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MANIPULATION OF 3D KNOTTED POLYGONS

Sairaj Rachamadugu May 2012 59 Pages

Directed by Dr.Uta Ziegler, Dr.Claus Ernst, and Dr.Guangming Xing

Dept. of Mathematics and Computer Science Western Kentucky University

This thesis discusses the development of software architecture to support the

computational investigation of random polygons in 3 space. The random polygons

themselves are a simple model of long polymer chains. (A DNA molecule is one

example of a polymer.)

This software architecture includes �building blocks� which specify the actual

manipulations and computations to be performed, and a structural framework

which allows the user to specify which manipulations/computations to perform, in

which order and with how many repetitions. The overall framework is designed in

such a way that new building blocks can easily be added in the future. The

development of three di�erent building blocks to be used in this architecture which

are entitled: Reducer, Lengthener and OutsideInLengthener are also discussed in

this thesis. These building blocks manipulate the existing polygons - increasing or

decreasing their size.
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Chapter 1

INTRODUCTION

Who do you think are the key players in the complex network

interaction that takes place in every organism? They are the macromolecular

self-assembly processes. One such self-assembly process is the packing of the

genetic material in the capsids of viruses, such as the double-stranded DNA

molecule chain packed into the capsid of bacteriophage P4. From the

experimental data we can draw a conclusion that the two ends of the DNA

strand which meet in the capsid of a P4 virus mutant create a circular

molecule and a high percentage of knots are a result of this circularization

reaction [12]. However, direct observation of the process or results is di�cult,

which implies that the assembly process is not well understood. So, a

computational investigation may be helpful in getting an insight.

In this thesis we model the DNA in a viruses capsid by considering

circular molecules con�ned to a small volume as polygons con�ned in a ball.

The main idea of this thesis is to develop a software architecture which

supports computational investigation of a DNA model using a simple model

i.e., polygons con�ned by a sphere. The software architecture includes

certain modules which manipulate the polygons. It allows the user to specify

which manipulations to apply and in which order. This architecture is also

1



designed in such a way that other modules can be easily added in the future.

As a part of this thesis, 3 modules are developed which are entitled:

Reducer, Lengthener and OutsideInLengthener. These modules should not

be considered to work with a model of DNA molecule directly. The molecule

can't change its length or �exibility, but a polygon can become larger/shorter

or vice versa by adding/reducing the number of vertices.

The Reducer is one polygon simpli�cation algorithm which includes

geometrical manipulations that preserve the knot type. It helps in reducing

the polygon into a more manageable form while preserving the knot type.

Lengthener and OutsideInLengthener are two di�erent approaches

which help in lengthening and relaxing the polygon to an extent.

Using these three modules in sequence might result in a more

simpli�ed form of the original polygon because, while performing reducer

module there are chances that the polygon may get struck at a certain stage.

So, Lengthener and OutsideInLengthener operate to relax the polygon such

that successive attempts by the Reducer have a chance to simplify the

polygon further.

The rest of this thesis is organized as follows:

Chapter 2 describes the background knowledge of certain basic

concepts including knot theory [2], plane geometry [1] and linear algebra [9]

and also the common algorithms that are used in the later chapters.

Chapter 3 presents the three kinds of manipulations that are

performed on the polygon and corresponding graphic results are shown using

2



mathematica [15].

Chapter 4 describes the framework and its use and also presents the

graphical user interface developed, using swings for java [3].

Chapter 5 gives a conclusion and gives future directions of this

research.

3



Chapter 2

BACKGROUND

This section provides important background information about topics

related to topology, plane geometry and linear algebra which will be used in

later chapters. More detailed information can be found in standard texts [1,

2, 9]. This chapter also introduces common algorithms that are used in the

later chapters.

2.1 Basic de�nitions

2.1.1 Topology

This subsection lists the basic concepts that are used in this proposal

with brief de�nitions.

2.1.1.1 Knot Theory

Knot theory is the mathematical study of knots [2].

2.1.1.2 Knot

A knot is intuitively de�ned as a simple closed curve in R3 without

self-intersections. Two or more disjointed knots together are called a link. A

knot can be deformed, twisted or stretched as long as there occurs no self

4



intersections. If a knot K1 is transformed into another knot K2 without self

intersections then K1 and K2 are said to be topologically equivalent.

2.1.1.3 Knot Type

A knot type can be de�ned as the set of all equivalent knots.

2.1.1.4 Polygon

A polygon is a 3 dimensional object with n vertices in 3D i.e., v0,

v1,. . . , vn−1 and with n edges; ei connects vi and vi+1 for 0 ≤ i < n-1 and

en−1 connects vn−1 and v0.

2.1.2 Linear Algebra

2.1.2.1 Vectors

A vector −→v in Rn can be referred to by the number of co-ordinates it

has, so a 2-dimensional vector

vx
vy

 is often called a 2-vector, and

3-dimensional vector


vx

vy

vz

 is often called 3-vector [9].

A vector from a point A to a point B is denoted by −→v =
−→
AB = B-A.

Point A is called the tail of the vector −→v and B is called the head of the

vector −→v .

A vector has both length and a direction. A vector −→v is shown in

5



Figure 2.1: Vector v̂

Figure 2.1. Two or more vectors can be added together (vector addition),

subtracted (vector subtraction) and multiplied by scalars (scalar

multiplication). Vector multiplication can be de�ned for a pair of vertices by

dot product and the cross product.

2.1.2.2 Length of a Vector

The length of the 3-Dimensional vector −→v = {vx, vy, vz} is denoted

by |v|, and is computed as

|v| =
√
v2x + v2y + v2z

6



2.1.2.3 Unit Vector

A unit vector is a vector of length l, sometimes also called a direction

vector. The unit vector v̂ of a vector −→v , having the same direction as a given

(non-zero) vector −→v is de�ned by v̂ =
−→v
|v| , where |v| denotes the norm of

vector or the length of vector −→v .

2.1.2.4 Dot product

The dot product of two vectors x and y is denoted by x.y =

|x||y|cos(θ), where θ is the angle between the vectors x and y. It follows

immediately that x.y = 0 i� x is perpendicular to y.

2.1.2.5 Cross product

Let x̂ = (1, 0, 0), ŷ = (0, 1, 0), ẑ = (0, 0, 1) be the standard vectors

in R3. Using these standard vectors, for vectors u =


ux

uy

uz

, v =


vx

vy

vz

 in R3,

the cross product is denoted by u × v and is de�ned to be u × v = x̂ (uyvz -

uzvy) - ŷ (uxvz - uzvx) + ẑ (uxvy - uyvx).

2.1.3 Plane Geometry

2.1.3.1 Coordinate Plane

A two dimensional surface in which points are plotted and located by

their x and y coordinates.

7



Figure 2.2: Polar coordinates

2.1.3.2 Polar Coordinate System

A point p = {x, y} in a Cartesian coordinate system can be expressed

in polar form {d, θ} as shown in Figure 2.2, where d = |p| and θ is the

counter clockwise angle between the vectors {1, 0} and {x, y}.

2.1.3.3 Area of Triangle

For given three non collinear vertices A = (x1, y1, z1) , B = (x2, y2,

z2) and C = (x3, y3, z3), the area of 4ABC is given by

4 = 1
2

∣∣∣∣(B − A)× (A− C)

∣∣∣∣
and the centroid of the same triangle is given by

G = 1
3
( A + B + C)

2.1.3.4 Solid Cylinder

A solid cylinder is a solid consisting of two congruent disks in parallel

planes called bases and the axis of the cylinder is the line connecting the two

center points of the bases and is perpendicular to both bases.

8



Figure 2.3: Cylinder

A solid cylinder is represented with radius r and height h where r is

the radius of the base and h is the length of the axis shown in Figure 2.3.

The rest of this thesis refers to a solid cylinder as a cylinder.

2.1.3.5 Equation of line segment

If P1 = (x1, y1, z1) and P2 = (x2, y2, z2) are the two end points of a

line segment then the equation of a line segment is given by

Q = Q (s) = P1 + s (P2 - P1) (2.1)

where s ε [0, 1].

In the above equation the value of s determines the position of the

resultant point Q on the line segment. For instance, if the value of s = 0 then

the point Q is at P1. Similarly if the value of s = 1 then the point Q is at P2.

The point Q moves along the line segment from P1 to P2 as the values of s

includes in [0, 1].

2.1.3.6 Equation of a plane

The standard equation of a plane denoted as F in R3 is given by

F = F (x, y, z) = Ax + By + Cz + D = 0 (2.2)

9



where A, B, C and D are constants.

Given three points in space (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3)

then the equation of the plane through these points is given by the following

determinants as

A =

∣∣∣∣∣∣∣∣∣∣∣∣

1 y1 z1

1 y2 z2

1 y3 z3

∣∣∣∣∣∣∣∣∣∣∣∣
B =

∣∣∣∣∣∣∣∣∣∣∣∣

x1 1 z1

x2 1 z2

x3 1 z3

∣∣∣∣∣∣∣∣∣∣∣∣
C =

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣
D = -

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣∣∣∣∣
Expanding the above determinants gives

A = y1 (z2 - z3) + y2 (z3 - z1) + y3 (z1 - z2)

B = z1 (x2 - x3) + z2 (x3 - x1) + z3 (x1 - x2)

C = x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)

D = x1 (y3 z2 - y2 z3) + x2 (y1z3 - y3 z1) + x3 (y2 z1 - y1 z2)

2.2 Common Algorithms

2.2.1 Point of intersection of plane and the line segment

Given a plane F which is determined by the points R1, R2, R3 and a

line segment g which has P1, P2 as its end points; then the point of

intersection can be determined by solving four simultaneous equations

Ax + By + Cz + D = 0

Qx= P1x + s (P2x - P1x) (2.3)

Qy= P1y + s (P2y - P1y) (2.4)

Qz= P1z + s (P2z - P1z) (2.5)

10



for Qx, Qy, Qz and s, giving

s =
AP1x+BP1y+CP1z+D

A(P1x−P2x)+B(P1y−P2y )+C(P1z−P2z )
(2.6)

If the value of s ε [0, 1], then substitute it back into equations 2.3, 2.4

and 2.5 to give a point of intersection (Qx, Qy, Qz). In equation 2.6, if the

value of denominator is 0 then the line segment is parallel to the plane and

there are no solutions.

Algorithm 1 describes the point of intersection between plane and a

line segment.

Algorithm 1 Point of intersection of plane and the line segment
Input: 3 points R1, R2, R3 which are used to define a

plane F and 2 points P1, P2 which define a line segment.

Output: The point of intersection Q of the line segment

P1P2 with the plane F.

Restrictions: R1, R2, R3 should not be collinear and P1P2

should not be parallel to F.

Algorithm:

1) determine A, B, C and D of F using R1, R2, R3.

2) compute equation of line segment P1P2.

3) determine the value of s using equation (2.6).

4) if s ε [0, 1]

then return Q by computing equation of step (2)

with the value of s obtained.

else

return null.

2.2.2 Determining the location of point of intersection

For a given plane F and a line segment g, if there is a point of

intersection Q obtained between them then the location of Q i.e., whether it

lies inside the 4R1R2R3 or outside the triangle can be determined by
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Figure 2.4: Location of point of intersection in 4R1R2R3

representing the vector
−−→
R1Q as linear combination of vectors

−−−→
R2R1 and

−−−→
R2R3, which is given by

−−→
R1Q = α(

−−−→
R2R1) + β(

−−−→
R2R3) (2.7)

expanding the equation (2.7) for x, y and z coordinates gives three linear

equations with two unknown variables, which upon solving gives the values

of α and β.

If there exists a solution such that 0 ≤ α + β ≤ 1 and 0 ≤ α , β ≤ 1

then the point of intersection Q lies inside the 4R1R2R3 and if α < β then Q

lies in TR3 or if α ≥ β then Q lies in TR1 otherwise Q lies outside the

4R1R2R3. Here TR1 refers to 4R1R2M and TR3 refers to 4R3R2M as shown

in Figure 2.4, where M is the Midpoint of R1R3.

Algorithm 2 describes the steps for locating the point of intersection

for given plane and line segment.
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Algorithm 2 Determining the location of point of intersection

Input : 3 points R1, R2, R3 which are used to define a plane

F and 2 points P1, P2 which define a line segment

Output: The point of intersection Q of the linesegment P1P2

with the plane F if it is inside the triangle spanned by

R1, R2, R3 and whether Q is in TR1 or in TR3

Restrictions: R1, R2, R3 should not be collinear and P1P2

should not be parallel to F

Algorithm:

1) determine A, B, C and D of F using R1, R2, R3.

2) compute the point of intersection of F and P1P2

(refer Algorithm 1).

3) if Q exists, find the solution to−−→
R1Q = α (

−−−→
R2R1) + β (

−−−→
R2R3)

4) if 0 ≤ α + β ≤ 1 and 0 ≤ α, β ≤ 1

if α < β, return [Q, TR3]

else if α ≥ β, return [Q, TR1]

5) else

return null

13



Chapter 3

MANIPULATIONS

This thesis chapter focuses on ways to manipulate a random polygon.

A generation of these random polygons was done by a research group that

includes my thesis advisor. This work uses �les which contain random

polygons which were generated by this research group. For details on the

generation process see [16, 17].

3.1 Reducer

3.1.1 Motivation and goals

Polygons generated in con�nement are highly entangled and so a

simpli�cation routine is required to reduce the polygons to a more

manageable form while preserving their topology (i.e., knot type). Preserving

the knot type means that during the simpli�cation process the segments of

the polygon should not pass through each other.

The �Reducer� is a polygon simpli�cation algorithm which includes

geometrical manipulations and its goal is to eliminate vertices and to modify

the polygon to a simpli�ed form while preserving the knot type. More

speci�cally, it either eliminates a vertex which is collinear with its two
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Figure 3.1: Displacement of vertex R2

neighbors or moves the vertex repeatedly such that it becomes more collinear

with its neighbors [11].

3.1.2 Approach

For a given triple of 3 consecutive non collinear vertices R1, R2 and

R3, R2 of a polygon is moved towards the midpoint M of R1R3 [11]. The

moved R2 is referred to as R2
′
. However, it must be ensured that moving R2

to R2
′
does not change the knot type of the polygon, which may happen if

two segments s1 and s2 of the polygon as shown in Figure 3.1 pass through

each other during the move.

The only two segments which are moved when R2 is modi�ed to R2
′

are the segments R1R2 and R2R3 and are candidates for s1. For s2, only

polygon segments which intersect the triangular plane spanned by R1, R2

and R3 must be considered.

Thus the approach described in this thesis determines for each
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polygon segment g (excluding R1R2, R2R3 and the segments which are

adjacent to R1 and R3) which intersects the triangular plane spanned by R1,

R2 and R3, the maximal possible displacement R
′
2g along the segment R2M

(see Figure 3.2). R2
′
is then chosen as a random point on R2R2min, where

R2min is the maximal displacement which satis�es | R2 - R2min| = ming

(R
′
2g). Here M can be calculated as 1

2
(R1+ R3) and the line segment from R2

to M can be parameterized as M + λ (R2 - M ). For this notation the smaller

the value of λ the larger the displacement

Following is the algorithm which describes the procedure for moving

one vertex of the polygon.

Algorithm 3 Displacement of a polygon vertex
Input: vertices R1, R2 and R3 which are non collinear

consecutive vertices of the polygon.

Output: vertices R1, R
′
2 and R3, where R

′
2 is the

displacement of R2.

Algorithm:

1) set Maxα to 0.

2) determine the equation of plane F spanned by R1, R2 and R3.

3) for each segment g in the polygon (except R1R2 and R2R3

and adjacent vertices of R1 and R3)

i) determine the intersection point Q of the plane F

and the line segment g (refer Algorithm 2).

ii) if Q exists and Q is inside the triangle spanned

by R1, R2 and R3
a) determine the max displacement α possible

for R1, R2, R3 and Q (refer Algorithm 4)

b) if α > Maxα
Maxα = α

4) pick a random r ε (Maxα, 1).

5) set R2
′
to M + r( R2 - M ).
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Figure 3.2: Maximum displacement of vertex R2

3.1.2.1 Determination of maximal displacement of R2

The displacement of R2 to R2
′
relative to a given segment g is

maximal if Q (the intersection point of the triangle and g) is contained in the

line segment R1R′2 or R3R′2 as shown in Figure 3.2. More precisely, if Q ε

TR1 then max R2
′
is the intersection point of R1Q and R2M . If Q ε TR3 ,

then max R2
′
is the intersection point of R3Q and R2M (Algorithm 2

describes how to determine whether Q ε TR1 or Q ε TR3).

Following is the algorithm which determines the maximum

displacement of R2 to R2
′
relative to one segment g.

Algorithm 5 describes the implementation steps of Reducer. It �rst

removes all vertices which are collinear with its neighbours. It repeatedly

picks a random vertex R2 which was not picked before and forms a triangle

with neighbours of R2 i.e., R1, R3, then uses Algortihm 3 to displace R2 to

R
′
2. Final result is the reduced modi�ed polygon.
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Algorithm 4 Maximum displacement of R2 to R′2
Input: vertices R1, R2 and R3 which are non collinear

consecutive vertices of the polygon and point Q which is the

point of intersection of a polygon segment g with the plane

spanned by R1, R2 and R3.

Output: max displacement (expressed as α) of R2 to R′2 which

is possible and Q remains inside the triangle 4R1R′2R3.
Algorithm:

1) determine M, the midpoint of R1R3.

2) if Q ε 4 R1R2M,

solve R1+ sq( Q - R1 ) = M + α ( R2 - M ) for sq, α
else

solve R3+ sq( Q - R3 ) = M + α ( R2 - M ) for sq, α
3) return α.

Algorithm 5 Reducer
Input : polygon with n vertices

Output: reduced modified polygon

Algorithm:

1) check collinearity of vertices i.e., for three consecutive

vertices. Remove the middle vertex if they are collinear.

2) Repeat once for each vertex in the polygon

i) pick a random vertex R2 which is not picked before

and consider its adjacent vertices R1, R3 of the

polygon.

ii) displace the polygon vertex R2(refer Algorithm 3).
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Figure 3.3: A 20 segment polygon before performing the Reducer. The ball
shows the origin.

3.1.3 Results

Three di�erent kinds of results of the Reducer are presented here.

1) The Reducer is applied to a polygon with 20 segments. After its

execution the resultant is a simplied polygon which has 11 segments in it.

Graphical representation [15] of this is shown in Figures 3.3 and 3.4.
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Figure 3.4: Modi�ed polygon with 11 segments after performing the Reducer
once. This polygon is unknotted and running the Reducer again several times
will reduce it to a simple triangle.
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Segments Milliseconds

10 1.046784
20 1.863267
30 3.753503
50 9.440139
70 20.992357
90 41.089018
110 62.821073
140 90.427106
170 134.366771
190 186.66682

Table 3.1: Time taken for speci�ed no.of segments to get reduced

Figure 3.5: Time vs number of segments of Reducer

2) The second result shows the time taken for the Reducer to simplify

an n segmented polygon. For this, we executed the Reducer on a hundred

polygons of a particular length each 1000 times and the average the

execution time is shown. The original polygons were generated in a radius of

con�nement equal to 3.

The data in the Table 3.1 depicts the number of segments versus time

in milliseconds and its graphical representation [15] is shown in Figure 3.5.
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Intial segments Resultant segments

10 5.0
20 17.8
30 28.04
50 46.45
70 65.21
90 84.29
110 103.63
140 133.45
170 163.36
199 191.13

Table 3.2: Intial segments vs Resultant segments after performing Reducer

Figure 3.6: Intial segments vs resultant segments of Reducer.

3) The Reducer eliminates vertices of the polygons. The number of

vertices after executing the Reducer is recorded. The data uses one hundred

polygons and each polygon is reduced 50 times and the average number of

resulting segments is computed. The data in the Table 3.2 depicts the

number of segments versus resultant segments and its graphical

representation [15] is shown in Figure 3.6.

22



3.2 Lengthener

3.2.1 Motivation and goals

Sometimes while trying to reduce a polygon to a more manageable

form, the reducer cannot make any further changes. This is because, the

polygon may get struck during the reduction process; as some of the

segments of the polygon get much closer, which prevents the polygon from

getting it reduced further.

The �Lengthener� is a polygon lengthening algorithm which includes

geometrical manipulations and its goal is to relax and lengthen the polygon

to an extent by adding vertices to the polygon . More speci�cally, segments

are selected in random and vertices are added between them which enlarges

the polygon. These vertices are added while preserving the knot type.

The approach in this section will make use of two di�erent types of

cylinders. Their de�nition is given here.

Original Cylinder

An original cylinder Ci as shown in Figure 3.7 is a cylinder having

radius r, height h and its axis is the line segment from vertex vi to vi+1 for 0

≤ i ≤ n-2 and Cn−1 has its axis from v0 to vn−1. The radius r of the original

cylinder is a �xed constant and the value of height h is equal to the distance

between the vertices vi and vi+1
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Figure 3.7: Original Cylinder Ci at random edge ei

Figure 3.8: Standard Cylinder Cs
i

Standard Cylinder

Standard cylinder Cs
i for 0≤ i ≤ n-1 has the same dimensions of the

original cylinder Ci but the axis of the standard cylinder is the z axis such

that one end of the axis is (0, 0, 0) and the other end is (0, 0, h) as shown in

Figure 3.8, where h is the height of the original cylinder Ci.

3.2.2 Approach

One of the possibilities for lengthening the polygon is by adding

vertices to it. Two consecutive vertices vi and vi+1 of the polygon are
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selected and a random point is selected and added to the polygon; i� the

knot type is not changed. The point to be added is randomly selected from a

original cylinder around the segment vivi+1. A detailed explanation of this

approach is as follows:

For two given vertices vi and vi+1 which form an edge ei, form an

original cylinder Ci with ei as its axis, and select a random point inside this

cylinder. this requires two steps: First select a random point T inside the

standard cylinder Cs
i , then use a transformation to compute corresponding

point T' in Ci.

Algorithm 6 describes the generation of a random point T inside the

standard cylinder Cs
i . In it, a random point on the base is selected in polar

coordinates form (r', θ), where 0 ≤ r′ < r and also a random value h' on the

height of Cs
i is selected, where 0≤ h' < h. Then the cartesian coordinates of

T = (a, b, c) are determined by computing a = r'cos(θ), b = r'sin(θ) and c =

h'.

Algorithm 6 Generating a random point in standard cylinder Cs
i

Input : radius r, height h

Output: random point T = (a, b, c)

Algorithm:

1) Pick a random angle θ.
2) Pick a random value r', such that 0 ≤ r′ < r

3) Pick a random value h', such that 0 ≤ h' < h

4) compute the coordinates of T = (a, b, c) using

a = r'cos(θ)
b = r'sin(θ)
c = h'

Transforming point T in Cs
i to a corresponding point T' in Ci involves
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calculating orthogonal vectors of Ci such that vi, vi+1 is one of the base

vectors and performing orthogonal transformation. For both are given as

Algorithms 7 and 8.

Algorithm 7 Calculating Orthogonal vectors
Input: 2 points vi, vi+1 and a random point N

Output: 3 pair wise orthogonal vectors.

Restrictions: selected random point N should not be collinear

with vi and vi+1

Algortihm:

calculating 3 orthogonal vectors

1) vector p is nothing but the difference between the

given 2 points i.e., −→p = vi+1- vi
2) now in order to determine the other two orthogonal

vectors −→q and −→w , just pick the point N which is not

collinear with vi and vi+1 then
−→q = (vi - N)×(vi+1- N) (where × is the cross product)

is a vector orthogonal to −−−→vivi+1.

3) to determine the third vector −→w orthogonal to −→p and −→q
compute −→w = −→p ×−→q ( where × is the cross product)

4) now the unit vector's of −→p , −→q and −→w i.e., p̂, q̂ and ŵ
are an orthogonal base.

Algorithm 8 Orthogonal transformation

Input: 2 points vi, vi+1 and a random point T = (a, b, c)

inside Csi
Output: Transformation of T in Csi to the corresponding

point T
′
in Ci

Algorithm:

1) compute orthogonal vectors −→p , −→q and −→w for the given

linesegment vivi+1 (refer Algorithm 7)

2) Transformation of T = (a, b, c) in Csi to corresponding

T
′
=(a

′
, b

′
, c

′
) in Ci can be represented as the

linear combination of −→p , −→q , −→w and T = (a, b, c)

and is given by

T
′
=
[
a b c

] pq
w

 +
[
vix viy viz

]

In order to add a new vertex to the polygon, the �rst thing to do is to
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determine the equation of a plane spanned by vi, T
′
, vi+1 , where vi and vi+1

are the end points of edge ei and then check whether any line segments of the

polygon (other than viT ′, T ′vi+1 and also the adjacent vertices of vi and

vi+1) cause an intersection with the 4viT
′
vi+1 (refer Algorithm 2). If at least

one intersection is found, then the random point T
′
cannot be added to the

polygon as its addition might change the knot type of the polygon. If no

intersection is found between triangle and the polygon segments, then the

generated random point is added to the polygon. This process of selecting

random edges potentially is repeated as often as desired.

Algorithm 9 describes the implementation steps for Lengthener. In it

a random edge ei is selected from among all the vertices of the polygon and

an original cylinder Ci is formed with the selected edge ei. A random point

T, which is generated in the standard cylinder Cs
i is then transformed to

corresponding T
′
in the original cylinder Ci which is formed with the edge ei.

For each line segment g of the polygon (excluding viT ′, T ′vi+1 and segments

which are adjacent to vi, vi+1), determine if there is any point of intersection

inside the traingle inside 4viT
′
vi+1 for the plane spanned by vi, T

′
, vi+1.

Upon calculation, even if there is at least one point of intersection found,

then the generated random point T
′
inside the original cylinder Ci should

not be added to the polygon because its addition changes the knot type as

the edges of the polygon get crossed over each other. Otherwise, T
′
is to be

added to the polygon. This process of selecting random edges potentially is

repeated as often as desired.
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Algorithm 9 Lengthener

Input: Polygon with n vertices, m number of attempts,

r radius of cylinder

Output: Modified polygon

Algorithm:

Repeat m times

1) Pick an random edge ei from among all the vertices

in the polygon

2) Generate a random point T inside Csi (refer Algorithm 6)

3) Transform T in Csi to corresponding

T
′
in Ci (refer Algorithm 8)

4) for each line segment g of the polygon (excluding

viT ′, T ′vi+1 and segments which are adjacent to vi, vi+1)

i)find the point of intersection Q inside 4viT
′
vi+1 for

the plane spanned by vi, T', vi+1(refer algorithm 2).

5) In step 4, if alteast one point of intersection is found

then do not add T
′
to the polygon

else

add T
′
as a new vertex to the polygon in the cyclic

order between vi and vi+1
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3.2.3 Results

Three di�erent kinds of results of the Lengthener are presented here.

1) Lengthener is applied to a polygon having 6 segments in it . For

this the value of m is 1 and r is 0.8. After its execution, the resultant is an

enlarged polygon which has 12 segments in it. For this result graphical

representation [15] of this is shown in Figures 3.9. In this Figure, the thin

line represents the initial polygon i.e., polygon with 6 segments in it and the

fat line represents the modi�ed and enlarged polygon having 12 segments in

it. The small sphere in this �gure shows the starting vertex i.e., v0 of both

polygons .
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Figure 3.9: Given polygon modi�ed to an enlarged polygon using Lengthener.
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Segments Milliseconds

10 0.217676
20 0.578496
30 0.818922
50 2.0126
70 3.74794
90 5.87855
110 8.55778
140 14.1267
170 19.8225
190 30.1593

Table 3.3: Time taken for speci�ed no.of segments to lengthen

Figure 3.10: Time vs number of segments for Lengthener.

2) The second result shows the time taken for the Lengthener to

enlarge an n segmented polygon. For this, we executed the Lengthener on

one hundred polygons of a particular length each 1000 times and computed

the average execution time. The radius of con�nement of each original

polygon is 3 and the radius of the cylinder Ci is 0.8 and the value of m is 1.

The data in the table 3.3 depicts the number of segments versus time

in milliseconds and its graphical representation [15] is shown in Figure 3.10.
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Intial segments Resultant segments

10 20
20 40
30 60
50 98.33
70 139
90 178.97
110 220
140 280
170 338.62
199 380

Table 3.4: Intial segments vs Resultant segments

Figure 3.11: Number of segments versus resultant segments after performing
Lengthener on an n segment polygon.

3) The Lengthener adds vertices to the polygon. For this, we executed

the Lengthener on one hundred polygons of a particular length each 1000

times and computed the average of the number of segments. The radius of

con�nement of each polygon is 3 and the radius of the cylinder Ci is 0.8. The

value of m is 1.

The data in the table 3.4 depicts the number of segments versus

resultant segments and its graphical representation [15] is shown in Figure

3.11.
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3.3 OutsideInLengthener

3.3.1 Motivation and goals

Analogous to the virus capsids con�nement, in a sphere of a certain

�xed radius polygons are generated [16, 17]. This sphere encloses the

polygon in it which is packed compactly and the sphere when removed allows

the polygon inside to expand by an algorithm such as lengthener. This

expansion takes place in layers i.e., outermost layer of the polygon increases

�rst, the underlying layer is extended next. Intuitively, the outer layer

consists of the peripheral segments of the polygon, followed by the next layer

and so on. This extension is implemented by adding vertices to the polygon.

The �OutsideInLengthener� is a polygon lengthening algorithm which

includes geometrical manipulations and its goal is to relax and lengthen the

polygon to an extent, by adding vertices to the polygon. More speci�cally,

outer layer segments are selected �rst at random and vertices are added

between them while preserving the knot type followed by an underlying layer

and so on. All of this together relaxes and enlarges the polygon.

3.3.2 Approach

In order to lengthen and relax a given polygon, one possibility is to

select an edge ei randomly and insert a new vertex in the cyclic order

between vi and vi+1. This new vertex is added only if there occurs no cross

over between the edges of the polygon because of its addition to the polygon.
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These edges are selected in the order of edges in the outer layer followed by

the inner layer and so on. For dividing the given polygon into layers, the

centroid C [1] of the polygon has to be found �rst and then the distances

between the centroid and each edge is calculated. The polygon is then

divided by grouping the edges according to their distance to the center of

sphere. A detailed explanation is as follows:

3.3.2.1 Determining centroid of the polygon

The algorithm 10 describes the procedure for determining a centroid

of the polygon [1]. In it the given polygon with n vertices is divided into n-2

triangles as shown in Figure 3.12 and the centroid Ri and Area Ai of each

individual triangle is found, and we de�ne a cummulative area TA as the

summation of the areas of all individual triangles. Finally, the centroid of the

polygon C is found as summation of area Ai times the centroid Ri of each

individual triangle over TA.

Algorithm 10 Determine the centroid of the polygon with n vertices
Input: Polygon with n number of vertices

Output: Centroid C of the polygon

Algorithm:

i) Divide the polygon with n vertices into n-2 triangles Ti,

the vertices of the triangle Ti are {v0, vi, vi+1}
for 0 < i≤n-2 (as shown in Figure 3.12).

ii) Determine the Area Ai and Centroid Ri of each triangle

Ti for 0 < i≤ n-2.

iii) Determine the TA =
∑n−2

i=1 Ai.

iv) Compute the centroid of the polygon to be C =
∑n−2

i=1 AiRi

TA
.
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Figure 3.12: Division of polygon into n-2 triangles

Phase and Phase range

The segments of the polygon are divided into a constant number of

disjoint groups based on the distance of the segments from the centroid. The

groups are seperated by spheres centered at the centroid as shown in Figure

3.13. Each circular boundary is called a �phase�, denoted as P and the region

present between the two phases is called �Phase range�, denoted by Ph.

Categorization of edges ei of the polygon into di�erent phase Pk is done

based upon the distance between (C, ei)

3.3.2.2 Grouping edges into phases

Procedure for grouping the edges of the polygon into corresponding

phases is described in the following steps

Step 1 : Determine the distance di = |C - vi| for 0 ≤ i < n.
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Figure 3.13: Division of a polygon into M phases

Step 2 : Calculate the segment distance si from the centroid as si =

(di+di+1)
2

, for 0 ≤ i ≤ n-2 and sn−1 is calculated as the mean of dn−1 and d0

Step 3 : Determine the Ph for the polygon and which is given by Ph

= Maxs−Mins

M
, where M is the number of phases, Maxs is the maximum value

among the segment distances si and Mins is the minimum value among the

segment distances si.

Step 4 : If Mins + kPh ≤ di < Mins + (k+1)Ph, for 0 ≤ k < M then

add segment i to phase Pk.

3.3.2.3 Adding a vertex

Segments are selected randomly from one phase at a time until all

phases are processed in decreasing order. For each edge ei, generate a

random point T′ in its original cylinder Ci. In order to add the new vertex T′

to the polygon, �rst thing to do is to determine the equation of plane

spanned by vi, T
′, vi+1; where vi and vi+1 are the end points of edge ei and
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then check whether any line segments of the polygon (other than viT ′, T ′vi+1

and also the adjacent vertices of vi and vi+1) cause an intersection with the

4viT′vi+1 (refer Algorithm 2). If at least one intersection is found, then the

random point cannot be added to the polygon as its addition might change

the knot type of the polygon. If no intersection is found between triangle and

the polygon segments, then the generated random point T' is added to the

polygon.

This process of selecting random edges and adding random points to

the polygon has to be continued until the size of the vertices n of the given

polygon becomes m (where m is an arbitrary number).

Algorithm 11 describes the implementation steps for

OutsideInlengthener. In it, the centroid of the polygon is computed �rst.

Then for each edge ei of the polygon, the segment distance is calculated. The

polygon is divided into M (where M is a constant number) number of phases

as shown in Figure 3.12, each having a phase range Ph. Then the edges of

the polygon are selected randomly one at a time from each phase where the

order of phases is in decreasing order. For the selected random edge ei

original cylinder Ci is formed with it. A random point T, which is generated

in the standard cylinder Cs
i is then transformed to corresponding T′ in the

original cylinder Ci which is formed with the edge ei. For each line segment g

of the polygon (excluding viT ′, T ′vi+1 and segments which are adjacent to vi,

vi+1), determine if there is any point of intersection inside the triangle inside

4viT′vi+1 for the plane spanned by vi, T
′, vi+1. Upon calculation, even if
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there is at least one point of intersection found, then the generated random

point T′ inside the original cylinder Ci should not be added to the polygon

because its addition changes the knot type as the edges of the polygon gets

crossed over each other. Otherwise, T′ has to be added to the polygon. This

process has to be repeated m times (where m is an arbitrary number).

Algorithm 11 OutsideInLengthener

Input: Polygon with n vertices, a constant M for number

of phases, m lower bound of vertices, r radius of

cylinder

Output: Modified polygon

Algorithm:

while n < m

1) Compute the centroid C of the polygon (ref Algorithm 10).

2) For each edge ei of the polygon

i) calculate the segment distance si, 0 ≤ i ≤ n-1

from the centroid C

3) Divide the polygon edges into M phases based on their

segment distances. The phase range of each phase is

Ph = Maxs−Mins

M
.

4) edges are selected randomly from one phase at a time

and are processed in decreasing order of phases

5) for each selected edge ei
i)Generate a random point T inside Csi (ref Algorithm 6).

ii)Transform T in Csi to corresponding

T′ in Ci (refer Algorithm 8).

iii)for each line segment g of the polygon (excluding

viT ′, T ′vi+1 and segments which are adjacent to

vi, vi+1)

a) find the point of intersection Q inside

4viT′vi+1for the plane spanned by

vi, T′, vi+1(refer algorithm 2).

iv)In step iii, if at least one point of intersection

Q is found

then do not add T' to the polygon

else

add T′ as a new vertex to the polygon in the

cyclic order between vi and vi+1
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Figure 3.14: Given polygon modi�ed to an enlarged polygon using OutsideIn-
Lengthener

3.3.3 Results

Three di�erent kinds of results of the OutsideInLengthener are

presented here.

1) OutsideInLengthener is applied to a polygon having 30 segments in

it. For this the value of m = 2n and r is 0.8. After its execution, the resultant

is an enlarged polygon which has 84 segments in it. Graphical representation

[15] of this is shown in Figures 3.14. In this Figure, the thin line represents

the initial polygon i.e., polygon with 30 segments in it and the fat line

represents the modi�ed and enlarged polygon having 84 segments in it. A

small sphere in this Figure shows the starting vertex i.e., v0 of two polygons.
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Segments Milliseconds

10 0.322427
20 0.621988
30 1.03339
50 2.09295
70 3.51686
90 5.23074
110 7.50177
140 11.9996
170 16.1378
190 21.136

Table 3.5: Segments vs Milliseconds

Figure 3.15: Time vs number of segments for OutsideInLengthener

2) The second result shows the time taken for the

OutsideInLengthener to enlarge an n segmented polygon. For this, we

executed the Lengthener on one hundred polygons of a particular length each

1000 times and computed the average execution time. The radius of

con�nement of each polygon is 3 and the radius of the cylinder Ci is 0.8 and

the value of m = 2n.

The data in the Table 3.5 depicts the number of segments versus time

in milliseconds and its graphical representation [15] is shown in Figure 3.15.

40



Intial segments Resultant segments

10 28.0635
20 58.8725
30 90.1814
50 151.915
70 212.445
90 272.225
110 332.471
140 419.71
170 507.949
190 588.293

Table 3.6: Intial segments vs Resultant segments

Figure 3.16: Number of segments versus resultant segments for OutsideIn-
Lengthener

3) The OutsideInLengthener adds vertices to the polygon. For this,

we executed the Lengthener on one hundred polygons of a particular length

each 1000 times and computed the average no of segments. The radius of

con�nement of each polygon is 3 and the radius of the cylinder Ci is 0.8 and

the value of m = 2n.

The data in the Table 3.6 depicts the number of segments versus

resultant segments and its graphical representation [15] is shown in Figure

3.16
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Chapter 4

FRAMEWORK

4.1 Framework

A software framework [18] is an abstract in which generic functionality

is provided by the software and can be selectively changed by the user.

4.1.1 Motivation and goals

There is a need to investigate our polygons in a variety of ways and it

is not clear which combination of manipulation steps might turn out to be

the most useful. In order to accomplish this, for this thesis a framework is

developed consisting of a list of user provided modules, which allows the user

to manipulate the data by applying some or all the modules in a speci�ed

order. Additionally, the user can specify the number of repetitions for each

module. The list of modules developed as a part of this thesis are Reducer,

Lengthener, OutsideInLengthener. However, this framework is designed in

such a way that other new modules may be added in the future with relative

ease. Not all modules must manipulate polygons. Some may create a

di�erent representation of the polygon. For example from polygon to 2D

embedding or vice versa, or the module which manipulate 2 dimensional
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representations or compute topological or geometrical feature of the

represented data.

4.1.2 Approach

To achieve the stated goals, several tasks must be accomplished.

• For two or more modules to be executed in sequence the computed

modi�cations of one module must be available to the next modules.

This is accomplished by each module reading the information it needs

from a �le and writing the information generated to a �le [14]. Thus,

there are �xed �le formats, a common data format which the polygon

manipulator can read what another polygon manipulator writes is

shown in Figure 4.1.

A polygon �le may contain one or more polygons and each polygon

with n vertices consists of n+2 lines in the �le. The �rst line represents the

number of segments the polygon has and the next n lines are the x, y, z

coordinates of the n vertices and the n+2nd line is empty as shown in Figure

4.1.

• The user should be able to select which modules to apply, on which

�les it is to be applied to and in which order. The modules are

executed in a �exible manner. This is accomplished by using a

graphical user interface (GUI) [3]. This type of user interface is easy to
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Figure 4.1: Example of the �le structure of two 6 step polygons

use, especially for a beginner and it is easy to explore. A GUI enables a

user to view, control, and manipulate multiple items at once.

• The GUI should know about the di�erent available modules. This is

accomplished by forcing the developer of modules to put a folder

containing their classes at a speci�c position within the overall

directory structure of the framework [4]. For this thesis, the directory

structure of the framework resembles a tree structure such that all

manipulator modules are added to the same folder. This Folder

structure is shown in Figure 4.2.

• The GUI must know the names of the important methods to use in

each manipulator; otherwise it cannot execute them. This is
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Figure 4.2: Directory folder structure of the Framework

accomplished by forcing the developers of modules to implement a

speci�c interface [10]. In this thesis it is the Manipulator interface.

The �ow of control of this framework is dictated by the Manipulator

interface which de�nes a set of functions.

<�<Manipulator>�>

void readData(Scanner sc);

void manipulations();

void computations();

void writeModi�edDataToaFile(Scanner manipulations, Scanner computa-

tions);

String description();
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a) void readData(Scanner sc)

This method is used for reading data from a text �le. It is the

responsibility of the person using the framework to make sure that a �le

contains the type of information needed by the manipulator module. This

method has the Scanner object as its formal parameter and the developer is

expected to store the data read from the �le in some (private) class �elds(s)

suitable for the processing to be done by the module.

b) void manipulations()

If the class which implements the manipulator interface performs

manipulations on the data from the input �le, then the de�nition must be

implemented; otherwise it should be left empty. This function takes no

parameter. The developer is expected to use the �eld(s) where the data read

from the �le is stored.

c) void computations()

Computations do not manipulate the data but rather calculate the

values of properties associated with the data, such as the mean path length

or the radius of gyration. This function takes no parameter. The developer is

expected to use the �elds where the data read from the �le is stored. The

changes in the properties of the data can be better analyzed if computation

methods are performed on the data before and after the execution of

manipulation methods.
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d) void writeModi�edDataToaFile(Scanner manipulations, Scanner

computations)

After performing the necessary manipulations/computations or both,

this method is helpful in writing the results to a �le. This method has two

formal parameters, the �rst is used for writing the modi�ed data after

performing manipulations on it into a text �le and the other formal

parameter is used for writing the results of the computations to a text �le.

e) String description()

This method is used for providing some useful description to the user

about the module. It includes whether the module is a

manipulator/computation or both, what type of input the module needs and

what type of output it needs. This method must return a string to the

calling method which is used as input for tooltip in the GUI.

4.1.3 Graphical User Interface

4.1.3.1 Development of GUI

The GUI of the framework as shown in Figure 4.3 is developed using

the Java programming language and the swing toolkit for java [3].
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Figure 4.3: Graphical user interface for this thesis
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Look and feel of the GUI developed for this thesis

4.1.3.2 List of available modules

This list presents the user with a scrolling list of module names and is

shown in Figure 4.4. The modules shown in this list are extracted from the

manipulator folder in the framework directory structure [13]. The list is

setup, so that the user can select one or more items at a time. Once the user

clicks on the > button, the selected items are copied to the selected module

list. The � button copies all the available items to the selected module list

and for each module the user is prompted to enter the number of times the

manipulate and the compute method is called per data set.

4.1.3.3 List of selected modules

This is the list of modules selected by the user as shown in Figure 4.5

from the list of available modules. GUI prompts the user to enter the

number of repetitions while selecting a module. The user may change the

order of the modules by selecting individual modules and using the up (Λ)

and down (∨) buttons until the modules are in the desired order. The modify

button allows the user to change the number of repetitions for each module.

Selected modules can be unselected by clicking the < button and unselecting

all of them can be done with the � button.
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Figure 4.4: List of available modules
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Figure 4.5: Selected module list in GUI
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Figure 4.6: Tooltip
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4.1.3.4 Tool tips

The tooltip sometimes called info tip or hint, is a GUI element. It is

used in conjunction with a cursor, usually a pointer. The user hover the

pointer over an item without clicking it, and a small �hover box� appears

with information about the item as shown in Figure 4.6. The tooltip

provides the user with enough information to decide whether and how to

include a module.

4.1.3.5 Browse a �le

The user must specify the name of the �le with the data to be used.

For this the user has to click on the browse button which will show the �le

dialog box, then the user has to navigate to the �le path- to select the �le.

4.1.3.6 Save as

The save as button displays the �save as� dialog box, this gives the

user a text box to assign a name to the �le and a drop down list of

bookmarks to select a directory to save it in.

4.1.3.7 Number of times

This text box is used for specifying the number of times the entire set

of selected modules is repeated.
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4.1.3.8 Run

Once the user is done with customizing the GUI and is ready to

execute the selected modules, the only thing needed is to click the run

button. This starts the execution, and prompts the user with a message box

after the successful completion of the operation.
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4.1.4 User actions

The user has to perform the following actions to run one or more

modules in a given order. Here the �manipulation� refers to manipulation

and/or computation.

• Select one or more modules from the list of available modules.

• Enter the number of iterations for each module when prompted.

• The list of selected modules is shown in the order of selection made by

the user. Change the order of execution if needed, by using the up (Λ)

and down (∨) buttons until the modules are in the desired order.

• Modify the number of iterations for one or more modules if needed, by

selecting the modify button and responding to the input dialog prompt.

• Browse the input �le which contains the data on which the selected

manipulations are to be performed.

• Name the output �le in which the modi�ed data is to be saved.

• After selecting the order in which the modules are to be executed; enter

the number of repetitions of this order to be executed.

• Click the run button to launch the execution.

• Watch for the information about the successful completion of the

execution.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, we focused on developing modules for performing

manipulations on the polygon. Modules which were developed are Reducer,

Lengthener, OutsideInLengthener. Reducer simpli�es the polygon whereas

Lengthener and OutsideInLengthener relaxes and enlarges the polygon to an

extent by following di�erent approaches. Performing these modules in any

combination results in a modi�ed polygon where the topology (i.e., knot

type) is preserved.

A framework was also developed for this thesis, in order to investigate

the data in a variety of ways. This framework includes the speci�ed modules

and allows the user to manipulate the data; by applying some or all modules

in some speci�ed order. Additionally, the user can specify the repetitions of

each module.

Currently, other people (two undergraduates) are using this system

and are working on the development of other modules like embedder,

curvature and torsion which also perform manipulations or computations on

the polygons.

Future work will focus on many di�erent issues such as providing a

condition loop for the number of repetitions of the execution instead of
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providing just a numerical number for it in the GUI. Also, another future

work aspect is to make this framework available through a web link to the

users who are willing to work in this area of research.
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