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The aim of this thesis is to establish the principal properties for the theory of

ordered compactifications relating to connectedness and to provide particular examples.

The initial idea of this subject is based on the notion of the Stone-Čech compactification.

The ordered Stone-Čech compactification βoX of an ordered topological space X is

constructed analogously to the Stone-Čech compactification βX of a topological space X,

and has similar properties. This technique requires a conceptual understanding of the

Stone-Čech compactification and how its product applies to the construction of ordered

topological spaces with continuous increasing functions. Chapter 1 introduces background

information.

Chapter 2 addresses connectedness and compactification. If (A,B) is a separation of

a topological space X, then β(A ∪B) = βA ∪ βB, but in the ordered setting, βo(A ∪B)

need not be βoA ∪ βoB. We give an additional hypothesis on the separation (A,B) to

make βo(A ∪B) = βoA ∪ βoB. An open question in topology is when is βX −X =X. We

answer the analogous question for ordered compactifications of totally ordered spaces. So,

we are concerned with the remainder, that is, the set of added points βoX −X. We

demonstrate the topological properties by using filters. Moreover, results of lattice theory

turn out to be some of the basic tools in our original approach.

In Chapter 3, specific examples and counterexamples are given to illustrate earlier

results.

vi



Chapter 1

INTRODUCTION

1.1. Stone-Čech Compactifications

The first chapter is devoted to the progress of Stone-Čech compactifications and

constructions. Chronologically, the fundamental study in this direction was originated

with the investigation of Tychonoff in 1930 (see [14]). He introduced completely regular

spaces and stated that a topological space X is embedded in a compact Hausdorff space if

and only if X is a completely regular space (see [4]). A completely regular Hausdorff

space is also known as a Tychonoff space. A topological space is said to be a Hausdorff or

T2 space if for each pair x, y of distinct points of X, there exist disjoint neighborhoods U

of x and V of y.

To observe Tychonoff’s technique for a (Hausdorff) compactification of a completely

regular space, we need to elaborate on the definitions and results of the general

construction which we will be using. The relation between compactification and complete

regularity is indicated by this general construction.

When we summarize the timeline of the Stone-Čech compactification, Tychonoff’s

characterization (1930) is the main influence. Then, the properties of M.H. Stone and E.

Čech with the filter concept of Henri Cartan (1937) led to the Wallman compactification.

The process goes on with the ultrafilter compactifications of Pierre Samuel (1948) and

observations about C∗(X) and C(X) of Edwin Hewitt(1948)(see [15]).

Definition 1.1.1. A Hausdorff space X is said to be completely regular if for every

closed subset F of X, and for each point x of X not in F , there is a continuous

real-valued function f on X such that f(x) = 0 and f(F ) = {1}.
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Definition 1.1.2. If a set A is a subspace of a space X and f ∶ A→ Y is a

continuous mapping, then a continuous mapping g ∶X → Y such that g∣A = f is called a

continuous extension to X of the mapping f .

Definition 1.1.3. If X is a topological space then

C(X) = {f ∶X → R∣ f is continuous},

C∗(X) = {f ∶X → R∣ f is continuous and bounded}, and

for any f ∈ C(X), Z(f) = {x ∈X ∣ f(x) = 0}, the zero set of f .

The family of all zero sets of functions on X will be denoted by Z(X). Z(X) is

closed under finite unions and finite intersections.

Definition 1.1.4. If A ⊆X and every f ∈ C(A) has a continuous extension to X,

the set A is said to be C-embedded in X. Similarly, if each f ∈ C∗(A) has a continuous

bounded extension to X, the set A is said to be C∗-embedded in X.

We will see that the Stone-Čech compactification of a space X is a compact

Hausdorff space containing X as a dense C∗-embedded subspace. Thus, the concept of

C∗-embedding is one of the main tools for studying the Stone-Čech compactification.

Definition 1.1.5. A compactification of a space X is a compact Hausdorff space

αX and an embedding α ∶X → αX so that α(X) is dense in αX, i.e., α(X) = αX where

α(X) is the closure of α(X).

Since X is homeomorphic to α(X) ⊆X, we may think of X as being equal to α(X),

so a compactification of X may be viewed as a compact T2 space αX containing X as a

dense subset.
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Tychonoff’s technique was expanded by Čech who presented the standard notation

βX in 1937. The symbol βX is used to denote the Stone-Čech compactification of the

space X. The Stone-Čech compactification of X is constructed in such a way that every

bounded, real-valued continuous function on X will extend continuously to the

compactification (see [15]). From now on, all our topological spaces are required to be

completely regular Hausdorff spaces.

For each f ∈ C∗(X), f is bounded. So there exists a closed and bounded interval If

in R which contains f(X). We will consider the function e ∶X → ∏
f∈C∗(X)

If ⊆ RC∗(X)

defined by e(x) = ∏
f∈C∗(X)

f(x). The following result is in Chandler’s text (see [4]).

Proposition 1.1.6. The function e is a topological embedding of X into ∏
f∈C∗(X)

If

(that is, X is homeomorphic to e(X) ⊆ ∏
f∈C∗(X)

If) if X is completely regular.

We consider βX = e(X) ⊆ ∏
f∈C∗(X)

If , so e(X) is dense in βX. Since each If ⊆ R is

Hausdorff and an arbitrary product of Hausdorff spaces is Hausdorff, ∏
f∈C∗(X)

If is

Hausdorff. Also, the Hausdorff property is hereditary, so βX ⊆ ∏
f∈C∗(X)

If is Hausdorff.

Tychonoff’s theorem (see [14]) states that the product of any collection of compact

topological spaces is compact. Since each closed and bounded interval If in R is compact,

∏
f∈C∗(X)

If is compact by Tychonoff’s theorem. The closed set βX in the compact space

∏
f∈C∗(X)

If is compact. Thus, βX is a compactification of X, and we call this

compactification of X the Stone-Čech compactification.

Theorem 1.1.7. X is completely regular if and only if X is a subspace of a compact

T2 space.

Proof. If X is completely regular then X is a (dense) subspace of the compact T2

space βX.
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Conversely, let X be a subspace of a compact T2 space Y . Since Y is compact T2, Y

is a normal space. So, Y is completely regular. Since complete regularity is hereditary, X

is also completely regular. �

In view of the following definitions and theorems, we will establish the general

techniques for Chapter 2.

Definition 1.1.8. A collection F of subsets of a topological space X is called a filter

if the following properties hold:

i) X ∈ F ,

ii) If A1,A2 ∈ F , then A1 ∩A2 ∈ F ,

iii) If A ∈ F and A ⊆ B, then B ∈ F ,

iv) ∅ ∉ F .

Thus, by induction, we conclude that filters are closed under finite intersections.

Using the filter definition, we also define a z-filter on a space X as a subfamily Z of Z(X)

with the same properties given in Definition 1.1.9. We now provide some further

explanation about filters. A collection B of subsets of X is a filter base if every

intersection of finitely many elements of B is nonempty. If B is a filter base,

[B] = {F ∶ ∃B ∈ B,B ⊆ F} is a filter called the filter generated by the base B.

Definition 1.1.9. Let U be a filter on X. U is called an ultrafilter if for all A ⊂X

either A ∈ U or Ac ∈ U where Ac denotes the complement of A in X.

The following theorem about ultrafilters, which follows from the definition and a

standard application of Zorn’s lemma indicates the main property of ultrafilters (see [5]).
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Theorem 1.1.10. (The Ultrafilter Theorem)

Let F be a filter on X. There is an ultrafilter U such that F ⊂ U .

Example 1.1.11. Consider X = Q, the set of rational numbers, and the filter

F = [{(π − ε, π + ε) ∶ ε > 0}] on Q. Since H = [{(π,π + ε) ∶ ε > 0}] is a filter which contains

F , F is not an ultrafilter on Q. In addition, the filter

J = [{(π,π + ε) ∶ ε > 0} ∩ { a
2n

∶ a ∈ Z, n ∈ N}] on Q satisfies H ⊆ J , but J is still not an

ultrafilter.

We will exhibit the following definition and then demonstrate the theorem for

convergence in terms of filters.

Definition 1.1.12. We say a filter F converges to x, denoted F → x, if for any

neighborhood Nx of x, Nx ∈ F .

Theorem 1.1.13. Let X be a topological space. X is Hausdorff if and only if every

filter has at most one limit.

Proof. A topological space is a Hausdorff space if for each pair x, y of distinct points

of X, there exist disjoint neighborhoods U of x and V of y. Thus, no filter contains both

U and V , so a filter may converge to either x or y but not both. Then each filter has at

most one limit.

Conversely, assume that every neighborhood Nx of x and every neighborhood Ny of

y are not disjoint. Thus, Nx ∩Ny is a basis for a filter which has two limit points x and y.

By the assumption, every filter has at most one limit point, so, this is a contradiction,

and thus X is Hausdorff. �
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A topological space is said to be sequentially compact if and only if every sequence

has a convergent subsequence. Sequential compactness and compactness are equivalent

for metric spaces. But, filters work in the opposite way, so finding a convergent subspace

corresponds to expanding a filter to a larger filter which converges to some point x.

This leads us to the following proposition which will allow us to characterize

convergence in a completely regular space in terms of z-ultrafilters (see [15]) .

Proposition 1.1.14. A topological space X is compact if and only if every ultrafilter

converges.

Definition 1.1.15. Subsets A and B of a space X are said to be completely

separated in X if there exists an f ∈ C∗(X) with f(A) = {0} and f(B) = {1}.

We shall present the following equivalent properties of the Stone-Čech

compactifications of a completely regular Hausdorff space X.

Theorem 1.1.16. Every space X has a compactification βX, which has the following

equivalent properties:

i) X is C∗-embedded in βX, and βX is the only compactification of X having this

property.

ii) Every continuous function from X into a compact Hausdorff space Y has a

continuous extension from βX to Y .

iii) Disjoint zero sets of X have disjoint closures in βX.

iv) If Z1 and Z2 are zero sets in X, then clβXZ1 ∩ clβXZ2 = clβX(Z1 ∩Z2).

v) Completely separated sets in X have disjoint closures in βX.

vi) Every point in βX is the limit of a unique z-ultrafilter on X.
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vii) βX is maximal in the set of compactifications of X partially ordered by

αX ≥ γX if and only if there is a continuous function f ∶ αX → γX such that f ∣X = idX .

The equivalency of the properties is shown in Walker’s text (see [15]).

The following property of the Stone-Čech compactification will help us to describe

the ordered case and determine the characteristic properties of our general construction.

Proposition 1.1.17. A subspace A of X is C∗-embedded in X if and only if

βA = clβXA.

Proof. If A is C∗-embedded in X, each f ∈ C∗(A) has a continuous extension to X

and X ⊆ βX, so the set A is C∗-embedded in βX by Theorem 1.1.16(i). Now clβXA is

compact Hausdorff and contains A as a dense subspace, so it is a compactification of A.

Any f ∈ C∗(A) can be extended to f̂ ∈ C∗(βX), and f̂ ∣clβXA is an extension of f to clβXA.

Thus, by Theorem 1.1.16(i), clβXA = βA.

Conversely, suppose βA = clβXA. By Theorem 1.1.16(i), A is C∗-embedded in βA,

and by the Tietze extention theorem (see [11]), clβXA is C∗-embedded in the normal

space βX. Thus, any f ∈ C∗(A) can be extended to βA = clβXA and then to βX, and the

restriction of this extention to X gives an extention of f to X. Thus, A is C∗-embedded

in X. �

Further information about the extention principle and the properties of the

Stone-Čech compactification can also be found in L. Gillman and M. Jerison’s text, Rings

of Continuous Functions (see [6]) and P. Jackson’s doctoral thesis, Iterated Remainders

in Compactifications (see [8]).
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1.2. Ordered Topological Spaces

An early development of the concept of order (or partial order) in mathematics is

given in C.S. Pierce’s work in 1880. The later systematic study of ordered set theory was

elaborated by Dedekind, Hausdorff and Emmy Noether. We first define a concept of

ordered sets, then observe some technical results.

Definition 1.2.1. A partial order is a binary relation ≤ over a set X which is

reflexive, transitive and antisymmetric so that it has the following properties:

i) If x ∈X, then x ≤ x;

ii) If x, y, z ∈X, x ≤ y, and y ≤ z, then x ≤ z;

iii) If x, y ∈X and both x ≤ y and y ≤ x, then x = y.

A total order on X is a partial order which is decisive, that is:

iv) If x, y ∈X, then either x ≤ y or y ≤ x.

A set with a partial order is said to be a partially ordered set or poset (see [11]). A

set {(←, x) ∶ x ∈X} shows the elements with less than a point x.

Definition 1.2.2. A subset A of a partially ordered set (X,≤) is said to be

decreasing if x ≤ a and a ∈ A imply x ∈ A.

The decreasing hull of A, denoted d(A), is the smallest decreasing set containing A.

Thus, a point x belongs to d(A) if and only if there is a point a ∈ A such that x ≤ a.

Dually, we can also define the increasing hull of A as the smallest increasing set i(A)

containing a given subset A ⊂X. We observe that A is an increasing set if and only if

A = i(A) and A is an decreasing set if and only if A = d(A). We now describe increasing

and decreasing functions.
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Definition 1.2.3. Let A and B be partially ordered sets. A function f from A to B

is said to be an increasing function or order-preserving function if a, b ∈ A and a ≤ b imply

f(a) ≤ f(b). A function f from A to B is said to be a decreasing function or

order-reversing function if a, b ∈ A and a ≤ b imply f(a) ≥ f(b).

Definition 1.2.4. Let X be a partially ordered set. A subset A of X is convex if

x, y ∈ A and x ≤ z ≤ y imply z ∈ A.

We note that A is convex if and only if A = i(A) ∩ d(A).

Definition 1.2.5. A partially ordered topological space X is said to be locally convex

if at every point the set of convex neighborhoods is a base for the neighborhood system of

that point (see [11]).

Local convexity is a common compatibility condition between the topology and

order on a partially ordered topological spaces. A partially ordered topological space

(X,τ,≤) is T2-ordered if x ≰ y in X implies there exist disjoint neighborhoods, which need

not be open, U of x and V of y, with U being an increasing set and V being a decreasing

set. We only consider T2-ordered, locally convex, partially ordered topological spaces,

with special attention to totally ordered spaces.

Definition 1.2.6. Let X be an ordered topological space. X is a totally ordered

space if X is T2-ordered, the order on X is total, and the topology on X is locally convex

(see [1]).

Also, Kent and Richmond noted that if the neighborhood filter at each point has a

filter base of convex sets, then this topology is locally convex (see [9]).

9



Chapter 2

A COMPARISON OF βX and βoX

In this chapter, we introduce the concept of an ordered version βoX of the

Stone-Čech compactification of a totally ordered topological space X. Nachbin proved

that an ordered topological space has an ordered compactification if and only if it is

completely regular ordered. We focus on ordered versions of connectedness to determine

which versions of ordered separations (A,B) of X satisfy βo(A ∪B) = βoA ∪ βoB where

βoX is the ordered Stone-Čech compactification of X.

2.1. Ordered Compactifications of Totally Ordered Spaces

We first recall the definition of a completely regular ordered space and present the

concept of ordered compactification of totally ordered spaces. Ordered compactifications

of totally ordered spaces were described as a compactification with an order by Blatter

(see [3]), Kent and Richmond (see [9]), and Bezhanishivili and Morandi (see [1]).

Definition 2.1.1. Let X be a partially ordered topological space. X is a completely

regular ordered space if the following conditions are satisfied:

i) For each x, y ∈X with x ≰ y, there exists a continuous order-preserving function

f ∶X → [0,1] such that f(x) > f(y).

ii) For each x ∈X and each closed subset F of X with x ∉ F , there exist a

continuous order-preserving f ∶X → [0,1] and a continuous order-reversing g ∶X → [0,1]

such that f(x) = 1 = g(x) and F ⊆ f−1(0) ∪ g−1(0).
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βoX is constructed analogously to the product construction for βX given in Chapter

1, using the set C∗↑(X) of continuous, bounded, increasing real valued functions on X as

the index set. The fact that X is a completely regular ordered space implies the

evaluation map e is an embedding and order isomorphism. Furthermore, analogous to

βX, the extension property holds in βoX. So, given any continuous increasing function

f ∶X → Y of X into a compact T2-ordered space Y , the function f extends uniquely to a

continuous increasing function f̂ ∶ βoX → Y . By the construction of βoX as a subspace of

∏
f∈C∗↑(X)

R, βoX essentially contains a copy of each f ∈ C∗↑(X). The projection function

πf ∶ βoX → R of βoX ⊆ ∏
f∈C∗↑(X)

R onto its f th coordinate is a continuous increasing

extension of f ∈ C∗↑(X).

Let us consider the ordered compactification βoN of the natural numbers. Given two

sequences A = {2,4,6, ...} and B = {1,3,5, ...}, each must have a limit point in βoN. If ∞1

is a limit point of A and ∞2 is a limit point of B, the intersection of any neighborhood U

of ∞1 and any neighborhood of V of ∞2 cannot be an empty set by the convexity. So it is

not a Hausdorff space if ∞1 ≠∞2. Therefore, the 1-point compactification of the natural

numbers is the only ordered compactification of N, so βoN = N ∪ {∞}.

An open question in topology is which spaces X are homeomorphic to βX −X. This

question has been known since the 1980s from the work of Stannett (see [12] and [13])

and other students of C.J. Knight at the University of Sheffield (see [7] and [8]). We start

with totally ordered spaces and ask when X is topologically and ordered equivalent to

βoX −X. First, we give the lemmas related to the construction of βoX, then we recall

that a complete lattice is defined as a poset in which every subset has a least upper

bound and a greatest lower bound (see [2]).
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Lemma 2.1.2. Let f ∶ Y → Z be a continuous function and S be a dense subset of Y

for which f ∣S is a homeomorphism. If Y is a Hausdorff space, then f(Y − S) ⊂ Z − f(S)

(see Theorem 1.6 in [4]).

Lemma 2.1.3. Every compact totally ordered topological space is a complete lattice.

Proof. If X is a finite totally ordered space, then X has to be a complete lattice. So,

suppose compact totally ordered topological space X is infinite and not a complete

lattice. If some set S ⊂X has no upper bound, then the open cover

C = {(←, x) ∶ x ∈ S} ∪ {(b,→) ∶ b is an upper bound of S} of X contains no (b,→) type sets

and it has only (←, x) for x ∈ S. If C has a finite subcover (←, xi) for i = 1, ..., n, then

n

⋃
i=1

(←, xi) = (←, xj) where xj =max xi which does not cover xj =max xi. If S has upper

bounds but no least one, any finite subcover would contain only finitely many (bi,→) for

i = 1, ..., n. So, ⋃(bi,→) = (bj,→) where bj =min bi for i = 1, ..., n does not include bj and

bj is not covered by any (←, x) for x ∈ S. This contradicts the assumption that X is a

compact totally ordered topological space. The dual argument covers the case of S having

no greatest lower bound. �

Theorem 2.1.4. Let X be a totally ordered space. If f ∶X → βoX −X is a

homeomorphism and order isomorphism, then there exists an increasing extension

f̂ ∶ βoX → βoX and f̂ has no fixed points.

Proof. f has an extension f̂ by the ordered version of Theorem 1.1.16(ii). By

Lemma 2.1.3, since X is a totally ordered space, βoX has a largest element x ∈X and a

smallest element y ∈X. Also, since X is mapping to points not in X, f̂(x) < x and

f̂(y) > y. Applying Lemma 2.1.2 with Y = Z = βoX and S =X we have

f̂(βoX −X) ⊆ βoX − f̂(X). Since the image f̂(X) is same as the image f(X),
12



f̂(X) = βoX −X. Therefore, f̂(βoX −X) ⊆ βoX − f̂(X) = βoX − (βoX −X) =X. Thus, for

each z ∈ βoX, f̂(z) ≠ z, so the extension f̂ has no fixed point. �

If f and g are continuous functions on R, the set Y = {x ∈ R ∶ f(x) ≥ g(x)} is closed.

It is sufficient to show that R − Y is open. Since R is T2, for any x ∈ R with f(x) < g(x)

there exist disjoint convex neighborhoods U of f(x) and V of g(x). Then

f−1(U) ∩ g−1(V ) is a neighborhood of x contained in R − Y on which g is strictly larger

than f . So R − Y is open and Y is closed in R. The same proof shows that this property

holds for functions f and g on any locally convex totally ordered topological space. Now

if f and f̂ are as in Theorem 2.1.4, and g(x) = x, then we see that C = {x ∈X ∶ f̂(x) > x}

and D = {x ∈X ∶ f̂(x) < x} form a separation of X, since f̂ has no fixed points, and

Ĉ = {x ∈ βoX ∶ f̂(x) > x} and D̂ = {x ∈ βoX ∶ f̂(x) < x} form a separation of βoX.

Furthermore, we have the following lemma about these sets C, D, Ĉ and D̂.

Lemma 2.1.5. clβoXC = Ĉ and clβoXD = D̂.

Proof. Ĉ is closed and contains C, so clβoXC ⊆ Ĉ. If x ∈ Ĉ, x ∉ clβoXD since

clβoXD ⊆ D̂. But since β0X = clβoX(C ∪D) = clβoXC ∪ clβoXD, x ∉ clβoXD implies

x ∈ βoX − clβoXD ⊆ clβoXC. Thus, Ĉ ⊆ clβoXC, so Ĉ = clβoXC. Similarly, D̂ = clβoXD. �

We first consider the case of a topological space, without order. The notation ⊍

represents the disjoint union.

Theorem 2.1.6. If (A,B) is a separation of a topological space X, then

β(A ∪B) = βA ⊍ βB = clβXA ⊍ clβXB, that is, clβXA ∩ clβXB = ∅, clβXA = βA and

clβXB = βB.
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Proof. Any point in β(A ∪B) is a limit of points in X = A ⊍B. Since X is

disconnected, the limit points must be a limit point of A or a limit point of B, that is,

β(A ∪B) = βA ⊍ βB. More formally, by Theorem 1.1.16(vi), every point of βX is the

limit of a unique z-ultrafilter F . If F → a ∈ A, then F is a z-ultrafilter on A (and not on

B), and similarly for B ∈ F . It follows that β(A∪B) = βA∪ βB. By Theorem 1.1.16(i), A

is C∗-embedded in βA. Then it follows that clβXA = βA by Proposition 1.1.17. Similarly,

clβXB = βB. Since, A and B are completely separated in X, they have disjoint closures in

βX by Theorem 1.1.16(v). Therefore, clβXA ∩ clβXB = ∅. Thus, we have

βX = β(A ∪B) = βA ⊍ βB = clβXA ⊍ clβXB. �

Since sequences are defined by countable sets, they cannot be used to describe the

general situation, but considering them will give some insight. In a compact space, every

sequence has a convergent subsequence. By Proposition 1.1.14, βX contains a unique

limit for every ultrafilter. If (xn) is a sequence in βX = β(A ∪B), it must have a

convergent subsequence (xni)→ x0 ∈ clβXA ⊍ clβXB = clβX(A ⊍B) = clβXX = βX. We

show that x0 is not in both clβXA and clβXB. Since x0 ∈ clβXA ⊍ clβXB, x0 ∈ clβXA or

x0 ∈ clβXB. We suppose x0 ∈ clβXA and since clβXB is closed and by Theorem 2.1.6,

clβXA ∩ clβXB = ∅, clβXA =X − clβXB is an open neighborhood of x0. Then (xni) is

eventually in clβXA ∩X = A. So, a subsequence in X converging to x0 ∈ clβXA is a

subsequence eventually in A. It follows that every subsequence in A is a subsequence in

X. So, saying that every sequence in B has a convergent subsequence is equivalent to the

property that every sequence in X with a converging subsequence (xni)→ x0 ∈ clβXB has

a converging subsequence in B.

Additionally, if (A,B) is a separation of a topological space X, there exists a

continuous function s ∶X → {0,1} defined by s(A) = {0} and s(B) = {1}. By Theorem
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1.1.16 (ii), the continuous function s from X into a compact T2 space {0,1} has a

continuous extension ŝ from βX to {0,1}. A net is a generalization of a sequence, and it

is a function with range the topological spaces. If z ∈ clβXA, there exists a net aλ in A

such that aλ → z, and then s(aλ)→ s(z). Because the image of the net aλ is equal to 0

under a continuous function s, we have s(z) = 0. If z ∈ clβXB, then similarly, s(z) = 1.

Therefore, this is another way to show that clβXA and clβXB are disjoint sets in βX.

Now we observe this statement in the setting of ordered compactifications of totally

ordered spaces and note that the ordered version of the condition clβXA ∩ clβXB = ∅,

which was part of the conclusion in Theorem 2.1.6, must be part of the hypothesis.

Theorem 2.1.7. If (A,B) is a separation of a locally convex, totally ordered

topological space X and clβoXA ∩ clβoXB = ∅, then

βo(A ∪B) = βoA ⊍ βoB = clβoXA ⊍ clβoXB. In particular, βoA = clβoXA and βoB = clβoXB.

Proof. In βoX, every convex closed ultrafilter converges by the filter construction of

βoX in [9]. Let βoX be the set of all convex closed ultrafilters on X and ẋ be the set of

all supersets of a point x in a totally ordered space X. Then the function e ∶X → βoX

defined by e(x) = ẋ is an embedding of X into βoX. If F is a convex ultrafilter on X

which is not of form ẋ, then F does not converge. So we need a limit for F in βoX. Given

any closed convex ultrafilter F on X, F must converge in βoX. So F converges to a point

x in clβoXA or clβoXB. Suppose x ∈ clβoXA. We claim that there is a neighborhood Nx of

x with Nx ⊆ clβoXA. Otherwise, every convex neighborhood of x intersects

clβoXB = βoX − clβoXA. βoX has a base of convex neighborhoods, so x ∈ clβoXB. This

contradicts the fact that x belongs to clβoXA and clβoXA ∩ clβoXB = ∅.

By the definition (Definition 1.1.12) of filter convergence, the convex neighborhood

Nx of x belongs to F . Now F ∣Nx = [{F ∩Nx ∶ F ∈ F}] is a convex filter. Since F is an
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ultrafilter, F ⊇ F ∣Nx . On the other hand, for each G ∈ F ∣Nx , F ∩Nx ⊆ G for some F ∈ F ,

and since Nx ∈ F , F ∩Nx ∈ F and thus G ∈ F . This shows F ∣Nx ⊆ F . It follows that

F ∣Nx = F .

So, the arbitrary convex ultrafilter F on X converging to a point x ∈ A really turns

out to be a convex ultrafilter on A. We note that every closed convex ultrafilter on A is

also a closed convex ultrafilter on X (see [9]). Then βoA generated by the closed convex

ultrafilters on A is equal to clβoXA generated by the closed convex ultrafilters on X

converging to a point of clβoXA. Therefore, βoA = clβoXA. Similarly, if F converges to a

point x in clβoXB, we can find that βoB = clβoXB. Then we finally have

βo(A ∪B) = βoA ⊍ βoB = clβoXA ⊍ clβoXB, as desired. �

Returning to the question of when βoX −X =X, for a totally ordered space X,

suppose f ∶X → βoX −X is a homeomorphism and order isomorphism as in

Theorem 2.1.4. Our specific sets C = {x ∈X ∶ f̂(x) > x} with Ĉ = {x ∈ βoX ∶ f̂(x) > x} and

D = {x ∈X ∶ f̂(x) < x} with D̂ = {x ∈ βoX ∶ f̂(x) < x} satisfy the hypothesis of

Theorem 2.1.7. Now, we obtain the following result.

Theorem 2.1.8. If X is a totally ordered space, then βoX −X /≈X.

Proof. 1: Suppose X is totally ordered space and f ∶X → βoX −X is a

homeomorphism and order isomorphism. The smallest and largest element of βoX are

elements of X and X is dense. If the smallest element a of βoX is an element of βoX −X,

there is a decreasing net in X converging to a, so X has no smallest element. But

X ≈ βoX −X which had a smallest element.

With C,D, Ĉ, D̂ as defined, by Theorem 2.1.7, f ∶X → βoX −X is

f ∶ C ∪D → βo(C ∪D) − (C ∪D) = βoC ⊍ βoD − (C ∪D) = βoC −C ⊍ βoD −D and f ∣C is a
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homeomorphism and order isomorphism from C to βoC −C. f ∣C is onto because for every

z ∈ βoC −C ⊆ βoX −X, there is a value x ∈X for which z = f(x). If x ∈D, then f(x) < x

and f̂(f(x)) < f̂(x) = f(x), so z = f(x) ∈ D̂, contrary to z ∈ βoC = Ĉ. One to one,

continuity and order isomorphism follow for any restriction. Now C ≈ βoC −C; so the

largest element b of βoC is in C, so f(b) < b contrary to b ∈ C. �

With the help of the following Knaster-Tarski fixed theorem (see [2]), we give our

second proof that βoX −X ≠X if X is a totally ordered space.

Theorem 2.1.9. (Knatser-Tarski Fixed Point Theorem)

Let L be a complete lattice and F ∶ L→ L be an order-preserving function. Then the

function F has greatest and least fixed points. The set of fixed points of F in L is also a

complete lattice.

Proof. 2 of Theorem 2.1.8: Suppose βoX −X ≈X. By Theorem 2.1.3, we know that

the ordered Stone-Čech compactification βoX of X is a complete lattice. Also, by

Theorem 2.1.4, there exists an increasing extension f̂ ∶ βoX → βoX and f̂ has no fixed

points. But, this contradicts the Knaster-Tarski fixed theorem. So, βoX −X /≈X. �

We saw that the condition clβXA ∩ clβXB = ∅ in Theorem 2.1.6 always happened, so

it is not needed as a hypothesis in the topological case. But the condition

clβoXA ∩ clβoXB = ∅ in Theorem 2.1.7, does not automatically happen.

Example 2.1.10. Consider the subsets of R, A = {[10n,10n + 4]n∈Z} and

B = {[10n + 5,10n + 9]n∈Z} as shown in Figure 2.1.
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... ... . ⊆ R

A B A B ∞

Figure 2.1. Accumulating on the end

Since X = A ∪B is convex, both the clopen sets A and B must accumulate to ∞. So,

∞ ∈ clβoXA ∩ clβoXB even though A,B is a separation of the locally convex totally ordered

space X. Thus the hypothesis clβoXA ∩ clβoXB = ∅ is needed in Theorem 2.1.7. Similarly,

there are examples where the problem accumulates in middle instead of on the end as

shown in Figure 2.2.

... . ... ⊆ R

A B A ∞ B A B

Figure 2.2. Accumulating in middle

2.2. Ordered Versions of Connectedness

The ordered Stone-Čech compactification βoX of X is constructed as a subspace of

∏
f∈C∗↑(X)

If . By the discussion following Theorem 2.2.1, we see that every f ∈ C∗↑(X) has

an extension from X to β0X. So, βoX is the unique ordered compactification in which X

is C∗↑-embedded. We note that in the topological case, any compactification αX can be

constructed using the product construction and αX is a subspace of ∏
f∈C

If where

C = {f ∈ C∗(X) which can be extended to αX} (see [4]). If X is an ordered topological

space, then C∗↑(X) = {f ∶X → R∣ f is continuous, increasing and bounded } and if each

f ∈ C∗↑(A) has a continuous, increasing and bounded extension to X, the set A is said to

be C∗↑-embedded in X. Thus, any ordered compactification αoX can be constructed

using the corresponding C∗↑ result. That is, any ordered compactification αoX is a
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subspace of ∏
f∈C ↑

If where C ↑ = {f ∈ C∗↑(X) which can be extended to αoX}. In this

section, we show that for any separation (A,B) of a locally convex, totally ordered

topological space X, A is C∗↑-embedded in X.

In the topological case, (A,B) form a separation of X if and only if there is a

continuous function f ∶ A ∪B → {0,1} with f(A) = {0} and f(B) = {1}. If

g ∶ A→ [−M,M] is continuous for any M ∈ R, then ĝ defined by

ĝ(x) = { g(x) if x ∈ A
M + 1 if x ∈ B

is a continuous extension, so A is C∗-embedded in X = A ∪B. But this approach fails for

increasing functions on partially ordered topological spaces. For totally ordered spaces, it

holds.

Theorem 2.2.1. If (A,B) is a separation of a T2-ordered locally convex, totally

ordered space X, then A and B are C∗↑-embedded in X.

Proof. A is C∗↑-embedded in X means that each g ∈ C∗↑(A) can be extended to

ĝ ∈ C∗↑(X). Let g ∶ A→ [−M,M] ⊆ R be in C∗↑(A), so g is continuous, increasing and

bounded. We extend g on A to ĝ on X = A ∪B by

ĝ(b) = { sup{g({(←, b) ∩A})} if (←, b) ∩A ≠ ∅
−M − 1 if (←, b) ∩A = ∅

for any b ∈ B and ĝ(a) = g(a) for any a ∈ A.

i) We show that ĝ is an increasing function.

Case 1: a1 ≤ a2 in A.

Since g is an increasing function, we have g(a1) ≤ g(a2). By the definition of ĝ,

g(a1) = ĝ(a1) and ĝ(a2) = g(a2), so we have ĝ(a1) ≤ ĝ(a2).

Case 2: b1 ≤ b2 in B.
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If b1 ≤ b2, then (←, b1)∩A ⊆ (←, b2)∩A, so g({(←, b1)∩A}) ⊆ g({(←, b2)∩A}). Thus,

sup{g({(←, b1) ∩A})} ≤ sup{g({(←, b2) ∩A})}, and thus ĝ(b1) ≤ ĝ(b2).

Case 3: a ≤ b for a ∈ A and b ∈ B.

If a ≤ b, then a ∈ (←, b) ∩A. So g(a) ∈ g({(←, b) ∩A}). Since g(a) = ĝ(a), we have

ĝ(a) ≤ sup{g({(←, b) ∩A})} = ĝ(b).

Case 4: b ≤ a for a ∈ A and b ∈ B.

Since ĝ(b) = sup{g({(←, b) ∩A})}, each element of {(←, b) ∩A} is less than a ∈ A, so

g(c) < g(a) for each c ∈ {(←, b) ∩A}. Thus, sup{g({(←, b) ∩A})} ≤ g(a) = ĝ(a). Then

ĝ(b) ≤ ĝ(a) and ĝ is increasing.

ii) We now show that the increasing function ĝ is continuous. By the definition of

continuity, we know that ĝ ∶X → R is continuous if and only if for each x ∈X and each

neighborhood V of ĝ(x), there is a neighborhood U of x such that ĝ(U) ⊆ V .

Case 1: x ∈ A.

Given any neighborhood V of ĝ(a) = g(a) for a ∈ A, since g is continuous, there is a

neighborhood U in A of a with g(U) ⊆ V . Since A is an open set in X, U is a

neighborhood of a in X, and g(U) = ĝ(U) ⊆ V .

Case 2: x = b ∈ B.

Let V be a neighborhood of ĝ(b). Since B is an open and locally convex subset of X,

there is a convex neighborhood N in X of b with N ⊆ B. For z ∈ N , either [z, b] ⊆ N or

[b, z] ⊆ N , so (←, z] ∩A = (←, b] ∩A, so ĝ(z) = ĝ(b). Thus, ĝ(N) = ĝ(b) ⊆ V .

So, by Case 1 and Case 2, ĝ is continuous.

Therefore, by (i) and (ii), ĝ ∈ C∗↑(A) and A is C∗↑-embedded in X. Similarly, B is

C∗↑-embedded in X. �
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The proof of Theorem 2.2.1 does not hold in a partial ordered setting, because given

any g ∈ C∗↑(A) we cannot extend g to ĝ on X by ĝ(a) = g(a) for any a ∈ A and

ĝ(b) = sup{g({a ∈ A ∶ a < b})}. A counterexample is given in the following.

Example 2.2.2. Consider the subsets, A = {(x, ∣x∣) ∶ x ∈ [−1,1] − {0}} ∪ {(0,1)} and

B = [−1,1] × {2} of R2 as shown in Figure 2.3. The order on X = A ∪B is defined by

(a, b) ≤ (c, d)⇔ a = c and b ≤ d.

Figure 2.3. A Counterexample for Partial Orders

We try to extend g ∈ C∗↑(A) defined by g((x, y)) = y to B by ĝ(b) = sup{g((←, b) ∩A)} for

any b ∈ B. For ( 1

n
,2) ∈ B, we have ĝ(( 1

n
,2)) = 1

n
. Now lim

n→∞
ĝ(( 1

n
,2)) = lim

n→∞

1

n
= 0. On the

other hand, ĝ( lim
n→∞

( 1

n
,2)) = ĝ((0,2)) = 1. Therefore, since lim

n→∞
ĝ(( 1

n
,2)) ≠ ĝ( lim

n→∞
( 1

n
,2)), ĝ

is not continuous. So, the proof of Theorem 2.2.1 fails for partial orders.

For totally ordered spaces, sup{g({a ∈ A ∶ a < b})} = sup{g({a ∈ A ∶ a ≱ b})}, but

these may be different in partially ordered spaces. If A,B is a separation of a partially

ordered space X, we now ask whether g ∈ C∗↑(A) can be extended to g̃ in B defined by

g̃(a) = g(a) for any a ∈ A and g̃(b) = sup{g({a ∈ A ∶ a ≱ b})} for any b ∈ B. The first three

cases seem to show that g̃ may be increasing.

Case 1: a1 ≤ a2 for a1, a2 ∈ A.
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Since g is an increasing function, g(a1) ≤ g(a2). By the definition of g̃, it follows that

g̃(a1) ≤ g̃(a2).

Case 2: b1 ≤ b2 for b1, b2 ∈ B.

If the points are above b2, then they are above b1. Equivalently, we say that if the

points are not above b1, then they are not above b2 as shown in Figure 2.4

Figure 2.4. An Increasing Extension in Partial Orders

Then, since {a ∈ A ∶ a ≱ b1} ⊆ {a ∈ A ∶ a ≱ b2}, we have

sup{g({a ∈ A ∶ a ≱ b1})} ≤ sup{g({a ∈ A ∶ a ≱ b2})}. By the definition of g̃, g̃(b1) ≤ g̃(b2).

Case 3: a1 ≤ b1 for a1 ∈ A and b1 ∈ B.

Since we have a1 ≱ b1, a1 ∈ {a ∈ A ∶ a ≱ b1}, so g(a1) ≤ sup{g({a ∈ A ∶ a ≱ b1})} = g̃(b1).

By the definition of g̃, we know that g(a1) = g̃(a1) for a1 ∈ A. So, g̃(a1) ≤ g̃(b1).

However, the fourth case fails in general.

Case 4: b ≤ a1 for a1 ∈ A and b ∈ B.

Suppose A,B is the separation of X = A ∪B ⊆ R2 shown in Figure 2.5. Give X the

order (x, y) ≤ (z,w) if and only if x ≤ z and y ≤ w. Take g ∈ C∗↑(A) to be g((x, y)) = y.

Consider the points b, a1 and ab as shown in Figure 2.5.
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Figure 2.5. A Non-increasing Extension in Partial Orders

Since ab ≱ b, we have g̃(b) = sup{g({a ∈ A ∶ a ≱ b})} ≥ g(ab) > g(a1) = g̃(a1). Thus, it

shows that g̃ is not increasing.

If we had defined an ordered separation of a partially ordered topological space to be

X = A ∪B where there exists a continuous, increasing and onto function f ∶X → {0,1}

with f(A) = {0} and f(B) = {1}, then A would be C∗↑-embedded in X. If g ∈ C∗↑(A) and

g ∶ R→ [−M,M], then g̃(a) = g(a) for a ∈ A and g̃(b) =M + 1 defines a continuous

increasing bounded extension of g. However, since A = f−1({0}) = f−1((←, 1

2
)) is a

decreasing set and B = f−1({1}) = f−1((1

2
,→)) is an increasing set, this definition requires

that we separate X into one decreasing set A and one increasing set B, which is too

restrictive to be widely applied.

We now continue with a lemma and two important properties.

Lemma 2.2.3. Every compact T2-ordered space is a normally ordered space (see [11]).

Proposition 2.2.4. Let A,B be a separation of a locally convex, T2-ordered,

partially ordered space X. If A is C∗↑-embedded in X, then A is C∗↑-embedded in βoX.

Proof. By Lemma 2.2.3, since βoX is a compact T2-ordered space, then βoX is

normally ordered. If A is C∗↑-embedded in βoA, then by the ordered version of Tietze
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extension theorem (see [11]), βoA is C∗↑-embedded in the normally ordered space βoX.

Thus, any g ∈ C∗↑(A) can be extended to ĝ on X and then to βoX. It follows that A is

C∗↑-embedded in βoX. �

The following result is the ordered version of Proposition 1.1.17. The proof is similar.

Theorem 2.2.5. A subspace A of an ordered topological space X is C∗↑-embedded in

X if and only if βoA = clβoXA.
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Chapter 3

EXAMPLES

3.1. Examples For Ordered Separations of Topological Spaces

In this chapter, we study specific examples to illustrate the properties we proved.

We have shown that if (A,B) is a separation of a locally convex, T2-ordered and partially

ordered topological space X, then A and B need not be C∗↑-embedded in the ordered

Stone-Čech compactification of X. Determining the continuous and increasing extensions

in the setting of interlaced separations can be hard to visualize. So we developed some

other basic examples to emphasize the problems which arise when the order is not total.

In Theorem 2.2.1, we saw that if (A,B) is a separation of a T2-ordered locally convex,

totally ordered space X, then A and B are C∗↑-embedded in X.

We now see in Example 3.1.1 that A need not be C∗↑-embedded if we do not assume

a T2-ordered, locally convex and totally ordered topological space.

Example 3.1.1. On R2 with the usual topology and the order (x, y) ≤ (z,w) if and

only if x ≤ z and y ≤ w, let an = (2n, −1

2n
) for n ∈ N, bn = (2n + 1,

−1

2n + 1
) for n ∈ N,

a−2 = (−2,1), a0 = (0,1), and b−1 = (−1,1). Add a point a∞ as the limit of {an}∞n=1 and a

point b∞ as the limit of {bn}∞n=1, with an < a∞ for each n ∈ N ∪ {−2,0}, bn < b∞ for each

n ∈ N ∪ {−1}, and a−2 < b−1 < a0. Put A = {an}∞n=1 ∪ {a−2, a0, a∞}, B = {bn}∞n=1 ∪ {b−1, b∞},

and X = A ∪B, as shown in Figure 3.1.
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Figure 3.1. An Example on R2 for the Totally Ordered Spaces

Since we added points a∞ to A and b∞ to B so that an → a∞ where

an = {(2n, −1

2n
)}n∈N and bn → b∞ where bn = {(2n + 1,

−1

2n + 1
)}n∈N, the basic neighborhoods

of a∞ are {a∞} ∪ {an}n≥k and the basic neighborhoods of b∞ are {b∞} ∪ {bn}n≥k for k ∈ N.

We note that A and B are closed, because each set contains its limit point. See Figure

3.1. The set Y is T2-ordered if and only if any sequences xλ, yλ in Y satisfies the

following. If xλ ≤ yλ with xλ → x and yλ → y for any x, y ∈ Y , then x ≤ y. We have

an < bn < an+1 < bn+1 and if we take the limit of these terms as n goes to infinity, we get

a∞ ≤ b∞ ≤ a∞. This gives a contradiction that a∞ = b∞, so X is not a T2-ordered space.

Basic neighborhoods of a∞ contain ak and ak+1 but not bk, even though ak < bk < ak+1. So,

X is not a locally convex space.
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We now show that A is not C∗↑-embedded in A ∪B. We define f ∶ A→ R by

f(x, y) = y and f(a∞) = 0, so f ∈ C∗↑(A). By Figure 3.1, we have an < bn < an+1. If f is

extended to f̂ on A ∪B, we get f̂(an) < f̂(bn) < f̂(an+1). So, when we take the limit of f̂

as n goes to infinity, we find f̂(a∞) ≤ f̂(b∞) ≤ f̂(a∞). Since f̂(a∞) = 0, we have

f̂(b∞) = 0. Recall a−2 = (−2,1), a0 = (0,1) and b−1 = (−1,1). Since f̂(a−2) ≤ f̂(b−1) ≤ f̂(a0)

and f̂(a−2) = f̂(a0) = 1, then we have f̂(b−1) = 1. We also know that f̂(b−1) ≤ f̂(b∞). But,

since f̂(b−1) = 1 and f̂(b∞) = 0, this gives a contradiction that 1 ≤ 0. Thus, we cannot

extend f to f̂ on X and A is not C∗↑-embedded in X.

Now we continue with another example for the partially ordered case. This one is

locally convex and T2-ordered.

Example 3.1.2. On R2 with the usual topology, consider the subsets

A1 = [−1,0) × {1}, A2 = (0,1] × {−1} and B = [−1,1] × {0} with (x, y) ≤ (z,w) if and

only if x = z and y ≤ w, as shown in Figure 3.2. Let A = A1 ∪A2.

Figure 3.2. An Example on R2 for the Partially Ordered Spaces

We consider f ∶ A1 ∪A2 → {0,1} with f(A1) = {0} and f(A2) = {1}. Since there is no

order relation between A1 and A2, the two figures shown in Figure 3.3 and Figure 3.4 are
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topologically and order equivalent, and we see that f ∈ C∗↑(A). But, including the set B

does not allow the positions of A1 and A2 to change. Referring to Figure 3.2, for

( 1

n
,−1) ∈ A2 and ( 1

n
,0) ∈ B, we have ( 1

n
,0) > ( 1

n
,−1). If we extend f to f̂ on X = A ∪B,

then f̂(( 1

n
,0)) ≥ f̂(( 1

n
,−1)) = 1. So, for b = (0,0), taking the limit implies that

f̂((0,0)) = f̂(b) ≥ 1.

Figure 3.3. First Case without Order Figure 3.4. Second Case without Order

Similarly, by Figure 3.2, for (−1

n
,1) ∈ A1 and (−1

n
,0) ∈ B, we have (−1

n
,1) > (−1

n
,0).

So, f̂((−1

n
,1)) = 0 ≥ f̂((−1

n
,0)). Thus, as n goes to infinity, for b = (0,0), we get

0 ≥ f̂((0,0)) = f̂(b). In this case, it implies that 0 ≥ f̂(b) ≥ 1 which is a contradiction.

A = A1 ∪A2 and B is a separation of a partially ordered, locally convex topological

space X, but since f cannot be extended to f̂ on X, A is not C∗↑-embedded in X.

In Theorem 2.2.5, we showed that A is C∗↑-embedded in X if and only if

βoA = clβoXA. With A and X as in Example 3.1.2, A was not C∗↑-embedded in X, so

βoA ≠ clβoXA. We will show this directly. The order (x, y) ≤ (z,w) if and only if x = z and

y ≤ w, when restricted to A, gives that no point of A is above or below any other point of

A, so the order on A is equality, or the trivial order. Thus,

βoA = βA = β(A1 ∪A2) = βA1 ∪ βA2 by Theorem 2.1.6. Also by Theorem 2.1.6,
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β(A ∪B) = βA ∪ βB = βA1 ∪ βA2 ∪B. Now β(A ∪B) can be ordered by α2 < (0,0) < α1

for any α1 ∈ βA1 −A1 and any α2 ∈ βA2 −A2, giving an ordered compactification of A ∪B.

This ordered compactification is βoX, since βoX is the largest ordered compactification of

X, and no compactification can be larger than βX. Now clβoXA = βA1 ∪ βA2 with the

subspace order from βoX, so that α1 < α2 for α1 ∈ βA1 −A1 and α2 ∈ βA2 −A2. We saw

βoA was also equal to βA1 ∪ βA2, but since there was no order on A, βoA has no order.

This shows that, as sets, βoA = clβoXA, but as ordered topological spaces, they are not

equal.
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Chapter 4

CONCLUSION AND FUTURE WORK

The Stone-Čech compactification has been studied in various topological spaces since

1937. In this thesis, we expanded this to the concept of an ordered version of the

Stone-Čech compactification of totally ordered topological spaces using filter ideas. For

totally ordered spaces, we obtained the ordered compactifications by filters of closed

convex set. We applied this technique to separations and we developed the properties of

ordered versions of connectedness. Using this approach, we determined which versions of

ordered separations (A,B) of X satisfy βo(A ∪B) = βoA ∪ βoB. Since an open question in

topology is which spaces X are homeomorphic to βX −X, we applied our results to get

an answer to the analogous question in the setting of ordered compactifications of totally

ordered spaces. We showed that no totally ordered space X satisfies βoX −X =X. We

also used this construction with the continuous increasing functions and we visualized

examples in the setting of ordered spaces.

For future work, we would like to use the idea that we presented for the ordered

version of the Stone-Čech compactification of the totally ordered topological spaces to

answer when βoX is a complete lattice and when βoX has the interval topology. Another

open question is whether X can be homeomorphic and order isomorphic to βoX −X if X

is a partially ordered topological space whose order is not total.
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APPENDIX

The following Mathematica codes are used to compute and plot the graphs.

Figure 2.3

a = Plot[Abs[x],{x,−3,3}]

b = ListPlot[{{0,1}}, PlotStyle → PointSize[.02], PlotRange → {−1,3}]

c = ListPlot[{{0,0}}, PlotMarkers → “[EmptyCircle]”, PlotRange → {−1,3}]

d = Graphics [{Thick,Line[{{−1,2},{0,2},{1,2}}]}]

Show [ a,b,c,d ]

Figure 2.4

a = Plot[Abs[x] − 1,{x,−2,2}]

b = Plot[Abs[x],{x,−2,2}]

Show[a,b]

Figure 3.1

ListPlot[{{{−2,1},{0,1},{2,−(1/2)},{4,−(1/4)},{6,−(1/6)},{8,−(1/8)},

{10,−(1/10)},{12,−(1/12)},{14,−(1/14)},{16,−(1/16)},{18,−(1/18)},

{20,−(1/20)},{22,−(1/22)}, {24,−(1/24)}}, {{−1,1},{1,−1},{3,−(1/3)},

{5,−(1/5)},{7,−(1/7)},{9,−(1/9)},{11,−(1/11)},{13,−(1/13)},{15,−(1/15)},

{17,−(1/17)},{19,−(1/19)},{21,−(1/21)},{23,−(1/23)},{25,−(1/25)}},

{{29,−.15}},{{29, .15}}} , PlotStyle → {Black, Red, Black, Red}, DataRange

→ {−3,30}, PlotRange → {−1.2,1.2}, Ticks → {None,None}, PlotMarkers

→ {“Bullet”, “Diamond”, “Bullet a∞”, “Diamond b∞”}]
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Figure 3.2

a = Graphics[{Thick,Line[{{−1,0},{0,0},{1,0}}]}]

b = Graphics[{Thin,Line[{{−1,1},{0,1}}]}]

c = ListPlot[{{0,1}}, PlotMarkers → “[EmptyCircle]”, PlotRange → {−1.5,1.5}]

d = ListPlot[{{0,−1}}, PlotMarkers → “[EmptyCircle]”, PlotRange → {−1.5,1.5}]

e = Graphics[{Thin,Line[{{0,−1},{1,−1}}]}]

Show[a,b,c,d,e]

Figure 3.3

a = Graphics[{Thin,Line[{{−1,1},{0,1}}]}]

b = ListPlot[{{0,1}}, PlotMarkers → “[EmptyCircle]”, PlotRange {−1,1.2}]

c = ListPlot[{{0,0}}, PlotMarkers → “[EmptyCircle]”, PlotRange → {−1.2,0.2}]

d = Graphics[{Thin,Line[{{0,0},{1,0}}]}]

Show [a,b,c,d]

Figure 3.4

a = Graphics[{Thin,Line[{{0,1},{1,1}}]}]

b = ListPlot[{{0,1}}, PlotMarkers → “[EmptyCircle]”, PlotRange {−1,1.2}]

c = ListPlot[{{0,0}}, PlotMarkers → “[EmptyCircle]”, PlotRange → {−1.2,0.2}]

d = Graphics[{Thin,Line[{{−1,0},{0,0}}]}]

Show [a,b,c,d]
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