky.  Similar methodologies can be adapted for other states, 

which could be implemented to assist in their own historical tornado analysis. 

Looking back at the methodology used in this study, some approaches could have 

been conducted more fluidly.  For example, when creating individual GIS feature classes 
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and raster files for each day a tornado took place, a manual process of selecting the 

tornado track file(s) and converting all to a raster file was conducted.  Once complete, 

iteration scripts were discovered to mitigate the time spent repeating this process.  The 

iteration scripts led to the discovery of using ModelBuilder for many of the GIS 

processes.  It is recommended to anyone looking into conducting future work which is 

similar to the approaches used in this study that any form of automation is looked into 

prior to beginning GIS analysis work. 

In addition to better preparation, when this study began the latest ArcGIS Desktop 

and Server software version was 9.3.  However, early into the study ArcGIS Desktop and 

Server 10.0 were released.  Looking into the additional functionality and more intuitive 

design, the updated software was the catalyst for changing the original idea of creating a 

web application using default ArcGIS Server tools, to creating a web application using 

Adobe’s Flash Builder and Flex suite of tools.  Due to the transition from one ArcGIS 

platform to another, some of the methodology for calculating and processing the GIS 

layers also changed.  Although the functionality and style of the Flex Viewer web 

application surpasses that of the default ArcGIS Server web applications, making the 

transition required numerous redundant processes to take place.  If the analysis portion of 

the study would have waited for the release of the updated ArcGIS platform before 

beginning GIS processes, then a great deal of time could have been saved by removing 

the redundant processes. 

The website and analysis conducted in the study is a pure example of how 

analysis of a tabular dataset can be transformed into a powerful tool capable of providing 

beneficial information.  The Internet-based SDSS performs well as both an educational 



   

91 
 

resource and also as a risk assessment tool for decision makers.  In the end, the benefits 

of such website should continue to educate and assist all users in a time where critical 

information such as the Tornado Incident Density of an area can help save lives. 
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