
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-2012

Dynamic Data Extraction and Data Visualization
with Application to the Kentucky Mesonet
Anoop Rao Paidipally
Western Kentucky University, anooprao.paidipally443@topper.wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Databases and Information Systems Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Paidipally, Anoop Rao, "Dynamic Data Extraction and Data Visualization with Application to the Kentucky Mesonet" (2012). Masters
Theses & Specialist Projects. Paper 1160.
http://digitalcommons.wku.edu/theses/1160

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.wku.edu%2Ftheses%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages

DYNAMIC DATA EXTRACTION AND DATA VISUALIZATION WITH
APPLICATION TO THE KENTUCKY MESONET

A Thesis
Presented To

The Faculty of the Department of Mathematics and Computer Science
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Anoop Rao Paidipally

May 2012

iii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor and mentor, Dr.

Jonathan Quiton, for his overwhelming encouragement and continuous support of my thesis

study and research, for his patience, motivation, enthusiasm, and immense knowledge. Dr.

Quiton has exceptionally inspired and enriched my growth as both a student and person.

His supervision and guidance is unlike anything I have ever experienced. This thesis would

not have been possible without the dedication of Dr. Quiton.

I gratefully acknowledge Dr. Guangming Xing and Dr. Qi Li for their supervision and

precious time invested to read and provide correction to this thesis. I am thankful that in

the midst of their busy schedules, they accepted to be members of my reading committee.

I would like to express my deep and sincere gratitude to Dr.Stuart Foster, Kentucky

State Climatologist and Director of the Kentucky Mesonet and Dr. Rezaul Mahmood,

Associate Director of the Kentucky Mesonet for the data and research direction. I would

also like to thank Andrew Quilligan, Systems Administration at Kentucky Mesonet for

providing us the access to the data needed for this project.

I would also like to thank those closest to me, whose presence helped make the com-

pletion of my thesis work possible. These are Venkata Aditya Korada - my best friend for

the past 6 years, Mohnish Thallavajhula(great friend and Knowledgeable expert in Web de-

velopment who has helped me many times when I needed the most), Gopichand Natunki,

Sampath kumar Pasupunuri and Craig Dickson. Most of all, I am greatly thankful to Sou-

janya Siddavaram Ananta, who shared my happiness, and made me happy. Chinni, thanks

for the love, patience and understanding. Most of all, I would like to thank my family, and

especially my parents, for their absolute confidence in me. The knowledge that they will

always be there to pick up the pieces is what allows me to repeatedly risk getting shattered.

Finally, I acknowledge research support from Kentucky Science and Engineering Foun-

dation (KSEF-2013-RDE-012), Western Kentucky University Junior Faculty Scholarship

iv

(No. 223149), and computing support from the Kentucky NSF- EPSCoR Research Startup

Fund (RSF-031-06).

Anoop Rao Paidipally

 v

 8

1

TABLE OF CONTENTS

INTRODUCTION

 1.1 Background 1
 1.1.1 Availability 3
 1.1.2 Reliability 3
 1.1.3 Efficiency 3
 1.2 Open-Source Software 3
 1.3 Objectives 5
 1.3.1 Replicate and design the database 6
 1.3.2 Propose a model 6
 1.3.3 Apply to Kentucky Mesonet data 6

2 REVIEW OF LITERATURE, CONCEPTS AND METHODS

2.1 Dynamic Data Extraction 8

2.1.1 Latency tolerance 8

2.1.2 Push versus pull 9

2.1.3 Granularity 9

2.1.4 Master/subordinate relationships 9

2.1.5 Synchronization logic versus latency 9

2.2 System Integration . 10

2.3 Data Visualization . 10
 2.3.1 Exploration . 11
 2.3.2 Explanation . 11

2.4 Infographics 12

1

vi

2.5 Components of our Automated Kentucky Mesonet Weather Mapping System 12

2.5.1 XML 16

2.5.2 LAMP Server 19

2.5.3 Linux 19

2.5.4 Apache Server 19

2.5.5 Database 20

2.5.6 PHP 21

2.5.7 Crontab 21

2.5.8 R language (Statistical tool) 22

2.5.9 Java Script 23

3 PROJECT DESCRIPTION 25

3.1 Data Extraction Workflow 25

3.2 Analytics component 28

3.3 Front-end interface 28

4 APPLICATION 30

4.1 Overview 30

4.2 Use of XML parser to read the data from the XML file and store in the

database 31

4.3 Creation and Maintenance of database 32

4.4 Generating a metadata file which acts as an input to statistical software . . . 33

4.5 Processing the metadata file to generate the required images 35

4.6 Creation of animations from the generated images 35

4.7 Embedding the animations to the webpage 37

4.8 Studies and Observations 39

5 CONCLUSION 44

5.1 Outcome 44

vii

5.2 Future Scope 45

6 BIBLIOGRAPHY 46

LIST OF TABLES

viii
viii
viii

2.1 A List of Components used in the Automated Kentucky Mesonet Weather

Mapping System 16

4.1 Contents of AutomateCSV 34

4.2 A sample script tag for jQuery 36

4.3 A sample method call on the jQuery object on the KY Mesonet images . . . 37

LIST OF FIGURES

ix

1.1 Mesonet Locations as of January 2011 [9] 2

2.1

Pictorial representation of a crontab

.

.

.

.

.

22

3.1

Architecture model of Dynamic Data Extraction and Visualization

.

.

.

.

.

25

3.2 Sample XML data format 26

4.1 Pictorial representation of a database 31
4.2 Pictorial representation of a crontab in the server 32

4.3 Pictorial representation of a animation in the WebInterface 38

4.4 Pictorial representation of Relative Humidity 40

4.5 Pictorial representation of a Solar Radiation 40

4.6 Pictorial representation of a air temperature 41

4.7 Pictorial representation of a dew point temperature 41

4.8 Pictorial representation of maximum wind speed 42

4.9 Pictorial representation of wind speed 42

x

DYNAMIC DATA EXTRACTION AND DATA VISUALIZATION WITH

APPLICATION TO THE KENTUCKY MESONET

Anoop Rao Paidipally May 2012 47 Pages

Directed by: Dr. Jonathan Quiton, Dr. Guangming Xing and Dr. Qi.Li

Department of Mathematics and Computer Science Western Kentucky University

There is a need to integrate large-scale database, high-performance computing

engines and geographical information system technologies into a user-friendly web

interface as a platform for data visualization and customized statistical analysis. We

present some concepts and design ideas regarding dynamic data storage and extraction by

making use of open-source computing and mapping technologies. We implemented our

methods to the Kentucky Mesonet automated weather mapping workflow. The main

components of the work flow includes a web based interface, a robust database and

computing infrastructure designed for both general users and power users such as

modelers and researchers.

1

INTRODUCTION

There are a lot of applications that benefit from dynamic data extraction and data

visualization. Some of these areas include Business Intelligence (BI), Customer

Relationship Management (CRM) and Enterprise Information portals (EIP) etc.

Specifically, system integration of various components aims at combining selected

systems so that they form a unified new whole and give users the ability to interact with

all the modules on a single information portal.

This thesis deals with the design and implementation of a central information system

that joins several modules such as a database, statistical tools along with other system

software into one cohesive unit[20]. Our goal is to develop a fully functioning and flexible

integrated information system that can be used for automated administration useful for

providing timely critical information while reducing inconsistency and work overload.

1.1 Background

Our system is designed to serve both research and commercial goals of the Kentucky

Mesonet. The Kentucky Mesonet is a network of automated weather and climate mon-

itoring stations being developed by the Kentucky Climate Center at Western Kentucky

University[14].

The Mesonet data is mainly used by researchers for making mesoscale modeling and

predictions. In particular we are interested in upgrading the capability to power meaningful

data visualization tools in real time if possible. For instance news channels on the television

may show some kind of mesoscale data visualizations, but they may not be automated and

therefore it may need someone to update it. Some national government organizations

that employ automated systems use expensive tools which may not be feasible for small

organizations such as State Mesonet to employ them.

Figure 1.1: Mesonet Locations as of January 2011 [9]

Other mesonets such as Oklahoma and Texas have developed high end static graphs

and images, they are yet to come up with real time updates and animations. This thesis

attempts to move further into high-end animations.

Figure 1.1 shows the locations of all active Kentucky Mesonet sites as of January, 2011.

These Kentucky Mesonet remote weather stations record data that are stored locally in the

station datalogger until queried. The datalogger scans all the sensors every three seconds

and stores the value in memory. Every five minutes, the station datalogger computes the

average of the three-second values, providing 12 five-minute averages for each sensor per

hour. These observations are used to derive the official record for the specified five-minute

period. Measured parameters are values brought back to the Kentucky Mesonet data ingest

machine directly from the station datalogger space and is further processed. Data ingest

systems perform initial collection of data from network sites and populate tables in a rela-

tional database. This data is provided through the Kentucky Mesonet’s public webserver.

Data and metadata are provided in a rough, preliminary XML format [18]. Currently,

selected users have access to their data repositories.

We started developing our own database infrastructure in order to have a more flexi-

ble system for different levels of users and to enable multiple system integration such as

analytics and web/front-end interface. The specific advantages are enumerated as follows :

2

1.1.1 Availability

Due to limited bandwidth, the Kentucky Mesonet does not recommend bulk downloads.

We can overcome this problem by downloading data in small chunks and storing them in

our database. Thus, all our needed data resides in our system where we have full control

over the required data.

1.1.2 Reliability

Reliability considerations indicate that this database has been redundantly maintained.

The accessibility of critical data can be increased by redundantly maintaining the copy of

the database. Furthermore, maintaining a database on its own gives us the capability to

compute a larger number of requests rather than relying on the public server which has to

be shared by many people.

1.1.3 Efficiency

We are fetching flat files from the Kentucky Mesonet and indexing them in our database

resulting in an increase in data fetching efficiency which is critical to our automated weather

mapping workflow.

1.2 Open-Source Software

Open Source Software are computer programs and applications whose source code is

freely available to the developers. Developers using open source Software are generally

allowed to modify the source code and redistribute. A software is considered open source

software if it satisfies all of the conditions under the general headings listed below [20]:

1. Free Redistribution

2. Source Code

3

3. Derived Works

4. Integrity of the Author’s Source Code

5. No Discrimination Against Persons or Groups

6. No Discrimination Against Fields of Endeavor

7. Distribution of License

8. License Must Not Be Specific to a Product

9. License Must Not Restrict Other Software

10. License Must Be Technology-Neutral

More information about open-source software can be learned from the open source initia-

tive website which is available online [20]. The advantages of open-source software are

as follows [8]:

1. Stability

With open-source software, you have full access to the source code which enables

businesses to choose to upgrade as they see fit and not because of the pressure from

the software vendor.

2. Auditability

With the source code being open to the public, users can independently test and verify

the usefulness of the software and it’s flexibility in the face of future changes. Closed

source software on the other hand forces the user to trust their claims.

3. Experimentation

With open-source software we have the opportunity to try new technologies without

the hurdles of commercial or non-disclosure licence agreements

4. Flexibility and freedom

Software flexibility is about being able to choose solutions suitable for the needs of

the users. The availability of the source code and the right to modify it is a very

4

important feature of the open source technologies. It enables the unlimited tuning

and improvement of the software product.

On the other hand, there are downsides to businesses using open-source software. They

must also be aware of the risks and the downsides of using them which were identified [4]

as follows:

1. Code reliability

Open-source software are usually contributed by many thus, there may be risks of

unequal quality of the codes performance. In most cases, there is limited funds for

quality control.

2. Lack of customer support

Once we decide to use open-source software we are on our own. That is, we have

to figure out how to install and use applications without sabotaging our data and

hardware. Very few or no help documents or manuals may be available since the

software may be changed very frequently. Though lots of help would usually be

available on the Internet and there are many self-motivated forums that can help you

install and run open-source software, there is no qualified support available.

3. Maintenance

Another major drawback is maintenance: though most of the time issues are quickly

addressed, some may take longer time, especially if the issues at hand are not ’real’

problems but local ones in the context of few users.

1.3 Objectives

The main purpose of this thesis is to develop an integrated and flexible database and

computing system for Kentucky Mesonet with application to climate modeling and high-

resolution map generation. I started my research by identifying the general model problem

5

and gathering the problem parameters and requirements from my advisor and from Dr.

Stuart Foster and Dr. Rezaul Mahmood from the Kentucky Mesonet. From this information

we identified the critical components, designed and implemented our system using the

Kentucky Mesonet data.

The specific objectives are as follows :

1.3.1 Replicate and design the database

If you design your solutions for multiple users, then database replication, in the ap-

propriate circumstances, can improve the way the users share data. Database replication

and design enables us to take a new approach to building this solution by creating a single

database that contains all the data and related information. A complete set of data is still

contained in the repository of the Mesonet, but each replica handles only a subset of that

data that is required for that specific application. We designed the database such that we

can integrate the analytics and the front-end components.

1.3.2 Propose a model

In this thesis, we have proposed a two-level integrated model for dynamic data extrac-

tion and data visualization. Visualization is critical to the effective analysis, and assessment

of data generated by numerical weather prediction.

1.3.3 Apply to Kentucky Mesonet data

Finally, we aim to apply our model to Kentucky Mesonet data. Specifically, we will

develop a web-based visualization portal with a back-end database that can allow users of

the Portal to data visualization such as static images or animations.

This thesis is organized as follows: Chapter 2 describes the various components that are

required for the model and have explained how the components exactly fit into our model;

6

Chapter 3 provides the details of the database/analytics/user-interface integration; Chap-

ter 4 shows the results and outcomes of our design as it is implemented in the Kentucky

Mesonet automated weather mapping workflow, and Chapter 5 provides the summary, con-

clusion, and ideas for further research and projects.

7

REVIEW OF LITERATURE, CONCEPTS AND METHODS

This chapter mainly focuses on the literature, concepts and methods that are required

to understand this thesis. Section 1 of this chapter introduces the term dynamic data

extraction and the design tradeoffs involved with it. Section 2 of this chapter address all

the aspects of system integration; Section 3 describes data visualization concepts; Section

4 explains about Infographics, and finally Section 5 illustrates and describes each of the

components that was used as the part of framework.

2.1 Dynamic Data Extraction

Data extraction is the act or process of retrieving data out of (usually unstructured or

poorly structured) data sources for further data processing or data storage (data migration).

It starts with an extracting system importing the data and then followed by data transfor-

mation or the addition of metadata prior to export to another stage in the data workflow.

Usually, the term data extraction is applied when data is first imported into a computer from

primary sources, like measuring or recording devices [23].

When we are using data extraction, we usually have to consider the following important

design tradeoffs:

2.1.1 Latency tolerance

Some forms of data extraction imply a delay between updates to the data that is used by

multiple applications. For example, in the Kentucky Mesonet data context, this could mean

that sometimes a site may become offline due to several reasons, so the data at a particular

time may not be readily available.

8

2.1.2 Push versus pull

When accessing a data source’s database, a system can either pull the data from the

database or let the database itself push the data when a change occurs. Pull approaches are

generally less intrusive, while push approaches minimize latency. In our context we use the

"pull" approach by repeatedly requesting from the main database to which we do not have

the administrative privileges.

2.1.3 Granularity

If possible, getting a larger chunk of information at one time is generally more efficient

than propagating each small change by itself. This requires an understanding of the cohe-

sion between multiple data entities. That is, if one entity changes, other entities may also

be effected. However, since we are fetching from a server that has multiple users, and so to

avoid hogging the server’s resources, we opt to download small chunks of data instead of

large, bulk fetching.

2.1.4 Master/subordinate relationships

If updates are made only to one application’s data, propagating these changes is rel-

atively simple. However, if multiple applications are allowed to update the information,

you can run into difficult synchronization issues. For a more detailed description of syn-

chronization issues, see the Master-Master Replication pattern [7]. In our system, at least

for the first version, we have restricted users to only browse information and potentially

analyze data for superusers but they are not allowed to modify database entries.

2.1.5 Synchronization logic versus latency

For geographically dispersed applications, sharing a single database may cause exces-

sive network latency. To overcome this problem, you can use distributed databases that

9

contain copies of the same data. However, distributed databases add the additional com-

plexity of synchronization and replication logic. In our system, this may be an issue to

address, if multiple users are regularly downloading or browsing the data.

2.2 System Integration

It is common that different organizations run different but co-existing applications. The

problem they face is that maintaining these systems require considerable human resources

which may not be cost efficient in the current highly competitive markets. The alternative

approach is to integrate systems, While integration may have a considerable initial cost in

human and computing resources, the long term benefits would potentially reduce the cost

of staying with the integrated systems.

Integration of multiple software components aims at combining selected components

of the software so that they form a unified new whole system and it gives users an illusion

of interacting with a single information system. The reason for integration has two primary

advantages. First, given a set of existing tools, an integrated view can be created to facilitate

information access and reuse through a single information access point. Second, given a

certain information need, data from different complementing information systems is to be

combined to gain a more comprehensive basis to satisfy the need.

Organizations have always been concerned with data quality and integration. But the

interest in improving data and content management is clearly on the rise, as companies are

increasingly focusing on unifying their organizational wide data and on designing architec-

tures to maximize the usefulness and accessibility of that data.

2.3 Data Visualization

Data visualization is the graphical display of abstract information for two purposes:

sense-making (also called data analysis) and communication [5]. There isn’t a universal

10

approach to data visualization, and many of the techniques IT experts use are still evolv-

ing. Some data visualization approaches might work better than others for an organization,

depending upon that organization’s needs. It is said that effective visualization tools come

from knowing the goals and objectives of the clients.

Generally speaking, there are two categories of data visualization: exploration and ex-

planation. The two serve different purposes, and so there are tools and approaches that may

be more appropriate for one and not the other. For this reason, it is important to understand

the distinction, so that we can be sure of using tools and approaches appropriate to the task

at hand.

2.3.1 Exploration

Exploratory data visualizations are usually a first attempt to describe a dataset. When

you need to get a sense of what’s inside your data set, translating it into a visual medium

can help you quickly identify its features, including interesting curves, lines, trends, or

anomalous outliers, which is helpful in developing graphical tools.

2.3.2 Explanation

By contrast, explanatory data visualization is appropriate when you already know what

the data has to say, and you are trying to tell that story to somebody else. In the context of

our project, images of Kentucky map are an example of an exploration visualization used

for a variety of reasons such as detecting trends or detecting critical weather events.

If exploratory data visualization is part of the data analysis phase, then explanatory data

visualization is part of the presentation phase. Such a visualization may stand on its own,

or may be part of a larger presentation, such as a animations that are being generated in our

context.

11

2.4 Infographics

Information graphics or infographics are visual representations of information, data

or knowledge [17]. These graphics are used anywhere where information needs to be

explained quickly or simply, such as in signs, maps, journalism, technical writing, and edu-

cation. They are also used extensively as tools by computer scientists, mathematicians, and

statisticians to ease the process of developing and communicating conceptual information.

They are applied in all aspects of scientific visualization.

The basic material of an information graphic is the data, information or knowledge that

the graphic presents. In the case of data, the creator may make use of automated tools such

as graphing software to represent the data in the form of lines, boxes, arrows, and various

symbols and pictograms.

2.5 Components of our Automated Kentucky Mesonet Weather Mapping System

The first step of the design process was to identify the various open source components

that would best fit into our model. Also since each and every component provide a wide

range of services, the identification also required us to know exactly what services are

needed. We seek products that provide not only the necessary functionality but also ease of

use, flexibility, reliability, low total cost of ownership , and high return on investment.

We evaluate products similar to how others evaluate them which are as follows:

1. Technology

Smaller organizations should look for products that execute on open source platforms

to reduce the total cost of ownership. The integration platform should also be scal-

able. Organizations that initially implement their integration platform on Windows

platforms should consider the ease with which they can migrate to a more robust

platform (e.g., Unix).

12

2. Testing and development

The platform infrastructure should include robust, isolated testing and development

partitions that support both online and offline testing.

3. Documentation

Technical documentation should be complete. Integrated, contextual documentation

facilitates interface development, especially for the casual or less experienced user.

In this regard, this manuscript should provide the technical description and details

in sufficient detail such that others can understand and facilitate seamless future up-

grades.

4. Ease of implementation

The product should facilitate development across all types of interfaces and should

maximize a developer’s ability to reuse components (objects) previously developed

for other interfaces. Ease of use is enhanced by a graphical user interface that enables

users with minimal programming skills to develop message mappings of data to be

shared between systems that use different formatting standards.

5. Flexibility

The integration platform should support a wide variety of data exchange standards

and message formats. The important software engineering principle of maximizing

cohesion and minimizing dependencies of code applies here as well. Furthermore,

components are meant as units of composition which can be used independently.

6. Application experience

Developers should look for a vendor that has prior experience with their installed

applications. This will facilitate the efficient development of interfaces and reduce

support costs.

13

7. Performance

Simulated load testing should be an essential part of product evaluation. Candidate

products should exhibit satisfactory performance benchmarks not only at anticipated

transaction volumes but also at significantly higher throughputs to ensure that future

growth can be accommodated at acceptable performance levels.

8. Reliability

Developers should seek documentation of the system availability experiences of cur-

rent customers. They should also expect vendors to provide service-level agreements

that guarantee acceptable levels of system availability and service response times for

technical support when required.

9. Audit, security, error management, and recovery

Audit and security features are important. Automated recovery and restore capabili-

ties provide rapid recovery efforts in the event of a transaction corruption or system

failure.

10. Monitoring tools

An integration platform is one of the most vital systems, and if problems arise, early

warnings and a rapid response are mandatory. Developers should carefully evaluate

product features that allow IT operations to monitor system performance in real-

time and trigger automated alerts when failures occur or performance falls below

user-defined thresholds. Reporting features that allow support staff to analyze key

workload statistics and other system management functions are also important to

ensure optimal performance.

11. Ongoing support and maintenance

Lots of help would usually be available on the Internet and there are many self-

motivated forums that can help you install and run open source software, with onsite

support guaranteed within acceptable time frames.

14

12. Total cost of ownership

A number of factors combine to optimize the cost of ownership. An accessible tech-

nology platform such as an integrated information system reduces acquisition costs.

Ease-of-use features and comprehensive support tools help to lower support costs.

Release cycles and understanding what is involved in upgrading to the latest version

of the software should also be taken into consideration when estimating the total cost

of ownership

Additional considerations include the organizations financial viability, which impacts

its ability to enhance and support the product for the long term. Small and non-profit or-

ganizations such as Kentucky Mesonet cannot afford to repurchase an integration platform

because the selected vendor was not truly committed to the product or market and have

stopped supporting the product.

I have filtered the components that were identified by the most popular components

that are available by communication effectiveness and its capability to get integrated into a

wide range of applications. Table 2.1 summarizes all the components that were used in this

application. This section briefly describes the list of components and describes the services

that are used.

15

Table 2.1: A List of Components used in the Automated Kentucky Mesonet Weather Map-

ping System

Name

Description

XML

Markup language for transport/storage of data.

LAMP Server
 Acronym for Linux, Apache, MySQL, and PHP systems

Linux
 is a open source unix based operating system

Apache Server

Which acts as Web Server

MySQL relational database management system (RDBMS)

PHP a server-side scripting language for Web development

Crontab

a time-based job scheduler for Unix-type operating systems

R language
 an open source computing software

JavaScript

is a prototype-based client side scripting language

JQuery is a cross-browser JavaScript library to simplify the client-side scripting

2.5.1 XML

XML stands for extensible markup language very much like HTML [22]. XML was

primarily designed to carry data not display data. In XML, the author of the document

would be able to create tags whose syntax and semantics are specific to the target appli-

cation. Because XML syntax consists of text-based mark-up that describes the data being

tagged, it is both application-independent and human readable. This simplicity and inter

operability have helped XML achieve widespread acceptance and adoption as the standard

for exchanging information between heterogeneous systems in a wide variety of applica-

tions, including Web services. Also the semantics of a tag is predefined or fixed but is

16

instead dependent on the context of the application that processes the document. Although

XML was primarily designed to mark up content its main advantage lies in the way XML

is used to describe structured data which makes it important both as a data storage and

interchange format [18].

In a data-centric application such as Kentucky Mesonet where data is stored in a re-

lational database or similar repository; we want to extract data from a database as XML,

distribute the data to its partners, store XML into a database or both. By doing so it makes

it easier for the partners to keep track of the data. This is a very convenient way of staying

up to date with the content of a large number of sites. Also, it makes it easier for other

partners to directly link the data. Because XML data can easily be read by computers, it’s

also easy for web designers to configure their sites so that the latest data is visible on their

web page [15].

According to world wide web consortium [3] the XML specification defines an XML

document as a text that is well formed if it satisfies a list of syntax rules that are provided

in the specification. Some of these syntax rules include:

1. XML documents should have one and only one root element.

2. Each and every XML element must have a corresponding closing tag

3. XML tags are case-sensitive.

4. All the elements in the XML document must be properly nested.

5. All XML attribute values must be quoted.

From the programmer’s perspective, it is very important to check the value of verifiable

conditions on the data. One major advantage of XML is its ability to place the required

preconditions on the data, and to do this in a very simple declarative way. We can define

preconditions such that the root element should be ‘observations’ , the sub-root element

should be ‘observation group’ and each observation group must consist of only one attribute

17

i.e data status and list of elements in an order. These kind of conditions can be defined by

using a document type definition [16] or XML Schema Definition [21]. Checking an

XML document against these conditions by using a document type definition or XML

Schema Definition is called valid.

A DTD corresponding to an XML document is an optional part of an XML document

that defines the document layout and structure. Even though its not required, there are many

advantages of using a DTD. In order to validate an XML document, it has to pass through

a processor which reads and specifies DTD, then verifies the XML structure to ensure that

the elements of the XML appear in the order required, also that the require elements, the

attributes and their values are in place, that no other elements or attributes are in place, that

no other elements or attributes have been inserted where they shouldn’t have been, and so

on. If the XML document is known to be valid, then it is completely predictable. Let us

consider the above example, As a developer we can write the code to read each piece of

data from a validated document. Given the document being validated there would be no

need to clutter the code with error checks or error handling; only one error check around

the parsing code would be required. That piece of code would check for an error and the

programmer can be confident that no other errors would exist or there would be no reading

errors.

The motivation behind building an XML based workflow is to support multi - organiza-

tional workflow processes, as well as to support reusability, adaptability and survivability

of both intra- and inter-organizational workflows. Multiple organizations on the Web can

post their services as workflow steps, and these steps can be incorporated into other organi-

zations’ workflow processes using querying and browsing capabilities. Finally, the surviv-

ability is supported by replacing failed workflow components with functionally equivalent

components at run-time, thus changing workflow schemas on the fly.

18

2.5.2 LAMP Server

Open source softwares are providing developers with a range of alternatives to commer-

cial softwares that are very low in cost and are as efficient as their counterparts. LAMP is a

wonderful preexisting integrated packaged example of such kind. LAMP is an acronym for

the combination Linux, Apache, MySQL and one or more of Perl, PHP and Python. Tool

supports integration with software configuration management tools, testing tools, applica-

tion servers, and so on, and integration process is moderate and requires manual settings.

2.5.3 Linux

Linux is an open-source unix-like operating system which is a part of open source

software development and distribution. The core and the most important component of the

Linux is the kernel. Various research studies and experiments prove that LAMP architecture

performs significantly well over other similar architectures [13]. One main advantage of

using Linux is that any operation can be performed in a variety of ways. There are many

tools that are available and the choice that we make should result in our ability to function

within that tool, ease of use, desired functionality and overall ’feel’, amongst other things.

Besides the cost, the security of the Linux operating system is much more powerful than

most of the commercial tools that are available [10]. So for sensitive projects such as

Kentucky Mesonet, we prefer to choose Linux-based machines.

2.5.4 Apache Server

The Apache [6] in LAMP is the Apache HTTP server, commonly referred to as Apache

web server. The primary function of a web server is to deliver web pages on the request of

clients.

Apache web server is the most widely used open source software. The open design

and the code allows the developers to create their own custom enhancements on the top of

19

core Apache program. Apart from Apache core, there are also a lot of custom extensions

that are available for free. If a custom feature that corresponds to an application does not

exist, then the developer can build their own. Many developers around the globe constantly

contribute to its growth, which is available to any one using this server.

Apache has built-in support for a wide range of web programming languages, including

Perl, PHP and Python. These languages are easy to learn and can be used to create powerful

online applications. Apache also includes "SSL" and "TLS" support, which are protocols

for sending encrypted data over the Internet, and are important in the development of safe

online stores and other applications requiring privacy.

As described earlier, one of the main disadvantages of using open source software is

that there is very little customer support available. However, the Apache Web Server fea-

tures a large user support community. Unlike many software companies that handle all

program support from one location, Apache technical support is spread throughout mul-

tiple locations, companies, and forums. This distributed model of support allows users to

obtain answers to technical questions at any point of time, no matter where they are located.

By being open source, Apache is connected to many users who are able to create technical

patches and bug fixes very rapidly. As soon as a problem is found, users around the world

communicate and contribute solutions. The result of this community support is software

that is very stable and well maintained.

2.5.5 Database

The database that we have used in the project is MySql. The reason for using this

is that it is a highly capable system that is usually used for running enterprise level sites

with varying degrees of database complexities. MySQL is characterized as a free, fast,

reliable open source relational database. At certain times there will be a trade off between

speed and capabilities, and the MySQL team intends to keep their database engine fast

and reliable. Aside from being the open-source database, MySQL is extensible, offering

20

multiple variations in engine types. Furthermore MySQL’s performance is much superior

than many of its counterparts, mainly due to the format of its default engine which is

MyIsam. In addition, MySQL tends to perform much better on Linux and Unix types of

operating systems when compared to commercial operating systems such as Windows. In

terms of security, MySQL supports most security mechanisms currently used in the market

and also supports custom development of security mechanisms.

2.5.6 PHP

PHP is the programming platform that holds together all the other components of the

LAMP system. It’s a language that helps write all the dynamic content that can access

the entire data stored in the MySQL database. PHP is the most popular and widely-used

general-purpose scripting language that is especially suited for Web development and can

be embedded into HTML [source:php.net]. PHP is fast, stable, secure, open source and

most importantly easy to use. PHP doesn’t use a lot of the system’s resources so it runs

fast and doesn’t tend to slow other processes down. It works well with other software and

can be quite fast. PHP is also fairly stable. Another key advantage of PHP is its connective

abilities. PHP uses a modular system of extensions to interface with a variety of libraries

such as graphics, XML, encryption, etc.

To date the LAMP server is considered as the best example of integration of server

components. The huge advantage of using LAMP is that as a developer we can build an

app locally and then deploy it onto the web. Other advantages include ease of development

and ease of maintenance.

2.5.7 Crontab

A system based scheduler is an application that is responsible for performing a given

task in the background at any given point of time. The basic feature expected out of job

21

Figure 2.1: Pictorial representation of a crontab

scheduler software is the automatic submission of the executions. The system based sched-

uler that is available in Ubuntu Linux is CronTab. CronTab is another important component

of this model.

A cron is a utility that allows tasks to automatically run in background of the system at

regular intervals by use of the cron deamon. Crontab is the date and time based execution

of background tasks based on a defined period during which resources are available for

processing. Crontab is a file which contains the schedule of cron entries to be run at what

times they are to be run. To see what crontabs are currently running on our system the

following command can be used in the terminal.

sudo crontab -l

To edit the list of crontabs the following command can be used at the terminal

sudo crontab -e

Figure 3: Pictorial representation of a crontab

2.5.8 R language (Statistical tool)

The R software is an open source object oriented computing platform [11] which we

have chosen as our computing component of our system. R has built-in GIS shapefiles

22

for Kentucky that we have used to create our climate contour plots. The scripts in the

R language is being developed by Dr. Jonathan Quiton in collaboration with Kentucky

Mesonet.

2.5.9 Java Script

JavaScript is a scripting language designed primarily for adding interactivity to Web

pages and creating Web applications. Client-side JavaScript programs, or scripts, can be

embedded directly in HTML source of Web pages. Depending on the Web developer’s

intent, script code may run when the user opens the Web page, clicks or drags some page

element with the mouse, types something on the keyboard, submits a form, or leaves the

page.

JavaScript can function as both a procedural and an object oriented language. Objects

are created programmatically in JavaScript, by attaching methods and properties to other-

wise empty objects at run time, as opposed to the syntactic class definitions common in

compiled languages like C++ and Java. JavaScript’s dynamic capabilities include runtime

object construction, variable parameter lists, function variables, dynamic script creation

(via eval), object introspection (via for ... in), and source code recovery (JavaScript pro-

grams can decompile function bodies back into their source text). Javascript is supported

by all major browsers.

jQuery [2] is a cross-browser JavaScript library designed to simplify the client-side

scripting of HTML. jQuery is a fast and concise JavaScript Library that simplifies HTML

document traversing, event handling, animating, and Ajax interactions for rapid web de-

velopment [12]. It aims at making the developers write less maintenance code and con-

centrate on the actual behavior logic. It helps the developers to access the HTML DOM

elements and manipulate them in a very easy way.

Also, the code itself is very robust and reliable. That is the reason why jQuery is

the most popular JavaScript library/framework. jQuery is used by more than 49% of the

23

websites. Other popular competing frameworks to jQuery are YUI (Yahoo User Interface),

Scriptaculous, etc.

jQuery’s design helps implementing animations very easy. Handling browser events is

a breeze using jQuery. The major success of jQuery comes from its ability to extend. It

is very easy to develop plugins for jQuery. As a result, it has a very dedicated and helpful

community of users. The development of jQuery is collaborated by the use of the revision

control system, Git. jQuery is hosted on Github and can be accessed at [2].

jQuery is hosted on multiple Content Delivery Networks (CDN) which include Google

and Microsoft. So, using jQuery is simple. Just include a script tag pointing to the required

version of the jQuery library from one of these CDNs and you’re good to go.

For any given version of jQuery, there are two library modes available.

1. Development version

2. Production version

The Development version of the library contains all the comments, debugging code

(ex: console.log etc) and the original code in its original form along with all the proper

indentation. This, in another way is nothing but the human readable form. It is generally

named jquery-<version_number>.js

The Production version of the library is also known as the minified version. It means

that the code is not in a human readable form. It serves two purposes.

1. Provides security to the code,

2. Minifies the code heavily resulting in faster load times.

24

PROJECT DESCRIPTION

3.1 Data Extraction Workflow

In this chapter, we present our database component that provides selective extraction of

data objects from XML documents, store these documents in an object-relational database,

and retrieve/reconstruct data into CSV files which acts as an input to or statistical compo-

nent which is responsible for generating the maps required for animation.

Figure 3.1: Architecture model of Dynamic Data Extraction and Visualization

A model of the business requirements would be necessary to ensure that there is a clear

understanding between components of what is needed. Only then can we ensure that the

requirements in terms of sources, transformations, and targets that are needed to move data

be clearly communicated via a common, consistent approach.

The first step of the above process involves data extraction and storing it to the relational

25

Figure 3.2: Sample XML data format

database management systems.

As already mentioned in chapter 1 our source of information was from the Kentucky

Mesonet in the form of XML files, which were regularly being uploaded to the available

online links.

One available solution to extract the data from XML files would be that the DBMS

essentially links a given table of a schema with a XML file and, during query processing,

parses data from the XML file on-the-fly. Oracle, for instance, offers an option to have

external tables while MySQL enables the CSV engine. As a result, data can be queried

without having to explicitly load the raw data into the DBMS. In practice, however, XML

files are still outside the DBMS as there is no support for indices, materialized views or

any other advanced DBMS optimization. Query processing performance is therefore lower

when compared to the the performance of queries running on internal tables, so the systems

mostly offer external XML files as an alternative way for the user to load/copy data into

normal DBMS tables rather than for query processing. Since the data is queried quite

regularly say every 5 minutes or so it would be efficient to use the later approach.

26

An XML-relational mapping scheme is used to create a relational schema correspond-

ing the "filtered" hierarchy of an XML document. Actually, both an XML document and a

relational database can be viewed as trees as shown in Figure 4.1.

There are two important links provided by the Mesonet, providing the information about

the location information and data regarding the temperature, radius etc., respectively. The

first link points to a XML file named sitelist_xml that provides the information about the

location details such as latitude and longitude coordinates, time zone, address of the loca-

tion, etc. A PHP script was written that extracts the data from the XML and adds this data

to the master table.The data that is inserted into this table is used to generate tables (if none

exists) with respect to the location name dynamically. Any new addition to this table would

allow PHP script to create a new table.

Similar to the above another link was provided that points to a XML file called site_latest_data

_xml that gets updated every 5 minutes with the information about the temperature and

other information for every corresponding locations. This data is extracted from the XML

using the PHP script and is being used to insert them into the corresponding tables that are

already created. Each table corresponds to information regarding a particular site. For ex-

ample all the information corresponding to ALBN site is stored on ALBN table and so on.

The data is extracted as a record and it is inserted by finding the location on it and inserting

it to the respective table. This record consists of information of values of data such as air

temperature, relative humidity, wind speed etc. at that particular location.

Data is observed by the PHP script for every 5 minutes. This PHP script is assigned as a

job to crontab to schedule it for every 5 minutes. Five minute collection sites are scheduled

for collection at: 00, : 05,: 10 and so forth, minutes past the hour. During the course of our

testing we have identified small collection delays. So as to avoid these schedule conflicts,

we have attempted to retrieve data at times slightly offset from the project’s collection

schedule, such as 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52 and 57-minutes past the hour for

data collected on a 15-minute schedule. This would extract the information and insert them

27

into the table every second minute.

The database consists of the same number of tables as that of a number of sites. Each

time a new site is added then the PHP script creates a table dynamically to the database.

Each table saves all the corresponding data pertaining to a particular site. Any kind of

database failures such as table crashes and inappropriate format would be handled by the

PHP script. Also a frequent backup of database is performed to avoid the loss of data under

any circumstances. The database engine used here is InnoDB.

3.2 Analytics component

The R software is an open source object oriented computing platform [11] which we

have chosen as our computing component of our system. R has built-in GIS shapefiles for

Kentucky that we have used to create our climate contour plots. Dr. Jonathan Quiton, my

advisor, created the function(climatemap.ky()) which is used to interpolate the climate data

over the Kentucky map.

3.3 Front-end interface

The final component is to add a front-end interface that shows static and animated

weather maps. With simple tools such as an editor, and a bit of scripting, we can develop

any kind of animations with vibrant colors and consistent style. Generating animations by

the rapid display of many images, or frames, each with a slight change from the previous

one is one of the oldest ways to generate animations. In the early days cartoons were

made of literally thousands of images, stitched together in exactly this way. With modern

scripting tools simulation of this motion is made possible. Also with the help of scripting

even interactions are possible although a bit complex.

In the case of our weather data images each and every image represents the weather data

corresponding to a single point of time. So when the above images are set to animation it

28

represents the flow of data of weather related events and helps users predict the weather in

the nearby locations.

There are lot of open source tools available in the market for generating or displaying

these kind of animations. The most important attribute for making effective animations

with scripting is the keyframe feature. Typically, a keyframe is a period or a point on the

time line where certain key events can occur. Suppose we think of a movie with parts

of scenes where a character carries out one motion and then another. Then we may say

that there is a keyframe where the first motion stops and the next motion begins. When

exported and displayed in a browser, the generated animations run at average speed. That

is, the frame rate is an average of the minimum and the maximum allowed frame rate for

the client web browser. The faster it is the faster the animations run. The best alternative is

to insert a time control between frames, thereby changing the frame display rate.

29

APPLICATION

The chapter illustrates the application of the above said concepts to the Kentucky

mesonet data.

4.1 Overview

I have followed a simple phased approach for completion of my thesis. Each phase was

considered as the milestone and was derived from the list of components [19]. I haven’t

followed any standard development life cycle, but I have followed the software engineering

principles from the beginning.

Though a complete detailing of the numerous resources used in implementation of this

model is beyond the scope of this thesis paper, a few examples are reviewed below.

As already stated the data is available in the raw XML formats from the Mesonet servers

at predefined locations which is accessible only to partners. Users who wish to access the

data can request it from [9]

The following steps are required to produce the visualizations from the given data set.

1. Use of XML parser to read the data from the XML file and store in the database.

2. Creation and maintenance of database.

3. Generating a metadata file which acts as an input to statistical softwares.

4. Processing the metadata file to generate the required images.

5. Creation of animations from the generated images.

6. Finally embedding the animations to the webpage.

30

Figure 4.1: Pictorial representation of a database

4.2 Use of XML parser to read the data from the XML file and store in the database

The easiest way to read a well-formed XML file is to use the Document Object Model

(DOM) library compiled into some installations of PHP. The DOM library reads the entire

XML document into memory and represents it as a tree of nodes, as illustrated in the figure

4.1.

The script starts by creating a new DOM document object and loading the Observations

XML into that object using the load method. After that, the script uses the getElementsBy-

Name method to get a list of all of the elements with the given name. Within the loop of the

Observation nodes, the script uses the getElementsByName method to get the nodeValue

for the Network Name, AWIPS tag, and all other tag information and those values are stored

into their respective arrays. The nodeValue is the text within the node. The script then uses

these attribute values to insert into the database. To do so a prior connection is established

with the database with required credentials. Then the script uses mysql_query() function to

run the query. If the script is not able to make the connection, then script terminates further

execution and tries to establish the connection later.

During the course of execution, if a new record appears for which the database table

does not exists, then the script to update the location info is called that creates the new

31

Figure 4.2: Pictorial representation of a crontab in the server

table, while retrieving the corresponding data from the location Info file. In case of table

crashes, a query is called to automatically repair the tables.

By using the recursive function, I’ve managed to substantially reduce the number of

"if" conditional statements in my script; the code is now easier to read, and also structured

more logically.

Because of the heavy load on the database, I have tried to increase the response time of

the script by preprocessing the data. When we try to insert data to our database, our appli-

cation or the database itself (using triggers) does additional calculations or data insertions.

This adds some overhead when data is being inserted, but according to our requirements, it

is necessary. This is a form of event processing. In other words, if we preprocess our data

ahead of time, we can reduce the time it takes to complete a request and also increase the

efficiency.

4.3 Creation and Maintenance of database

The database consists of the same number of tables as that of a number of sites. Each

time a new site is added then the PHP script creates a table dynamically to the database.

Each table saves all the corresponding data pertaining to a particular site. Any kind of

32

database failures such a table crashes and inappropriate format would be handled by the

PHP script. Also, a frequent backup of database is performed to avoid the loss of data

under any circumstances. There also exists a table to store the data related to the list of

sites in the database. This table stores the latitude and longitude positions of the sites along

with the relevant location information. The primary key of the tables would be the site

name which would be the foreign key to each of the tables. Therefore, the database engine

used here is InnoDB.

4.4 Generating a metadata file which acts as an input to statistical software

The data that is inserted into the tables every five minutes from the various sources now

has to be retrieved into a single metadata file which is accepted by the statistical softwares.

Some of the most common formats are CSV, TXT, XLS etc. Among these we have used

CSV since it is considered as the best among the available formats. Since the required

information has to be retrieved from multiple tables it would be inefficient to use query

from individual tables. Therefore a stored procedure was written which used the union

operator to combine the results from all the tables and return the result set. Also, joins

were not used to join the location information with the corresponding table values. Instead,

the join operation was performed by using the script since the scripting tool has a constant

performance that cannot improve over time as the data in the database gets increased. So

similar to above a PHP script was written which would read the data from the database and

generate the csv file. The PHP script matches the site location information with the values

at any particular point of time and writes into the CSV file. The PHP script to generate

the CSV file is scheduled as a job in crontab for every 5 minutes. This file contains the

information shown in the Table 4.1 . The generated CSV file is stored at a particular

location on a hard drive which acts as an input to statistical software. This CSV file is used

for further processing. The CSV file consists of information as shown in Table 4.1.

33

Table 4.1: Contents of AutomateCSV

Variable Description

Network Network abbreviation

STID Network-site abbreviation

NetSiteName Relative site location

County County

State State

Lat Absolute location: Latitude

Lon Absolute location: Longitude

UTME UTC time of observation

UTME_AWIPS UTC time of observation

LTME Local time of observation

STME Standard time of observation

TAIR Air Temperature 1.5m

RELH Relative Humidity

TDPT Dewpoint Temperature

WSPD Wind Speed

WDIR Wind Direction

WSMX Maximum 3-second wind speed

SRAD Solar Radiation

DPRC Daily Precipitation Total

34

The key idea is that data output in flat file. This file gets updated at regular intervals.

When queries arrive, the statistical software will take care of bringing the proper data from

the flat file, and it will store it and evaluate it in and appropriate way.

4.5 Processing the metadata file to generate the required images

The following algorithm is taken from Dr. Jonathan Quiton’s interpolation algorithm

as implemented in climatemap.ky() function:

1. We generate a vector distance D from each Kentucky Mesonet site to any given point

P = (x, y).

2. We take the nearest k sites. The default is k = 3.

3. For each of the sites selected, we created a weighting function wi =
fi

k∑
j=1

fj

where fj =

1
drj

, dj is the distance of the j th site to point P and r is a constant that determines how

much influence a site gets if it is closer to point P . The default value of r = 2 which

corresponds to Newton’s law of universal gravitation. Other weighting algorithms

and incorporation of location elevation will be considered in the future.

4. Finally, we generate the interpolated climate by

ĈP =
k∑

i=1

wiCi where Ci is the climate information at the ith site.

4.6 Creation of animations from the generated images

jQuery’s design helps implement animations very easily. Handling browser events is a

breeze using jQuery. The major success of jQuery comes from its ability to extend. It is

very easy to develop plugins for jQuery. As a result, it has a very dedicated and helpful

community of users. The development of jQuery is collaborated by the use of the revision

control system, Git.

35

jQuery is hosted on multiple Content Delivery Networks (CDN) which include Google

and Microsoft. So, using jQuery is simple. Just include a script tag pointing to the required

version of the jQuery library from one of these CDNs and you’re good to go.

Including a script tag is as follows:

Table 4.2: A sample script tag for jQuery

<script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.0

/jquery.js">
</script>

jQuery is an open source library which is used to improve the performance of JavaScript.

The Closure Compiler compiles JavaScript into compact, high-performance code. The

compiler removes dead code and rewrites and minimizes what’s left so that it downloads

and runs quickly. It also checks syntax, variable references, and types, and warns about

common JavaScript pitfalls. These checks and optimizations help you write apps that are

less buggy and easier to maintain.

By default, jQuery uses "$" as a shortcut for "jQuery". So, using $("#id") or jQuery("#id")

is the same. jQuery in the code is an object. A JavaScript object.

Extending jQuery with plugins and methods is very powerful and can save you and your

peers a lot of development time by abstracting your most clever functions into plugins. In

my work, I’ve made use of a plugin called SCIAnimator [1], which helps in animating the

images using the jQuery library. Also we have extended this plugin to suit our needs.

This plugin makes it so simple that everything boils down to a simple method call onto

the jQuery object after using the CSS selectors. The name of the method is ’scianima-

tor()’. This method call takes a JavaScript Object as its input (a JavaScript hash). This

hash contains an array of images to be supplied, in our case, the dynamically generated

weather images, the configuration relating to the display of the animation such as width,

36

defaultFrame, theme etc. Following is a sample method call on the jQuery object ($).

Table 4.3: A sample method call on the jQuery object on the KY Mesonet images

$(’#scianimator’).scianimator({
’images’: [’images/relh1.jpg’, ’images/relh2.jpg’,

’images/relh3.jpg’, ’images/relh4.jpg’],
’width’: 600,
’theme’: ’dark’,
’defaultFrame’: ’last’

});

4.7 Embedding the animations to the webpage

The web portal that we discuss here supports any dataset in which values can be ac-

cessed through dates and processes the dataset from the database, and produces the visual-

ization of the dataset.

This means that a layout or background needs to be stored just once, with the object

to be moved and places another layer on top of the background. The application follows

simple programmed instructions on how the object is to be moved. The result is a far more

economical animation. JavaScript can make animations by either method or a combination.

You can adjust the frame rate to achieve the level of smoothness you want. Frame rate

is the frequency (rate) at which the browser produces the unique consecutive images called

frames. Although the standard frame rate in Scianimator is 330 frames per minutes (fps),

which comes to 5.5 frames per second it can easily be set for up to 9 frames per second.

In many cases the cost is very little more depending on the net speeds. The total number

of frames has been adjusted so that the total running time for one iteration is about 5.5

seconds. You will notice a considerable difference in smoothness of the animation at the

higher frame rate. However, please notice also that the file size is not significantly different.

The button itself is an animation, while the motion is another animation. Scianimator has

37

the added feature of code-reuse. The same animation can be used over-and-over again.

Figure 4.3: Pictorial representation of a animation in the WebInterface

Here is a piece of the Flash stage and controls for the animation above. In it you can

see two keyframes indicated as dots from frame 1 and 30 (the green dots). The blue dot

between them indicates the current frame in the motion created between the states at frame

1 and frame 30. To the rightmost we have a speed control bar which is used to increase or

decrease the frame rate.

As you can see the timer value is the time between frames. This is input using a form

variable. Hence it can be shown dynamically. Notice how the animation is accomplished.

The animate function basically calls itself for each redraw. The reason for this is that every

JavaScript function must complete execution before the screen is updated. Therefore, it

is not possible to create the animation in a loop within a single call to the function. The

animation begins and can be stopped with the stop button (third button from the left). When

the animation is stopped the left most button can be used to show the foremost frame,

38

similarly the right most button is used to show the last or the most recent frame. Also, the

second and fourth buttons from the left can be used to move the frame by one position.

This example goes a bit further in that it works in almost all the popular available

browsers. The problem with that is that the positioning of layers is somewhat different in

IE and mozilla, thus requiring a lot of branching to different command sets depending on

the browser.

Finally, we present a simple interactive animation of the weather data. This example

was created for a Kentucky Mesonet on math/computer science modelling to show electron-

ically the experiments that led us to the above described models of dynamic data extraction

and visualization. The idea is to demonstrate how the images can be set in motion for vi-

sualization from the plain raw data. It also allows the speed of animations to change. This

is available online at 161.6.10.55/mesonet

4.8 Studies and Observations

We have produced different types of visualization requiring computation-intensive cal-

culations. One of the visualizations is the effect of relative humidity shown on the Kentucky

Map.

We have performed the calculations to produce the above visualizations on a single

machine with 13GB random access memory, 1.6GHz processor speed, and 600GB of free

hard disk space. The single machine on an average took about 47 seconds to finish the

computations to produce the visualization, whereas the time taken to update the database

and producing the required CSV file has taken an average of 30 seconds.

To store the weather data of all the 100 locations at any point of time it would consume

5MB of data, Which makes it 1.4 GB for a single day. The total size of the dataset if the

data gets stored continuously for about one year would approximately be about 500 GB.

39

Figure 4.4: Pictorial representation of Relative Humidity

Figure 4.5: Pictorial representation of a Solar Radiation

40

Figure 4.6: Pictorial representation of a air temperature

Figure 4.7: Pictorial representation of a dew point temperature

41

Figure 4.8: Pictorial representation of maximum wind speed

Figure 4.9: Pictorial representation of wind speed

42

A single machine takes considerable time to perform complex calculations on this 500 GB

of data and to produce the visualization. This dataset has 60 files currently; processing

all these files to produce a simple visualization on a single machine takes approximately 2

minutes in total which includes the process of database update and metadata file generation,

Processing the metadata file to generate images and to produce the animations.

Since we are trying to develop a visualization web portal, there is a high probability

that multiple requests to perform different calculations on this dataset can be received by

the server in the same period. If one machine takes approximately 2 minutes to produce

the results for one complex calculation, every user has to wait for at least 2 minutes to

get the result once the job is submitted to the web server. Given the limited number of

resources, user wait time might increase. If a single user submits multiple requests to

produce animated visualization effects, then the response time would increase even more.

If the dataset is bigger, the response time of a single machine would be prohibitively high

unless appropriate measures are taken.

Therefore, to support the above-specified situations, either finding a faster machine with

huge amounts of memory or combining all machines available and utilizing those resources

to their fullest are the solutions.

Finally, the above application was tested in the following browsers.

1. Internet Explorer 9

2. Chrome 8

3. Safari 5

4. iPhone - Mobile Safari

43

CONCLUSION

5.1 Outcome

The main outcome of this thesis includes developing a general framework or work

flow for dynamic data extraction, statistical analysis and visual representation of the data

with application to Kentucky Mesonet data. An automated model, which contains multi-

threading-capable code for intelligently and quickly performing numerous simultaneous

checks, has been developed and is currently undergoing operational testing before being

fully integrated into the network data flow. This system allows users to access and visualize the

data regardless of the geographic location of the user and without having to install

specialized software on their systems.

While the development of the evaluation framework took more time than expected, we

believe that the result is worthwhile. Standards and best practices have been referenced

throughout the development of the model and its application, including the design of its

supporting computing, which includes a system which collects, processes, stores, and dis-

tributes data to statistical tools on a mission-critical basis. The framework, without change,

can be used for a significant number of similar evaluations and, with minor change, could be

used for a wider range of problems. I believe that our approach provides for a flexible and

practical solution until the process of "database extraction and visualization" is improved

and standardized. Also, the XML based work flow provides easy exchange of work flow

process definitions between organization, and an integration tool to enable coordination of the

organization’s tasks.

44

5.2 Future Scope

As of now the system has been designed to be used only for academic and research

purposes and our server may have limitations on concurrent users. If the system has to

be used by many, a lot of performance considerations have to be taken care of in order

to avoid the load which would result in crash. The main objectives of this project would

be fulfilled when the end users would be able to see the changes of the weather in the

form of animations and act accordingly. In the near future we would make sure that all the

objectives of the project would be fulfilled.

Dr. Jonathan Quiton, Dr. Stuart Foster, Dr. Qi Li and the Kentucky Mesonet Model-

ing and Visualization Team are currently developing the second-generation weather maps

which is designed for more accurate and smoother interpolations using the database and

the integration tools developed in this thesis.

45

BIBLIOGRAPHY

[1] Brentertz. scianimator, 2010.

[2] Software Freedom Conservancy. jquery - write less do more, 2009-2011.

[3] World Wide Web Consortium. Wenning, rigo, 2003.

[4] ECOMsolutions. Disadvantages of open source software, December 2007.

[5] Stephen Few. Patterns of enterprise application architecture, Addison-Wesley,2003.

[6] The Apache Software Foundation. Apache web server, 2011.

[7] Martin Fowler. Data visualization for human perception., 2011.

[8] GBDirect. The benefits of using open source software, October 2006.

[9] D. Michael Grogan, Stuart A. Foster, and Mahmood Razaul. The Kentucky Mesonet:
Perspectives on data access, distribution, and use for a mesoscale surface network.
The Kentucky Mesonet, pages 1–4, 2010.

[10] I. Hadad. Establishing an open source software strategy: Key considerations and

tactical recommendations. Technical report, The Linux Foundation and Contributing
Editor for the Linux Journal, Nov-2010.

[11] R. Ihaka and R Gentleman. R-language, 1993 - 2011.

[12] JavaScripter.net. What is javascript?, 1999-2011.

[13] UV Ramana IIT Kanpur. Some experiments with the performance of lamp architec-
ture. Technical report, Veritas Software, 2004.

[14] Western Kentucky University Kentucky Mesonet. Kentucky Mesonet, 2004-2011.

[15] Dr. Sham N, Kimbro S., D. Alperovitch, S. Collins, O. Gazitt, and L. Dennis. An

exploration of xml in database management systems, 2001.

[16] D. Raggett, A. Le Hors, and I. Ian Jacobs. Document type definition, 1999 - Present.

[17] L. Robert Harris. Information graphics. A Comprehensive Illustrated Reference. Ox-
ford University Press., pages 1–4, 1999.

[18] E. Rusty Harold. Xml for data, May 2002 - Present.

[19] Klaas-Jan S., A. Muhammad, and Avgeriou P. Paris. The importance of architectural

knowledge in integrating open source software. Springer, (2):142–158, 2010.

46

[20] W. Scacchi. Open acquisition: Combining open source software development with
system acquisition. Technical report, Institute of Software Research University of
California, Irvine, 2002.

[21] C. M. Sperberg-McQueen and H. Thompson. Xml schema definition, 2001 - Present.

[22] World Wide Web. Extensible markup language. Extensible Markup Language XML
1.0 Fifth Edition, pages 1–4, 1996 - 2003.

[23] Wiki. Data extraction, December 2007.

47

	Western Kentucky University
	TopSCHOLAR®
	5-2012

	Dynamic Data Extraction and Data Visualization with Application to the Kentucky Mesonet
	Anoop Rao Paidipally
	Recommended Citation

	raothesis2012_version10(1).pdf
	raothesis2012_version10(2).pdf
	raothesis2012_version10(3).pdf
	raothesis2012_version10(11).pdf
	raothesis2012_version10(12).pdf
	raothesis2012_version10(13).pdf
	raothesis2012_version10(14).pdf
	raothesis2012_version10(15).pdf
	raothesis2012_version10(16).pdf
	raothesis2012_version10(17).pdf
	raothesis2012_version10(18).pdf
	raothesis2012_version10(19).pdf
	raothesis2012_version10(20).pdf
	raothesis2012_version10(21).pdf
	raothesis2012_version10(22).pdf
	raothesis2012_version10(23).pdf
	raothesis2012_version10(24).pdf
	raothesis2012_version10(25).pdf
	raothesis2012_version10(26).pdf
	raothesis2012_version10(27).pdf
	raothesis2012_version10(28).pdf
	raothesis2012_version10(29).pdf
	raothesis2012_version10(30).pdf
	raothesis2012_version10(31).pdf
	raothesis2012_version10(32).pdf
	raothesis2012_version10(33).pdf
	raothesis2012_version10(34).pdf
	raothesis2012_version10(35).pdf
	raothesis2012_version10(36).pdf
	raothesis2012_version10(37).pdf
	raothesis2012_version10(38).pdf
	raothesis2012_version10(39).pdf
	raothesis2012_version10(40).pdf
	raothesis2012_version10(41).pdf
	raothesis2012_version10(42).pdf
	raothesis2012_version10(43).pdf
	raothesis2012_version10(44).pdf
	raothesis2012_version10(45).pdf
	raothesis2012_version10(46).pdf
	raothesis2012_version10(47).pdf
	raothesis2012_version10(48).pdf
	raothesis2012_version10(49).pdf
	raothesis2012_version10(50).pdf
	raothesis2012_version10(51).pdf
	raothesis2012_version10(52).pdf
	raothesis2012_version10(54).pdf
	raothesis2012_version10(55).pdf
	raothesis2012_version10(56).pdf
	raothesis2012_version10(57).pdf
	raothesis2012_version10(58).pdf

