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Chapter 1

Introduction

Stochastic frontier analysis (SFA) is a method of economic modeling, and it is widely

used to estimate individual efficiency scores. The stochastic frontier analysis was first

proposed by Aigner et al.(1977) and Meeusen and van de Broeck (1977). SFA modeling

has been used in various fields, such as hospitals, stock markets, manufacturing factories,

services, etc. The purpose of stochastic frontier analysis is to measure how efficient a

producer is with given observations of input and output by using two error terms, u and

v. This method is often found to be useful in estimating the values of function in profit

and cost.

Several decades ago, many economists made an effort to analyze and compute the

production efficiency by using the models of production, cost, and profit. They began

with the model of production function which producers use to maximize the outputs

obtainable from a given amount of inputs. In order to achieve the maximum production

output level, one needs to minimize the cost function and maximize the profit function.

Cobb and Douglas (1928), Arrow et al. (1961), Berndt and Christensen (1973), and

their followers have made certain new developments to the original production function;

they consider the production function to be more flexible in that it needs to take into

account some random noise that can affect the production process in reality. The random

noise may come from weather changes, unpredictable variations in machines, economic

adversities or labor performance, and so on. Thus the original production function is no

longer appropriate because it is performed primarily based on the ideal conditions. As a

result, econometricians come to define the new function as the production frontier.
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Production frontier is defined as characterizing “minimum input bundles required to

produce various outputs, or the maximum output producible with various input bundles,

and a given technology”(Kumbhakar and Lovell, 2000). In other words, the production

frontier refers to the minimum input needed for any given output, or the maximum

output from any given input. Producers operating on their production frontier are called

technically efficient, and producers operating beneath their production frontier are called

technically inefficient.

There are two differences between the production function and production frontier.

First of all, the production function is an ideal function without considering some random

noise, while the production frontier does consider various practical applications. Secondly,

the production function is symmetrically distributed with zero mean, but the composed

error terms of production frontier must be a skewed variable with nonzero mean.

In summary, stochastic frontier analysis is a method used to analyze and compute

technical efficiency based on the stochastic production frontier. The production function

is an ideal model which does not consider the random noise, while the production frontier

model includes various random noises reflecting more flexibility in real life.

1.1. Stochastic Production Function

The estimation of the parametric frontier production function is based on the

pioneering work of Aigner and Chu (1986), Afriat (1972), and Richmond (1974). In a

given industry, firms might have different production processes due to certain technical

parameters in the industry, different scales of operation or organizational structures. In

order to understand the problem, some fundamental definitions are presented below.

First, we assume that producers use a nonnegative vector of inputs, denoted

2



x = (x1, x2, ..., xN) ∈ RN
+

, to produce a nonnegative vector of outputs, denoted

y = (y1, y2, ..., yM) ∈ RM
+

.

Definition 1.1.1. The graph of production technology

GR = {(y, x) ∶ x can produce y}

describes the set of feasible input-output vectors.

Figure 1.1.1. The Graph of Production Technology (M=1,N=1)

Figure 1.1.1 illustrates the graph of production with a single nonnegative input and

a single nonnegative output. The graph is known as the production possibilities set.

Definition 1.1.2. The output sets of production technology

P (x) = {y ∶ (y, x) ∈ GR}

describe the sets of output vectors that are feasible for each input vector x ∈ RN
+

Definition 1.1.3. The output isoquants

Isoq P (x) = {y ∶ y ∈ P (x), λy ∉ P (x), λ > 1}
3



describe the sets of all output vectors that can be produced with each input vector x but

which, when radially expanded, cannot be produced with input vector x.

Definition 1.1.4. The output efficiency subsets

Eff P (x) = {y ∶ y ∈ P (x), y′ ≥ y⇒ y′ ∉ P (x)}

describe the sets of all output vector that can be produced with each input vector x but

which, when expanded in any dimension, cannot be produced with input vector x.

Figure 1.1.2. The output Isoquant and the Output Efficient Subset

In Figure 1.1.2, Eff P (x) contains only the downward-sloping of Isoq P (x). Eff P (x)

provides a more accurate way to measure the technical efficiency of output production

since Eff P (x) ⊆ Isoq P (x). In the case that we have one output, Isoq P (x) = Eff P (x).

Definition 1.1.5. A production frontier is a function f(x) =max{y ∶ y ∈ P (x)}
4



Figure 1.1.3. A Production Frontier

Figure 1.1.3 illustrates the production frontier f(x) as the upper boundary of GR.

The production frontier f(x) describes the maximum output that can be produced with

any given input.

The production frontier defines technical efficiency in terms of a maximum output

produced by a given set of inputs. This approach involves selecting the mix of true inputs

which produces a given quantity of output at a minimum cost, namely the production

frontier. If what a producer actually produces is less than what it could feasibly produce,

then it will lie below the frontier. The distance by which a firm lies below its production

frontier is a measure of the firm’s inefficiency (Bera and Sharma, 1996).

1.2. Technical Efficiency

A formal definition of technical efficiency is achieving “maximum output from a

given input vector” (Koopmans, 1951).
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Definition 1.2.1. An output-input vector (y, x) ∈ GR is technically efficient if, and

only if, (y′, x′) ∉ GR for (y′,−x′) ≥ (y,−x) .

Definition 1.2.2. An output vector y ∈ P (x) is technically efficient if, and only if,

y′ ∉ P (x) for y′ ≥ y or, y ∈ Eff P (x).

The following measure of technical efficiency was first proposed by Debreu (1951)

and Farrell (1957), and they are often known as Debreu-Farrell measures of technical

efficiency.

Definition 1.2.3. An output-oriented measure of technical efficiency is a function

TE(x, y) = [max{φ ∶ φy ∈ P (x)}]−1
.

Kumbhakar and Lovell (2003) also gave the following result

Proposition 1.2.4. The output-oriented measure of technical efficiency TE(x, y)

satisfies the properties:

(i) TE(x, y) ≤ 1

(ii) TE(x, y) = 1⇔ y ∈ IsoqP (x).

TE is used to measure the technical efficiency. The first property is a normalization

property, which states that TE is bounded above by one.

In Chapter 2, we present a method to estimate technical efficiency and explain how

technical efficiency is related to stochastic frontier models. Then, three stochastic frontier

model variations were introduced and the same six steps will have to be applied to

analyse technical efficiency. In Chapter 3, we discuss and explain the distribution

6



patterns of truncated skewed-Laplace. In Chapter 4, we propose the normal-truncated

skewed-Laplace model in stochastic frontier analysis. In Chapter 5, we perform a

simulation study to test normal-truncated skewed-Laplace and normal-exponential

models. The purpose is to observe how close the true technical efficiency and the

estimated technical efficiency are. In Chapter 6, we conclude that the normal-truncated

skewed-Laplace model is more beneficial than normal-exponential model for stochastic

frontier analysis particularly for the one data set used in this paper. Hence we suggest

that further simulations should be conducted to test the effects of the normal-truncated

skewed-Laplace model with more data sets.

7



Chapter 2

The Estimation of Technical Efficiency

We assume that cross-sectional data (observation on each producer at one point in

time) on the quantities of N inputs used to produce a single output are available for each

of I producers. A production frontier model without a random component can be written

as

yi = f(xi, β) ∗ TEi, (2.1)

where yi is the observed scalar output of producer i (i=1,2,...I), xi is a vector of N inputs

used by producer i, f(xi;β) is the production frontier, and β is a vector of technology

parameters to be estimated. TEi denotes the technical efficiency defined as the ratio of

observed output to maximum feasible output. TEi can be expressed as

TEi =
yi

f(xi, β)
. (2.2)

Since TEi is the output-oriented technical efficiency of producer i, the producer obtains

the maximum feasible value of yi = f(xi, β) if and only if TEi = 1. Otherwise TEi < 1

provides a measure of the shortfall of observed output from the maximum feasible output.

A stochastic component that describes random shocks affecting the production

process is to be considered. We denote these effects with exp{vi}. Each producer is

facing a different shock, but we assume the shocks are random, and they are described by

a common distribution. Thus, the stochastic production frontier for cross-sectional data

becomes

yi = f(xi, β) ⋅ exp{vi} ⋅ TEi, (2.3)

8



where exp{vi} represents the random shocks on each producer, and f(xi, β) ⋅ exp{vi} the

stochastic production frontier. Then the output-oriented technical efficiency of producer i

is

TEi =
yi

f(xi, β) ⋅ exp{vi}
, (2.4)

which defines technical efficiency as the ratio of observed output to the maximum feasible

output, conditional on exp{vi}. Producer i attains its maximum feasible output of

f(xi, β) ⋅ exp{vi} if and only if TEi = 1. Otherwise, 0 < TEi < 1 provides a measure of the

shortfall of observed output from the maximum feasible output in an environment

characterized by exp{vi} (see Kumbhakar and Lovell (2003), page 64-66).

The only difference between these models is that the deterministic models (2.1) and

(2.2) ignore the random shocks during the production process, and model (2.3) and (2.4)

include these effects. We are able to estimate the technical efficiency using stochastic

production frontier model (2.3) and (2.4).

2.1. General Procedure to Estimate Technical Efficiency

Technical efficiency, TEi, can be obtained as the exponential conditional expectation

of u given the composed error term ε, which is given by

TEi = e−E(ui∣εi). (2.5)

This estimation was proposed by Jondrow, Lovell, Materov, and Schmidt in 1982. The

expectation of ui given εi can be obtained from the joint density function of ui and εi, and

marginal density function of f(ε). The joint density function of ui and εi is the product of

individual density functions u and ε. The marginal density function f(ε) is obtained by

integrating u out of f(u, ε).
9



Aigner and Chu (1968) were the first researchers to use the maximum likelihood

estimate (MLE) method to estimate point estimators. The MLE method can be used to

maximize the log likelihood function corresponding to the marginal density function,

f(ε). Once the maximum point estimates of parameters are obtained, we substitute these

values into (2.5) to estimate the technical efficiency of each producer.

2.2. Stochastic Production Frontier Models

Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977)

simultaneously introduced stochastic production frontier models in the form of (2.3).

They use exp{−ui} to present technical efficiency. Thus, the equation (2.3) becomes

yi = f(xi, β) ⋅ exp{vi} ⋅ exp{−ui} . (2.6)

In order to estimate the stochastic frontier model, we assume that f(xi, β) take the

log-linear Cobb-Douglas form; then equation (2.3) can be written as

ln yi = β0 +∑
n

βn lnxni + vi − ui. (2.7)

The error term in this equation, ε = vi −ui, is composed of a two-sided “noise” component,

vi, and a nonnegative technical inefficiency component, ui. The noise component vi is

assumed to be independent and identically distributed (iid) and symmetric, distributed

independently of ui. If εi > 0, ui is not large, which means that this producer is relatively

efficient, while if εi < 0, ui is large, which means that this producer is relatively inefficient.

The maximum output can be reached when ui = 0.

2.2.1. The Normal Half-Normal Model. Kumbhaker and Knox Lovell (2003)

were the first to comprehensively explain the normal half-normal model. In this model,

they begin with three distributional assumptions:
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(1) vi ∼ iidN(0, σ2
v);

(2) ui ∼ iidN+(0, σ2
u), that is, as nonnegative half normal;

(3) ui and vi are distributed independently of each other and of the regressors. The

density function of u ≥ 0 is given in by

f(u) = 2√
2πσu

exp{− u2

2σ2
u

} . (2.8)

The density function of v is

f(v) = 1√
2πσv

exp{− v2

2σ2
v

} ,−∞ < v < ∞. (2.9)

Assuming independence of the error terms v and u, the joint density function results

as the product of individual density functions,

f(u, v) = 2

2πσuσv
exp{− u2

2σ2
u

− v2

2σ2
v

} . (2.10)

Since ε = v − u, the joint density function for u and ε is

f(u, ε) = 2

2πσuσv
exp{− u2

2σ2
u

− (ε + u)2

2σ2
v

} . (2.11)

The marginal density function of ε is obtained by integrating u out of f(u, v), which gives

f(ε) = ∫
∞

0
f(u, ε)du

= ∫
∞

0

2

2πσuσv
exp{− u2

2σ2
u

− (ε + u)2

2σ2
v

} du

= 2√
2πσ

⋅ [1 −Φ(ελ
σ

)] exp{− ε2

2σ2
}

= 2

σ
⋅ φ( ε

σ
) ⋅Φ(−ελ

σ
) , (2.12)

where σ = (σ2
u + σ2

v)1/2, λ = σu
σv

, and Φ(⋅) and φ(⋅) are the standard normal cumulative

distribution and density functions, respectively. The marginal density function of ε is

asymmetric and characterized by

E(ε) = E(v − u) = E(−u) = −σu
√

2√
π
.

11



The variance of ε is given by

V (ε) = σ2
ε = V (u) + V (v) = (π − 2

π
)σ2

u + σ2
v .

Using (2.12), the log likelihood function for a sample of I producers is given by

lnL(ε∣λ,σ2) = n ln(
√

2√
π
) − n lnσ +

n

∑
i=1

Φ(−λεi
σ

) − 1

2σ2

n

∑
i=1

ε2i . (2.13)

The log likelihood function in (2.13) can be maximized with respect to the parameters to

obtain maximum likelihood estimates of all parameters.

To obtain estimates of the technical efficiency of each producer, we have to estimate

ε. This can be obtained from the conditional distribution of ui given εi. Jondrow et

al.(1982) show that if ui ∼ N+(0, σ2
u), the conditional distribution of u given ε is

f(u∣ε) = f(u, ε)
f(ε) = 1√

2πσ∗
⋅ exp{−(u − µ∗)2

2σ2
∗

} ⋅ [1 −Φ(−µ∗
σ∗

)]
−1

,

where µ∗ = − εσ
2
u

σ2 and σ2
∗
= σ2

uσ
2
v

σ2 . We can see that the distribution of u conditional on ε is

N+(µ∗, σ2
∗
), thus the expected value, E(u∣ε), can be used as a point estimator for u. This

is given by

E(ui∣εi) = µ∗i + σ∗ [
φ(−µ∗iσ∗ )

1 −Φ(−µ∗iσ∗ )
] . (2.14)

Once a point estimates of ui are obtained, estimates of the technical efficiency of

each producer can be obtained from (2.5).

2.2.2. The Normal Exponential Model. Aigner, Lovell, and Schmidt (1977) and

Meeusen and van den Broeck (1977) were the first researchers to use the

normal-exponential model. In this model, they assume three distributional assumptions:

(1) vi ∼ iid N(0, σ2
v);

(2) ui ∼ iid Exp(σu);
12



(3) ui and vi are distributed independently of each other and of the regressors. To

obtain the joint density function of u and v, we can multiply their individual density

functions f(v) form (2.9) and f(u), given by

f(u) = 1

σu
⋅ exp{− u

σu
} . (2.15)

Thus, the joint density function is

f(u, v) = 1√
2πσuσv

⋅ exp{− u
σu

− v2

2σ2
v

} . (2.16)

The joint density function of u and ε is given by

f(u, ε) = 1√
2πσuσv

⋅ exp{− u
σu

− (u + ε)2

2σ2
v

} . (2.17)

Thus, the marginal density function of ε is

f(ε) = ∫
∞

0
f(u, ε)du

= 1

σu
⋅Φ(− ε

σv
− σv
σu

) ⋅ exp{ ε

σu
+ σ2

v

2σ2
u

} . (2.18)

The marginal density function of ε is asymmetric and characterized by

E(ε) = −E(u) = −σu

and

V (ε) = σ2
u + σ2

v .

The log-likelihood function for a sample of I producers can be written as

lnL(ε∣σu, σv) = n ln( 1√
2π

) − n lnσu + n( σ2
v

2σ2
u

) +
n

∑
i=1

ln Φ(−A) +
n

∑
i=1

εi
σu
, (2.19)

where A = −µ+σv and µ+ = −ε − (σ
2
v

σu
). Equation (2.19) lnL can be maximized with respect to

the parameters to obtain maximum likelihood estimates of all parameters.

13



The conditional distribution f(u∣ε) is distributed as N+(µ+, σ2
v), and the density

function is given by

f(u∣ε) = f(u, ε)
f(ε) = 1√

2πσvΦ(−µ+/σv)
⋅ exp{−(u − µ+)2

2σ2
} . (2.20)

The expected value of inefficiency term u given ε in the normal-exponential model is

E(ui∣εi) = µ+i + σv [
φ(−µ+i /σv)
Φ(µi)+/σv)

] = σv [
φ(A)

Φ(−A) −A] . (2.21)

2.2.3. The Normal-Truncated Normal Model. The normal-truncated normal

model was introduced by Stevenson (1980). In this model, three distributional

assumptions are as follow:

(1) vi ∼ iidN(0, σ2
v);

(2) ui ∼ iidN+(µ,σ2
u);

(3) ui and vi are distributed independently of each other and of the regressors. The

density function f(v) is given in equation (2.9) and truncated normal density function for

u ≥ 0 is given by

f(u) = 1√
2πσuΦ(µ/σu)

⋅ exp{−(u − µ)2

2σ2
u

} , (2.22)

where Φ(⋅) is the standard normal cumulative distribution function, and µ is normally

distributed, which is truncated below at zero.

The joint density function of u and v is

f(u, v) = 1

2πσuσvΦ(µ/σu)
⋅ exp{−(u − µ)2

2σ2
u

− v2

2σ2
v

} . (2.23)

The joint density of u and ε is

f(u, ε) = 1

2πσuσvΦ(µ/σu)
⋅ exp{−(u − µ)2

2σ2
u

− (ε + u)2

2σ2
v

} . (2.24)
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The marginal density of ε is

f(ε) = ∫
∞

0
f(u, ε)du

= 1√
2πσΦ(µ/σu)

⋅Φ( µ

σλ
− ελ
σ

) ⋅ exp{−(ε + µ)2

2σ2
}

= 1

σ
⋅ φ(ε + µ

σ
) ⋅Φ( µ

σλ
− ελ
σ

) ⋅ [Φ( µ
σu

)]
−1

,

where σ = (σ2
u + σ2

v)1/2 and λ = σu
σv

, and φ(⋅) is the standard normal density function. The

marginal density function of ε is asymmetric and characterized by

E(ε) = −E(ε) = −µa
2
− σua√

2π
⋅ exp{−1

2
( µ
σu

)
2

}

and the variance is

V (ε) = µ2a

2
(1 − a

2
) + a

2
(π − a

π
)σ2

u + σ2
v .

The log likelihood function is

lnL = n ln
1√
2π

− n lnσ − nlnΦ( µ
σu

) +
n

∑
i=1

ln Φ( µ

σλ
− εiλ
σ

) − 1

2

n

∑
i=1

(εi + µ
σ

)
2

, (2.25)

where σu = λσ/
√

1 + λ2.

The conditional distribution f(u∣ε) is distributed as N+(µ+i , σ2
∗
), given by

f(u∣ε) = f(u, ε)
f(ε) = 1√

2πσ∗ [1 −Φ(−µ+/σ∗)]
⋅ exp{−(u − µ+)2

2σ2
∗

} , (2.26)

where µ+ = (−σ2
uεi + µσ2

v)/σ2 and σ2
∗
= σ2

uσ
2
v/σ2. The expected value of inefficiency u, given

estimated ε, in the normal-exponential model is

E(ui∣εi) = σ∗ [
µ+i
σ∗

+ φ(µ+i /σ∗)
1 −Φ(−µ+i /σ∗)

] . (2.27)

In this paper, we will consider a normal-truncated skewed-Laplace model which combines

the normal distribution and the truncated skewed-Laplace distribution. In the next

chapter, we will introduce the truncated skewed-Laplace distribution.
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Chapter 3

Truncated Skewed-Laplace Distribution

3.1. Truncated Skewed-Laplace Distribution

The Truncated skewed-Laplace distribution (TSL) is a generalized model of

exponential distribution. The TSL distribution provides more flexible representation of

the pattern of efficiency in the data. This model was first introduced by Aryal and Rao in

2005. The standard Laplace distribution has probability density function (pdf) given by

G(X) given by

g(x) = 1

2φ
exp(−∣x∣

φ
) (3.1)

and cumulative distribution function (cdf)

G(x) =
⎧⎪⎪⎨⎪⎪⎩

1
2exp (xφ) if x ≤ 0

1 − 1
2exp (−xφ) if x ≥ 0,

(3.2)

where −∞ < x < ∞ and φ > 0. A random variable X has the skew-Laplace distribution if

its pdf is

f(x) = 2g(x)G(λx), (3.3)

where x ∈ R and λ ∈ R. According to (3.3), the pdf and the cdf of X are

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1
2φexp{−

(1+∣λ∣)∣x∣
φ } if λx ≤ 0

1
φexp (−

∣x∣
φ ){1 − 1

2exp (−λxφ )} if λx > 0
(3.4)

and

F (x) =
⎧⎪⎪⎨⎪⎪⎩

1
2 +

sign(λ)
2 [ 1

1+∣λ∣exp{−
(1+∣λ∣)∣x∣

φ } − 1] if λx ≤ 0

1
2 + sign(λ) [1

2 − exp (−
∣x∣
φ ) × {1 − 1

2(1+∣λ∣)exp (−λxφ )}] if λx > 0,
(3.5)

respectively, where λ is a skewness parameter.

In this study, we consider the case when the skew-Laplace distribution is truncated

on the left at zero, and we assume that λ > 0. The cdf of the truncated skewed Laplace

16



(TSL) distribution is given by

F ∗(x) = 1 +
exp (− (1+λ)xφ ) − 2(1 + λ)exp(−xφ)

(2λ + 1) , (3.6)

and the corresponding pdf is

f∗(x) = (1 + λ)
φ(2λ + 1) {2exp(−x

φ
) − exp(−(1 + λ)x

φ
)} , x > 0. (3.7)

When λ = 0, the density of TSL becomes the density of the exponential distribution.

3.2. Moments

The kth moment of X, based on the definition of the gamma function, is given by

E(Xk) = φ
k(1 + λ)Γ(k + 1)

(2λ + 1) {2 − 1

(1 + λ)k+1
} , (3.8)

The proof of this is seen by the following equations.

Proof.

E(Xk) = ∫
∞

0
xk ⋅ f∗(x)dx

= (1 + λ)
φ(2λ + 1) [∫

∞

0
2xkexp(−x

φ
) dx − ∫

∞

0
xkexp(−(1 + λ)x

φ
) dx]

= (1 + λ)
φ(2λ + 1) [2φk+1Γ(k + 1) − φk+1

(1 + λ)k+1
Γ(k + 1)]

= φk(1 + λ)Γ(k + 1)
(2λ + 1) [2 − 1

(1 + λ)k+1
] .

�
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Using the binomial expansion and (3.8), the kth central moment of X can be

calculated as

E [(x − µ)k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= µk +∑k/2j=1 (
k

2j
)µk−2jφ2j (1+λ)Γ(2j+1)

(2λ+1)

× {2 − 1
(1+λ)2j+1} −∑

k/2
j=1 (

k

2j − 1
)µk−2j+1φ2j−1

× (1+λ)Γ(2j)
(2λ+1) {2 − 1

(1+λ)2j
} , if k is even

= −µk −∑(k−1)/2
j=1 ( k

2j
)µk−2jφ2j (1+λ)Γ(2j+1)

(2λ+1)

×{2 − 1
(1+λ)2j+1} +∑

(k+1)/2
j=1 ( k

2j − 1
)µk−2j+1φ2j−1

× (1+λ)Γ(2j)
(2λ+1) {2 − 1

(1+λ)2j
} , if k is odd

where µ = E(X) is the expectation of X. It follows from the above equations that the

expectation and variance of X are

E(X) = φ (1 + 4λ + 2λ2)
(1 + λ)(1 + 2λ) (3.9)

and

V ar(X) = φ2 (1 + 8λ + 16λ2 + 12λ3 + 4λ4)
(1 + λ)2(1 + 2λ)2

(3.10)

If λ = 0, the mean and variance of X are the mean and variance of the Exp(φ)

distribution.

3.3. Skewness

The skewness coefficient is a measure of the asymmetry of the probability

distribution of a real-valued random variable. The skewness coefficient can be positive or

negative, or even undefined. Negative values for the skewness coefficient indicate data
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that are left skewed, and positive values for the skewness coefficient indicate data that are

right skewed. A left skewed distribution has a longer left tail than right tail, and the mass

of the distribution is concentrated on the right of the distribution. Similarly, a right

skewed distribution has a longer right tail than left tail, and the mass of the distribution

is concentrated on the left of the distribution.

The skewness of a random variable X is the third standardized moment, and is

denoted by γ1. Skewness is defined as

γ1 = E [(X − µ
σ

)
3

]

= E [X3] − 3µE [X2] + 3µ2E [X] − µ3

σ3

= E [X3] − 3µσ2 − µ3

σ3
.

For TSL,

γ1 = 1

(1 + 8λ + 16λ2 + 12λ3 + 4λ4)3/2
× [12(1 + λ)4(1 + 2λ)2 − 6(1 + 2λ)2

−3(1 + 4λ + 2λ2)(1 + 8λ + 16λ2 + 12λ3 + 4λ4) − (1 + 4λ + 2λ2)3]

since E [X2] = 4φ2(1+λ)3−2φ2

(2λ+1)(1+λ)2 and E [X3] = 12φ3(1+λ)4−6φ3

(2λ+1)(1+λ)3 . When λ = 0, γ1 is the exponential

distribution skewness, which is 2.

Figure 3.3.1 shows that TSL skewness is unbounded below at the left side of the

origin point, but as λ approaches to positive infinity the skewness coefficient is

approaching 2.
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Figure 3.3.1. The Skewness of TSL

3.4. Kurtosis

Kurtosis is a measure of whether the data is flat or peaked. The kurtosis of a

random variable X is the fourth standardized moment, denoted by γ2 and defined as

γ2 = E [(X − µ
σ

)
4

]

= E (X4) − 4E (X3)µ + 6E (X2)µ2 − 4E (X)µ3 + µ4

σ4

= E (X4) − 4E (X3) + 6E (X2)µ2 − 3µ4

σ4
.
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For TSL,

γ2 = 1

(1 + 8λ + 16λ2 + 12λ3 + 4λ4)2 × [48 (1 + λ)5 (1 + 2λ)3 − 24 (1 + 2λ)3

−48 (1 + λ)4 (1 + 2λ)2 (1 + 4λ + 2λ2) + 24 (1 + 2λ)2 (1 + 4λ + 2λ2)

+24 (1 + λ)3 (1 + 2λ) (1 + 2λ + 2λ2)2 − 12 (1 + 2λ) (1 + 4λ + 2λ2)2

−3 (1 + 2λ + 2λ2)4] ,

since E (X4) = 48φ4(1+λ)5−24φ4

(1+λ)4(1+2λ) . When λ = 0, γ2 is the exponential distribution kurtosis,

which is 9.

Figure 3.4.1. The Kurtosis of TSL

Figure 3.4.1 shows that the kurtosis of TSL is unbounded below at the left side of

the origin point. The coefficient of kurtosis is bounded by 9 as λ approaches positive

infinity from the origin point.
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Chapter 4

The Normal-Truncated Skewed-Laplace in Stochastic
Frontier Analysis

In this chapter, we propose a new model in stochastic frontier analysis, the

normal-truncated skewed-Laplace. The normal-truncated skewed-Laplace (NTSL) model

is a generalized model of the normal-exponential model when λ = 0. Compared with the

normal-exponential model, NTSL is more flexible because it has a skewness parameter λ.

In this model, we assume the following:

(1) vi ∼ iidN(0, σ2
v);

(2) ui ∼ iid truncated skewed-Laplace;

(3) ui and vi are distributed independently of each other and of the regressors. The

density of v is given by

f(v) = 1√
2πσ

exp{− v2

2σ2
} , v ∈ R, σ > 0 (4.1)

The density of u is

f(u) = (1 + λ)
φ(2λ + 1) {2exp(−u

φ
) − exp(−(1 + λ)u

φ
)} , u > 0, λ > 0, φ > 0 (4.2)

Given the independence assumption, the joint density function of u and v is the product

of their individual density functions. Thus, the joint density function of u and v is

f(u, v) = (1 + λ)
φ(2λ + 1) ⋅ {2exp(− v2

2σ2
− u
φ
) − exp(− v2

2σ2
− (1 + λ)u

φ
)} (4.3)

If we substitute v=ε+u into f(u, v), then the joint density function for u and ε becomes

f(u, ε) = (1 + λ)√
2πσφ(2λ + 1)

⋅ {2exp(−(ε + u)2

2σ2
− u
φ
) − exp(−(ε + u)2

2σ2
− (1 + λ)u

φ
)} . (4.4)

22



Thus, we can get the marginal density function of f(ε),

f(ε) = ∫
∞

0
f(u, ε)du

= 2(1 + λ)√
2πσφ(2λ + 1)

⋅ exp( ε
φ
+ σ2

2φ2
)∫

∞

0
exp [−1

2
(u
σ
+ ε

σ
+ σ
φ
)

2

] du

− (1 + λ)√
2πσφ(2λ + 1)

⋅ exp(ε(1 + λ)
φ

+ (1 + λ)2σ2

2φ2
)

⋅∫
∞

0
exp [−1

2
(u
σ
+ ε

σ
+ (1 + λ)

φ
)

2

] du

= 2(1 + λ)√
2πσφ(2λ + 1)

⋅ exp( ε
φ
+ σ2

2φ2
)∫

∞

ε
σ
+
σ
φ

exp(z
2

2
)σ dz

− (1 + λ)√
2πσφ(2λ + 1)

⋅ exp(ε(1 + λ)
φ

+ (1 + λ)2σ2

2φ2
)∫

∞

ε
σ
+
(1+λ)σ
φ

exp(z
2

2
)σ dz

= 2(1 + λ)
φ(2λ + 1)exp(

ε

φ
+ σ2

2φ2
)Φ(− ε

σ
− σ
φ
)

− (1 + λ)
φ(2λ + 1)exp(

ε(1 + λ)
φ

+ (1 + λ)2σ2

2φ2
)Φ(− ε

σ
− (1 + λ)σ

φ
) . (4.5)

When λ=0, then the above equation becomes the marginal density of f(ε) in the

normal-exponential model (2.18),

f(ε) = 1

φ
exp( ε

φ
+ σ2

2φ2
)Φ( ε

σ
− σ
φ
) .

The log likelihood function can be written as

lnL(ε) =
N

∑
i=1

ln [ 2 (1 + λ)
φ (1 + 2λ)exp(

ε

φ
+ σ2

2φ2
)Φ(− ε

σ
− σ
φ
)

− (1 + λ)
φ (1 + 2λ)exp(

ε (1 + λ)
φ

+ σ
2 (1 + λ)2

2φ2
)Φ(− ε

σ
− σ (1 + λ)

φ
)] .

(4.6)

The expected value of inefficiency u given ε in the normal-TSL model is
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E(u∣ε) = ∫
∞

0 uf(u, ε)du
f(ε)

= 1

2
√

2πexp ( εφ + σ2

2φ2)Φ (− ε
σ − σ

φ) −
√

2πexp ( ε(1+λ)φ + (1+λ)22φ2 )Φ (− ε
σ − σ

φ)

×[σexp(− ε

2σ2
) − 2

√
2π (σ

2

φ
+ ε) exp( ε

φ
+ σ2

2φ2
)Φ(− ε

σ
− σ
φ
)

+
√

2π ((1 + λ)σ
2

φ
+ ε) exp((1 + λ)ε

φ
+ (1 + λ)2σ2

2φ2
)

× Φ( ε
σ
− (1 + λ)σ

φ
)] . (4.7)
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Chapter 5

Simulation

In this chapter, we apply the normal-truncated skewed Laplace model and

normal-exponential model to estimate technical efficiency. To assess the performance of

the efficiency score estimation, we calculate the mean square error

MSE = 1

I

I

∑
i=1

(T̂Ei − TEi)
2

between true and estimated efficiency scores for I producers. Additionally, we want to

compare the normal-truncated skewed-Laplace and the normal-exponential using the

MSE.

In Chapter 2, (2.4) is used to estimate the true technical efficiency, this can be

simplified to TEi = exp(−ui). We apply T̂Ei = exp [−E(ui∣εi)] to obtain estimates of

individual efficiencies.

5.1. Normal-Truncated Skewed Laplace Simulation

In this section, we apply the normal-truncated skewed-Laplace model to estimate

individual technical efficiency scores for simulated data based on a sample size of 100. We

set the starting values of each point estimators at σ = 0.1, λ = 0.03, φ = 0.05, b0 = 3,

b1 = 0.5, b2 = 0.25. The input vectors x1 and x2 are drawn independently from N(10,2)

and N(2,0.2) distributions, respectively. The error term vi follows the N(0, σ)

distribution. The data sets are included in Appendix 1.

There is no such command in R program that can simulate the parameters in

truncated-skew Laplace distribution, thus a particular method needs to be used to
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simulate the inefficiency term ui which is inverse transformation method (Luc Devroye,

(1986) ). The inverse transformation method states that if X is a random variable with

cumulative distribution function FX , then the random variable Y = FX(X) has a

uniform(0,1) distribution. According to this method, we simulate 100 random variables

from uniform distribution over (0,1). Using R program, we have t = runif(100,0,1). The

truncated skewed-Laplace cumulative distribution function can be computed using (3.6).

Thus, we have

F ∗(x) = 1 +
exp (− (1+λ)xφ ) − 2(1 + λ)exp(−xφ)

(2λ + 1) = t.

In order to obtain ui, we need to rewrite the function as

Y = 1 +
exp (− (1+λ)uφ ) − 2(1 + λ)exp(−uφ)

(2λ + 1) − t = 0.

We use the uniroot command to numerically solve the above equation to get values of ui

ui = uniroot(Y, c(0,200), lambda = lambda, phi = phi, t = t[i])$root,

where c(0,200) is a vector containing the end-points of the interval to be searched for the

root (see appendix 3). Once the values of ui are obtained, we substitute these values into

equation TEi = exp(−ui) to get the true technical efficiency for each producer. The true

values of technical efficiency are included in Appendix 1. For estimated technical

efficiency, we need to obtain the estimated values of each parameter, and then substitute

these values into T̂Ei = exp [−E(ui∣εi)] to get T̂Ei.

Optimization using the “optim” function in R is the first method we considered for

calculating the estimated technical efficiency corresponding to the log likelihood function

of f(ε). However, the optim method does not give us a desirable result because it is stuck

at a local maximum, which is excessively small. An alternative method is used to

calculate technical efficiency. We search for the maximum value of the log likelihood

26



function manually using (4.6). We expect the estimated parameters to be close to the

true values on either side, hence we determine the searching interval for each parameter.

Next, we create six for-loops to locate the values of parameters in their intervals with

small increments which result in the maximum value of the log likelihood function (see

Appendices 4, 5, and 6). The estimated values of each parameter are σ̂ = 0.09, λ̂ = 0.06,

φ̂ = 0.065, b̂0 = 2.91, b̂1 = 0.52, and b̂2 = 0.27. We substitute these values into the equation .

The maximum likelihood value of the likelihood function is 77.96915. The MSE between

true TE and estimated T̂E is 0.046505867.

5.2. Normal-Exponential Model Simulation

We use the same approach to estimate technical efficiency using the

normal-exponential model (see Appendices 7, 8, and 9). The estimated values of the

parameters are σ̂u = 0.0675, σ̂v = 0.09, b̂0 = 2.91, b̂1 = 0.52, and b̂2 = 0.27 and the maximum

likelihood value is 77.95368. The MSE between true TE and estimated T̂E is 0.12798839.

In summary, the MSE of normal-truncated skewed Laplace model is less than the

MSE of normal-exponential model, which is expected because we simulate the data

according to normal-TSL model. In this paper, normal-truncated skewed-Laplace

distribution is better than normal-exponential distribution. This simulation study helps

us to test the application of both models with one data set.
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Chapter 6

Conclusion and Future Research

Econometricians have been developing stochastic frontier models since 1977. As a

result, the models have taken on a rich variety of forms. They have applied the models to

a number of areas, such as banks, hospitals, schools, industries, and so on. In this thesis,

we create a new model which combines the normal distribution and truncated

skewed-Laplace distribution, namely, the normal-truncated skewed-Laplace model. We

use R commands to find the point estimates of parameters via the maximum likelihood

estimate method. Once point estimates are obtained, the estimated technical efficiency is

attained. The true technical efficiency is based on the assumed starting values. We use

MSE values to observe how close the true technical efficiency and estimated technical

efficiency are. The smaller the MSE value, the better the model is. In this thesis, the

MSE value of normal-truncated skewed-Laplace model is less than the MSE value of

normal-exponential model. This shows that the normal-truncated skewed-Laplace model

is better than the normal-exponential model for this data. In practice, normal-truncated

skewed-Laplace distribution provides more flexibilities in modeling data, and hence it

provides an alternative model for economics in estimating technical efficiency.

An interesting direction for future research is to investigate technical efficiencies

upon different starting values of each parameter. For example, we may simulate 200 data

sets to obtain an estimated technical efficiency and true technical efficiency. Then we

compare the technical efficiencies of the normal-exponential model and that of the

normal-truncated skewed-Laplace model. We may apply the models to real data sets to

get the estimated technical efficiencies for producers. According to the value of the log
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likelihood function of each model, we can conclude which model is better. Moreover,

other distributions could be considered, such as the normal-truncated gamma

distribution, and so on.
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APPENDIX

1. Tables

Table 1: True technical efficiency scores under both models

Observed output y Input x1 Input x2 v Random noise u True TE
10.33872 8.303286 2.255659 0.078107 0.10251 0.902569
10.02234 10.09319 1.7513 -0.08616 0.003656 0.99635
9.404747 10.44442 1.919913 -0.1856 0.007901 0.99213
11.8205 10.43823 2.35184 -0.01193 0.003381 0.996625
11.55075 12.38001 1.976618 -0.01049 0.069757 0.93262
13.47615 13.45489 2.18816 0.100819 0.093947 0.910331
9.464449 10.85978 1.942944 -0.145 0.064656 0.937389
10.92637 8.906281 2.116586 0.024017 0.01228 0.987795
8.56031 8.173097 2.060451 -0.17283 0.009804 0.990244
10.85895 9.164571 1.991674 0.019512 0.013051 0.987034
17.06569 13.40372 2.016829 0.274179 0.008869 0.99117
8.505262 8.887892 2.394707 -0.26814 0.000447 0.999553
10.00758 9.090588 2.147516 -0.08951 0.000455 0.999545
10.34649 12.222 2.046547 -0.10425 0.088377 0.915416
11.98801 10.88915 2.098497 0.023587 0.017481 0.982671
13.7348 11.83895 2.236793 0.100969 0.016607 0.983531
11.30287 8.90564 1.843758 0.138993 0.058843 0.942855
10.26602 9.365772 1.919019 -0.02854 0.022717 0.977539
12.26879 9.727708 1.737798 0.175923 0.04312 0.957796
12.08117 10.92701 2.257344 0.012038 0.018169 0.981995
10.49746 8.170947 1.9489 0.055384 0.019972 0.980227
9.020327 8.337306 1.863757 -0.07395 0.041203 0.959634
11.86206 9.992102 2.22803 0.047697 0.024141 0.976148
12.25016 11.57331 1.887822 0.026633 0.002913 0.997091
8.278605 6.225581 1.704758 0.007714 0.040341 0.960462
11.85534 11.66207 1.775228 0.018674 0.016161 0.983969
12.96142 13.85057 1.660889 0.024123 0.001759 0.998243
8.879772 10.62551 1.936188 -0.12998 0.131661 0.876638
11.06605 12.03857 2.175552 -0.02249 0.11062 0.895279
11.32447 11.56077 2.224126 -0.00045 0.094847 0.909512
10.77449 11.39501 1.927789 -0.05577 0.046338 0.954719
10.03509 8.834633 2.231916 -0.06163 0.020946 0.979272
13.83064 12.22871 1.983103 0.108961 0.003746 0.996261
12.16369 12.94586 1.898207 -0.03674 0.004033 0.995975
10.47051 12.6565 1.781566 -0.15454 0.008967 0.991073
11.49886 8.318081 1.988612 0.127121 0.014561 0.985545
8.746989 6.956387 2.124934 0.013835 0.102003 0.903027
11.84318 10.85399 2.243619 0.111033 0.132182 0.876181
11.23536 11.89586 1.715104 -0.02423 0.028277 0.97212

Continued on next page
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Table 1 – continued from previous page
Observed output y Input x1 Input x2 v Random noise u True TE

11.15159 10.2413 1.934418 0.006748 0.021944 0.978295
13.01126 10.8067 2.141828 0.101498 0.014793 0.985316
12.77187 12.98239 2.022266 0.01565 0.024869 0.975438
9.058113 9.41839 1.966126 -0.18296 0.002339 0.997664
9.922498 6.963869 1.939268 0.149133 0.088886 0.91495
11.84517 12.23207 2.258448 -0.06397 0.018422 0.981747
11.31971 9.648881 1.820493 0.078965 0.03423 0.96635
11.13994 10.31276 1.923122 0.061641 0.079895 0.923214
10.88668 8.919196 2.127963 0.064265 0.058232 0.943431
11.21286 9.958359 1.9014 0.010486 0.001891 0.99811
10.32729 10.58073 1.750002 -0.06695 0.016298 0.983834
10.19991 8.780142 1.701385 0.055135 0.050476 0.950777
12.49303 11.00288 1.630248 0.161735 0.056437 0.945126
9.492011 10.18432 1.774155 -0.0021 0.14982 0.860863
12.35077 9.885959 2.06321 0.101466 0.012984 0.9871
13.83579 12.38751 2.210399 0.09591 0.023901 0.976383
10.7793 9.79506 1.914157 -0.002 0.022238 0.978007
13.5677 11.57484 2.056706 0.107292 0.002906 0.997099
7.985501 5.34217 2.037936 -0.02763 0.009152 0.990889
13.38003 11.66495 2.002266 0.128482 0.035195 0.965417
10.98503 10.92631 2.002894 -0.02832 0.042995 0.957916
10.29479 8.509924 2.136452 0.01426 0.041637 0.959218
12.01018 11.04497 1.824885 0.104352 0.068576 0.933722
11.4559 8.738427 2.172738 0.078226 0.016195 0.983935
10.1465 7.172985 1.881084 0.120919 0.045525 0.955496
11.0321 12.13576 1.901044 0.028695 0.135177 0.873562
9.997188 8.146266 2.094726 0.076457 0.106401 0.899064
8.942316 8.945452 2.01414 -0.10324 0.075202 0.927556
7.918214 5.939875 1.875064 -0.06426 0.013188 0.986898
13.05874 9.265323 2.12508 0.199189 0.029936 0.970508
9.316231 11.01349 1.611978 -0.112 0.07378 0.928876
11.81206 11.63631 2.599294 -0.03515 0.060221 0.941557
8.24342 7.741706 2.027592 -0.14936 0.039857 0.960927
13.56552 11.59484 2.076278 0.117617 0.016623 0.983515
10.24636 9.355291 1.964718 -0.00416 0.054334 0.947115
10.37671 11.14638 2.178873 -0.06753 0.091779 0.912307
14.06131 13.41037 2.331013 0.072463 0.037238 0.963447
11.71972 10.28001 1.772972 0.136335 0.08194 0.921328
7.077069 8.023909 1.942196 -0.17908 0.169835 0.843804
12.32743 9.893271 2.085019 0.087633 0.004041 0.995967
11.20332 8.690851 2.08392 0.092521 0.039621 0.961154
10.82558 11.25465 1.905639 -0.08147 0.006825 0.993198
9.850783 11.48707 2.433104 -0.16613 0.087836 0.915911
11.64799 10.69344 2.109627 -0.00708 0.007844 0.992187
12.98679 11.66243 1.793757 0.092682 0.001626 0.998375

Continued on next page
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Table 1 – continued from previous page
Observed output y Input x1 Input x2 v Random noise u True TE

9.129472 8.870868 1.895472 -0.1331 0.005258 0.994755
10.51448 13.94087 1.871405 -0.13526 0.084684 0.918802
12.49037 9.662434 2.18736 0.175528 0.078978 0.92406
9.689007 8.351853 1.984152 -0.0213 0.038856 0.961889
9.669802 8.913754 1.942321 0.028784 0.118157 0.888556
10.97188 11.70022 1.936571 -0.03523 0.063082 0.938866
10.87821 8.630425 2.040235 0.051063 0.018826 0.98135
13.79199 13.39889 2.159924 0.066692 0.031321 0.969165
11.60044 9.297126 1.87922 0.08018 0.000317 0.999683
10.82538 10.72119 1.612068 0.110076 0.132285 0.876091
13.7271 12.81615 2.267315 0.053944 0.013187 0.9869
10.45656 9.311159 2.266286 -0.06694 0.004584 0.995426
8.835307 11.58141 1.606668 -0.24529 0.017812 0.982346
8.779219 10.15401 1.94208 -0.1227 0.128397 0.879504
10.88107 9.025844 1.998324 0.067357 0.052068 0.949265
10.58934 13.19278 2.115319 -0.18053 0.035373 0.965246

Table 2: Estimates of technical efficiency scores under both models

TE for Normal-Truncated Skewed-Laplace TE for Normal-Exponential
0.9513719 0.936188
0.9345194 0.997378
0.8873956 1.108503
0.9521405 0.932728
0.93549 0.99439

0.9557539 0.915326
0.8771736 1.1277
0.9581752 0.902525
0.8954012 1.092698
0.9573848 0.90681
0.9804154 0.704809
0.8375097 1.196364
0.9338301 0.999472
0.8853439 1.112435
0.9565324 0.911315
0.9672844 0.844302
0.9678795 0.839788
0.9453748 0.960733
0.9728307 0.797153
0.9539643 0.924187
0.962362 0.87797
0.9266853 1.019984
0.9595659 0.894725
0.9596518 0.894232

Continued on next page
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Table 2 – continued from previous page
TE for Normal-Truncated Skewed-Laplace TE for Normal-Exponential

0.9520285 0.933237
0.956242 0.912823
0.9592695 0.896416
0.8429304 1.187281
0.915257 1.049177
0.9301893 1.010181
0.9289003 1.013841
0.9361109 0.992454
0.9696816 0.825393
0.9464191 0.956738
0.9023461 1.078282
0.9711119 0.813101
0.9361648 0.992285
0.9509467 0.938068
0.9444146 0.964318
0.9530381 0.928584
0.9678452 0.840051
0.9531075 0.928259
0.8929104 1.0977
0.9660433 0.853378
0.9340346 0.998853
0.9633861 0.871442
0.9524135 0.93148
0.9571748 0.907931
0.9576263 0.905512
0.9362945 0.991878
0.9577642 0.904767
0.9702789 0.82036
0.9101242 1.061162
0.9683122 0.836433
0.9657558 0.855418
0.9514011 0.936058
0.9696359 0.825772
0.9510461 0.937631
0.9685352 0.83468
0.9388757 0.98358
0.9508644 0.938429
0.9617349 0.881859
0.9654295 0.857707
0.9677882 0.840487
0.9269666 1.019214
0.9505842 0.939652
0.8969241 1.089598
0.9409807 0.976517
0.9753541 0.770966

Continued on next page
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Table 2 – continued from previous page
TE for Normal-Truncated Skewed-Laplace TE for Normal-Exponential

0.8931101 1.097302
0.9290244 1.013491
0.8925709 1.098375
0.969272 0.828766
0.943401 0.968015
0.9037102 1.07536
0.9603325 0.890278
0.9645679 0.86362
0.7828696 1.28838
0.9677563 0.840732
0.9643906 0.864815
0.9337622 0.999677
0.8440264 1.185439
0.9525679 0.930769
0.9685324 0.834703
0.9168193 1.045405
0.8680057 1.144211
0.9690838 0.830295
0.9435089 0.967625
0.9347933 0.996539
0.9300205 1.010663
0.9616124 0.88261
0.9605924 0.888746
0.9677113 0.841075
0.952166 0.932612
0.9613915 0.883956
0.9390267 0.983083
0.8433233 1.186621
0.8508951 1.173831
0.9589107 0.898442
0.8697395 1.14113

2. The starting values of parameter are used to compute the true technical efficiency.

s = 0.1

lambda = 0.03

p = 0.05

b0 = 3
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b1 = 0.5

b2 = 0.25

x1 = rnorm(100,10,2)

x2 = rnorm(100,2,0.2)

v = rnorm(100,0, s)

3. The codes are used to estimate random noise ui.

t = runif(100,0,1)

mycdf = function(x, lambda, p, t)y = 1 + (exp(−(1 + lambda) ∗ x/p)

-2*(1+lambda)*exp(-x/p))/(2*lambda+1)-t

return(y)

u = array(0, c(1,100))

for(i in1 ∶ 100)

{u[i] = uniroot(mycdf, c(0,200), lambda = lambda, p = p, t = t[i])$root

4. The following codes are used to compute log likelihood function of

normal-truncated skewed-Laplace model.

likelihoodl = function(par){

s = par[1]

lambda = par[2]

p = par[3]

b0 = par[4]
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b1 = par[5]

b2 = par[6]

e = log(data[,1]) − log(b0) − b1 ∗ log(data[,2]) − b2 ∗ log(data[,3])

s1 = (2 ∗ (1+ lambda) ∗ exp(e/p+ s2/2/p2))/(p ∗ (2 ∗ lambda+ 1)) ∗ pnorm(−e/s− s/p)

s2 = ((1 + lambda) ∗ exp(e ∗ (1 + lambda)/p + ((1 + lambda)2) ∗ (s2)/2/p2))/(p ∗ (2 ∗

lambda + 1)) ∗ pnorm(−e/s − (1 + lambda) ∗ s/p)

logl = sum(log(s1 − s2))

return(logl)}

5. The following codes are used to find estimated values of each normal-truncated

skewed-Laplace parameter. s = seq(0.09,0.13,0.0025)

lambda = seq(0.02,0.06,0.0025)

p = seq(0.04,0.08,0.0025)

b0 = seq(2.9,3.1,0.01)

b1 = seq(0.45,0.55,0.01)

b2 = seq(0.2,0.35,0.01)

L = array(0, c(18158448,1))

y = 0

for(i in1 ∶ 17)

for(j in1 ∶ 17)

for(k in1 ∶ 17)
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for(l in1 ∶ 21)

for(m in1 ∶ 11)

for(n in1 ∶ 16)

{y = y + 1

L[y] = likelihoodl(c(s[i], lambda[j], p[k], b0[l], b1[m], b2[n]))

L

6. The codes to estimate technical efficiency of normal-truncated skewed-Laplace.

su = 0.09

lambda = 0.06

sv = 0.065

epsilon = log(data[,1]) − log(2.91) − 0.52 ∗ log(data[,2]) − 0.27 ∗ log(data[,3])

s1 = sigma ∗ exp(−epsilon2/sigma2/2) − 2 ∗ (2 ∗ pi)(0.5) ∗ exp(epsilon/p +

sigma2/p2/2) ∗ (epsilon + sigma2/p) ∗ pnorm(−epsilon/sigma − sigma/p) + (2 ∗ pi)(0.5) ∗

exp(epsilon ∗ (1 + lambda)/p + sigma2 ∗ (1 + lambda)2/p2/2) ∗ (epsilon + (1 + lambda) ∗

sigma2/p) ∗ pnorm(−epsilon/sigma − (1 + lambda) ∗ sigma/p)

s2 = 2 ∗ (2 ∗ pi)(0.5) ∗ exp(epsilon/p + sigma2/p2/2) ∗ pnorm(−epsilon/sigma −

sigma/p) − (2 ∗ pi)(0.5) ∗ exp(epsilon ∗ (1 + lambda)/p + (1 + lambda) ∗ sigma2/p2/2) ∗

pnorm(−epsilon/sigma − (1 + lambda) ∗ sigma/p)

TE = exp(−(s1/s2))

7. The following codes are used to compute log likelihood function of

normal-exponential model.
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likelihoodl nor exp = function(par){

su = par[1]

sv = par[2]

b0 = par[3]

b1 = par[4]

b2 = par[5]

e = log(data[,1]) − log(b0) − b1 ∗ log(data[,2]) − b2 ∗ log(data[,3])

logl = sum((e/su + sv2/su2/2) − log(su) + log(pnorm(−sv/su − e/sv)))

return(logl)}

8. The following codes are used to find estimated values of each normal-exponential

parameter.

su = seq(0.03,0.07,0.0025)

sv = seq(0.08,0.12,0.0025)

b0 = seq(2.9,3.1,0.01)

b1 = seq(0.45,0.55,0.01)

b2 = seq(0.2,0.35,0.01)

L = array(0, c(1068144,1))

y = 0

for(i in1 ∶ 17)

for(k in1 ∶ 17)
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for(l in1 ∶ 21)

for(m in1 ∶ 11)

for(n in1 ∶ 16)

{y = y + 1

L[y] = likelihoodl nor exp(c(su[i], sv[k], b0[l], b1[m], b2[n]))}

L

9. The codes to estimate technical efficiency of normal-exponential.

σu = 0.0675

σv = 0.09

e = log(data[,1]) − log(2.91) − 0.52 ∗ log(data[,2]) − 0.27 ∗ log(data[,3])

s0 = sv ∗ exp(−e2/(sv2/2) − e/su − sv2/su2)/(2 ∗ pi)(0.5) ∗ pnorm(−e/sv − sv/su)

TE = exp(s0 − e − sv2/su)
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