
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-2012

Sharpening the Boundaries of the Sequential
Probability Ratio Test
Elizabeth Krantz

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Statistics and Probability Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Krantz, Elizabeth, "Sharpening the Boundaries of the Sequential Probability Ratio Test" (2012). Masters Theses & Specialist Projects.
Paper 1169.
http://digitalcommons.wku.edu/theses/1169

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.wku.edu%2Ftheses%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 



 
 
 
 
 

SHARPENING THE BOUNDARIES OF THE SEQUENTIAL PROBABILITY 
RATIO TEST 

 
 
 
 
 
 
 
 
 

A Thesis 
Presented to 

The Faculty of the Department of Mathematics and Computer Science 
Western Kentucky University 

Bowling Green, Kentucky 
 
 
 
 
 
 
 
 
 

 
 

In Partial Fulfillment 
Of the Requirements for the Degree 

Master of Science 
 
 
 
 
 
 
 

By 
Elizabeth Krantz 

 
May 2012 





iii 

 

ACKNOWLEDGEMENTS 
 

 I would like to express my deepest gratitude and appreciation to Dr. 

Melanie Autin for guiding me in this process.  If it were not for her, I would have 

never pursued an interest in statistics and completed this thesis.  She has 

invested countless hours assisting me in every way, and none of this would have 

happened without her.  I am truly grateful for her as not only as an advisor but 

also as a mentor. 

 Also, I would like to express my gratitude to Dr. David Neal and Dr. Ngoc 

Nguyen for giving of their valuable time to read and give corrections to this 

thesis.  Additionally, I would like to acknowledge Dr. Don Edwards for sharing in 

his intellectual property. 

 I must also not forget the people who urged me to pursue my dreams.  I 

am so thankful for Cory as he has stood beside me and provided moral support 

even when he has been unsure of what he was supporting.  Also, I am thankful 

for my Mom, Dad, Jammie, and Jimmy for their unending supply of 

encouragement, support, and faith in me.    

 

 

 

 

 

 

 



iv 

 

TABLE OF CONTENTS 

 

List of Figures v 

List of Tables vi 

Abstract vii 

Chapter 1:  Introduction 1 

Chapter 2:  Sequential Probability Ratio Test 3 
 2.1   Wald’s Sequential Probability Ratio Test 3 
 2.2   Mingoti’s Expansion of SPRT 9 
 2.3   Iglewicz’s Expansion of SPRT    9 
 2.4   McWilliams’ Expansion of SPRT 10 
 2.5   Ignatova, Deutsch, and Edwards’ Expansion of SPRT 11 
 
Chapter 3:  A Method for Sharpening the Boundaries 18 
 3.1   Creating the Bounds 18 
 3.2   Results for the New Bounds 24 
 
Chapter 4:  Simulation Studies 34 
 4.1   Simulation Method 34 
 4.2   Simulation Results 35 
 
Chapter 5:  Conclusion and Future Work 47 
 
Appendix 49 
 A.1   Boundaries for nT = 4  49 
 A.2   R Code 60 
 A.2.1   check.step()  60 

 A.2.2   create.bounds() 61 

 A.2.3   alpha.bounded() 64 

 A.2.4   errors.bounded() 66 

 A.2.5   sim.sprt() 69 

 A.2.6   Wald.bnd() 73 

 A.2.7   Wald.step.bnd() 74 
 
References 75 
 
 

  



v 

 

LIST OF FIGURES 
 

 
 
Figure 2.1 Full Pascal’s Triangle Example 12 
 
Figure 2.2 Modified Pascal’s Triangle Method 13 
 
Figure 2.3 Wald Boundary Example 17 
 
Figure 3.1 Standard Hypothesis Test 19 
 

Figure 4.1 Binomial nT = 10 Simulation with π0 = 0.1 and π1 = 0.7 42 
 

Figure 4.2 Binomial nT = 10 Simulation with π0 = 0.1 and π1 = 0.9 43 
 

Figure 4.3 Binomial nT = 10 Simulation with π0 = 0.2 and π1 = 0.8 44 
 

Figure 4.4 Binomial nT = 10 Simulation with π0 = 0.2 and π1 = 0.9 45 
 

Figure 4.5 Binomial nT = 10 Simulation with π0 = 0.3 and π1 = 0.9 46 
 
 



vi 

 

LIST OF TABLES 

 

Table 3.1 Possible Single Boundaries for nT = 4 21 

Table 3.2   Total Number of Potential Boundaries for nT 24 

Table 3.3   Binomial Results for nT = 10 26 

Table 3.4   Binomial Results for nT = 20 27 

Table 3.5   Binomial Results for nT = 30 28 

Table 3.6   Binomial Results for nT = 40 29 

Table 3.7   Hypergeometric Results for nT = 10  30 

Table 3.8   Hypergeometric Results for nT = 20 30 

Table 3.9 Hypergeometric Results for nT = 30 31 

Table 3.10 Hypergeometric Results for nT = 40 31 

Table 4.1 Hypergeometric Simulation Results for nT = 10 36 

Table 4.2 Hypergeometric Simulation Results for nT = 20  36 

Table 4.3 Hypergeometric Simulation Results for nT = 30  37 

Table 4.4 Hypergeometric Simulation Results for nT = 40 37 

Table 4.5 Binomial Simulation Results for nT = 10 38 

Table 4.6 Binomial Simulation Results for nT = 20 39 

Table 4.7 Binomial Simulation Results for nT = 30 39 

Table 4.8 Binomial Simulation Results for nT = 40 40 

 



vii 

 

SHARPENING THE BOUNDARIES OF THE SEQUENTIAL PROBABILITY 
RATIO TEST 

 
Elizabeth Krantz May 2012  75 Pages 
 
Directed by: Dr. Melanie Autin, Dr. David Neal, and Dr. Ngoc Nguyen  
 
Department of Mathematics & Computer Science Western Kentucky University 

In this thesis, we present an introduction to Wald’s Sequential Probability 

Ratio Test (SPRT) for binary outcomes.  Previous researchers have investigated 

ways to modify the stopping boundaries that reduce the expected sample size for 

the test.  In this research, we investigate ways to further improve these 

boundaries.  For a given maximum allowable sample size, we develop a method 

intended to generate all possible sets of boundaries.  We then find the one set of 

boundaries that minimizes the maximum expected sample size while still 

preserving the nominal error rates.  Once the satisfying boundaries have been 

created, we present the results of simulation studies conducted on these 

boundaries as a means for analyzing both the expected number of observations 

and the amount of variability in the sample size required to make a decision in 

the test. 
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Chapter 1: Introduction 

 

 In statistical analysis we are concerned with data-driven decision making, 

and one avenue that we pursue to test conjectures is hypothesis testing.  In 

hypothesis testing, we test H0, the null hypothesis, versus H1, the alternative 

hypothesis.  In a standard hypothesis test, we take a sample of size n, and make 

a decision based on the entire collection of data.  The sequential probability ratio 

test (SPRT) instead requires that each item be sampled one at a time.  After 

each item, the researcher either makes a decision in the hypothesis test or 

decides to continue sampling by selecting another item. Thus, the SPRT can 

result in a significantly smaller sample size than a standard hypothesis test.   

 In practice, SPRT tends to be more efficient than standard hypothesis 

testing and is more cost effective in industry.  For example, SPRT has been used 

in detecting Medicare fraud; instead of examining every case that a particular 

doctor turns in for Medicare to pay, the analyst looks at one case at a time and 

either makes a decision that the case is or is not fraudulent.  From that, the 

investigator may be able to make a decision about the doctor without looking at 

all of his cases.  Thus, money and time are possibly saved because the testing 

will likely terminate before all cases have been examined.  Additionally, in quality 

control for industry, instead of examining an entire production line of goods, a 

company could find it more economical to look at one product at a time and 

determine whether or not the item is defective and, in turn, make a decision 

about the entire product line before sampling the entire group of products.  Thus, 



2 

 

companies can increase profit by spending less time and money on testing for 

defects in production.  They can also more quickly identify and correct production 

problems. 

 For the purpose of this thesis, we are interested in formulating a possible 

method that can reduce the expected number of observations necessary to make 

a decision in the sequential probability ratio test.  Some research in this area has 

been conducted, but we set out to build upon and improve the methods that 

already exist.     

 In Chapter 2, we first look at the original SPRT developed by Wald and 

then continue by looking at expansions on SPRT by other researchers.  Next, 

Chapter 3 will detail the process of creating new sets of boundaries as an 

exploration in sharpening the boundaries of the SPRT.  In Chapter 4, we provide 

a description of simulation studies that were conducted as a way to analyze the 

new sets of boundaries.  Finally, we summarize the research in Chapter 5 and 

examine some improvements that could be made in the future.         
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Chapter 2: Sequential Probability Ratio Test 

 

2.1 Wald’s Sequential Probability Ratio Test 

 In 1947, Abraham Wald published a book entitled Sequential Analysis [6], 

in which he details the process for conducting the sequential probability ratio test 

for quality control.  We define a random variable X on the items being inspected 

by letting X = 1 if the item observed is found to be defective and X = 0 if the item 

observed is non-defective.  Define f(x,π) to be the probability distribution function 

of the random variable X where π is the proportion of defective items in a 

(possibly infinite) collection of size N.  When considering binary outcomes 

(defective vs. non-defective), the first n successive observations of x will be 

designated as x1, x2, … , xn, where xi indicates whether the item is found to be 

defective or non-defective.  It is of interest to test two competing values of π.  We 

let H0 be the hypothesis that π = π0 and H1 be the hypothesis that π = π1, where 

π0 < π1.  Thus, f(x,π0) is the distribution function of X when the null hypothesis is 

true, and f(x,π1) is the distribution function of X when the alternative hypothesis is 

true.  We let ∑
=

=
n

i

in xy
1

 be the total number of defective items in the n sampled 

items.  For any positive value n, the probability that a sample x1, … , xn is 

observed is determined by the likelihood functions ( ) ( )
0

1
0

,, ππ i

n

i
n xfyL

=
Π=  when H0 

is true and ( ) ( )1
1

1 ππ ,, i

n

i
n xfyL

=
Π=  when H1 is true.  The sequential probability ratio 

test (SPRT) for testing H0 against H1 is determined by the following process.  
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Two positive constants A and B are chosen such that B < A.  At each stage of the 

test (nth trial), compute 
( )
( )0

1

π

π

,

,

n

n
n

yL

yL
=Λ .  If B ≤ Λn ≤ A, continue the test by taking 

another observation.  If A < Λn, the test is ended, and the null hypothesis is 

rejected.  If Λn < B, the test is ended, and we fail to reject the null hypothesis.   

 For practicality in computation, ln(Λn)  is often used over Λn since ln(Λn) 

can be written as the sum of n terms, i.e ( )
( )
( )

( )
( )
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=Λ
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11

,

,
ln...

,

,
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xf
.  

The ith term of the sum is denoted as zi.  Thus, at each stage of the test (nth trial) 

the cumulative sum ∑
=

n

i

iz
1

is computed.  If ( ) ( ),lnln
1

AzB
n

i

i ≤≤∑
=

continue the test by 

taking more observations.  If ( ) ∑
=

<
n

i

izA
1

,ln  the test is ended, and H0 is rejected.  If 

( ),ln
1

Bz
n

i

i <∑
=

 the test is ended, and H0 is not rejected. 

Assuming that the test has not terminated prior to a given step n, we 

consider a sample (x1, … , xn).  We say that the sample is of type 1 if A < Λn, 

which leads to rejection of H0 at step n.  We say that the sample is of type 2 if Λn 

< B, which leads to failing to reject H0 at step n.   

 For any type 1 sample, the probability of achieving such a sample under 

H1 is at least A times as large as the probability of achieving such a sample 

under H0, as seen by ),(),( 01 ππ nn yLAyL ⋅≥ .  Therefore, the probability that the 

sequential test will terminate with rejection of H0 is also at least A times as large 

under H1 as it is under H0.  When H0 is true, the probability that the test will 
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terminate with rejection of H0 is α.  This incorrect decision is a Type I error, 

where α is the Type I error rate.  When H1 is true, the probability that the test will 

correctly terminate with rejection of H0 is denoted as .1 β−   Thus we obtain, 

 
,

1

1

),(),( 01

α

β

αβ

ππ

−
≤

≥−

⋅≥

A

A

yLAyL nn

 (2.1) 

  which determines an upper limit for A to be 
  

1− β

α
. 

 In a similar manner, a lower limit for B can be derived.  For any given type 

2 sample (x1, … , xn), the probability of achieving such a sample under H1 is at 

most B times as large as the probability of achieving such a sample under H0,   

),(),( 01 ππ nn yLByL ⋅≤ .  Therefore, the probability that the sequential test will 

terminate with failing to reject H0 is also at most B times as large under H1 as it is 

under H0.  When H0 is true, the probability that the test will correctly terminate 

without rejection of H0 is denoted .1 α−   When H1 is true, the probability that the 

test will incorrectly terminate with failure to reject H0 is β.  This incorrect decision 

is referred to as a Type II error, where β is the Type II error rate.  Thus we obtain, 

 
,

1

)1(

),(),( 01

α

β

αβ

ππ

−
≥

−≤

⋅≤

B

B

yLByL nn

 (2.2)

 

which determines a lower limit for B to be ,
1 α

β

−
.  Consequently, upper limits are 

obtained for α and β based on the above inequalities: 
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A

1
≤α  and B≤β . (2.3) 

 We must also now consider the opposite approach in which we are not 

given the values of A and B.  Previously, we chose a given A and B and 

determined the Type I and Type II error rates.  In practice, testing will be 

conducted under predetermined maximum allowable error rates (α and β), and A 

and B must instead be determined.  We would like to test with given strength (α, 

β); so, denote A(α, β) and B(α, β) as the values of A and B which satisfy the 

predetermined (α, β).  From the previously mentioned inequalities, (2.1) implies 

( )
α

β
βα

−
≤

1
,A  , and (2.2) implies ( )

α

β
βα

−
≥

1
,B .   

 Wald [6] proposed to set ),(
1

βα
α

β
aA =

−
= , which is in fact greater than 

or equal to the exact value of A(α, β), and ( )βα
α

β
,

1
bB =

−
=  which is less than 

or equal to the exact value of B(α, β).  Wald discusses the consequences that the 

assigned combinations of A and B have on the error rates α and β.  When A is a 

value greater than or equal to A(α, β) and B is equal to B(α, β), the Type I error 

rate is less than the nominal α, but the Type II error rate is greater than β.  If A is 

equal to A(α, β) and B is a value less than or equal to B(α, β), then the Type II 

error rate is less than the nominal β, but the Type I error rate is greater than α.  If 

A is a value greater than A(α, β) and B is a value less than B(α, β), then the 

effect on the Type I and Type II error rates is unclear.  Wald thus proposes to 

denote α’ and β’ as the respective error rates when A=a(α, β) and B=b(α, β).  
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From above, 
( ) β

α

βαβ

α

−
=≤

− 1,

1

'1

'

a
 and 

( )
.

1,

1

'1

'

α

β

βαα

β

−
=≤

− b
  Thus, upper 

limits for α’ and β’ can be found to be 
β

α
α

−
≤

1
'  and .

1
'

α

β
β

−
≤ Through some 

arithmetic, it can be shown that .'' βαβα +≤+   Thus, we set 
α

β )1( −
=A  and 

)1( α

β

−
=B .  

 We now consider the case of sampling with replacement (or sampling 

without replacement from a population of infinite size).  Since the probability of 

selecting a defective item is π for each item and observations are independent, 

each observation can be considered a Bernoulli trial.  Thus, Wald’s boundaries 

can be found as follows.  In the likelihood ratio Λn, the binomial density can be 

substituted for the likelihood functions, giving 

 

( )
( )

( )

( )
.

1

1

,

,

00

11

0

1

nn

nn

yny

n

yny

n

n

n
n

y

n

y

n

yL
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−

−








−








==Λ

ππ

ππ

π

π

. (2.4) 

Using the criterion B ≤ Λn ≤ A presented by Wald,  
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Notice that instead of computing this ratio at each observation, we can solve for 

yn as follows: 
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 (2.6) 

 

Notice that yn is now bounded above and below by parallel lines.  Thus, if the 

total number of defectives at the current position n is between or on these lines, 

yn is said to fall in the “zone of indifference”. Although values of yn may occur 

here, sampling continues within this region, and we therefore do not refer to 

these results as possible outcomes of the test.  We refer to yn values that are 

above the upper boundary line as being in the “rejection region,” for these are the 

outcomes that would lead to rejection of the null hypothesis.  Though we never 

actually accept H0 when values of yn are below the lower bound, instead of 

referring to the region as the “zone of failing to reject,” for simplicity we call it the 

“acceptance region;” values of yn in this region are the outcomes that would lead 

to failing to reject the null hypothesis. 

 Wald [6] has shown that the sequential probability ratio test will eventually 

end in a decision being made with a probability of 1, but in practice, the 

sequential test is truncated at a maximum allowable sample size, nT.  If a 

decision has not been made prior to reaching the nT observation, sampling stops 
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with the nT observation.  Then a decision is made based on the value of 
    
ynT

.  We 

say that sequential testing is a closed procedure because testing is limited to a 

maximum allowable size.  

 Research on SPRT has continued since its first introduction by Wald, and 

selected examples are presented in the following sections of this chapter. 

 

2.2 Mingoti’s Expansion of SPRT 

 Researchers have also been interested in determining the effects that the 

choices of the hypothesized values, π0 and π1, have on the required sample size.  

Mingoti [3] discusses the sample size needed to perform Wald’s sequential 

probability ratio test when items are generated by a process for which the results 

of the inspections are correlated.  It was shown that for values of π0 and π1 which 

are close together, the sample size is larger than that which are found to be 

necessary when using values of π0 and π1 that are more distant.  Additionally, 

when considering correlation (ρ) between the results of the n observations with 

respect to a binary response variable, the sample size increases as the value of 

the correlation coefficient ρ increases.  In fact, when comparing the 

corresponding expected sample size for when ρ = 0 to when 0.5 < ρ < 0.7, the 

expected sample size is three times higher; it is six times higher when ρ > 0.7.  

 

2.3 Iglewicz’s Expansion of SPRT 

 It is most common for sequential procedures to be compared in terms of 

the expected sample size, which is also known as the average sample number 
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(ASN).  This type of comparison does not consider sample size variability and is 

often biased in favor of tests with large sample-size variability.  In terms of 

practicality, large sample-size variability is costly because it often leads to a large 

number of observations being required before the process terminates.  Thus, 

Iglewicz [1] proposes an alternative measure for the ASN, ( ) ( )
( )

,
|

πσ

π
π

n

nEN
D

−
=  

where N is the number of required observations for a fixed sample size test, π is 

the true value of the parameter, E(n|π) is the average sample number, and σn(π) 

is sample-size standard deviation.  D(π) is a measure of the gain obtained by 

using a sequential procedure in place of a fixed sample size procedure.  When 

D(π) is large, the sequential test is efficient, but when D(π) is small, the design is 

not. 

 

2.4 McWilliams’ Expansion of SPRT  

 Due to the lack of published research regarding truncation on the SPRT, 

McWilliams [4] presents two case studies that inspect the influence that the 

choice of truncation parameters have on test performance.  He examines both 

the choice of the truncation sample size and the choice of the truncation rejection 

value R.  When the test reaches the truncation sample size, R identifies how 

many defectives are required for rejection.  Through the explanation of the two 

case studies, both choices appear have a deep impact on test performance.  

McWilliams compares the ASN under both the null hypothesis, π = π0, and the 

alternative hypothesis, π = π1, since the value of the ASN will differ depending 
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upon the true value of π in the population.  Additionally, the author examines the 

amount of variability in required sample size and the value of the error rates.  

McWilliams concludes that adopting an aggressive truncation strategy results in 

a consequences in terms of the error probabilities and the ASN.  The author does 

not generalize his results but expresses that, from his findings, the performance 

of the test over various values of R needs to be considered instead of an 

arbitrary choice of the rejection value.      

 

2.5 Ignatova, Deutsch, and Edwards’ Expansion of SPRT 

 While considering closed sequential or multistage sampling from a lot of N 

items, the goal is to make conclusions about the proportion of defectives, π, in 

the sample.  Instead of using asymptotic results, Ignatova, et. al. [2] show that 

exact inference about the proportion of defectives can be calculated using 

current statistical software.  

 While considering yn to be the number of defectives at stage n, a decision 

is made whether to continue sampling or to end testing by comparing yn to a set 

of boundaries.  Since, in practice, sequential testing is truncated at nT, the 

truncated SPRT is the sole focus for the authors.  For a given outcome, yn, there 

are 








ny

n
 sequences of yn defectives and (n – yn) non-defectives that result in a 

total of yn defectives in n trials.  As an example, consider the case of nT = 10, 

shown in Figure 2.1.  Each number represented in Figure 2.1 represents the 

number of ways to get yn (on the y-axis) defectives in n trials (on the x-axis); we 
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refer to this as a path-count.  Thus, we can consider the number of “paths” to a 

specific point (n, yn) on the graph.  Arbitrarily chosen upper and lower boundaries 

are shown as a reference, but no modifications in the path counts have been 

made as a result of outcomes falling outside of the boundaries.  The unrestricted 

path-counts are found via Pascal’s triangle. 

 

Figure 2.1:  Full Pascal’s Triangle Example 
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 The boundaries must now be taken into account to determine the actual 

number of paths to yn.  An observation occurring outside of the boundaries 

results in sampling to end; thus, the paths extending from that point no longer 

exist.  Based on a modified Pascal’s triangle algorithm, [2] utilizes a path-count 

method to determine the various paths that lead to specific termination points, 

while staying within the boundaries.  A visual example of the path-count method 

can be seen in Figure 2.2.   

  

Figure 2.2:  Modified Pascal’s Triangle Method 
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Note that the solid dots that appear in Figure 2.2 are outcomes for which a 

decision is made and sampling ends.  There are indeed values of yn which exist 

between the lower and upper bounds, but no decision is made in the test and 

sampling continues.  Notice that points (4,0), (6,1), (9,2), and (10,10) all occur 

outside of the upper and lower boundaries shown. Thus, paths extending from 

(4,0), (6,1), and (9,2) do not exist, and the path-count for successive points are 

altered. For example, the path-count to point (5,1) reduced from five in the 

Pascal’s triangle example (Figure 2.1) to four in the modified Pascal’s triangle 

method; the path-count to point (7,2) reduced from 21 to 14.  Additionally, notice 

that some of the paths to the outcomes on the truncation boundary are also 

reduced.  For example points (10,3) and (10,5) reduced from 120 to 62 and 252 

to 242, respectively.  Also, notice that not all path-counts were altered. 

Ignatova, et. al. consider this method for both the binomial and 

hypergeometric cases.  They have crossed into new territory by examining the 

hypergeometric case, as no other authors have pursued it [2].  Now consider the 

case of testing without replacement from a population of a finite size N.  Thus, 

Wald’s boundaries can be determined where yn is a hypergeometric random 

variable.  Similar to what was done in the binomial case in (2.4), the 

hypergeometric density can be substituted for the likelihood functions, giving   
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where D0 is the number of defective items in the population under H0 and D1 is 

the number of defectives in the population under H1. 

Using the criterion B ≤ Λn ≤ A presented by Wald, we have 

 

.
00

11

A

yn

DN

y

D

yn

DN

y

D

B

nn

nn
<










−

−


















−

−









<  (2.8) 

In the pursuit of trying to isolate yn in (2.8), we begin trying to simplify, giving  
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Although it was attempted, isolation of yn could not be determined at this time.

 
 The authors created a function entitled seqbin, using the statistical 

software package R [5], to determine sequential acceptance sampling for binary 

outcomes from a population of size N while sampling with or without 

replacement.  Based on Wald’s SPRT method, a truncation position nT and upper 

and lower boundaries are given as arguments to the function.  The authors 

determined that Wald’s boundaries can be represented as a step boundary 
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because as n increases by one, the value of yn stays the same (if that 

observation is non-defective) or increases by one (if that observation is 

defective).  Sampling continues if yn is between or on the boundaries and n < nT.  

Using the boundary-modified Pascal algorithm, the seqbin function detects all 

possible outcomes (and the number of “paths” possible to reach that outcome) 

where yn is less than the lower bound or greater than the upper bound (i.e., 

where the test does not stop before reaching nT) or where yn is on the truncation 

boundary.  Additionally, the seqbin function calculates the number of defectives 

sampled and calculates the probability distribution of all possible outcomes. 

 We now consider an example of Wald’s truncated SPRT for testing the 

null hypothesis that π0 = 0.2 versus the alternative hypothesis that π1 = 0.8, with 

nT = 10, α = 0.05, and β = 0.10.  Using ( ) αβ /1−=A  and ( )αβ −1/ as defined in 

section 2.1, we have A = 18, and     B ≅ 0.1053.  From (2.6), the lower boundary 

line is given by ln ≅ -0.8119819 + 0.5n, and the upper boundary line is given by un 

≅ 1.0424813 + 0.5n, indicated by the dotted lines in Figure 2.3.  The blue dashed 

line and red line represent step-boundary representations of the Wald upper and 

lower boundaries, respectively.  The points in Figure 2.3 are the possible 

outcomes; notice that points exist in both the rejection region and acceptance 

region.  The points that occur at n = nT = 10 represent the outcomes that occur 

when sampling has not ended before reaching the truncation boundary.  It is 

necessary that each of these points be included in either the rejection region or 

the acceptance region since a decision needs to be made in the test. 
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Figure 2.3: Wald Boundary Example 
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Chapter 3: A Method for Sharpening the Boundaries 

 

3.1 Creating the Bounds 

 Based on the work previously completed by others, the goal of this thesis 

is to determine if there are better boundaries available than the ones which have 

been currently found in [6] and [2].  We would like to consider all possible sets of 

boundaries that exist for a given nT.  We will then use certain criteria to determine 

which of these sets of boundaries is the “best.”  We first consider the set of 

boundaries that are equivalent to the standard hypothesis test: the lower 

boundary is the line yn = 0, and the upper boundary is the line yn = n.  In other 

words, the lower bound includes successive observations of all non-defective 

items and the upper bound includes successive observations of all defective 

items.  Observations here are always in the zone of indifference, so the sample 

size will always reach the truncation value of nT.  This gives boundaries that form 

a triangle, as can be seen in Figure 3.1 for the case when nT = 4. 
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Figure 3.1: Standard Hypothesis Test 

 

 

Starting with this set of “triangle boundaries,” we will find all possible sets 

of boundaries for a given nT.  We then want to determine all sets of upper and 

lower boundaries that have both the Type I and Type II error rates bounded.  

Then we would like to examine under various criteria which set of boundaries is 

indeed the best. 

 For a given nT, we must first generate every possible set of boundaries.  

When a sample is taken at n = 1 (i.e., only the first item is sampled), either zero 

defective items can be observed (x1 = y1 = 0) or one defective item is observed 

(x1 = y1 = 1); thus, every upper and lower boundary is restricted to beginning at 

either y1 = 0 or y1 = 1.  Next, it is required that the step size is non-decreasing 

and of at most one because as the number of observations increases by one, the 

value of the number of defectives (yn) can only either stay the same or increase 
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by one.  Additionally, the upper and lower boundaries are created such that they 

can touch one another but may not cross.     

 To create all sets of possible boundaries, we first create all possible single 

boundaries.  Once this has been done, we combine all possible boundaries such 

that we have lower and upper boundaries that do not cross.  To create all of the 

single boundaries, we first designate the initial boundary as (0,0,0,…,0), a 

boundary of nT zeros (i.e., all nT sampled items are non-defective).  For an index i 

initially set equal to zero, we add 1 to the nT - i position in the boundary, as we 

keep the bounds that are non-decreasing with a step-size of at most 1.  After 1 

can no longer be added to the nT - i  column due to the step-size requirement, i is 

incremented by one, and the process continues of adding 1 to the next position 

to the left until the step-size requirement is no longer fulfilled, and i is again 

incremented.  The process continues successively until the boundary that 

represents a sample of nT defective items, (1,2,3,…,nT), is obtained.  Working 

backwards, we then designate that the bound begins as (1,2,3,…,nT) and for an 

index i initially set equal to zero, we subtract 1 from the nT - i position in the 

boundary as we keep the bounds that are non-decreasing with a step-size of at 

most 1.  After 1 can no longer be subtracted from the nT - i position due to the 

step-size requirement, i is incremented by one, and the process continues of 

subtracting 1 from the next position to the left until the step-size requirement is 

no longer fulfilled, and i is again incremented.  The process continues until the 

(0,0,0,…,0) boundary is obtained.  We then combine all bounds that have been 

found and delete any duplicate boundaries.  Table 3.1 displays the boundaries 



21 

 

generated for nT = 4 via the above described process (before deleting duplicate 

boundaries). 

 

Table 3.1: Possible Single Boundaries for nT = 4 
Building Up  Building Down 

0 0 0 0  1 2 3 4 
0 0 0 1  1 2 3 3 

0 0 1 1  1 2 2 3 
0 0 1 2  1 2 2 2 
0 1 1 2  1 1 2 2 
0 1 2 2  1 1 1 2 
0 1 2 3  1 1 1 1 
1 1 2 3  0 1 1 1 

1 2 2 3  0 0 1 1 
1 2 3 3  0 0 0 1 
1 2 3 4  0 0 0 0 

 
 
 
We then combine this “master” set of boundaries into sets of lower and upper 

boundaries, keeping only the boundaries which do not cross one another.  An R 

[5] function called create.bnds has been created to implement this procedure 

(see Appendix A.2.2).  An example of all possible sets of boundaries for nT = 4 

can be found in Appendix A.1. 

 Once all of the possible sets of boundaries are created, we are left to 

determine which set of boundaries is the “best.”  In practical testing, you will be 

given a maximum allowance for Type I and Type II error rates.  Thus, we must 

reduce the possible set of boundaries by first determining which sets of 

boundaries preserve α, the predetermined maximum allowable Type I error rate.  

To determine if α is preserved, each set of upper and lower nT boundaries is 

considered individually.  A given set of bounds is first evaluated using the seqbin 
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function.    Using this, we then determine which of the outcomes are in the 

rejection region, which are in the acceptance region, and which are on the 

truncation boundary.  Then, assuming that the null hypothesis is true (π = π0), the 

outcomes in the rejection region, if they exist, are used to calculate α.  For each 

outcome in the rejection region, we consider the probability of that outcome 

occurring, ( )( )outout,ynP , assuming π = π0 where nout and yout denote the number 

of items sampled and the number of defectives, respectively, for a given 

outcome.  ( )( )outout,ynP  is found by taking the product of the probability mass 

function and the proportion of paths staying within the boundaries leading to 

( )outout,yn , as shown by [2].  Then, α is calculated by taking the sum of 

( )( )outout,ynP  for each outcome in the rejection region.  If no outcomes appear in 

the rejection region, α = 0 initially.  It is important to note that at this stage, the 

outcomes on the truncation boundary are not yet considered.  Once α has initially 

been calculated for a given set of bounds, we determine if this initial value of α is 

indeed bounded by the pre-specified value.  All sets of boundaries which 

preserve the given Type I error rate are retained, and the remaining sets of 

boundaries are eliminated.  An R [5] function called alpha.bounded has been 

written to determine the sets of boundaries for which the Type I error rate is 

preserved (see Appendix A.2.3).   

 From the remaining sets of boundaries, we must then determine which of 

those sets of bounds also maintain β, the predetermined maximum allowable 

Type II error rate.  To determine if β is maintained, each set of upper and lower 
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α-bounded boundaries for nT must be considered.  First, a given set of α-

bounded bounds is evaluated using the seqbin function.  Using this, we then 

determine which of the outcomes are in the rejection region, which are in the 

acceptance region, and which are on the truncation boundary.  Then, assuming 

that the null hypothesis is true (π = π0), the outcomes in the rejection region, if 

they exist, are used to calculate α as explained above.  If no outcomes appear in 

the rejection region, α = 0 initially. Now the outcomes that occur on the truncation 

boundary need to be considered, and a decision in the test must be made.  

Beginning with the outcome on the truncation point closest to the rejection 

region, we add that outcome to the rejection region as long as α remains 

bounded by our desired significance level.  Each successive outcome on the 

truncation point is added to the rejection region until α is beyond our desired 

bound.  Thus, the remaining truncation outcomes are then added to the 

acceptance region.  Assuming that the alternative hypothesis is true (π = π1), β is 

calculated using the sum of ( )( )outout,ynP for all of the ( )outout,yn  outcomes in the 

acceptance region.  All sets of boundaries which preserve the given Type II error 

rate are retained, and the remaining sets of boundaries are eliminated.  An R [5] 

function called errors.bounded has been written to determine the sets of 

boundaries for which both the Type I and II error rates are preserved (see 

Appendix A.2.4.  

 Once the sets of boundaries that preserve both α and β have been 

collected, we begin trying to discover which set of boundaries is the best for 

given values of nT, π0, and π1.  One way to define which set of boundaries is the 
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best is to identify which set of boundaries minimizes the expected number of 

observations required to make a decision in the hypothesis test.  Since the true 

value of π is unknown, we use a fine grid of 1001 π-values from 0 to 1 in steps of 

0.001 to assist in determining the expected number of total observations required 

to make a decision in the test, denoted as E(n).  Using the value of n at each 

outcome, nout, and the probability of nout over all outcomes, we are able to 

determine the expected number of observations to be 

 ( ) ( ).E
out all

outout∑ ⋅= nPnn  (3.1)  

Once E(n) is calculated using π equal to each of the 1001 values, we determine 

the maximum expected number of observations, max{E(n)}, for each set of α- 

and β-bounded boundaries.  We then determine the best set of boundaries to be 

that which minimizes max{E(n)}.   

  

3.2 Results for the New Bounds 

 The method described in section 3.1 has been conducted for nT = 10, 20, 

30, and 40 in both the binomial and hypergeometric cases with all combinations 

of π0 = 0.1, 0.2, and 0.3 and π1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.  The 

determined total number of possible sets of lower and upper boundaries 

(disregarding conservation of the error rates) is shown in Table 3.2.   

 

Table 3.2: Total Number of Potential Boundaries for nT 
nT Number of Boundary Sets 
10 4,263 
20 58,498 
30 277,208 
40 844,893 
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In the case of the binomial distribution, for each combination of nT, π0, and 

π1 the original Wald boundary has also been calculated as a comparison to 

determine if this new method is indeed an improvement.  R [5] functions written 

to find the Wald boundaries can be found in Appendices A.2.6 and A.2.7.  

Because the likelihood ratio in the hypergeometric case cannot be simplified to 

have parallel upper- and lower-boundary lines as in the binomial case, 

determining a closed form for the Wald upper and lower boundaries has 

limitations as seen in (2.9).  Thus, the Wald boundaries for the hypergeometric 

case have not been considered at the present time. 

 In Tables 3.3 through 3.10, the results for the “best” new boundaries 

appear for both the binomial and hypergeometric distributions.  In the binomial 

case, the corresponding Wald results also appear.  For each π0 and π1 

combination that has been considered, the value of the minimized max{E(n)} is 

given along with the corresponding values of α and β.  The combinations of π0 

and π1 which appear as a shaded box are not possible due to the condition that 

π0 < π1.   The combinations of π0 and π1 which are empty indicate that no 

boundaries where both α and β are bounded were found.  
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Table 3.3: Binomial Results for nT = 10 

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

    
5.9184 
0.0414 
0.0776 

4.3633 
0.0436 
0.0905 

4.3633 
0.0436 
0.0400 

3.3677 
0.0100 
0.0953 

Wald 

α 

β 

    
5.3634 
0.0465 
0.0850 

5.0508 
0.0317 
0.0469 

3.6723 
0.0163 
0.0539 

3.8750 
0.0124 
0.0122 

0.2 

New 

α 

β 

     
7.3085 
0.0447 
0.0589 

5.1506 
0.0404 
0.1000 

3.3677 
0.0400 
0.0953 

Wald 

α 

β 

     
6.4211 
0.0375 
0.0741 

5.3828 
0.0249 
0.0609 

3.4787 
0.0439 
0.0305 

0.3 

New 

α 

β 

      
7.0678 
0.0454 
0.0770 

4.8007 
0.0275 
0.0902 

Wald 

α 

β 

      
5.9209 
0.0387 
0.1173 

4.8460 
0.0398 
0.0365 
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Table 3.4:  Binomial Results for nT = 20 

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

  
13.9015 
0.0472 
0.0811 

10.9703 
0.0467 
0.0653 

9.0002 
0.0475 
0.0641 

6.7246 
0.0481 
0.0900 

6.7246 
0.0481 
0.0400 

5.2201 
0.0100 
0.0961 

Wald 

α 

β 

  
11.9671 
0.0454 
0.0989 

8.4377 
0.0376 
0.0862 

6.0426 
0.0251 
0.0865 

5.4169 
0.0180 
0.0476 

3.7788 
0.0154 
0.0539 

3.9961 
0.0122 
0.0122 

0.2 

New 

α 

β 

    
13.2734 
0.0444 
0.0744 

10.7311 
0.0435 
0.0903 

9.4808 
0.0400 
0.0954 

5.2201 
0.0400 
0.0961 

Wald 

α 

β 

    
10.2606 
0.0420 
0.0723 

7.6652 
0.0297 
0.0601 

6.0148 
0.0148 
0.0616 

3.5478 
0.0435 
0.0305 

0.3 

New 

α 

β 

     
15.1577 
0.0310 
0.1000 

12.0552 
0.0271 
0.0938 

7.4444 
0.0270 
0.0954 

Wald 

α 

β 

     
10.5790 
0.0459 
0.0764 

7.0062 
0.0417 
0.0678 

5.1109 
0.0338 
0.0367 
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Table 3.5: Binomial Results for nT = 30 

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

  
18.1587 
0.0474 
0.0826 

15.2001 
0.0496 
0.0626 

11.9479 
0.0494 
0.0640 

8.6750 
0.0484 
0.0900 

8.6750 
0.0484 
0.0400 

4.0000* 
0.0453 
0.0100 

Wald 

α 

β 

  
13.5398 
0.0441 
0.0874 

8.8907 
0.0304 
0.0867 

6.1424 
0.0245 
0.0640 

5.4412 
0.0179 
0.0476 

3.7812 
0.0154 
0.0539 

3.9999 
0.0122 
0.0122 

0.2 

New 

α 

β 

   
22.0886 
0.0422 
0.0860 

18.6028 
0.0486 
0.0645 

14.4298 
0.0486 
0.0900 

13.0787 
0.0400 
0.0925 

7.0768 
0.0400 
0.0961 

Wald 

α 

β 

   
15.9520 
0.0390 
0.0998 

11.1224 
0.0361 
0.0702 

7.8916 
0.0269 
0.0603 

6.0881 
0.0147 
0.0616 

3.5495 
0.0435 
0.0305 

0.3 

New 

α 

β 

    
22.8769 
0.0471 
0.0956 

19.1538 
0.0476 
0.0908 

17.1158 
0.0270 
0.0978 

10.0460 
0.0270 
0.0992 

Wald 

α 

β 

    
17.3569 
0.0400 
0.1102 

11.5612 
0.0351 
0.0760 

7.2026 
0.0402 
0.0678 

5.1275 
0.0338 
0.0367 
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Table 3.6: Binomial Results for nT = 40 

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

 
28.6824 
0.0486 
0.0943 

22.4856 
0.0478 
0.0786 

19.6224 
0.0489 
0.0625 

15.1803 
0.0499 
0.0640 

10.6011 
0.0491 
0.0900 

10.6011 
0.0491 
0.0400 

5.0000* 
0.0398 
0.1000 

Wald 

α 

β 

 
23.2703 
0.0465 
0.1058 

14.2361 
0.0337 
0.0882 

9.0032 
0.0868 
0.0301 

6.1566 
0.0245 
0.0865 

5.4424 
0.0179 
0.0476 

3.78122 
0.0154 
0.0539 

4.0000 
0.0122 
0.0122 

0.2 

New 

α 

β 

   
28.1028 
0.0476 
0.0674 

24.4068 
0.0463 
0.0640 

18.2877 
0.0500 
0.0900 

16.6321 
0.0146 
0.0616 

8.9333 
0.0400 
0.0997 

Wald 

α 

β 

   
17.1846 
0.0467 
0.0869 

11.3995 
0.0337 
0.0704 

7.9315 
0.0268 
0.0603 

6.0965 
0.0147 
0.0616 

3.5495 
0.0435 
0.0305 

0.3 

New 

α 

β 

    
30.3477 
0.0425 
0.0741 

24.3836 
0.0485 
0.0900 

22.9403 
0.0270 
0.0951 

12.7527 
0.0270 
0.0993 

Wald 

α 

β 

    
18.9418 
0.0460 
0.0768 

11.9050 
0.0317 
0.0762 

7.2356 
0.0401 
0.0678 

5.1286 
0.0338 
0.0367 
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Table 3.7: Hypergeometric Results for nT = 10 

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

    
5.9235 
0.0408 
0.0770 

4.3668 
0.0431 
0.0903 

4.3668 
0.0431 
0.0399 

3.3697 
0.0099 
0.0949 

0.2 

New 

α 

β 

     
7.3149 
0.0439 
0.0581 

5.1550 
0.0402 
0.0992 

3.3697 
0.0398 
0.0949 

0.3 

New 

α 

β 

      
7.0736 
0.0448 
0.0761 

4.8052 
0.0273 
0.0896 

 

 

 

 

Table 3.8: Hypergeometric Results for nT = 20  

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

  
13.7763 
0.0493 
0.0781 

10.8738 
0.0498 
0.0645 

9.0133 
0.0463 
0.0638 

6.7308 
0.0471 
0.0898 

6.7308 
0.0471 
0.0398 

2.0000* 
0.0465 
0.1000 

0.2 

New 

α 

β 

    
13.2908 
0.0430 
0.0736 

10.7414 
0.0422 
0.0901 

9.4899 
0.0398 
0.0941 

5.2247 
0.0398 
0.0955 

0.3 

New 

α 

β 

     
13.1629 
0.0438 
0.0996 

12.0721 
0.0269 
0.0922 

7.3560 
0.0268 
0.0994 
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Table 3.9: Hypergeometric Results for nT = 30 

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

  
18.2001 
0.0452 
0.0817 

14.9808 
0.0497 
0.0622 

11.9721 
0.0477 
0.0637 

8.6850 
0.0472 
0.0898 

8.6850 
0.0472 
0.0398 

4.0000* 
0.0429 
0.1000 

0.2 

New 

α 

β 

   
21.7086 
0.0498 
0.0770 

18.5264 
0.0481 
0.0641 

14.4479 
0.0467 
0.0898 

13.0612 
0.0398 
0.0984 

7.0800 
0.0398 

0.09978 

0.3 

New 

α 

β 

    
22.9104 
0.0448 
0.0936 

19.1758 
0.0455 
0.0905 

17.0431 
0.0268 
0.0985 

10.0671 
0.0268 
0.0977 

 

 

 

 

Table 3.10: Hypergeometric Results for nT = 40 

   π1 
   0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

π0 

0.1 
 

New 

α 

β 

 
28.6847 
0.0483 
0.0898 

22.998 
0.0487 
0.0778 

19.6704 
0.0463 
0.0621 

14.9472 
0.0500 
0.0637 

10.5957 
0.0500 
0.0898 

10.5957 
0.0500 
0.0398 

5.0000* 
0.0378 
0.1000 

0.2 

New 

α 

β 

   
28.1084 
0.0497 
0.0659 

24.4261 
0.0496 
0.0637 

18.2432 
0.0486 
0.0898 

16.6563 
0.0398 
0.0960 

8.9443 
0.0398 
0.0989 

0.3 

New 

α 

β 

    
30.1737 
0.0500 
0.0694 

24.3469 
0.0487 
0.0898 

22.9849 
0.0268 
0.0919 

12.7119 
0.0268 
0.0993 
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 In Tables 3.3 through 3.10, results marked with an asterisk (*) have 

multiple sets of boundaries with the same max{E(n)} and β value when testing π0 

vs. π1.  Thus, the result presented in the table is the set of boundaries that has 

the smallest value of α. 

 Taking note from the results presented in Tables 3.3 through 3.10, it can 

be seen that for nT = 10, the new boundaries found for testing π0 = 0.1 vs. π1 = 

0.7, π0 = 0.1 vs. π1 = 0.9, π0 = 0.2 vs. π1 = 0.8, π0 = 0.2 vs. π1 = 0.9, and π0 = 0.3 

vs. π1 = 0.9 all reduced the minimized max{E(n)} when compared to the Wald 

boundaries for the binomial case.  For nT = 10, the new boundaries found for 

testing π0 = 0.1 vs. π1 = 0.7 reduces the expected number of observations by 

0.6875, which was greatest difference observed. 

 It was not until close to the end of conducting this research that the Wald 

boundaries were calculated and analyzed.  Only after analyzing this summary 

information did we notice a discrepancy between the Wald boundaries and the 

new boundaries.  Because we set out to determine all sets of possible 

boundaries for any given nT, the Wald boundaries should have been included in 

our possible set of boundaries with both α and β bounded.  Thus, the new “best” 

boundaries should be no worse than the Wald boundaries.  When analyzing the 

results, we should have seen that if the minimized max{E(n)} of the new 

boundaries was not smaller than the max{E(n)} of the Wald boundaries, then the 

minimized max{E(n)} should have at most been equal to that of the Wald 

boundaries. 
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 After retracing our steps, it was discovered that although our R functions 

correctly reduce a given collection of lower/upper boundaries to those for which 

both α and β are bounded, the process in which we generated all possible 

boundaries was not exhaustive for all nT.  The idea of creating all possible 

bounds for nT under the conditions that the lower and upper bounds must both 

begin at zero or one, the lower and upper bounds must have a non-decreasing 

step size of at most one, and the lower and upper bounds may touch one another 

but not cross is correct.  Thus, we discovered that not all possible boundaries 

under the three conditions were generated using the algorithm that we created; 

only a subset of the possible boundaries was generated.  Unfortunately, as nT 

grows larger, it appears that more and more boundaries were missed.  When 

creating the method for generating all possible boundaries for nT, we tested the 

method by hand for several small nT values and incorrectly assumed it would 

work for all nT values. 

 Since nT = 10 is the smallest nT value included in this research, we were 

able to find new boundaries with smaller minimized max{E(n)} than their 

corresponding Wald boundaries because enough of the possible boundaries 

were generated.  Thus, we are optimistic that this method actually would sharpen 

many more of the boundaries for the SPRT if all possible boundaries are 

generated.  
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Chapter 4: Simulation Studies 

 

4.1 Simulation Method 

 To test the performance of the boundaries, a simulation study was 

performed for each set of new nT-boundaries that minimized the max{E(n)} for a 

specified π so that we could observe the value of the required sample size and 

the decision made in each simulation.  Because we have two values being tested 

of the known unknown parameter π, π = π0 and π = π1, we performed each 

simulation study for a set of bounds under both assumptions individually, similar 

to what was done in [4].   

 For each set of lower and upper bounds which minimize the max{E(n)}, 

the rejection and acceptance regions are determined and decisions are made 

regarding the outcomes on the truncation boundary.  When sampling from an 

infinite population (or sampling with replacement), sample data is created with 

the specified probability of success, π = π0 or π = π1, by using the binomial 

random variable generator in R with nT trials [5].  The total number of defectives 

at stage n is calculated for 1 ≤ n ≤ nT.  When sampling without replacement, a 

population with a specified size of 1,000 is created with the correct proportion of 

defective and non-defective items.  From the created population we randomly 

sample nT items from the population without replacement (resulting in a 

hypergeometric random variable), and the number of defectives at stage n is 

calculated for 1 ≤ n ≤ nT.  The SPRT is then performing using this generated data 

and the given set of boundaries.  For each simulation setting (a given value of π, 
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a given set of boundaries, and a given distribution), 10,000 samples were 

simulated and analyzed with SPRT. 

 For each set of new boundaries that were determined to minimized the 

max{E(n)}, simulations were run for both π = π0 and π = π1.  We also performed 

simulations for the boundaries where the max{E(n)} was within one of the 

minimized max{E(n)}.  Additionally, when sampling with replacement, the Wald 

boundaries were also studied via simulation.  Since the simulations were 

conducted before the results were recognized as incomplete, 53 Wald 

boundaries, 216 minimized max{E(n)} boundaries, and 1,216 boundaries with a 

max{E(n)} within one of the minimized max{E(n)} were analyzed.  The R [5] 

function created for the simulation study can be found in Appendix A.2.5. 

  

4.2 Simulation Results 

 Although we know that we do not have all possible boundaries, we also do 

not have the Wald boundaries with which to compare in the hypergeometric 

case.  Thus, for each combination of π0 and π1 we present max{E(n)} (calculated 

as described in section 3.1), the simulated average required number of 

observations when π = π0, denoted as ( )n0Ê , and the simulated average required 

number of observations when π = π1, denoted as
 

( )nE1
ˆ .  These results can be 

seen in Tables 4.1 through 4.4.  For max{E(n)} we notice that for π0 = 0.1, as π1 

increases, the value of max{E(n)} either stays the same or decreases; this is 

consistent with the results found in [3].  Considering π0 = 0.2 and the lowest 

satisfying π1 value, max{E(n)} starts at a higher value than the lowest 
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combination of π0 = 0.1 and π1, but the pattern does continue that as π0 and π1 

become more distant, the value of max{E(n)} either decreases or stays the same.  

However, in simulation, this pattern also came very close to holding true for 

( )n0Ê  and ( )nE1
ˆ .  If we had increased the number of simulations, it is possible 

that the pattern would have always held for ( )n0Ê  and ( )n1Ê . 

 

Table 4.1: Hypergeometric Simulation Results for nT = 10 

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  

0.1 

0.6 5.9235 4.7752 4.6734 
0.7 4.3668 3.3625 3.1840 
0.8 4.3668 3.3849 2.8129 

0.9 3.3697 2.1955 3.0085 

0.2 
0.7 7.3149 6.2719 5.6530 
0.8 5.1550 3.6390 4.5566 
0.9 3.3697 2.3866 2.9850 

0.3 
0.8 7.0736 5.5370 6.2295 
0.9 4.8052 2.8088 4.4061 

 

 

 

Table 4.2: Hypergeometric Simulation Results for nT = 20 

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  

0.1 

0.4 13.7763 12.2465 9.7108 

0.5 10.8738 9.1128 7.5435 

0.6 9.0133 7.3063 6.2372 

0.7 6.7308 5.1811 5.1907 
0.8 6.7308 5.1525 4.7787 
0.9 2.0000* 1.9029 1.9957 

0.2 

0.6 13.2908 11.1347 10.8846 
0.7 10.7414 8.3162 9.1039 

0.8 9.4899 7.1898 7.9287 
0.9 5.2247 3.6038 4.5873 

0.3 
0.7 13.1629 11.0000 11.6911 
0.8 12.0721 8.3228 10.8826 

0.9 7.3560 4.1959 6.7192 
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Table 4.3: Hypergeometric Simulation Results for nT = 30  

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  

0.1 

0.4 18.2001 14.8325 13.8146 

0.5 14.9808 12.3564 9.3850 

0.6 11.9721 9.9179 7.8238 

0.7 8.6850 6.8775 6.5478 
0.8 8.6850 6.8910 5.9896 
0.9 4.0000* 3.1406 3.9953 

0.2 

0.5 21.7086 19.0467 17.2162 

0.6 18.5264 15.7705 14.0164 
0.7 14.4479 11.905 11.7568 
0.8 13.0612 9.6042 11.2064 
0.9 7.0800 4.7981 6.3865 

0.3 

0.6 22.9104 20.6262 20.2472 
0.7 19.1758 16.1491 16.8933 
0.8 17.0431 11.1249 15.5119 
0.9 10.0671 5.5498 9.1159 

 

 

 

Table 4.4: Hypergeometric Simulation Results for nT = 40 

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  

0.1 

0.3 28.6847 25.4916 22.0905 

0.4 22.4998 18.8053 15.9250 

0.5 19.6704 16.1707 13.0795 

0.6 14.9472 12.3363 9.3464 
0.7 10.5957 8.6470 7.8012 
0.8 10.5957 8.6645 7.1912 
0.9 5.0000* 3.9628 4.9896 

0.2 

0.5 28.1084 25.0704 22.4594 
0.6 24.4261 20.8494 18.6746 
0.7 18.2432 15.4056 14.3170 
0.8 16.6563 11.9775 14.7202 
0.9 8.9443 6.0116 7.9092 

0.3 

0.6 30.1737 27.005 25.3294 
0.7 24.3469 21.3139 20.6702 
0.8 22.9849 15.2466 20.2881 
0.9 12.7119 6.9240 11.4694 
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In Tables 4.2 through 4.4, results marked with an asterisk (*) in the 

max{E(n)} column have multiple sets of boundaries with the same max{E(n)} 

when testing π0 vs. π1.  Thus, the result presented in the table is for one such set 

of boundaries. 

Since we had the available Wald boundaries for comparison in the 

binomial case, we also considered max{E(n)}, ( )n0Ê ,
 
and ( )n1Ê  for each 

combination of π0 and π1 using the Wald boundaries, as seen in Tables 4.5 

through 4.8.  In Tables 4.7 and 4.8, results marked with an asterisk (*) in the 

max{E(n)} column have multiple sets of boundaries with the same max{E(n)} 

when testing π0 vs. π1.  Thus, the result presented in the table is for one such set 

of boundaries. 

 

Table 4.5: Binomial Simulation Results for nT = 10 

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  
Wald 

( ){ }nEmax  

Wald 

( )n0Ê  

Wald 

( )n1Ê  

0.1 

0.6 5.9184 4.7578 4.6637 5.3634 4.0088 4.1648 
0.7 4.3633 3.3324 3.2164 5.0508 3.6937 3.6030 
0.8 4.3633 3.3536 2.7948 3.6723 2.4633 2.8029 
0.9 3.3677 2.2035 3.0484 3.8750 2.4292 2.4408 

0.2 
0.7 7.3085 6.2659 5.6650 6.4211 4.7574 5.2695 
0.8 5.1506 3.6512 4.5939 5.3828 3.1551 4.4190 
0.9 3.3677 2.4059 3.0185 3.4787 2.4989 2.5743 

0.3 
0.8 7.0678 5.5660 6.2276 5.9209 3.9921 4.9784 

0.9 4.8007 2.7889 4.4095 4.8460 3.0866 3.9172 
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Table 4.6: Binomial Simulation Results for nT = 20 

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  
Wald 

( ){ }nEmax  

Wald 

( )n0Ê  

Wald 

( )n1Ê  

0.1 

0.4 13.9015 12.1465 9.9026 11.9671 9.3658 9.0282 

0.5 10.9703 9.1120 7.5400 8.4377 6.0968 5.8014 
0.6 9.0002 7.3055 6.2129 6.0426 4.1488 4.2644 
0.7 6.7246 5.1944 5.1775 5.4169 3.7271 3.5657 
0.8 6.7246 5.2175 4.7963 3.7788 2.4501 2.8090 
0.9 5.2201 3.2995 4.6401 3.9961 2.4436 2.4404 

0.2 

0.6 13.2734 11.1300 10.9368 10.2606 7.1108 7.5998 
0.7 10.7311 8.3850 9.0972 7.6652 4.8856 5.5753 
0.8 9.4808 7.1704 8.1960 6.0148 3.2472 4.4810 
0.9 5.2201 3.5953 4.6090 3.5479 2.5255 2.5746 

0.3 
0.7 15.1577 11.4480 13.8293 10.5790 6.8894 8.5362 
0.8 12.0552 8.2872 10.7970 7.0062 4.1630 5.2008 
0.9 7.4444 4.1881 6.7286 5.1109 3.1001 3.9475 

 

 

 

Table 4.7: Binomial Simulation Results for nT = 30 

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  
Wald 

( ){ }nEmax  

Wald 

( )n0Ê  

Wald 

( )n1Ê  

0.1 

0.4 18.1587 14.9030 13.8616 13.5398 9.6654 9.4107 

0.5 15.2001 12.5394 9.4200 8.8907 6.0493 5.8684 
0.6 11.9479 9.8374 7.8029 6.1424 4.1344 4.2086 
0.7 8.6750 6.8629 6.5122 5.4412 3.7383 3.5784 
0.8 8.6750 6.8209 6.0007 3.7812 2.4638 2.8200 
0.9 4.0000* 3.2063 4.0035 4.0000 2.4322 2.4498 

0.2 

0.5 22.0886 19.1325 18.6147 15.9520 11.0599 12.2338 
0.6 18.6028 15.8078 13.9482 11.1224 7.2013 7.7357 
0.7 14.4298 11.7950 11.7403 7.8916 4.9505 5.6244 
0.8 13.0787 9.6233 11.2948 6.0881 3.2038 4.4769 
0.9 7.0768 4.8042 6.1967 3.5495 2.4802 2.5681 

0.3 

0.6 22.8769 20.6655 20.1917 17.3569 12.4320 13.6627 
0.7 19.1538 16.2480 16.9735 11.5612 6.9737 8.5800 
0.8 17.1158 11.1155 15.4351 7.2026 4.1674 5.2306 
0.9 10.0460 5.5777 9.2890 5.1275 3.0758 3.9457 

 

 

 
 
 
 



40 

 

Table 4.8: Binomial Simulation Results for nT = 40 

π0 π1 ( ){ }nEmax  ( )n0Ê  ( )n1Ê  
Wald 

( ){ }nEmax  

Wald 

( )n0Ê  

Wald 

( )n1Ê  

0.1 

0.3 28.6824 25.7380 22.0599 23.2703 17.5602 17.521 

0.4 22.4856 18.6465 16.1252 14.2361 9.8535 9.4997 
0.5 19.6224 16.0586 13.1422 9.0032 6.1039 5.9216 
0.6 15.1803 12.7834 9.3408 6.1566 4.1556 4.2586 
0.7 10.6011 8.7007 7.7807 5.4424 3.7168 3.6251 
0.8 10.6011 8.5831 7.2095 3.7812 2.4409 2.8022 
0.9 5.0000* 3.6924 4.9796 4.0000 2.4264 2.4216 

0.2 

0.5 28.1028 24.9114 22.4476 17.1846 11.3336 12.4192 
0.6 24.4068 20.7344 18.7275 11.3995 7.3563 7.7136 
0.7 18.2877 15.3981 14.3096 7.9315 4.8828 5.6380 
0.8 16.6321 11.9965 15.1101 6.0965 3.2199 4.5035 

0.9 8.9333 6.0203 7.8245 3.5495 2.4921 2.5740 

0.3 

0.6 30.3477 27.2511 26.4759 18.9418 12.5169 14.0898 
0.7 24.3836 21.0709 20.7718 11.9050 6.9735 8.7327 
0.8 22.9403 15.2968 20.5287 7.2356 4.2092 5.2435 

0.9 12.7527 6.9587 11.8276 5.1286 3.1058 3.9234 
 
 
 

We observed that the same pattern described in [3] was exhibited in the 

binomial case for both the new boundaries and the Wald boundaries, as it was in 

the hypergeometric case.  After closer observation, we also found that for a few 

of the new boundaries, ( )n0Ê ,
 
and ( )n1Ê  were smaller than that of their Wald 

counterparts.  These instances are highlighted in Tables 4.5 through 4.8.  To be 

exact, ( )n0Ê
 
was found to be better on four occurrences, and ( )n1Ê  was found to 

be better on three occurrences, all occurring when nT = 10.  These instances 

correspond to the new boundaries that were found to be better than the Wald 

boundaries, described in section 3.2. 

For an additional qualification of what could be considered as the best 

boundary, we have also considered the boundaries that in simulation minimize 
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the variability in required sample size, similar to [1].   Since only five new sets of 

boundaries were found to have minimized max{E(n)} in comparison to the Wald 

boundaries, we only present further results for the five cases where an 

improvement was found.  However, many more simulation results are available 

from the author.   

 Figures 4.1 through 4.5 detail the results for the combinations of π0 and π1 

for which an improvement in maximum expected sample size was found (with the 

new boundaries labeled as “Min”).  For each set of boundaries, the horizontal 

dotted line extends one standard deviation above and below ( )n0Ê , which is 

indicated by the open circle.  Similarly, the solid horizontal line extends one 

standard deviation above and below ( )n1Ê , which is indicated by the open circle.  

Additionally, the max{E(n)} is presented as a solid circle.  Since we also 

conducted simulations for the sets of boundaries whose max{E(n)} is within one 

of the minimized max{E(n)} value, we present results for those observations as 

well.  These boundaries are labeled as “Min +1” in the figures, and the subscript 

serves as a signifying index for each considered set of boundaries for the 

hypotheses being tested.  
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Figure 4.1: Binomial nT = 10 Simulation with π0 = 0.1 and π1 = 0.7 

 

 

 In Figure 4.1, we notice that under the null hypothesis (π0 = 0.1), based 

upon the simulation performed, all new boundaries considered tend to require a 

smaller sample size to make a decision in the test than Wald’s boundaries; 

however, less variation is observed in the new boundaries under the alternative 

hypothesis (π1 = 0.7).  To the contrary, under the alternative hypothesis, the use 

of Wald’s boundaries tends to require a smaller sample size than the new 

boundaries (except for the new “best” boundary), and the null case exhibits less 
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variation for the Wald boundaries.  Additionally, all new max{E(n)} (except for Min 

+11) are less than max{E(n)} for Wald. 

Figure 4.2 demonstrates that although max{E(n)} has been reduced with 

the new boundaries, under simulation Wald’s boundaries result in more 

consistency in that it has small variation under both the null (π0 = 0.1) and 

alternative hypotheses (π1 = 0.9).  In simulation using the new “best” bounds and 

the bounds whose max{E(n)} are within one, under the null hypothesis all but one 

(Min +17) has less variation than under Wald’s simulation.   

 

Figure 4.2: Binomial nT = 10 Simulation with π0 = 0.1 and π1 = 0.9 
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Figure 4.3 shows that although max{E(n)} is reduced, Wald appears again 

to be more consistent under both the null (π0 = 0.2) and alternative (π1 = 0.8) 

hypotheses.  Also, max{E(n)} for the new bounds is the only max{E(n)} value 

which is less than Wald’s.  Figures 4.4 and 4.5 demonstrate that under the 

alternative hypothesis (π1 = 0.9), much more variability is shown in the new “best” 

bounds than in Wald’s boundaries.  

      

Figure 4.3: Binomial nT = 10 Simulation with π0 = 0.2 and π1 = 0.8 
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Figure 4.4: Binomial nT = 10 Simulation with π0 = 0.2 and π1 = 0.9 
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Figure 4.5: Binomial nT = 10 Simulation with π0 = 0.3 and π1 = 0.9 
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Chapter 5: Conclusion and Future Work 

  

 For this thesis, we set out to determine a possible method to reduce the 

expected number of observations needed in a sequential probability ratio test.  

The goal was to generate all possible boundaries for a given value of nT that 

preserve a given set of error rates (α,β).  We conducted this research on binary 

data for binomial and hypergeometric random variables.  In the binomial case, 

we were able to compare the newly created boundaries to the boundaries 

established by [6].  In some cases, we were able to find boundaries that reduced 

the expected number of observations for making a decision in the test from that 

which is required by the standard Wald boundaries.  Although we believe that the 

overall method that we intended to use is correct, we discovered that there was a 

problem in one of the algorithms developed to implement this method.  

Additionally, we were able to conduct simulation studies on the boundaries to 

estimate max{E(n)} and the amount of variability of the required sample size in 

practice, under both the null hypothesis and the alternative hypothesis.    

 In the future, the first thing that needs to be determined is a correct 

algorithm for generating all possible boundaries for nT.  Although the idea of 

considering all possible boundaries with the conditions of beginning at zero or 

one, have a step size of at most one, and being allowed to touch one another but 

not cross is correct, the method that was used to implement it appears to be 

incomplete and not exhaustive.  The overall method that has been developed in 

this research for sharpening the boundaries is hopeful, so the generation of all 
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possible boundaries should be a top priority.  Additionally, the efficiency of the 

correct R functions that have been created (alpha.bounded and errors.bounded) 

needs to be improved.  At this time, we were only able to consider nT as large as 

40 because some of these functions take days to run on a standard computer.  

Now knowing that not even all of the possible boundaries were considered, it is 

unimaginable how long it would have taken to run had an exhaustive list of 

boundaries been used.  

 Alternative areas to explore in this research are also available.  Since all 

data that we have considered has been binary, we could explore testing data that 

is not binary.  Additionally, we could consider testing composite alternative 

hypotheses (<, >, ≠) as opposed to the simple alternative that was considered in 

this research.  Also, since little to no research has been conducted on the SPRT 

in the hypergeometric case, there is much left to consider, including the Wald 

boundaries.  We could also take direction from [3] and explore testing in the 

situation of correlated binary data. 

 In conclusion, we have explored the sequential probability ratio test 

beginning with Wald’s first introduction of the test.  We also examined 

expansions on the SPRT that other authors have considered.  Utilizing the 

research presented in [2], we have presented and attempted to develop a 

potential new method for sharpening the boundaries of the sequential probability 

ratio test. 
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APPENDIX 

A.1 Boundaries for nT = 4  
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A.2 R Code 

A.2.1 check.step() 

Purpose of Function: 
Check the step size of the boundaries to ensure that the step sizes are non-
decreasing and are at most one. 
 
Input: 
test Boundaries which are to be tested.  

 
Output: 
flag Value of 1 indicates that the set of boundaries does not meet the 

step size requirement.  Value of 0 indicates that the set of 
boundaries does meet the step size requirement. 

 
Function: 
check.step<-function(test) 

{ 

i<-1 

flag<-0 

 

while(flag==0 && i < length(test)) 

{ 

 if((test[i+1]-test[i])>1 | (test[i+1]-test[i])<0) 

  flag<-1 

 i<-i+1 

} 

flag 

} 



61 

 

A.2.2 create.bnds() 
 

Purpose of Function: 
Create all possible sets of lower and upper bounds (for a specified nT) which 
either begin at zero or one, have steps that are non-decreasing and of size at 
most one, and (possibly) touch one another but do not cross. 
 
Input: 
nT Value of the maximum allowable sample size.  
 
Output: 
List containing the following matrices, rows of which correspond to one another: 
lbnd.mat Matrix of all possible lower boundaries for specified nT. 

ubnd.mat Matrix of all possible upper boundaries for specified nT. 
 
Function: 
create.bnds<-function(nT) 

{ 

### A matrix to hold the upper and lower bounds  

bnd.mat<-matrix(0,nrow=1,ncol=nT)    

  

### Bnd.now begins as (0,0,0,...,0) 

bnd.now<-rep(0,nT)   

 

### Designates that bnd.now is no more than (1,2,3,...,nT) 

while(sum(bnd.now==(1:nT)) != nT)  

 

{ 

flag<-0 

i<-0 

 

while(flag==0) 

{ 

bnd.new<-bnd.now 

bnd.new[nT-i]<-bnd.new[nT-i]+1 ### Adds 1 to the nT-i column 

 

if(check.step(bnd.new)==0) 

{ 

 ### Combines bounds that are non-decreasing with step- size  

  of at most 1  

 bnd.mat<-rbind(bnd.mat,bnd.new)  

 bnd.now<-bnd.new 

 flag<-1 

} # end of if(check.step(bnd.new)==0) 

i<-i+1 

} # end of while(flag==0) 

} # end of while(sum(bnd.now==(1:nT)) != nT) 

 

### Bnd.now begins as (1,2,3,..,nT) 

bnd.now<-(1:nT)       
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### Designates that bnd.now is no less than (0,0,0,...,0) 

while(sum(bnd.now) !=0)     

{ 

flag<-0 

i<-0 

 

while(flag==0) 

{ 

bnd.new<-bnd.now 

bnd.new[nT-i]<-bnd.new[nT-i]-1 ### Subtracts 1 from the nT-i 

 column 

 

if(check.step(bnd.new)==0) 

{ 

 ### Combines bounds that are non-decreasing with step-size  

  of at most 1 

 bnd.mat<-rbind(bnd.mat,bnd.new)  

 bnd.now<-bnd.new 

 flag<-1 

} # end of if(check.step(bnd.new)==0) 

 

i<-i+1 

 

} # end of while(flag==0) 

} # end of while(sum(bnd.now) != 0) 

 

 

 

### Combines all bounds found by adding/subtracting 1 to column 

 nT-i and deletes duplicates 

bnd.list<-bnd.mat[!duplicated(bnd.mat),]  

row.names(bnd.list)<-1:nrow(bnd.list) 

 

lbnd.mat<-matrix(NA,ncol=nT) 

ubnd.mat<-matrix(NA,ncol=nT) 

 

for(i in 1:nrow(bnd.list)) 

{ 

 for(j in 1:nrow(bnd.list)) 

 

 { 

  if(sum(bnd.list[i,]<=bnd.list[j,])==nT) 

  { 

   ### Creates matrix of lower bounds  

   lbnd.mat<-rbind(lbnd.mat,bnd.list[i,])    

 

   ### Creates matric of upper bounds    

   ubnd.mat<-rbind(ubnd.mat,bnd.list[j,])    

  } # end of if(sum(bnd.list[i,]<=bnd.list[j,])==nT) 

 } # end of for(j in 1:nrow(bnd.list)) 

} # end of for(i in 1:nrow(bnd.list)) 
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lbnd.mat<-lbnd.mat[-1,] 

ubnd.mat<-ubnd.mat[-1,] 

 

out<-list(lbnd.mat, ubnd.mat) 

names(out)<-c("lbnd.mat","ubnd.mat") 

out 

} 
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A.2.3 alpha.bounded() 

Purpose of Function: 
Reduce the list of all possible sets of lower and upper bounds (for a specified nT) 

such that the Type I error rate, α, is preserved. 
 
Input: 
nT Value of the maximum allowable sample size.  

lbnd.mat Matrix of lower boundaries to be tested. 

ubnd.mat Matrix of upper boundaries to be tested. 

p0 Value of null proportion to be tested. 

target.a Value of target Type I error rate. Default value is “0.05”. 

dist Distribution under which to test the boundaries. Default value is 
“binom”. 

 
Output: 
List containing the following matrices, rows of which correspond to one another: 

lbnds.a.bounded  Matrix of lower boundaries which preserve α. 

ubnds.a.bounded Matrix of upper boundaries which preserve α. 
 
Function: 
alpha.bounded<-

function(nT,lbnd.mat,ubnd.mat,p0,target.a=0.05,dist="binom") 

{ 

          

numbounded<-0 

alphabounded<-rep(NA,nrow(lbnd.mat)) 

lbnds.bounded<-matrix(NA,nrow=1,ncol=nT) 

ubnds.bounded<-matrix(NA,nrow=1,ncol=nT) 

 

#### the following will be done for all possible bounds for nT 

for(j in 1:nrow(lbnd.mat))   

{ 

#### run seqbin for current set of bounds 

lbnd.now<-lbnd.mat[j,] 

ubnd.now<-ubnd.mat[j,] 

out<-seqbin.nT(nT,lbnd.now,ubnd.now,plotit=F,dist=dist) 

outcomes<-out$outcomes 

probs<-out$probs 

 

trunc<-outcomes[,1]==nT 

lower<-rep(NA,nrow(outcomes)) 

upper<-rep(NA,nrow(outcomes)) 

 

#### determine which outcomes are in the rejection/acceptance   

 regions and which are at the truncation 

for(i in 1:nrow(outcomes)) 

{ 
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 lower[i]<-outcomes[i,2] < lbnd.now[outcomes[i,1]] 

 upper[i]<-outcomes[i,2] > ubnd.now[outcomes[i,1]] 

 if(lower[i]==T)  

  trunc[i]<-F 

 if(upper[i]==T)  

  trunc[i]<-F 

} # end of for(i in 1:nrow(outcomes)) 

 

lowlength<-sum(lower) 

trlength=sum(trunc) 

uplength=sum(upper) 

 

#### use values in rejection region (if they exist) to calculate   

 alpha 

if(uplength>0)  

 alpha<-sum(probs[nrow(outcomes):(nrow(outcomes)-

 uplength+1),(p0*1000+1)]) else alpha<-0 

 

#### determine if alpha is bounded 

if(alpha>target.a) 

 alphabounded[j]<-F else alphabounded[j]<-T 

 

#### save the bounds for which alpha is bounded 

if(alphabounded[j]==T) 

{ 

 lbnds.bounded<-rbind(lbnds.bounded,lbnd.mat[j,]) 

 ubnds.bounded<-rbind(ubnds.bounded,ubnd.mat[j,]) 

 numbounded<-numbounded+1 

} # end of if(alphabounded[j]==T) 

} # end of for(j in 1:nrow(lbnd.mat)) 

 

#### return the list of boundaries for which alpha is bounded 

out=list(lbnds.bounded[-1,],ubnds.bounded[-1,]) 

names(out)<-c("lbnds.a.bounded", "ubnds.a.bounded") 

out 

} # end of alpha.bounded 
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A.2.4 errors.bounded() 

Purpose of Function: 
Reduce a list sets of lower and upper bounds (for a specified nT) such that not 

only the Type I error rate, α, is preserved, but also the Type II error rate, β. 
 
Input: 
nT Value of the maximum allowable sample size.  

lbnd.mat Matrix of lower boundaries to be tested. 

ubnd.mat Matrix of upper boundaries to be tested. 

p0 Value of null proportion to be tested. 

p1 Value of alternative proportion to be tested. 

target.a Value of target Type I error rate. Default value is “0.05”. 

target.b Value of target Type I error rate. Default value is “0.10”. 

dist Distribution under which to test the boundaries. Default value is 
“binom”. 

 
Output: 
List containing the following objects (rows of which correspond): 

lbnds Matrix of possible lower boundaries with both α and β bounded. 

ubnds Matrix of possible upper boundaries with both α and β bounded. 

alphas Vector containing α for each set of boundaries. 

betas Vector containing β for each set of boundaries. 

maxEn Vector containing max{E(n)} for each set of boundaries. 
 
Function: 
errors.bounded<-

function(nT,lbnd.mat,ubnd.mat,p0,p1,target.a=0.05,target.b=0.10,d

ist="binom") 

{ 

numbounded<-nrow(lbnd.mat) 

 

betas<-rep(NA,numbounded) 

alphas<-rep(NA,numbounded) 

bbounded<-rep(NA,numbounded) 

maxEn<-rep(NA,numbounded) 

 

#### the following will be done for all bounds for nT for which   

 alpha is bounded 

for(j in 1:numbounded)  

{ 

lbnd.now<-lbnd.mat[j,] 

ubnd.now<-ubnd.mat[j,] 

 

#### run seqbin for current set of bounds 

out<-seqbin.nT(nT,lbnd.now,ubnd.now,plotit=F,dist=dist) 

En<-out$outcomes[,1]%*%out$probs 

maxEn[j]<-max(En)    #### find the max[(E(n)] for this set of  
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     boundaries 

outcomes<-out$outcomes 

probs<-out$probs 

 

trunc<-outcomes[,1]==nT 

lower<-rep(NA,nrow(outcomes)) 

upper<-rep(NA,nrow(outcomes)) 

 

#### determine which outcomes are in the rejection/acceptance 

 regions and which are at the truncation 

for(i in 1:nrow(outcomes)) 

{ 

 lower[i]<-outcomes[i,2] < lbnd.now[outcomes[i,1]] 

 upper[i]<-outcomes[i,2] > ubnd.now[outcomes[i,1]] 

 if(lower[i]==T) trunc[i]<-F 

 if(upper[i]==T) trunc[i]<-F 

} # end of for(i in 1:nrow(outcomes)) 

 

lowlength<-sum(lower) 

trlength=sum(trunc) 

uplength=sum(upper) 

 

if(uplength>0) 

{ 

 abounded<-T 

 i<-nrow(outcomes)-uplength+1 

 

 #### add points on truncation to rejection region, as long 

 as alpha stays bounded 

 while((abounded == T) && (i > lowlength)) 

 { 

  if(sum(probs[nrow(outcomes):i,(p0*1000+1)])  

  <= target.a) 

  { 

   alpha<-sum(probs[nrow(outcomes):i,(p0*1000+1)]) 

    i<-i-1 

  } else abounded<-F   # end of     

  if(sum(probs[nrow(outcomes):i,(p0*1000+1)])  

  <= target.a) 

 } # end of while((abounded == T) && (i > lowlength)) 

} # end of if(uplength>0) 

 

if(uplength==0) 

{ 

 abounded<-T 

 i<-nrow(outcomes) 

  

 #### add points on truncation to rejection region, as long 

 as alpha stays bounded 

 while((abounded == T) && (i > lowlength)) 

 { 
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  if(sum(probs[nrow(outcomes):i,(p0*1000+1)])  

  <= target.a) 

  { 

   alpha<-sum(probs[nrow(outcomes):i,(p0*1000+1)]) 

    i<-i-1 

  } else abounded<-F # end of      

  if(sum(probs[nrow(outcomes):i,(p0*1000+1)])  

  <= target.a) 

 } # end of while((abounded == T) && (i > lowlength)) 

} # end of if(uplength==0) 

 

#### calculate beta using all point in acceptance region and   

 remaining truncation points 

beta<-sum(probs[1:i,(p1*1000+1)]) 

#### determine if beta is bounded; if yes, save results 

if(beta<=target.b) 

{ 

 bbounded[j]<-T 

 betas[j]<-beta 

 alphas[j]<-alpha 

} else bbounded[j]<-F # end of if(beta<=target.b) 

} # end of for(j in 1:numbounded) 

 

#### save results for only the sets that have both alpha and beta 

 bounded 

if(sum(is.na(alphas))>0) 

{ 

 lbnds.bounded.out<-lbnd.mat[-which(is.na(alphas)),] 

 ubnds.bounded.out<-ubnd.mat[-which(is.na(alphas)),] 

 betas.out<-betas[-which(is.na(alphas))] 

 alphas.out<-alphas[-which(is.na(alphas))] 

 maxEn.out<-maxEn[-which(is.na(alphas))] 

} # end of if(sum(is.na(alphas))>0) 

 

#### save results for all sets of bounds (because alpha and beta 

 are bounded for all in this case) 

if(sum(is.na(alphas))==0) 

{ 

 lbnds.bounded.out<-lbnd.mat 

 ubnds.bounded.out<-ubnd.mat 

 betas.out<-betas 

 alphas.out<-alphas 

 maxEn.out<-maxEn 

} # end of if(sum(is.na(alphas))==0) 

 

#### return results for boundaries that have both error rates 

 bounded 

out=list(lbnds.bounded.out,ubnds.bounded.out,alphas.out,betas.out

,maxEn.out) 

names(out)<-c("lbnds","ubnds","alphas","betas","maxEn") 

out 

} # end of errors.bounded 
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A.2.5 sim.sprt() 

Purpose of Function: 
Conduct a specified number of simulations on a given set of boundaries to 
determine the decision made in the test and the required sample size for each 
simulation. 
 
Input: 
nT Value of the maximum allowable sample size.  

p Value of proportion of defectives in the population.  

p0 Value of null to be tested. 

lbnd Lower boundary to be used. 

ubnd Upper boundary to be used. 

sim.size Value of the number of simulations to conduct.  Default value is 
“10000”. 

dist Distribution under which to simulate the data.  Default value is 
“binom”. 

pop.size Value of size of the population.  Default value is “1000”.  This 
argument is only used when dist=”hyper”. 

 
Output: 
List containing the following objects: 
decision Vector of decisions made for each run of the simulation.  Value = 1 

if decision was made to fail to reject the null hypothesis, and value 
= 0 if decision was made to reject the null hypothesis. 

n.stop Vector of the required sample size to make a decision in the test for 
each run of the simulation. 

 
Function: 
sim.sprt<- 

function(nT,p,p0,lbnd,ubnd,sim.size=10000,dist="binom", 

pop.size=1000) 

{ 

decision<-rep(NA,sim.size) ########## accept = 1; reject = 0 

n.stop<-rep(NA,sim.size) 

 

#### get seqbin results 

out<-seqbin.nT(nT,lbnd,ubnd,plotit=F,dist=dist) 

outcomes<-out$outcomes 

probs<-out$probs 

 

trunc<-outcomes[,1]==nT 

lower<-rep(NA,nrow(outcomes)) 

upper<-rep(NA,nrow(outcomes)) 

 

#### determine which outcomes are in the rejection/acceptance 

 regions and which are at the truncation 

for(i in 1:nrow(outcomes)) 
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{ 

 lower[i]<-outcomes[i,2] < lbnd[outcomes[i,1]] 

 upper[i]<-outcomes[i,2] > ubnd[outcomes[i,1]] 

 if(lower[i]==T)  

  trunc[i]<-F 

 if(upper[i]==T)  

  trunc[i]<-F 

} # end of for(i in 1:nrow(outcomes)) 

 

lowlength<-sum(lower) 

trlength=sum(trunc) 

uplength=sum(upper) 

 

#### use values in rejection region (if they exist) to calculate 

 alpha 

if(uplength>0) 

{ 

 abounded<-T 

 i<-nrow(outcomes)-uplength+1 

 

 #### add points on truncation to rejection region, as long  

      as alpha stays bounded 

 while((abounded == T) && (i > lowlength)) 

 { 

  if(sum(probs[nrow(outcomes):i,(p0*1000+1)]) <= 0.05) 

  { 

   alpha<-sum(probs[nrow(outcomes):i,(p0*1000+1)]) 

    i<-i-1 

  } else abounded<-F    

  # end of if(sum(probs[nrow(outcomes):i,(p0*1000+1)])  

  <= target.a) 

 

 } # end of while((abounded == T) && (i > lowlength)) 

 

} # end of if(uplength>0) 

 

if(uplength==0) 

{ 

 abounded<-T 

 i<-nrow(outcomes) 

  

 #### add points on truncation to rejection region, as long  

      as alpha stays bounded 

 while((abounded == T) && (i > lowlength)) 

 { 

  if(sum(probs[nrow(outcomes):i,(p0*1000+1)]) <= 0.05) 

  { 

   alpha<-sum(probs[nrow(outcomes):i,(p0*1000+1)]) 

    i<-i-1 

  } else abounded<-F   

  # end of if(sum(probs[nrow(outcomes):i,(p0*1000+1)])  

  <= target.a) 
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 } # end of while((abounded == T) && (i > lowlength)) 

} # end of if(uplength==0) 

 

for(j in 1:sim.size) 

{ 

 if(dist=="binom") 

 { 

  #### create sample data with specified probability of  

  success 

  x<-cumsum(rbinom(nT,1,p))  #### cumsum calculates "yn" 

 } # end of if(dist=="binom") 

 if(dist=="hyper") 

 { 

  #### create a "population" with the correct proportion 

  of defectives/nondefectives 

  population<-c(rep(1,p*pop.size),rep(0,(1-p)*pop.size)) 

  #### randomly sample from the population without   

  replacement (making it hypergeometric) 

  x<-cumsum(sample(population,nT,replace=F))   

  #### cumsum calculates "yn" 

 } # end of if(dist=="hyper") 

 

 done<-0 

 k<-1 

 

 #### continue "sampling" until a decision is made 

 while(done==0 && k<nT) 

 { 

  #### determine if in the acceptance region 

  if(x[k] < lbnd[k]) 

  { 

   done<-1 

   n.stop[j]<-k 

   decision[j]<-1 

  } # end of if(x[k] < lbnd[k]) 

 

  #### determine if in the rejection region 

  if(x[k] > ubnd[k]) 

  { 

   done<-1 

   n.stop[j]<-k 

   decision[j]<-0 

  } # end of if(x[k] > ubnd[k]) 

  k<-k+1 

 } # end of while(done==0 && k<nT) 

 

 

 ##### make a decision if sampling reached maximum sample 

 size 

 if(is.na(n.stop[j])) 

 { 

  n.stop[j]<-nT 
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  if(x[nT]>=outcomes[i+1,2]) decision[j]<-0 

  if(x[nT]<outcomes[i+1,2]) decision[j]<-1 

 } # end of if(is.na(n.stop[j])) 

} # end of for(j in 1:sim.size) 

 

 

#### return decision and needed sample size for all sim.size 

simulations 

out<-list(decision,n.stop) 

names(out)<-c("decision","n.stop") 

out 

 

} # end of sim.sprt 
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A.2.6 Wald.bnd() 

Purpose of Function: 
Calculate the Wald boundaries in the binomial case. 
 
Input: 
p0 Value of null proportion. 

p1 Value of alternative proportion. 

alpha Value of maximum allowable Type I error rate, α.  Default value is 
“0.05”. 

beta Value of maximum allowable Type II error rate,  β.  Default value is 
“0.10”. 

 
Output: 
List containing the following objects: 
l.int Value of the intercept for the lower boundary. 

u.int Value of the intercept for the upper boundary. 

slope Value of the slope for the parallel boundaries. 
 
Function: 
Wald.bnd<-function(p0, p1, alpha=0.05, beta=0.10) 

{ 

A<-(1-beta)/alpha 

B<-beta/(1-alpha) 

#### slope for the parallel boundaries 

slope<--log((1-p1)/(1-p0))/log((p1/p0)*((1-p0)/(1-p1)))  

#### intercept for lower boundary 

l.int<-log(B)/log((p1/p0)*((1-p0)/(1-p1)))   

#### intercept for upper boundary 

u.int<-log(A)/log((p1/p0)*((1-p0)/(1-p1)))  

out<-c(l.int, u.int, slope) 

names(out)<-c("l.int", "u.int", "slope") 

out 

} 
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A.2.7 Wald.step.bnd() 
 
Purpose of Function: 
Convert the Wald boundaries to a step boundary. 
 
Input: 
l.int Value of the intercept for the lower boundary to be converted. 

u.int Value of the intercept for the upper boundary to be converted. 

slope Value of the slope for the parallel boundaries to be converted. 

nT Value of the maximum allowable sample size. 
  
Output: 
List containing the following objects: 
lbnd The converted Wald lower bound as a step boundary. 

ubnd The converted Wald upper bound as a step boundary. 
 
Function: 
Wald.step.bnd<-function(l.int, u.int, slope,nT) 

{ 

n<-1:nT 

lbnd<-ceiling(l.int+slope*n) 

ubnd<-floor(u.int+slope*n) 

out<-list(lbnd,ubnd) 

names(out)<-c("lbnd", "ubnd") 

out 

} 
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