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Figure 6: Local Moran’s I CO‐type, Variable Date reported for analysis of temporal 

distance from initial confirmation date showing Early‐Late outlier (Pendleton 

County, WVA) and Late‐Early outliers (Fairfield County, CT and Oxford County, ME). 
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Figure 7: Local Moran’s I p‐scores, Variable Date demonstrating areas of significant 

clustering. 
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Discussion 

Once the labor intensive process of assembling the necessary data into a format 

conducive to analysis within the ArcGIS software platform was completed, it became 

clear that Moran’s I global and local analysis yielded the most useful information in 

determining whether a pattern exists within the data itself (Global Moran’s I, Figures 2 

and 5) and, if such a pattern was present, what characterized the nature of that pattern 

(Local Moran’s I, Figures 3, 4, 6, and 7).  Although a statistically significant clustered 

pattern of WNS outbreak sites and dates is present, this is not unexpected due to the 

nature of typical disease outbreak and hotspot tendencies as illustrated by the West Nile 

virus, meningitis, and Dengue fever outbreaks discussed previously.  Of more particular 

interest and relevance to the matter at hand is the precise nature of the pattern within the 

larger, global clustered pattern, and it is this question that the Local Moran’s I (LMI) 

analysis is best suited to answer.   

The most unique ability of Moran’s I analysis in this context is the determination 

of the presence of so-called “outlier values,” which would indicate a jump-gap 

transmission pattern despite the limitations of currently available data (the lack of cave 

specific latitude and longitude coordinates and thus “point” data). The aforementioned 

limitations of the dataset that make analysis by other methods inappropriate in this 

instance are not shared by LMI analysis and this makes it particularly useful in coming to 

an understanding of whether the Geomyces destructans fungus believed to be responsible 

for WNS follows the roughly linear spread pattern that would be expected from a bat-to-

bat transmission mechanism (single vector with multiple reservoirs) like that shown by 

mosquito transmission of West Nile Virus (Sugumaran et al., 2009) or is instead being 
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spread by human transmission from caver gear or clothing from site to site, which would 

be reflected by the presence of outliers within the dataset similar to those seen within the 

spread of meningitis as previously discussed (Paireau et al., 2012).  

 Considerable debate has ensued surrounding the nature of WNS dispersal, and 

because outliers within Local Moran’s I analysis results occur when an individual data 

point is judged to be significantly different in value than its surrounding neighbor 

locations, the existence of numerous outliers could be interpreted as evidence of the 

“jump dispersal” pattern that might implicate human transmission by visitation to 

multiple caves after being in an infected cave as a culprit in the spread of the disease. 

Conversely, since only three CO-type outliers were found while performing the LMI 

analysis on the WNS mortality confirmation date dataset (Figure 4), the results of this 

study suggest that the dominant spread of WNS can be more likely attributed to direct 

contact transmission between affected individuals within the bat populations themselves 

rather than a human vector model of transmission. Because annual migration of the most 

severely affected bat species is limited to distances of 520 km or less for Myotis sodalis 

(Kurta and Murray 2002) and 48.5 km for Myotis lucifugus (Butchkoski 2010), the 

maximum annual transmission distance of Geomyces destructans by a bat carrier would 

be within that range based on the current transmission data.  In contrast, human carriers 

could potentially travel well in excess of the above stated migration limits and thus 

“seed” a location with the fungus at much greater distances.  If such a long-distance 

seeding were to occur by human carriers as a matter of routine transmission, the resulting 

White-Nose Syndrome mortality confirmation site would be revealed as an outlier with a 
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value earlier than that of surrounding confirmed sites (or an “early-late” outlier within the 

LMI analysis as performed in this study). 

 The two “late-early” outliers found in Fairfield County, Connecticut and Oxford 

County, Maine (Figure 6) represent counties in which the Geomyces destructans fungus 

was detected at a statistically significant later date than those counties nearest the sites, 

and suggests that these counties may possess some topographical or ecological variation 

which prevented the spread of WNS into bat populations there at earlier dates. 

Alternatively, the surveying interval due to cave or mine access issues, or lack of 

surveying resources or personnel, could account for the difference in detection date; the 

fungus may have been present prior to reporting date but due to a delay in survey, was 

not discovered until later in the epidemic.  Since the emphasis on most disease 

transmission research is the front edge of an epidemic, these “late-early” outliers are of 

potential interest in exploring what factors may have played a role in the transmission 

delay, however do little to explicate the underlying dispersal mechanism. 

 Of more concern and relevance to understanding the dispersal pattern of 

Geomyces destructans is the Pendleton County, West Virginia (WV) site (Figure 6) that 

is shown to be an “early-late” outlier by Local Moran’s I analysis.  The presence of such 

an outlier could be interpreted as support for a “human as vector” model of disease 

transmission, and in fact, if analysis had revealed a pattern of such outliers, such a 

conclusion could be meaningfully drawn.  However, closer examination of the dataset, 

particularly those counties surrounding Pendleton County, reveals that counties south of 

the site (Giles confirmed 2/2009, Bland confirmed 5/2009) showed earlier infection.  The 

seven counties surrounding Pendleton County show considerable variation in reported 
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dates (Figure 6- Pocohantas WV on 3/2010, Highland VA on 4/10, Rockingham VA on 

8/2009, Tucker WV on 2/2011, Grant WV on 4/2011, Hardy WV on 3/2010, and Bath 

VA on 2/2009), and this constellation of occurrence dates suggests that the outlier status 

of Pendleton County, WV is perhaps a reflection of reporting artifacts and the much later 

reporting of Tucker and Grant counties in West Virginia is sufficiently later to alter the 

statistical analysis reporting of CO-type status even when weighed against the earlier 

dates of surrounding counties.  Given the inherent financial, time, and access resource 

constraints placed on survey efforts in the mountains of West Virginia, it is possible that 

earlier appearances of the fungus were unrecorded.  

 When the analysis was performed again using a dataset that had been artificially 

altered to reflect a degree of three month variability in either the forward or backward 

temporal direction, the results did not differ in any statistically meaningful way from the 

original dataset, and again revealed a pattern with two clusters (early-early and late-late) 

along with the presence of outlier values for Pendleton County, WV, Fairfield County, 

CT, and Oxford County, Maine (Figures 5, 6, and 7). Performing the Moran’s I analyses 

on a dataset in which the data points had been randomly altered by three months 

addressed a potential vulnerability of the analysis because of the possible variation in 

confirmation reporting dates due to the inherent difficulty in obtaining primary data; 

timing of cave surveys, difficulty in accessing hibernaculum sites, and seasonal 

limitations all have the effect of introducing a possible “timing artifact” bias into the 

results.  It also addresses the possible issue of sensitivity of the analysis to be able to 

detect outliers within a larger reporting error. The variable month dataset and analysis 

results effectively demonstrate that the nature of the pattern found in this study is a 
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reflection of the actual phenomenon being examined rather than a side-effect of the 

unavoidable data collection limitations.  Had there been an alteration of outlier values in 

the CO-type reporting by such an alteration of the dataset, the veracity of such a 

statistical analysis could rightly be questioned. However, in this case, the affirmation by a 

high degree of similarity of reported values further emphasizes the robust nature of the 

analysis itself. 

 Ultimately, the results of this study, primarily the lack of multiple “early-late” 

outlier values as revealed by Local Moran’s I CO-type reporting and associated 

significance values (Figures 3 and 4), suggest that the dominant transmission pattern of 

White-Nose Syndrome in the United States is typical of that found in diseases 

characterized by direct transmission between individuals of affected bat species rather 

than that of a separate vector.  One would expect that if humans were acting as a vector 

for Geomyces destructans, the dispersal pattern would resemble that of meningitis as 

discussed above and outlier values representing “jumps” in the dispersal would be 

present. This finding is contrary to much of what has been supposed about the dispersal 

of WNS and further emphasizes just how critical the creation of, and continued efforts to 

maintain, a comprehensive dataset of outbreak data is to appropriately address the issue at 

hand and arrive at policies that more effectively mitigate White-Nose Syndrome.  As any 

research is limited to the quality of data upon which the analyses are performed, the 

discrepancy around the Pendleton, WV confirmation dates should serve as a strong 

reminder of how critically important the practice of standardized, rigorous data collection 

is to our understanding of the timing and occurrence of natural phenomena like infectious 

disease dispersal patterns.  Additionally, because such robust data collection is made even 



27 

more difficult with diminished resources, it should serve as a call for increased attention 

to communication and management at both the state and federal levels in order to more 

promptly develop monitoring and surveying plans, and mobilize “ground troops” for 

future outbreaks. 

 A more complete understanding of the dispersal patterns of White-Nose 

Syndrome, as revealed by careful statistical evaluation of the relationships between each 

confirmed site within the compiled dataset, is absolutely critical to the development of a 

scientifically valid, well-reasoned approach to addressing and possibly mitigating the 

devastating effects of WNS.  Previously, such large-scale studies have not been 

conducted due in part to the lack of a comprehensive dataset and, now that the stated 

research goal of establishing such a dataset and determining its usefulness has been 

accomplished here, more scientifically rigorous evaluations of the dispersal patterns 

found within the epidemic can be built upon the results of this study.  Of particular 

interest for future mitigation efforts could be the development of a dataset that compares 

Geomyces destructans infection dates against WNS associated mortality dates.  Such a 

dataset would allow for the detailed examination of transmission and mortality 

expression rates and could potentially reveal crucial information about factors which 

influence disease development, however that data is not yet available and will take 

considerable cooperation and effort to develop into a meaningful investigative tool. 

 In addition to the chronological and temporal analysis of the disease spread itself, 

perhaps one of the most powerful aspects of applying ArcMap’s graphical capabilities to 

an examination of this disease spread pattern is that alternate variables, such as 

topography, prevailing wind patterns, and migration paths, can be incorporated into 
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further analyses.  Although it is impossible to predict at this stage which of these 

variables, if any, will prove to be significant upon further examination, the fact that the 

Geomyces destructans fungus is cold-loving and therefore potentially affected by factors 

such as annual temperature and geomorphology of the hibernaculum themselves strongly 

suggests that a correlation with these annual temperatures and dominant wind patterns 

should present itself when used as a co-variable against the spread pattern and resulting 

mortality.  As of completion of this study, wide-ranging efforts are underway to establish 

robust baseline population numbers for affected bat species.  These census efforts 

coupled with more sophisticated mortality counts could potentially allow further research 

into how the climatic and ecological factors mentioned above play a role in individual 

and population survivability. 

 Most current mitigation techniques have involved closing caves or mines, or 

limiting access by humans, along with evolving decontamination procedures (USFWS, 

2012a,b). A better understanding of the fungus itself and its survivability in various 

environments from recent research also introduced continued discussion about how best 

to address WNS issues (Blehert 2011). However, many of the current efforts to curtail the 

spread of Geomyces destructans have been hampered by an incomplete understanding of 

the underlying patterns of dispersal, combined with the lack of a standardized method of 

disease discovery and reporting. Additionally, the policies in place at the federal and state 

government level regarding well-intentioned cave and mine closures may have had the 

unintentional effect of diminishing beneficial input from potential allies within the 

outside community. Given that eventual modeling efforts will be largely dependent on 

the robustness of site data (both spatial and temporal) and the large role played by non-
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governmental visitors in establishing outbreak sites early in the disease, the decision to 

close all caves and mines on public land may have the end result of decreasing our ability 

to reasonably predict where and when future outbreaks will occur. 

 In order to effectively collect and compile a current dataset of ongoing outbreak 

sites, it will be necessary to establish a clearinghouse for suspected WNS sites at the 

federal level with a correspondingly rigorous protocol to determine data accuracy and 

what criteria by which to include new sites.  For the purposes of this study, WNS 

associated mortality was not a prerequisite for inclusion in the dataset; however, the 

nature of the causative fungus and manifestation of WNS mortality itself is as of yet 

incompletely understood with some species exhibiting symptoms of WNS with no 

resulting mortality (USFWS, 2012b).  As survey and census efforts intensify, more 

comprehensive data on sites infected with Geomyces destructans prior to mortality events 

may well lead to important discoveries regarding species susceptibility and survivability.  

 Perhaps of most urgent import to wildlife managers and conservation efforts is the 

ability to more effectively predict the areas which Geomyces destructans is most likely to 

infect and when it will affect those areas.  The novel application of Moran’s I used in this 

research suggests that, not only would it be possible to create predictive geospatial 

models, but that transmission time itself can be used as a variable when constructing 

these predictive models.  This study provides an example or the robustness of these 

techniques and their ability to play a crucial role in management activities associated with 

WNS and future outbreaks, while also illustrating the limitations of the analysis given the 

myriad data collection and reporting techniques used to date. This has significant 
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implications not just for the disease being examined within the context of this study, but 

for the broader field of wildlife epidemiology as a whole. 
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APPENDIX 
Geomyces destructans Confirmation Dates 

 
STATE COUNTY FIPS MonthYear Months Source 

NY Schoharie County 36095 1-Feb-06 1 Al Hicks/NY DOC 

NY Albany County 36001 1-Mar-07 14 Al Hicks/NY DOC 

PA Centre County 42027 1-May-07 16 USGS/NWHC 

MA Franklin County 25021 1-Jan-08 24 USGS/NWHC/NWHC 

MA Hampden County 25023 1-Jan-08 24 USGS/NWHC 

NY Ulster County 36111 29-Jan-08 24 Carl Herzog/NY DOC 

VT Bennington County 50003 1-Jan-08 24 USGS/NWHC 

VT Orange County 50017 1-Jan-08 24 USGS/NWHC 

VT Windham County 50025 1-Jan-08 24 USGS/NWHC 

VT Windsor County 50027 1-Jan-08 24 USGS/NWHC 

NY Montgomery County 36057 1-Feb-08 25 Carl Herzog/NY DOC 

CT Litchfield County 09005 1-Mar-08 26 USGS/NWHC 

MA Berkshire County 25001 1-Mar-08 26 Blehert, 2008 

NY Essex County 36031 1-Mar-08 26 Carl Herzog/NY DOC 

NY Jefferson County 36045 1-Mar-08 26 Carl Herzog/NY DOC 

NY Warren County 36113 1-Mar-08 26 Carl Herzog/NY DOC 

NY Columbia County 36021 1-Apr-08 27 Carl Herzog/NY DOC 

NY Sullivan County 36105 1-Apr-08 27 Carl Herzog/NY DOC 

PA Lackawanna County 42069 1-Nov-08 34 USGS/NWHC 

NJ Morris County 34027 1-Dec-08 35 USGS/NWHC 

NJ Warren County 34041 1-Dec-08 35 USGS/NWHC 

PA Mifflin County 42087 1-Dec-08 35 PA Game Commision  

CT Hartford County 09003 1-Jan-09 36 USGS/NWHC 

NY Onondaga County 36067 1-Jan-09 36 Carl Herzog/NY DOC 

PA Schuylkill County 42107 4-Jan-09 36 Cal Butchkoski 

WV Pendleton County 54071 1-Jan-09 36 WVDNR 

MA Middlesex County 25027 1-Feb-09 37 USGS/NWHC 

MA Norfolk County 25021 1-Feb-09 37 USGS/NWHC 

NH Grafton County 33009 1-Feb-09 37 USGS/NWHC 

NH Merrimack County 33013 1-Feb-09 37 USGS/NWHC 

NY Putnam County 36079 1-Feb-09 37 Carl Herzog/NY DOC 

NY Washington County 36115 12-Feb-09 37 Carl Herzog/NY DOC 

VA Bath County 51017 1-Feb-09 37 Sweezy 

VA Giles County 51071 1-Feb-09 37 USGS/NWHC 

VT Rutland County 50021 1-Feb-09 37 USGS/NWHC 

VT Washington County 50023 1-Feb-09 37 USGS/NWHC 

NY Hamilton County 36041 1-Mar-09 38 Carl Herzog/NY DOC 

PA Luzerne County 42079 1-Mar-09 38 PA Game Commission  
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NY Franklin County 36033 1-Apr-09 39 Carl Herzog/NY DOC 

VA Bland County 51021 1-May-09 40 Sweezy 

VA Smyth County 51173 1-May-09 40 Sweezy 

VA Rockingham County 51165 1-Aug-09 43 Sweezy 

NY Lewis County 36049 16-Dec-09 47
Cal Butchkoski/Carl 
Herzog 

PA Bucks County 42017 1-Dec-09 47 USGS/NWHC 

NY Orange County 36071 15-Jan-10 48 Cal Butchkoski 

PA Carbon County 42025 1-Jan-10 48 USGS/NWHC 

PA Huntingdon County 42061 1-Jan-10 48 USGS/NWHC 

PA Lawrence County 42073 1-Jan-10 48 Cal Butchkoski 

PA Lycoming County 42081 1-Jan-10 48 USGS/NWHC 

PA Monroe County 42089 20-Jan-10 48 Cal Butchkoski 

PA Sullivan County 42113 16-Jan-10 48 Cal Butchkoski 

NY Erie County 36029 15-Feb-10 49 Cal Butchkoski 

PA Blair County 42013 1-Feb-10 49 USGS/NWHC 

PA Columbia County 42037 3-Feb-10 49 Cal Butchkoski 

PA 
Northumberland 
County 42097 16-Feb-10 49 Cal Butchkoski 

PA Tioga County 42117 23-Feb-10 49 Cal Butchkoski 

TN Carter County 47019 1-Feb-10 49 Sweezy 

TN Sullivan County 47163 1-Feb-10 49 Sweezy 

VA Tazewell County 51185 1-Feb-10 49 VA DOC 

VT Lamoille County 50015 1-Feb-10 49 USGS/NWHC 

MD Allegany County 24001 1-Mar-10 50 Sweezy 

MD Garrett County 24023 18-Mar-10 50 MD DNR 

NH Coos County 33007 1-Mar-10 50 Cal Butchkoski 

NY Clinton County 36019 1-Mar-10 50 Al Hicks/NY DOC 

NY Livingston County 36051 29-Mar-10 50 Cal Butchkoski 

TN Blount County 47009 1-Mar-10 50 Sweezy 

TN Montgomery County 47125 1-Mar-10 50 sweezy 

TN Van Buren County 47175 1-Mar-10 50 Sweezy 

VA Craig County 51045 1-Mar-10 50 Sweezy 

WV Greenbrier County 54025 1-Mar-10 50 Sweezy 

WV Hardy County 54031 1-Mar-10 50 Sweezy 

WV Mercer County 54055 1-Mar-10 50 Sweezy 

WV Monroe County 54063 1-Mar-10 50 Sweezy 

WV Pocahontas County 54075 1-Mar-10 50 Sweezy 

DE New Castle County 10005 1-Apr-10 51 Sweezy 

MO Pike County 29163 1-Apr-10 51 Cal Butchkoski 

PA Fayette County 42051 19-Apr-10 51 Cal Butchkoski 

TN Fentress County 47049 1-Apr-10 51 Sweezy 
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VA Highland County 51091 1-Apr-10 51 Sweezy 

WV Jefferson County 54037 14-Apr-10 51 US FWS 

MO Shannon County 29203 2-May-10 52 Cal Butchkoski 

OK Woodward 40153 3-May-10 52 OK DWC 

VA Chesterfield County 51041 1-May-10 52 Cal Butchkoski 

IN Crawford County 18025 1-Jan-11 60 USGS/NWHC 

IN Washington County 18175 23-Jan-11 60 IN DNR 

VA Pulaski County 51155 1-Jan-11 60 VA DOC 

VA Russell County 51167 31-Jan-11 60 Cal Butchkoski 

IN Monroe County 18105 18-Feb-11 61 Cal Butchkoski 

NC Avery County 37011 1-Feb-11 61 NC Wildlife Resources 

NC Yancey County 37199 1-Feb-11 61 NC Wildlife Resources  

VA Wise County 51195 1-Feb-11 61 USGS/NWHC 

WV Tucker County 54093 14-Feb-11 61 Cal Butchkoski 

CT Fairfield County 09001 24-Mar-11 62 Cal Butchkoski 

MD Washington County 24043 1-Mar-11 62 MD DNR 

OH Lawrence County 39087 30-Mar-11 62 OH DNR 

PA Armstrong County 42005 17-Mar-11 62 Cal Butchkoski 

PA Butler County 42019 17-Mar-11 62 Cal Butchkoski 

PA Fulton County 42057 30-Mar-11 62 Cal Butchkoski 

PA Somerset County 42111 29-Mar-11 62 Cal Butchkoski 

PA Westmoreland County 42129 18-Mar-11 62 Cal Butchkoski 

KY Trigg 21221 13-Apr-11 63 KDFWR 

ME Oxford County 23017 1-Apr-11 63 USGS/NWHC 

NC McDowell County 37111 4-Apr-11 63 Cal Butchkoski 

WV Fayette County 54019 18-Apr-11 63 NPS 

WV Grant County 54023 15-Apr-11 63 WVDNR 

NC Transylvania 37175 1-Jun-11 65 Cal Butchkoski 

OH Summit County 39153 14-Jan-12 72 OH DNR 

WV Mineral County 54057 24-Jan-12 72 Cal Butchkoski 

KY Fayette County 21067 13-Jan-12 72 CDC 

OH Geauga County 39055 1-Jan-12 72 OH DNR 

IN Harrison County 18061 8-Feb-12 73 Cal Butchkoski 

KY Breckinridge County 21027 1-Feb-12 73 FWS 

KY Wayne County 21231 27-Feb-12 73 Cal Butchkoski 

NC Haywood County 37087 24-Feb-12 73 Cal Butchkoski 

OH Cuyahoga 39035 8-Feb-12 73 Cal Butchkoski 

OH Portage County 39133 16-Feb-12 73 Cal Butchkoski 

PA Beaver 42007 7-Feb-12 73 Cal Butchkoski 

TN Stewart County 47161 17-Feb-12 73 Cal Butchkoski 

WV Monongalia County 54061 21-Feb-12 73 Cal Butchkoski 
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WV Preston County 54077 27-Feb-12 73 Cal Butchkoski 
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