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Department of Public Health     Western Kentucky University  

 This study examined United States Environmental Protection Agency (US EPA) 

methods 507 and 508.1; analytical methods used to test drinking water for Atrazine. 

Additionally, this study examines the seasonal variation of Atrazine in Kentucky drinking 

water. Atrazine is a triazine herbicide used to control and inhibit the growth of broad leaf 

and grassy weeds. Atrazine’s ability to be transported to community drinking water 

supplies makes it a significant public health issue, as it has been linked to myriad 

negative health endpoints ranging from endocrine disruption to various forms of cancer, 

including stomach and ovarian cancer. To date, there is little research examining the 

current methods used to test for Atrazine and its seasonal variation in drinking water. 

Drinking water samples previously collected by the Kentucky Division of Water and the 

Kentucky Geological Survey from 117 of 120 counties throughout the state from January 

2000 to December 2008 were used for this study. To examine inter-method comparison 

between methods 507 and 508.1, samples were subjected to the Mann-Whitney U test. 

Median values of methods 507 and 508.1 were found to be similar (p=0.7421). To 

examine seasonal variation, data from each year from 2000 to 2008, as well as the entire 

2000-2008 period, were analyzed using the Kruskal-Wallis One Way Analysis of 

Variance. Years 2000, 2002, 2003, 2004, 2007, and 2008 as well as the full 2000-2008 
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span were found to have significantly different Atrazine concentrations from season to 

season. Years 2001, 2005, and 2006 were not found to have significantly different 

concentrations from season to season. The 2000-2008 span was then subjected to the 

Seasonal Kendal Test for Trend, which determined a significant (p=0.000092) decreasing 

linear trend of -7.6 x 10-6 mg/L/year of Atrazine in Kentucky. Similar decreasing linear 

trends were seen throughout the five regions in the state during this time period as well. 

This study further expands on knowledge of the occurrence and persistence of Atrazine in 

the environment. Comparative analysis of US EPA analytical methods and the seasonal 

variation of Atrazine in drinking water provide a background for future research. 
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Chapter 1 

Introduction 

 There are an estimated seven billion people in the world today, of which,  nearly 1 

billion do not have sufficient food and over 1 billion lack access to safe drinking water 

(Food and Agricultural Organization, 2010; World Health Organization, 2010). With the 

world’s population expected to grow to over 10 billion people by the year 2100, the 

demand for food and potable water is greater than ever (World Health Organization, 

2010). The ever increasing world population in conjunction with the ever increasing 

demand for increased crop yield to feed the population has led to the increased use of 

pesticides throughout the world; since 1945 worldwide pesticide production has doubled 

every 10 years (Dich et al, 1997). Additionally, demand for ethanol has increased in 

recent years, contributing to the increased use of pesticides. In the United States alone, 

ethanol production increased by more than 1 billion gallons between 2005 and 2006, and 

its demand is expected to increase in coming years (Westcott, 2007) This increased 

pesticide use has led to an increased potential for environmental contamination, 

especially fresh water contamination. Contamination of fresh water supplies is of 

considerable concern due to the limited nature of fresh water throughout the world; 

roughly 3% of water on earth is fresh water (United States Geological Survey, 2012).  

The contamination of the physical environment leads to another problem, the potential 

for the negative impaction of human health. Chronic human health effects of many 

commonly used pesticides are largely unknown and under researched, though research is 

beginning to link many pesticides to myriad illnesses and diseases ranging from 
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reproductive effects to cancer. The potential health effects of pesticides are of growing 

concern worldwide, and especially in the United States. 

 Atrazine is one of the most commonly used pesticides in the United States today 

and is a restricted use, triazine herbicide used to control and inhibit the growth of broad 

leaf and grassy weeds in the production of corn, sorghum, sugar cane and numerous other 

crops. First developed in the late 1950s, its use has increased steadily over the years, with 

74 million pounds used in 1997 and nearly 80 million pounds used in 2007 (Kiely, 

Donaldson & Grube, 2004; Grube, Donaldson, Kiely & Wu, 2011). Widespread use has 

led to near environmental ubiquity in the United States. The primary concerns regarding 

Atrazine include its mobility and potential to contaminate ground and surface fresh water 

sources, both of which are used as drinking water supplies (Porter, Jaeger, & Carlson, 

1999). Today, it is one of the most frequently detected agricultural chemicals found in 

drinking water samples (Benotti et al, 2009). With ingestion being one of the major 

routes of exposure for Atrazine and its largely unknown potential to cause illness and 

disease in humans, the contamination of drinking water supplies with Atrazine poses a 

significant risk to public health. 

 Atrazine poses a potential threat to human health, therefore it is regulated by the 

United States Environmental Protection Agency’s (US EPA) Safe Drinking Water Act 

(SDWA). The SDWA established a Maximum Contaminant Level (MCL) of 3 parts per 

billion (ppb), or 0.003 mg/L, for Atrazine (Agency for Toxic Substances and Disease 

Registry, 2003). Furthermore, the SDWA requires that every public water system must 

test for Atrazine and maintain an average level at or below the 3 ppb MCL.  Currently, 

under 40 CFR 141.24, the US EPA has approved six separate analytical methods for the 
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testing and detection of Atrazine in public water supplies, these methods include five US 

EPA methods, 505, 507, 508.1, 525.2,  and 551.1,  and one private company method, 

Syngenta AG-625. Five of the methods employ gas chromatography, while the Syngenta 

AG-625 is an immunoassay (United States Environmental Protection Agency, 2011).  

Three of the US EPA methods, 507, 508.1, and 525.2, as well as US EPA method 8270C, 

are commonly used for drinking water analysis in Kentucky public water systems. 

Method 8270C is not listed in 40 CFR 141.24 or its appendices, but is commonly used in 

Resource Conservation and Recovery Act compliance analysis (Massachusetts 

Department of Environmental Protection, n.d.). Though the US EPA has approved six 

analytical methods, there has been little to no published research concerning the 

similarity of the results obtained using each method.  

 From an environmental health standpoint, Atrazine poses a substantial risk. To 

date, Atrazine has been linked to numerous environmental problems. Of note is its link 

with endocrine disruption in amphibians; its estrogenic effects have resulted in 

hermaphroditism and chemical castration, amongst other problems, in frogs at levels well 

below the US EPA mandated MCL (Hayes et al, 2010). Furthermore, it has been deemed 

an embryotoxin in rodents (Villanueva et al, 2005). The effects of Atrazine on humans 

are not well documented and are not as conclusive as in animal studies. However, studies 

have linked Atrazine’s numerous health effects, including, but not limited to, endocrine 

disruption, reproductive effects, cardiovascular difficulty and potential carcinogenicity. 

The environmental effects and the potential human health effects of Atrazine have led to 

great concern worldwide, resulting in a complete ban in the European Union and heavy 

use restrictions in the United States (Sass & Colangelo, 2006). 
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Research Objectives 

 The primary aim of this study is to compare two analytical methods currently 

used to test drinking water for Atrazine contamination. These two methods are US EPA 

methods 507 and 508.1, used by the Kentucky Department of Environmental Protection 

Division of Water and the Kentucky Geological Survey, in the analysis of Atrazine in 

drinking water samples. The data collected also allows for the research of seasonal 

variations of Atrazine in Kentucky drinking water from 2000 to 2008, in addition to the 

study of inter-method comparisons. This should ultimately lead to a better understanding 

of the persistence and availability of Atrazine in the environment, aid in future 

development of effective exposure assessment methodologies, and gain insight into the 

reliability of analytical methods used for Atrazine testing.  

The objectives of this study are twofold: 

1) To determine inter-method comparison between US EPA analytical methods 507 and 

508.1 used to test Kentucky drinking water samples for Atrazine from 2000 to 2008. 

2) To assess seasonal variations of Atrazine in Kentucky drinking water to study the 

persistence of Atrazine over time. 

This leads to the primary research question: Does the use of US EPA analytical methods 

507 and 508.1 to assess Atrazine in drinking water produce similar results? 
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Chapter 2 

Background/Literature Review 

Physical and Chemical Properties 

The chemical name of Atrazine, as defined by the International Union of Pure and 

Applied Chemistry (IUPAC), is 1-Chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine 

(molecular formula C8H14ClN5) and the molecular weight is 215.69 (Agency for Toxic 

Substances and Disease Registry, 2003). In its pure state, Atrazine is an odorless and 

colorless, organic, crystalline powder, with a melting point between 173 and 175 degrees 

Celsius, a vapor pressure of 2.89x10-7 mmHG and a density of 1.23 g/cm3 (Agency for 

Toxic Substances and Disease Registry, 2003). Commercially, Atrazine is typically 

around 95% pure (World Health Organization, 1996), though it need only be 92% pure 

according to the Food and Agricultural Organization (Food and Agricultural 

Organization, 1975). Though temperature dependent, Atrazine is soluble in numerous 

organic solvents including: acetone, ethanol, toluene, methanol and ethyl acetate. 

Additionally, it is not very soluble in water, with a solubility of roughly 30 mg/L 

(Agency for Toxic Substances and Disease Registry, 2003).  

Atrazine Production and Use 

Atrazine is produced using numerous registered trade names, including: Aatrex, 

Aatram, Atratol, and Gesaprim (Agency for Toxic Substances and Disease Registry, 

2003). Atrazine is most commonly used in the agricultural field as both a pre and post-

emergence herbicide to control and inhibit the growth of a variety of both broadleaf and 

grassy weeds in crop production (Agency for Toxic Substances and Disease Registry, 
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2003). It is the second most commonly used herbicide in the United States, with 74 to 80 

million pounds used in the United States in 2001 (Kiely, Donaldson & Grube, 2004) and 

similar amounts used in subsequent years (Grube, Donaldson, Kiely & Wu, 2011).  It is 

used most heavily in the large corn production states in the Midwestern United States of 

Illinois, Iowa, Nebraska, and Indiana (Solomon et al, 1995). 

Atrazine is classified by the US EPA as a toxicity class III pesticide, meaning it is 

considered to be only slightly toxic (Agency for Toxic Substances and Disease Registry, 

2003). For the aforementioned reason, as well as its potential for environmental 

contamination, Atrazine has been designated a restricted use pesticide by the US EPA, 

implying that its purchase and use is limited to certified applicators or under the direct 

supervision of a certified applicator (United States Environmental Protection Agency, 

2011).  

In plants, Atrazine acts as an inhibitor of photosynthesis; more specifically, it is a 

photosystem II electron transport inhibitor (Stryer, 1995). In this process, Atrazine 

reduces the flow of electrons found in water to NADPH2+, an enzyme critical for the 

completion of the photosynthetic process. This then leads to an accumulation of electrons 

on the chlorophyll cells, resulting in excessive oxidation reactions, and ultimately plant 

death (Stryer, 1995). 

Environmental Fate and Toxicity 

 The use of Atrazine as an agricultural herbicide results in its direct release into the 

environment, making it a potential soil, air and water contaminant.  
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In soil, Atrazine is expected to have moderate to high mobility, with a half-life of 

up to 385 days, depending on soil and degradation type (Hazardous Substances Data 

Bank, 2012).  Its lengthy half-life is of concern, as it enables Atrazine to persist in soil for 

more than a year. The persistence and degradation of Atrazine in soil is due to multiple 

factors including soil type, pH, temperature and moisture content. Atrazine degrades in 

soil by microbial and chemical activities, hydrolysis and photolysis. The long half-life 

and mobility in soil is believed to enhance its potential to contaminate both ground and 

surface water sources (Agency for Toxic Substances and Disease Registry, 2003). 

 In water, Atrazine is expected to adsorb to suspended sediment, but is not 

expected to volatilize from the water’s surface (Hazardous Substances Data Bank, 2012). 

Therefore, Atrazine breaks down in water by chemical degradation, hydrolysis and 

photolysis, and microbial degradation, though it has been found to be reasonably resistant 

to microbes.  In basic or acidic water, Atrazine hydrolyzes quickly, but is thought to be 

stable in neutral pH water. The half-life of Atrazine in water is dependent on multiple 

factors including water temperature and pH Agency for Toxic Substances and Disease 

Registry, 2003), but has been determined to be 96 days in natural groundwater 

(Hazardous Substances Data Bank, 2012). 

 In air, Atrazine exists in vapor and particulate phases. In the vapor phase, 

Atrazine degrades through two methods, atmospheric hydroxyl radicals or photolysis. In 

the particulate phase, Atrazine is removed via wet and/or dry deposition (Agency for 

Toxic Substances and Disease Registry, 2003).   
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 Atrazine is considered to have relatively low toxicity, and is classified by the US 

EPA as class 3, but due to its environmental fate, as well as its application methods, 

human exposure may occur through numerous routes, including ingestion, the primary 

route, dermal absorption and inhalation (Agency for Toxic Substances and Disease 

Registry, 2003).   

 In humans, Atrazine is readily absorbed in the gastrointestinal tract, with 66% of 

the ingested dose excreted in urine. Approximately 14% of the ingested dose of Atrazine 

is retained in tissue, typically persisting in erythrocytes, liver, spleen and kidney with a 

whole body elimination half-life of 31.3 hours (World Health Organization, 1996; 

California Environmental Protection Agency, 2008). Laboratory studies on rats have 

determined the oral median lethal dose (LD50) to be 3090 mg/kg body weight (Zimdahl, 

1993). Absorption of Atrazine through the skin is limited (World Health Organization, 

1996).  In humans, Atrazine is rapidly secreted through feces and urine (Hazardous 

Substances Data Bank, 2012).  

Environmental and Health Effects 

 The effects of Atrazine on the environment, specifically animals, are well 

documented.  Studies on rodents and rabbits have shown Atrazine to have embryotoxic 

effects, though no teratogenic or developmental effects have been observed (Villanueva 

et al, 2005; International Agency for Research on Cancer, 1999). Other effects seen in 

rodents include muscular weakness, reduced respiratory rate, and central nervous system 

lesions (International Agency for Research on Cancer, 1999). Myriad effects have also 

been observed in amphibians. Studies on amphibians have shown Atrazine to be an 
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endocrine disrupting compound (EDC), leading to hermaphroditism, retardation of 

gonadal development and chemical castration (Hayes et al, 2010). These studies have 

shown Atrazine to have estrogenic effects, causing the induction of aromatase, the 

enzyme responsible for the conversion of androgen to estrogen, leading to the 

feminization of males (Hayes, 2004). The induction of aromatase has been demonstrated 

in numerous other animals in addition to amphibians. Furthermore, Atrazine has 

demonstrated carcinogenicity in animals. Atrazine has been linked to mammary tumors, 

adenocarcinomas, and carcinosarcomas in rats (International Agency for Research on 

Cancer, 1999).  

 While the effects of Atrazine on animals are well documented, the effects on 

humans are still not well understood. Acute exposure at levels substantially greater than 

the MCL may result in effects ranging from nausea and dizziness to coma, gastric failure 

and renal failure (Agency for Toxic Substances and Disease Registry, 2003). Atrazine has 

also been linked to numerous other health effects. A number of studies have linked 

ingestion of drinking water contaminated with Atrazine to small-for-gestational-age 

status and preterm delivery (Villanueva et al, 2005).  A study by Munger et al (1997) also 

found that Atrazine increased the risk of intrauterine growth retardation.  

 The potential for carcinogenicity in humans is still unknown. However, it is 

classified as an IARC Class 3 carcinogen, meaning “the agent is not classifiable as to its 

carcinogenicity to humans” (International Agency for Research on Cancer, 1999). 

Though classified as only a Class 3 carcinogen, multiple studies have linked Atrazine to 

various forms of cancer. Bingham et al (2001) found an increased risk of ovarian tumors 

in Italian women exposed to Atrazine contaminated drinking water. Furthermore, 
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Atrazine was also found to increase the risk of stomach cancer (Van Leeuwen, 1999). 

Significant research is currently being conducted due to the uncertainty surrounding 

Atrazine’s carcinogenicity, in spite of its class 3 rating.  

Regulations and Guidelines 

 Atrazine is covered under the Safe Drinking Water Act (SDWA), which was 

enacted by the US EPA in 1974 to ensure safe drinking water in public water systems.  

The SDWA requires the US EPA, under 40 CFR 141.24, to develop National Primary 

Drinking Water Regulations (NPDWR) for contaminants that pose a risk to human 

health. NPDWRs include both Maximum Contaminant Levels (MCLs), which are 

enforceable standards, as well as Maximum Contaminant Level Goals (MCLGs), which 

are non-enforceable guidelines.  The MCLG for Atrazine is 3 ppb, with the MCL set at 

the same level. NPDWRs also determined the appropriate analytical methods for the 

detection and quantification of each of the regulated contaminants (United States 

Environmental Protection Agency, 2012). Additionally, acceptable treatment 

technologies were also developed. The most commonly used methods to treat for 

Atrazine in public drinking water systems include adsorption methods  (granular 

activated charcoal and powdered activated charcoal), and reverse osmosis (Committee to 

Advise on Reassessment and Transition, 2000). Granulated activated charcoal has been 

found to be the best available technology for the removal of Atrazine from drinking water 

(Golla, 2003).  
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Analytical methods 

The US EPA has approved 6 different analytical methods to test for Atrazine in 

drinking water under 40 CFR 141.24. These methods include US EPA method 505, US 

EPA method 507, US EPA method 508.1, US EPA method 525.2, US EPA method 551.1 

and Syngenta Ag-625. Four of these methods (US EPA method 505, 507, 508.1, and 

525.2) are commonly used in Kentucky. Additionally, US EPA method SW846-8270C is 

commonly used for the detection of Atrazine in Kentucky, though not formally approved 

by the US EPA. 

US EPA method 505 (“Analysis of Organohalide Pesticides and Commercial 

Polychlorinated Biphenyl (PCB) Products in Water by Microextraction and Gas 

Chromatography”) is a gas chromatographic analytical method for detection of  25 

unique compounds in treated water. In this method sample analyte is extracted by adding 

hexane and vigorous shaking, and then allowed to separate. The extracted sample is then 

injected into a fused-silica capillary column gas chromatographic system. Analytes are 

then identified by comparison of their retention time to reference retention times of a gas 

chromatograph. In this method, Atrazine has a retention time of 11.2 minutes (Munch, 

1995). 

US EPA method 507 (“Determination of Nitrogen and Phosphorus-Containing 

Pesticides in Water by Gas Chromatography with a Nitrogen-Phosphorus Detector”) is a 

gas chromatographic analytical method. It has the capability of detecting 46 unique 

compounds, and was first approved for use in 1995. In this method, the sample is 

extracted with methylene chloride. The methylene chloride is then isolated, dried and 
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concentrated using a Kuderna-Danish (K-D) apparatus during solvent exchange process 

to methyl tert-butyl ether, MTBE, followed by separation and measurement of analytes of 

interest by Capillary Column Gas Chromatography with a nitrogen phosphorus detector. 

Analytes are then identified by comparison of their retention time to reference retention 

times of a gas chromatograph. Using this method, Atrazine has a retention time between 

31.77 and 32.12 minutes (Munch, 1995).     

Like 507, US EPA method 508.1 (“Determination of Chlorinated Pesticides, 

Herbicides and Organohalides by Liquid-Solid Extraction and Electron Capture Gas 

Chromatography”) is a gas chromatographic, liquid-solid extraction analytical method 

with the capability to determine concentrations of 45 unique compounds; it was first 

approved for use in 1995. In this method, sample water is passed through a 

preconditioned disk containing a solid inorganic matrix coated with organic phase C18 

allowing for extraction of analytes (liquid-solid extraction).  Analytes are then eluted 

from the disk and concentrated via evaporation. Following evaporation, analytes are then 

separated and measured in a fused silica capillary column of a gas 

chromatograph/electron capture detector system. Finally, analytes are identified by 

comparison of their retention time to reference retention times of a gas chromatograph.  

In this method, Atrazine has a retention time of 18.23 minutes (Munch, 1995).  

US EPA method 525.5 (“ Determination of Organic Compounds in Drinking 

Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass 

Spectrometry”) is another gas chromatographic, liquid-solid extraction analytical method 

with the capability to determine concentrations of at least 118 unique compounds; it was 

first approved for use in 1995. In this method, sample water is passed through a 
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preconditioned disk containing a solid inorganic matrix coated with organic phase C18 

allowing for extraction of analytes (liquid-solid extraction). Analytes are then eluted from 

the disk and concentrated via evaporation. Following evaporation, analytes are separated 

and measured in a fused silica capillary column of a gas chromatography/ mass 

spectrometry system. Analytes are then identified by comparison of their retention time 

to reference retention times of a gas chromatograph, as well as a comparison of the mass 

spectrum to a reference spectrum. In this method, Atrazine has a retention time between 

9.38 minutes and 10.49 minutes (Munch, 1995). 

US EPA method SW846-8270C (“Semivolatile Organic Compounds by Gas 

Chromatography/Mass Spectrometry (GC/MS)”) is an analytical method which has been 

approved for use in sampling and analysis in compliance with the Resource Conservation 

and Recovery Act (RCRA). Like the aforementioned methods, it is a gas 

chromatographic method, which is used to determine concentrations of numerous 

semivolatile organic compounds in solid waste, soil, air or water. Pursuant to the method, 

sample first undergoes extraction by either a liquid-liquid extraction or solid-phase 

extraction process. The extraction is then concentrated and dried using a Kuderna-Danish 

(K-D) apparatus (United States Environmental Protection Agency, 2007). The dried, 

concentrated extraction is then injected into a Gas Chromatograph mass spectrometry 

system, with a narrow-bore fused-silica capillary column. Analytes are identified through 

comparison of the mass spectra with the electron impact spectra of a known standard; 

quantitation is achieved through the comparison of response of the ion of interest to an 

internal standard using a five point calibration curve (United States Environmental 

Protection Agency, 1996). 



14 
 

 There are numerous similarities between each of the aforementioned methods. 

The key similarity between each of the methods is that they are each a gas 

chromatographic method, utilizing a narrow bore fused silica capillary column. It should 

be noted that gas chromatographic methods are the preferred methods in Atrazine 

detection in drinking water. Methods 508.1 and 525.2 both share the same liquid-solid 

extraction, isolation and concentration process, including the same materials and reagents 

used. Additionally, both methods 525.2 and 8270C utilize the same gas chromatography 

system/mass spectrometry system. The calculation for concentration is the same for 

methods 507, 508.1 and 525.2. 

 There are also numerous differences between each of the methods. Each method 

yields a unique retention time for Atrazine due to the differences in detectors and 

columns used in the various systems. Furthermore, method 507 utilizes a unique 

extraction, isolation and concentration method as well as a unique detector in the gas 

chromatography system, a nitrogen-phosphorus detector. Additionally, method 508.1 

utilizes a unique detector in the gas chromatography system, an electron capture system.  
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Chapter 3 

Methodology 

Drinking water Atrazine concentrations were monitored in 117 of the 120 

counties in Kentucky from 1991 to 2008. Multiple US EPA analytical methods were used 

in the analysis of drinking water samples for Atrazine during this time period. Statistical 

and environmental modeling was used to study the drinking water Atrazine 

concentrations in order to observe season distribution and inter-method variability of 

Atrazine in Kentucky water.  The primary emphasis of this design is the assessment of 

the comparability of results obtained using US EPA analytical methods 507 and 508.1 to 

test drinking water for Atrazine.  

The research hypotheses of this study are as follows: 

Null Hypothesis: There is no difference between US EPA analytical methods 507 and 

508.1 used for the determination of Atrazine concentrations in Kentucky drinking water 

between the years 2000 and 2008. 

Alternative Hypothesis: The use of US EPA analytical methods 507 and 508.1 used for 

the determination of Atrazine concentrations in Kentucky drinking water between the 

years 2000 and 2008. 

Sample Collection and Analysis- 

 Secondary data sets were obtained from two sources, the Kentucky Department 

for Environmental Protection’s Division of Water and the Kentucky Geological Survey, a 

research group within the University of Kentucky-Lexington. Samples were collected 
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between 1991 and 2008 using multiple methods, including approved US EPA analytical 

methods 505, 507,508.1, 525.2, as well as method SW846-8270C. Additionally, some 

samples were analyzed using the ELISA (enzyme-linked immunosorbent assay) method, 

a biochemistry assay us to detect substances in liquid samples (Van Emon & Chuang, 

2006). Samples were taken from 117 of the total 120 counties in the state of Kentucky 

(Figure 1). 

Figure 1. Counties in Kentucky Sampled for the Occurrence of Atrazine in Drinking 

Water  

 

 The two data sets had a common starting date of January, 2000. Common data 

collected for each sample included: analyte name, water supply identification number, 

sample date, county, limit of detection (LOD), Atrazine result (in µg/L or mg/L), and 

analytical method used. All results in µg/L were converted to mg/L. A total of 11,218 

samples were collected between 1991 and 2008 by the two sources. For the inter-method 

comparison of methods 507 and 508.1, data sets were merged using the variables: analyte 
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name, sample date starting in year 2000, county, result (in mg/L), method ID (505, 507, 

508.1, 525.2, or 8270C). Only data points that contained a response for each of the above 

listed variables were included in the analysis for inter-method comparison for analytical 

methods 507 and 508.1. This resulted in 66 sample pairs for statistical analysis. Data 

were first tested for normality. This analysis was completed using SAS v 9.2 statistical 

software (SAS Institute, Inc., Cary, NC) with the univariate normality testing function, 

more specifically, the Kolmogorov-Smirnov goodness-of-fit test.  This test was utilized 

to compare the distributions of methods 507 and 508.1 to a specified, normal, 

distribution.  In this analysis, the null hypothesis that the sample distributions are 

normally distributed is tested. Upon completion of normality testing, the inter-method 

comparison data was subjected to the Mann-Whitney U test; this test is considered to be 

the non-parametric analog of the two-sample t-test. This test allows for the determination 

of statistical differences between the two methods, or more specifically the determination 

of whether the two independent samples originate from the same distribution, with a null 

hypothesis that the samples represent populations with similar median values (Sheskin, 

2000). For this test, data pairs for the two methods are considered to be independent, as 

the resultant concentration of one method does not affect the result of the other. 

For the assessment of the seasonal variation component of this study, data points were 

merged using the same criteria as the inter-method comparison, with the exception that 

data points with unlisted and non-505, 507,508.1, 525.2 and 8270C methods  were 

included, and only data points that did not include sample date, county, or result were 

removed. Of the 11,218 samples collected, 4,129 samples were retained for statistical 

analysis. Seasonal data for each year and the entire 2000-2008 span were first tested for 
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normality using SAS v. 9.2 statistical software with the univariate normality testing 

function and the Kolmogorov-Smirnov (KS) goodness-of-fit test. As stated in a previous 

section, this test was utilized to compare the distribution of values in each season to a 

specified, normal distribution. In this analysis, the null hypothesis that the sample 

distributions come from a normal distribution is tested. This testing would also aid in the 

determination of subsequent analytical methods.  Data was then statistically analyzed 

using the Kruskal-Wallis One Way Analysis of Variance test using SAS v 9.2 statistical 

software (SAS Institute, Inc., Cary, NC). This test allowed for studying any statistically 

significant differences between the median concentrations of Atrazine in each of the four 

seasons; the null hypothesis of these tests is that the samples represent populations with 

similar median values (Sheskin, 2000). This was followed by the Seasonal Kendall Test 

for Trend using S-Plus v. 6.2 (Insightful, Corp, Seattle, WA), a test which would 

determine a positive or negative linear trend in the data. The Seasonal Kendall Test for 

Trend would be applied each of the five regions of Kentucky: Mississipian Plateaus, 

Bluegrass, Jackson Purchase, Eastern Coal Field, and Western Coal Field. A graphical 

representation of these regions is illustrated in Figure 2. The use of these methods 

allowed for the determination of differences in concentration between the different 

seasons, as well as the determination of a positive or negative linear trend of Atrazine 

over time throughout the state. 
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Figure 2. Graphical Representation of Kentucky Regions 

 

 In accordance with US EPA guidelines, Atrazine methodology calls for 4 

quarterly samples to be taken for Atrazine in drinking water (United States 

Environmental Protection Agency, 2012). The use of quarterly sampling is taken into 

account for the statistical analysis of seasonal variation; in this study, a quarter is defined 

as a season. For the seasonal variation component of this study, samples were divided 

quarterly according to seasonal dates. The first day of each season for the years 2000 to 

2008 and is shown in Table 1. 

Table 1. Quarterly Sampling Strategy by Seasonal Date 

Season 2000 2001 20002 2003 2004 2005 2006 2007 2008 

Spring 3/20 3/20 3/20 3/21 3/20 3/20 3/20 3/21 3/20 

Summer 6/21 6/21 6/21 6/21 6/21 6/21 6/21 6/21 6/20 

Fall 9/22 9/22 9/23 9/23 9/22 9/22 9/23 9/23 9/22 

Winter 12/21 12/21 12/22 12/22 12/21 12/21 12/22 12/22 12/21 
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If multiple samples were collected in a county within a single season/sampling 

period, a mean value was determined. All county values were then averaged to produce a 

mean value for the entire state of Kentucky (these values are shown in Tables 8 through 

12). Median values were also determined. These seasonal averages were then graphed 

and analyzed in order to test for differences between seasons. 
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Chapter 4 

Results 

Inter-method Comparison 

 The frequency of use of each method from 2000 to 2008 is documented in Table 

2. This table shows the overall use of each method during the selected sampling period in 

terms of the total number of samples in which they were used. Method 8270C was the 

most commonly used method during the study period with 54% of samples analyzed 

using this method, methods 525.2 and 507 made up 34% of the analyzed samples, and the 

remainder using methods 505, 508.1, and others.  Data points taken within the same 

county on the same day using both US EPA methods 507 and 508.1 are shown in Table 

7. These data points were used in the inter-method comparison analysis. A total of 66 

sample pairs were used.  A graphical analysis of these samples, in terms of sample result 

as a function of time, is also presented in Figure 3 for preliminary determination of the 

adequacy of statistical methods to compare the methods’ medians and distribution. 

 

 

 

 

 

 



22 
 

Table 2. Analytical Method Usage by Total Number of Samples 

Method Sample Use (% of Samples) 

505 1(0.0003) 

507 527(17.68) 

508.1 77(2.58) 

525.2 497(16.68) 

8270C 1611(54.06) 

Other (Gas Chromatographic, 

 Organochlorine Pesticide) 

267(8.96) 

 

Figure 3. US EPA Methods 507 and 508.1 Sample Results as a Function of Time 
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Statistical Analysis of Inter-method Comparison 

 Inter-method comparison data for the 2000 to 2008 sampling period was first 

tested for normality. This testing would allow for determination of the use of non-

parametric or parametric statistical methods for method comparison. The results of this 

analysis can be seen graphically in Table 3.  Data was then subjected to the Mann-

Whitney U test. The results for this test are shown in Table 5.  

Table 3. Descriptive Statistics of Inter-method Comparison Data 

Method N Mean 

(mg/L) 

Standard 

Deviation 

(mg/L) 

Median 

(mg/L) 

D P-

Value 

507 & 
508.1 

66 0.00032 0.000097 0.0003 0.53 <0.01 

507 33 0.00031 0.000126 0.0003 0.54 <0.01 
508 33 0.00033 0.000054 0.0003 0.53 <0.01 
 

 As shown in Table 3, the 66 total samples (33 of 507 and 33 of 508.1) yield a 

mean of 0.00032 mg/L (±0.00097 mg/L). Method 507 had a mean concentration of 

0.00033 mg/L (±0.00013 mg/L) and a median concentration of 0.0003 mg/L. Method 

508.1 had a mean concentration of 0.00031 mg/L (±0.000054 mg/L) and a median 

concentration of 0.0003 mg/L. Kolmogorov-Smirnov normality testing resulted in a D-

statistic of 0.53 (p<0.01), 0.54 (p<0.01), and 0.53 (p<0.01), for both methods, 507 and 

508.1, respectively, meaning that the data is non-normally distributed.  

 

 

 



24 
 

Table 4.  Wilcoxon Scores (Rank Sums) for Average Classified by US EPA Method 
 

Method N Sum of 

Scores 

Expected 

Under H0 

Std Dev 

Under H0 

Mean Score 

508.1 33 1103.50 1105.50 32.25 33.44 
507 33 1107.50 1105.50 32.25 33.56 
*Average scores were used for ties 

Table 5.  Results of Mann-Whitney U. Test for Inter-method Comparison 

Methods S-Value P-Value 

507 & 508.1 1103.5 0.7421 
*1 degree of freedom used 

Ranks sum means scores of 507 and 508.1 were found to be 33.56 and 33.44, 

respectively. Mann-Whitney U. test resulted in an S-statistic of 1103.5 (p=0.7421). This 

result suggests that the two methods tested yielded similar median Atrazine 

concentrations. Furthermore, the results indicate that there is no statistically significant 

difference seen between the Atrazine concentrations obtained by both US EPA analytical 

methods. 

Seasonal Variation 

 The mean concentration of Atrazine by season from 2000 to 2008 for counties 

throughout Kentucky can be seen in Tables 10-14. The overall Kentucky Atrazine trend 

by mean and median for each year can be seen graphically in Figures 4 through 13. 

 

 

 



25 
 

Figure 4. 2000 Kentucky Atrazine Trend 

 

Figure 5. 2001 Kentucky Atrazine Trend 
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Figure 6. 2002 Kentucky Atrazine Trend 

 

 

Figure 7. 2003 Kentucky Atrazine Trend 
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Figure 8. 2004 Kentucky Atrazine Trend 

 

Figure 9. 2005 Kentucky Atrazine Trend 
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Figure 10. 2006 Kentucky Atrazine Trend 

 

Figure 11. 2007 Kentucky Atrazine Trend 
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Figure 12. 2008 Kentucky Atrazine Trend 

 

Figure 13. 2000-2008 Kentucky Atrazine Trend 
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Statistical Analysis of Seasonal Variation  

Seasonal data was first subjected to normality testing. The results of these 

analyses can be seen in Table 6.  

Table 6. Descriptive Statistics for Years 2000 to 2008 and 2000-2008 Span 

Year N Mean (mg/L) Standard 

Deviation 

(mg/L) 

Median 

(mg/L) 

D P-

Value 

2000 180 0.000146 0.000274 0.00004 0.34 <0.01 
2001 217 0.000219 0.00204 0.00004 0.46 <0.01 
2002 200 0.000186 0.000427 0.00004 0.39 <0.01 
2003 195 0.000129 0.000359 0.00004 0.40 <0.01 
2004 143 0.000239 0.000905 0.00004 0.40 <0.01 
2005 260 0.0000995 0.00051 0.0 0.42 <0.01 
2006 289 0.000046 0.00014 0.00001 0.37 <0.01 
2007 248 0.000043 0.000011 0.00002 0.35 <0.01 
2008 257 0.000050 0.000143 0.0 0.36 <0.01 
2000-

2008 

1989 0.000117 0.000772 0.00004 0.44 
 

<0.01 

 

Yearly mean values ranged from 0.000043 mg/L (±0.000011 mg/L) and 0.000995 

mg/L (± 0.00051 mg/L). Median values ranged from 0.0 mg/L to 0.00004 mg/L. Upon 

completion of normality testing, each year, and the entire 2000 to 2008 span was 

subjected to the non-parametric test, the Kruskal-Wallis one-way analysis of variance by 

rank test using SAS v. 9.2 statistical software. The results of these tests are summarized 

in Table 7. Rank sums for the Kruskall-Wallis tests can be seen in Table 13.  
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Table 7. Results of Kruskal-Wallis One Way Analysis of Variance by Rank for 

Years 2000 to 2008 and the 2000-2008 Span. 

Year Chi- Square Value P-Value 

2000 24.36 <0.0001* 
2001 2.52 0.472 
2002 35.95 <0.0001* 
2003 45.50 <0.0001* 
2004 9.17 0.0272* 
2005 4.871 0.182 
2006 3.603 0.308 
2007 8.7398 0.033* 
2008 16.5134 0.0009* 
2000-2008 35.9417 <0.0001* 
*Each test used 3 degrees of freedom 
* (*) denotes significant results 
 

Seven of the 10 tested periods yielded p-values of less than 0.05, while years 

2001, 2005, and 2006 had p-values greater than  0.05. H-statistics ranged from 2.5 to 

35.94. These results suggest that in years 2000, 2002, 2003, 2004, 2007, 2008, and the 

entire 2000-2008 period, there were significant differences in median Atrazine 

concentrations between the seasons, and that Atrazine in drinking water varied in 

concentration throughout the year.  

Finally, each of the five regions and the entire state were subjected to the 

Seasonal Kendall Test for Trend using the environmental module in S-Plus v. 6.2 

statistical software for the entire 2000-2008 period. This test would determine whether or 

not there was a significant positive or negative linear trend in the data; with a null 

hypothesis that all values of tau are equal to zero, or there is no positive or linear trend, 



32 
 

and an alternative hypothesis that all tau values are not equal to zero (Millard, 2002). The 

results of this test can be seen in Table 8.  

Table 8. Seasonal Kendall Test for Trend for Mean Atrazine Concentration in 

Kentucky Drinking Water by Region from 2000-2008 

Region Slope ( mg/L/year) Test Statistics (P-Value) 

Jackson 

Purchase 

-7.16 x10-6 Z (Trend)= -2.90 (0.0038) 

Chi- Square (Het)= 2.97 (0.40) 

Western 

Coal Field 

-8.94 x10-6 Z (Trend)= -1.98 (0.047) 

Chi- Square (Het)= 1.85 (0.60) 

Bluegrass -5.31 x10-6 Z (Trend)= -3.70 (0.00021) 

Chi- Square (Het)= 0.26 (0.97) 

Eastern Coal 

Field 

-4.31 x10-6 Z (Trend)= -3.45 (0.00055) 

Chi- Square (Het)= 0.94 (0.94) 

Mississippian 

Plateaus 

(Pennyrile) 

-1.03x10-5 Z (Trend)= -3.18 (0.0015) 

Chi- Square (Het)= 1.34 (0.72) 

Entire State -7.6x10-6 Z (Trend)= -3.91 (0.000092) 

Chi- Square (Het)= 0.739 (0.864) 
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 The Seasonal Kendall test yielded an estimated annual trend of -7.6x10-

6mg/L/year (p=.000092) for the entire state during the 2000-2008 period. Additionally, 

there were no differences in this trend seen between seasons (p=0.864). Similar 

decreasing linear trends were seen throughout the five regions in the state during this time 

period as well. The greatest decrease was seen in the Mississippian Plateaus region in 

Southern Kentucky, which was determined to have a -1.03x10-5 mg/L/year (p=0.0015) 

trend. Therefore, during the entire sampling time period of 2000 to 2008, there was an 

overall, constant decrease in the amount of Atrazine in Kentucky drinking water. 
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Chapter 5 

Discussion 

Inter-method Comparison 

Even though US EPA methods 507 and 508.1 are not the most widely used 

analytical methods in Kentucky (17.68% and 2.58% of samples, respectively),  they 

allowed for inter-method comparison, with 33 data pairs, while the other methods did not 

yield more than 1 data pair for the sampling period. The concentration of each data point 

is similar for 31 of the 33 drinking water samples, with an average Atrazine concentration 

being 0.0003 mg/L. The pairs differed at two points, both occurring on 6/7/2000, where 

method 508.1 had concentrations of 0.000586 mg/L (0.586 ppb) and 0.000436 mg/L 

(0.436 ppb) and method 507 had concentrations 0.000916 mg/L (0.916 ppb) and 0.0007 

mg/L (0.7 ppb). Overall, method 508.1 had a mean value of 0.000313 mg/L (0.313 ppb) 

and median 0.0003 mg/L (0.3 ppb), while method 507 had a mean value of 0.000331 

mg/L (0.331 ppb) and median 0.0003 mg/L (0.3 ppb). The inter-method comparison data 

was first subjected to the Kolmogorov-Smirnov goodness-of-fit test; the null hypothesis 

of this test is the distribution of the data is normal, a p value of less than 0.05 is 

considered significant. According to the Kolmogorov-Smirnov goodness-of-fit, the data 

has a D statistic of 0.53 and a p value less than 0.05 (p < 0.01). The Mann-Whitney U test 

was then administered. The null hypothesis of this test is that US EPA analytical methods 

507 and 508.1 represent populations with similar median values, and thus, represent 

similar results; a p value of less than 0.05 is considered significant. The result of this test 

yielded statistically non-significant results (p=.7421), meaning the null hypothesis should 
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be accepted, indicating that the median values of the distributions for methods 507 and 

508.1 are similar. Hence, the null hypothesis is accepted, stating there is no difference 

between US EPA analytical methods 507 and 508.1 for Atrazine concentrations in 

drinking water samples collected between 2000 and 2008 

 According to the data presented in Figure 2 and the descriptive statistics of the 

analysis conducted, all but two data points are the same, and the variation between these 

points is minute. The US EPA’s approval of multiple methods for the analysis of 

Atrazine in drinking water would indicate that similar results are to be expected. The 

results that the use of US EPA methods 507 and 508.1 yield similar results are 

encouraging, considering that multiple methods are used throughout the state, and likely 

throughout the entire United States. The results also validate that the use of US EPA 

multiple methods, specifically 507 and 508.1, provide comparable results to test for 

public exposure to Atrazine through drinking water.  

Seasonal Variation 

 Each of the seasonal data sets was first subjected to the Kolmogorov-Smirnov 

goodness-of-fit test; the null hypothesis of this test is that the distribution of the data is 

normal. A p-value of less than 0.05 is considered significant. According to the 

Kolmogorov-Smirnov goodness-of-fit test, none of the years from 2000 to 2008 were 

normally distributed, with each p-value less than 0.05 (p<0.01), thus the null hypothesis 

should be rejected in each case.  The D-statistic for years 2000 to 2008 and the 2000 to 

2008 span were: .34, .46, .39, .40, .40, .42, .37, .35, .36, and .44, respectively, indicating 

skewed distributions.  
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The non-normal distribution of each year led to the use of the non-parametric 

Kruskal-Wallis one-way analysis of variance by rank test to determine the differences 

between the median values of each season. Each year was divided by season, prior to the 

administration of the  Kruskal-Wallis test. The null hypothesis for each of these tests is 

that the each of the four seasons represent populations with like median values, and thus, 

represent similar results; a p-value of less than 0.05 is considered to be significant. The 

results of this test yielded mixed results. Years 2000 (p<.0001), 2002 (p<.001), 2003 

(p<.0001), 2004 (p=.02), 2007 (p=.033) and 2008 (p=.0009) yielded statistically 

significant results, meaning that the null hypothesis should be rejected for these years, 

and the Atrazine concentrations in drinking water samples between seasons for these 

years are not similar. Years 2001 (p=.47), 2005 (p=.18), and 2006 (p=.31) yielded non-

statistically significant results, meaning that the null hypothesis should not be rejected for 

these years, and the Atrazine concentrations in drinking water samples for each season 

for these years are similar. The span from year 2000 to 2008 yield statistically significant 

results (p<.0001), meaning that the null hypothesis for this span of years should be 

rejected, thus the median values of the distributions from season to season are dissimilar.   

 The 2000 to 2008 series was then subjected to the Seasonal Kendall Test for 

Trend. As previously stated, the null hypothesis for this test is that all values of tau equal 

zero, and thus, there is no positive or negative linear trend; a p-value of less than 0.05 is 

considered to be significant. The test yielded an estimated annual trend of -7.6x10-6 

mg/L/year, meaning there is an annual decrease in the concentration of Atrazine in 

Kentucky drinking water with time. This trend was found to be statistically significant 

(p=.000092, [-1.64x10-5, -4.06x10-6]). The chi-square test for heterogeneity, which tested 
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for differences in trend for different seasons, yielded non-statistically significant results 

(p=.74), meaning that there is no evidence of different amounts of trend within the 

different seasons.  

 These results indicate that, for the most part, individuals in the state of Kentucky 

are not being exposed to unhealthy levels of Atrazine. While no statewide mean or 

median value exceed the MCL of 0.003 mg/L (only five counties exceeded the MCL at 

some point during the study period), both the graphical and statistical analysis results 

suggest that there are differences in concentrations of Atrazine in Kentucky drinking 

water from season to season, though the magnitude of these differences is not explored in 

this paper. While these results may suggest issues with the methodology currently in 

place to test drinking water for Atrazine, it shows that an overwhelming portion of the 

state is not currently exposed to unhealthy levels of Atrazine through drinking water. 

Furthermore, it may suggest that the current control technologies in place are adequately 

removing Atrazine from drinking water to levels at, or below, the US EPA MCL, and 

potentially lowering the overall level from year to year. Though the levels of Atrazine are 

being maintained at levels deemed to be safe by the US EPA, there is still fluctuation 

throughout the year, rather than maintaining a stationary concentration. In the future, this 

fluctuation could lead to over-exposure of Atrazine, should there be increased usage in 

coming years. 

Relationship of Results to Atrazine Sampling Methodology and Public Exposure 

The aforementioned results suggest that while the current US EPA analytical 

methods for testing drinking water for Atrazine may be adequate, as methods 507 and 
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508.1 yield similar results and that Atrazine in drinking water is being maintained at 

levels below the US EPA MCL. It also suggests that the sampling strategy of using 4 

quarterly samples may lead to unrepresentative concentrations for an entire year. 

Differences in concentrations for different seasons may lead to a truly unrepresentative 

average value for the entire year, as single samples per season could yield gross over or 

underestimations of Atrazine levels in drinking water. For instance, because there is no 

set sampling date, one could strategically sample on four dates throughout the year, such 

as the first day of the spring quarter when levels would be expected to be at their lowest, 

to yield resultant levels well below the US EPA MCL. Further, this potential for 

underestimation of Atrazine concentration due to variation could lead to public exposure 

to Atrazine at levels greater than the US EPA MCL and a truly unrepresentative average.  

Therefore, while the current methodology for testing and controlling Atrazine in drinking 

water may be both convenient and provide numerous options for drinking water facilities 

and potentially maintain drinking water levels to at or below the MCL, it may lead to 

resultant annual Atrazine concentrations that are unrepresentative of the true levels seen 

throughout the year. Increasing the number of necessary samples in peak usage seasons 

could lead to a better representation of public exposure to Atrazine in drinking water and 

lead to methods to better control and maintain lower, stationary levels. 

Study Limitations  

 There were numerous limitations to this study. The first of these limitations was 

the secondary nature of the data set. The use of secondary data sets did not allow for the 

development of the sampling methodology and strategy to be designed by the researcher. 

The use of secondary data sets resulted in limited data for the inter-method comparison 
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analysis, leading the comparison of only two of the US EPA analytical methods approved 

for SDWA analysis. Additionally, it allowed for only a limited number (66) samples to be 

analyzed, which could affect the statistical power of this portion of the study. The 

secondary data set also did not supply information for every county in the state of 

Kentucky, nor did it supply samples for each season of each year for any county within 

the state. Additionally, the methods used in SDWA analysis are very advanced analytical 

methods, and there is potential for operator error in the analysis of the collected drinking 

water samples. Finally, the statistical techniques used to assess seasonal variation are not 

the most ideal methods; statistical modeling techniques may provide more thorough 

results about the seasonality of Atrazine in drinking water. 
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Chapter 6 

Conclusion 

 In this study, US EPA methods 507 and 508.1 analytical methods used to test 

drinking water for Atrazine and the seasonal variation of Atrazine in Kentucky drinking 

water were examined. Secondary data sets of drinking water samples collected by the 

Kentucky Division of Water and the Kentucky Geological Survey from 117 of 120 

counties throughout Kentucky from January 2000 to December 2008 were studied. The 

Kruskal-Wallis One Way Analysis of Variance was used to examine the similarity of 

results obtained by US EPA method 507 and 508.1. Median values of methods 507 and 

508.1 were found to be similar (p=0.9505). The Kruskal-Wallis One Way Analysis of 

Variance test was again used to examine seasonal variation of Atrazine for each year 

from 2000 to 2008, as well as the entire 2000-2008 period,. Years 2000, 2002, 2003, 

2004, 2007, and 2008 as well as the full 2000-2008 span were found to have significantly 

different Atrazine concentrations from season to season. Years 2001, 2005, and 2006 

were not found to have significantly different concentrations from season to season. The 

2000-2008 span was then subjected to the Seasonal Kendal Test for Trend, which 

determined a significant (p=0.000092) decreasing linear trend of -7.6 x 10-6 mg/L/year of 

Atrazine in Kentucky. 

The results of this study may lead to a better understanding about the persistence 

and variation of Atrazine in Kentucky drinking water. Though not the intent of this study, 

it has also shown that the entire state mean concentration of Atrazine in drinking water 

has not exceeded the US EPA MCL of 0.003 mg/L. As previously stated, there were 
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numerous limitations to this study that could, ultimately, affect the results, specifically 

the secondary nature of the data and the lack of control of sampling methodology and 

frequency of the researcher. Though these limitations were present in the study, this study 

expands the current knowledge about Atrazine. While it expands on the current 

knowledge, it also points to numerous areas of need in future research and policy. 

 There are myriad areas which could be explored that could lead to a better 

understanding of Atrazine’s persistence in the environment, as well as allow for better 

regulations, analytical methods and policies for the control of Atrazine. While there are 

numerous methods for the control of Atrazine in drinking water, these methods do not 

maintain Atrazine at a stationary level throughout the year, as this study suggests. For this 

reason, there is potential for overexposure of Atrazine through drinking water should 

there be spikes in Atrazine use. Future research into new, more effective control 

technologies beyond the use of granulated activated charcoal which could maintain 

stationary levels would be ideal. Additionally, further research into the variation between 

seasons of Atrazine in drinking water is necessary, ideally using more advanced 

statistical techniques, such as time series analysis or other statistical modeling techniques, 

which would allow for a greater understanding of the magnitude of effects which seasons 

play on Atrazine in drinking water. This research could have far reaching implications, as 

it could ultimately affect the sampling methodology used to test for Atrazine in drinking. 

This study has shown that the differences in concentrations of Atrazine between seasons 

may lead to unrepresentative exposure to the public.  Additionally, there should be 

further examination of the other analytical methods which were not included in the inter-

method comparison portion of this study to determine if they, too, yield comparable 
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results. Finally, additional factors, such as meteorological and other environmental 

factors, and their effect on Atrazine concentrations in drinking water should also be 

examined.   

While there are numerous limitations to this study, it serves as a starting point for 

future research into the analysis of the current US EPA methodology for testing drinking 

water for Atrazine and its persistence in the environment. It illustrates the need for future 

research in numerous areas including the current methodology used to test for Atrazine in 

drinking water, as well as how the environment affects Atrazine.  Specifically, though, 

this study illustrates the potential need for changes in the sampling methodology used 

today, as it poses potential for underestimation of Atrazine in drinking water, which 

could ultimately affect the public’s exposure. Ultimately, this study serves as a basis for 

the future research into both the seasonal variation of Atrazine in drinking water and the 

analytical methods used to test drinking water for Atrazine. 
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Appendix A. 

Table 9. US EPA Analytical Methods 507 and 508.1 Sample Results 

Date County 508.1 Results (mg/L) 507 Results (mg/L) 

4/13/2000 Woodford 0.0003 0.0003 

6/7/2000 Breckinridge 0.0003 0.0003 

6/7/2000 Breckinridge 0.0003 0.0003 

6/7/2000 Carroll 0.0003 0.0003 

6/7/2000 Gallatin 0.0003 0.0003 

6/7/2000 Hardin 0.0003 0.0003 

6/7/2000 Hardin 0.000586 0.000916 

6/7/2000 Jefferson 0.0003 0.0003 

6/7/2000 Meade 0.000436 0.0007 

6/7/2000 Meade 0.0003 0.0003 

11/13/2000 Laurel 0.0003 0.0003 

11/13/2000 Laurel 0.0003 0.0003 

11/13/2000 Mccreary 0.0003 0.0003 

11/13/2000 Whitley 0.0003 0.0003 

11/14/2000 Adair 0.0003 0.0003 

11/14/2000 Clinton 0.0003 0.0003 

11/14/2000 Clinton 0.0003 0.0003 

11/14/2000 Cumberland 0.0003 0.0003 

11/14/2000 Metcalfe 0.0003 0.0003 

11/14/2000 Wayne 0.0003 0.0003 

11/14/2000 Wayne 0.0003 0.0003 

11/15/2000 Pulaski 0.0003 0.0003 

11/15/2000 Pulaski 0.0003 0.0003 

11/15/2000 Rockcastle 0.0003 0.0003 

12/5/2000 Calloway 0.0003 0.0003 

12/5/2000 Calloway 0.0003 0.0003 

12/5/2000 Fulton 0.0003 0.0003 

12/5/2000 Hickman 0.0003 0.0003 

12/6/2000 Calloway 0.0003 0.0003 

12/6/2000 Christian 0.0003 0.0003 

12/6/2000 Lyon 0.0003 0.0003 

12/6/2000 Lyon 0.0003 0.0003 

12/20/2001 Pendleton 0.0003 0.0003 

Mean  0.00031 0.00033 
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Standard Deviation  0.000054 0.00013 

Median  0.0003 0.0003 
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Appendix B 

Table 10. Seasonal Atrazine Averages by County for Year 2000 

County 2000 winter 2000 spring 2000 summer 2000 fall 
Adair   0.00004 0.0003 
Allen   0.00035  
Anderson 0.00004 0.00004 0.00004 0.00004 
Ballard  0.00004 0.00004  
Barren   0.0001  
Bell  0.00004 0.00004  
Boone 0.00004    
Bourbon 0.00004 0.00004 0.00004  
Boyd     
Boyle 0.000085    
Bracken 0.00004 0.00004   
Breathitt     
Breckinridge 0.00004 0.0003 0.00004  
Bullitt     
Butler     
Caldwell  0.0003 0.000058  
Calloway  0.00004 0.00014 0.0003 
Campbell 0.00004    
Carlisle  0.00004   
Carroll 0.00004 0.0003   
Carter     
Casey 0.00004    
Christian  0.00066 0.00015 0.0003 
Clark     
Clay  0.00004 0.00004  
Clinton   0.00004 0.0003 
Crittenden  0.00004 0.00004  
Cumberland   0.00004 0.0003 
Daviess  0.00004 0.00004  
Edmonson 0.00004    
Elliott     
Estill  0.00004 0.00004  
Fayette 0.00004 0.00004 0.00004  
Fleming 0.00004  0.00004  
Floyd  0.00004   
Franklin 0.00004 0.00004 0.00004  
Fulton  0.00004 0.00004 0.0003 
Gallatin  0.0003  0.00004 
Garrard 0.00004  0.00004  
Grant     
Graves  0.00004 0.00004  
Grayson 0.00004 0.00004 0.00019  
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Green     
Greenup  0.00004 0.00004  
Hancock   0.00004  
Hardin 0.00004 0.00016 0.0001 0.0001 
Harlan   0.00004  
Harrison 0.00004    
Hart     
Henderson  0.0015 0.0003 0.0004 
Henry     
Hickman  0.00004 0.00004 0.0003 
Hopkins  0.00004   
Jackson     
Jefferson 0.00004 0.00014 0.00003  
Jessamine     
Johnson    0.00004 
Kenton     
Knott  0.00004  0.00004 
Knox     
Larue  0.00007 0.00005  
Laurel   0.00004 0.0003 
Lawrence     
Lee     
Leslie     
Letcher  0.00004  0.00004 
Lewis 0.00004 0.00004 0.00004 0.00004 
Lincoln 0.00008  0.00004  
Livingston  0.00004 0.00004  
Logan 0.00171 0.00072 0.00026 0.0016 
Lyon   0.000045 0.0003 
Madison     
Magoffin  0.00004   
Marion 0.00004    
Marshall   0.00004  
Martin     
Mason  0.00004 0.00004 0.00004 
McCracken  0.0012   
Mccreary   0.00004 0.0003 
McLean  0.00127 0.00004  
Meade 0.00004 0.00043   
Menifee  0.00004 0.00004  
Mercer 0.00004 0.00004 0.00004 0.00004 
Metcalfe   0.000035 0.0003 
Monroe     
Montgomery 0.00004    
Morgan 0.00004    
Muhlenberg     
Nelson 0.00004  0.0004  
Nicholas     
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Ohio  0.00004 0.00004  
Oldham 0.00005 0.00005   
Owen 0.00004  0.00004  
Owsley     
Pendleton     
Perry  0.00004 0.00004 0.00004 
Pike 0.00004    
Powell  0.00004 0.00004 0.00004 
Pulaski  0.00004 0.00016 0.0003 
Rockcastle  0.00004 0.00004 0.00014 
Rowan 0.00004 0.00004 0.00004  
Russell    0.00004 
Scott 0.00004 0.000037 0.00004  
Shelby 0.00004    
Simpson     
Taylor   0.0001  
Todd  0.0011 0.00006  
Trigg  0.00086 0.00006  
Trimble     
Union     
Warren  0.00084 0.00011 0.0001 
Washington 0.00004    
Wayne    0.0003 
Webster     
Whitley  0.00004 0.00004 0.0003 
Wolfe   0.00004  
Woodford 0.000037 0.00013 0.00004   
Total Mean 9.03429E-05 0.000217907 7.17705E-05 0.0002327 
Total Median 0.00004 0.00004 0.00004 0.0003 
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Table 11. Seasonal Atrazine Averages by County for Year 2001 

County 2001 winter 2001 spring 2001 
summer 

2001 fall 

Adair 0.00004 0.00004 0.00004 0.00004 
Allen 0.00004 0.00013 0.000013 0.0001 
Anderson 0.00004  0.00004 0.00004 
Ballard  0.00004  0.00004 
Barren   0.00004 0.00004 
Bell 0.00004 0.00016 0.00022 0.00004 
Boone     
Bourbon     
Boyd  0.03   
Boyle     
Bracken 0.00004  0.00004 0.00004 
Breathitt     
Breckinridge  0.00004 0.00016 0.00004 
Bullitt     
Butler  0.0032   
Caldwell 0.000035 0.000025 0.00004 0.00004 
Calloway 0.00015 0.00013 0.00004 0.00004 
Campbell     
Carlisle  0.00016  0.00004 
Carroll 0.00004  0.00004 0.00004 
Carter     
Casey   0.00004 0.00004 
Christian 0.00012 0.00026 0.0001 0.00004 
Clark     
Clay  0.00004 0.00004 0.00004 
Clinton 0.00004 0.00004   
Crittenden 0.00004 0.00004 0.00004 0.00006 
Cumberland 0.00004 0.00004   
Daviess   0.00004 0.00004 
Edmonson   0.00004 0.00004 
Elliott     
Estill 0.00004 0.00004  0.00004 
Fayette 0.00004 0.00004 0.00004 0.00004 
Fleming    0.00004 
Floyd  0.00004   
Franklin     
Fulton 0.00004 0.00004 0.00004  
Gallatin 0.00004  0.00004 0.00004 
Garrard 0.00004 0.00004 0.00004 0.00004 
Grant     
Graves 0.00004 0.00004 0.00004  
Grayson  0.00004 0.00023 0.00017 
Green   0.00008 0.00004 
Greenup 0.00004  0.00004  
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Hancock   0.00004 0.00004 
Hardin 0.000037 0.00011 0.00013 0.00004 
Harlan 0.00004 0.00004  0.00004 
Harrison     
Hart  0.00004 0.00004 0.00004 
Henderson 0.0001 0.0002 0.00035 0.00012 
Henry 0.00004 0.00004 0.00004  
Hickman 0.00004 0.00004   
Hopkins  0.00004 0.00004 0.00004 
Jackson     
Jefferson 0.00004 0.00012 0.00004  
Jessamine     
Johnson     
Kenton     
Knott  0.00004  0.00004 
Knox     
Larue 0.0002 0.00004 0.00004 0.00019 
Laurel 0.00004 0.00004   
Lawrence     
Lee     
Leslie     
Letcher  0.00004   
Lewis 0.00004  0.00004 0.00004 
Lincoln 0.00004 0.00005 0.00005 0.000057 
Livingston 0.00004 0.00004 0.00004 0.00004 
Logan 0.00013 0.0004 0.00014 0.0007 
Lyon 0.00003 0.00004   
Madison     
Magoffin    0.00004 
Marion     
Marshall  0.00004 0.00004  
Martin     
Mason   0.00004 0.00004 
McCracken     
Mccreary 0.00004 0.00004   
McLean   0.00004 0.00004 
Meade   0.00004  
Menifee     
Mercer 0.00004  0.00004 0.00004 
Metcalfe 0.00004 0.00009 0.00004 0.00004 
Monroe     
Montgomery     
Morgan     
Muhlenberg     
Nelson 0.00002 0.00004 0.00004 0.00004 
Nicholas     
Ohio  0.00004 0.00004 0.00004 
Oldham 0.0001 0.000045 0.00021 0.00004 
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Owen     
Owsley     
Pendleton    0.0003 
Perry  0.00004 0.00004 0.00004 
Pike     
Powell 0.00004 0.00004 0.00004 0.00004 
Pulaski 0.00005 0.00014 0.00004 0.00005 
Rockcastle 0.00004 0.00004 0.00004 0.00004 
Rowan 0.00004 0.00004 0.00004 0.00004 
Russell  0.00004   
Scott 0.00004  0.00004 0.00004 
Shelby     
Simpson   0.00004 0.00004 
Taylor     
Todd 0.00017 0.00028 0.00022 0.00013 
Trigg 0.00005 0.00004 0.00004 0.00004 
Trimble     
Union     
Warren 0.00005 0.00058 0.00005 0.000064 
Washington     
Wayne 0.00005 0.00003   
Webster     
Whitley 0.00004 0.00004 0.00004 0.00004 
Wolfe     
Woodford   0.00004 0.00004   
Total Mean 5.47234E-05 0.00067125 6.51404E-05 6.633E-05 
Total 
Median 

0.00004 0.00004 0.00004 0.00004 
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Table 12. Seasonal Atrazine Averages by County for Year 2002 

County 2002 winter 2002 spring 2002 summer 2002 fall 
Adair 0.00004 0.000047   
Allen 0.00004 0.000043 0.000113 0.000076 
Anderson  0.00004 0.00004 0.00004 
Ballard   0.00004  
Barren 0.00004 0.000074   
Bell 0.00004 0.00004 0.00004 0.00004 
Boone     
Bourbon     
Boyd    0.00004 
Boyle     
Bracken 0.00004  0.00004  
Breathitt     
Breckinridge 0.00004 0.00279 0.000163 0.000192 
Bullitt     
Butler     
Caldwell 0.000046 0.00032 0.000054  
Calloway 0.00004 0.00004 0.00004  
Campbell     
Carlisle   0.00004  
Carroll 0.00004  0.00004  
Carter    0.00004 
Casey 0.00004 0.000065   
Christian  0.0013  0.000094 
Clark     
Clay 0.00004 0.00004 0.00004 0.00004 
Clinton     
Crittenden 0.00004 0.00004 0.000063  
Cumberland     
Daviess 0.00004 0.00004   
Edmonson 0.00004 0.000046 0.0015  
Elliott    0.00004 
Estill  0.00004 0.000117 0.000033 
Fayette  0.00004 0.000047 0.00004 
Fleming     
Floyd  0.00004  0.00004 
Franklin  0.00004 0.00004 0.00004 
Fulton  0.00004 0.00004  
Gallatin 0.00004  0.00004  
Garrard  0.00004 0.00004 0.00004 
Grant     
Graves 0.00004 0.00004 0.00004  
Grayson 0.00004 0.00056 0.00004 0.00004 
Green 0.00004 0.00004   
Greenup 0.00004  0.00004 0.00004 
Hancock 0.00004 0.00004   
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Hardin 0.00004 0.000427 0.0005365 0.000038 
Harlan     
Harrison     
Hart 0.00004 0.0002 0.00004 0.00004 
Henderson 0.000051 0.00039 0.0009 0.0003 
Henry 0.00004 0.00004  0.000088 
Hickman   0.00004  
Hopkins  0.00003 0.00004  
Jackson     
Jefferson 0.00002 0.0001 0.00025 0.00004 
Jessamine 0 0  0 
Johnson    0.00004 
Kenton     
Knott    0.00004 
Knox    0 
Larue 0.000034 0.002 0.00049 0.000024 
Laurel 0    
Lawrence    0.00004 
Lee     
Leslie     
Letcher 0.00004 0.00004  0.00004 
Lewis 0.00004 0.00004 0.00004 0.00004 
Lincoln  0.000056 0.000075 0.000021 
Livingston 0.000004 0.00004 0.00004  
Logan 0.000065 0.00044 0.00025 0.000089 
Lyon     
Madison     
Magoffin     
Marion     
Marshall     
Martin    0.00004 
Mason 0.00004  0.00004  
McCracken  0.0012 0.00004  
Mccreary     
McLean 0.00004 0.00004   
Meade  0.0011   
Menifee     
Mercer  0.000184 0.000063 0.00004 
Metcalfe 0.00004 0.00004 0.0004 0.00004 
Monroe     
Montgomery     
Morgan     
Muhlenberg  0.0015   
Nelson 0.00004 0.00135 0.00053 0.00004 
Nicholas     
Ohio 0.00004 0.002 0.00004  
Oldham 0.00004 0.000072 0.0001 0.000035 
Owen     
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Owsley     
Pendleton     
Perry  0.00004 0.00004 0.00004 
Pike   0.00004 0.00004 
Powell  0.00004 0.00004 0.00004 
Pulaski  0.000049 0.000054 0.000022 
Rockcastle  0.00004 0.00004 0.0000375 
Rowan 0.00004 0.00004 0.00004 0.00004 
Russell     
Scott  0.001 0.000068 0.00004 
Shelby  0.0026 0.0017  
Simpson 0.00006 0.00053   
Taylor  0.00043   
Todd  0.0011 0.00094 0.00012 
Trigg 0.0000645 0.0002 0.000082  
Trimble     
Union     
Warren 0.00004 0.000055 0.000173 0.00009 
Washington     
Wayne     
Webster     
Whitley 0.00004 0.00004 0.00004 0.00004 
Wolfe     
Woodford         
Total Mean 3.87093E-05 0.000394881 0.00018901 5.2598E-05 
Total Median 0.00004 0.000046 0.00004 0.00004 
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Table 13. Seasonal Atrazine Averages by County for Year 2003 

County 2003 winter 2003 spring 2003 summer 2003 fall 
Adair     
Allen  0.0000315 0.000059 0.000421 
Anderson 0.00004 0.00004 0.0000412 0.0000412 
Ballard 0.00004  0.00004  
Barren     
Bell 0.00004 0.00004  0.0000408 
Boone     
Bourbon     
Boyd  0.00004 0.00004 0.0000406 
Boyle     
Bracken  0.00004   
Breathitt     
Breckinridge  0.00004  0.0000412 
Bullitt     
Butler     
Caldwell 0.000043 0.00019 0.0000696 0.000057 
Calloway 0.00053 0.00004  0.0000408 
Campbell     
Carlisle 0.00004  0.0000215  
Carroll 0.00004  0.000041  
Carter 0.00004 0.00004 0.00015 0.000039 
Casey     
Christian  0.00044 0.000132  
Clark     
Clay 0.00004 0.00004 0.0000404 0.0000421 
Clinton     
Crittenden 0.00004 0.00004  0.0000408 
Cumberland     
Daviess     
Edmonson     
Elliott 0.00004 0.00004 0.0000417  
Estill 0.00004 0.000021 0.0000426 0.0000404 
Fayette 0.00003 0.00004 0.00004 0.0000268 
Fleming     
Floyd 0.00004 0.00004 0.000041  
Franklin 0.00004 0.00004 0.0000323 0.0000351 
Fulton  0.00004  0.0000408 
Gallatin 0.00004  0.0000417  
Garrard 0.00004 0.00004 0.000063  
Grant     
Graves  0.00004  0.00004 
Grayson 0.00004 0.00004 0.00078 0.000258 
Green     
Greenup  0.00004 0.00004 0.000041 
Hancock     
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Hardin 0.00004 0.00003 0.00028832 0.000042 
Harlan  0   
Harrison     
Hart 0.00004 0.00004 0.0000426 0.0000412 
Henderson   0.00025 0.0001 
Henry 0.000036 0.0000314 0.000325 0.0000984 
Hickman 0.00004  0.0000222  
Hopkins     
Jackson     
Jefferson 0.00004 0.00004 0.0000713 0.000034 
Jessamine     
Johnson 0.00004 0.000032 0.000041  
Kenton     
Knott 0.00004 0.0000267 0.0000417  
Knox 0 0   
Larue 0.0000255 0.0000367 0.00047 0.000035 
Laurel  0   
Lawrence 0.00004 0.00004 0.000041  
Lee     
Leslie     
Letcher 0 0.00002  0.0000412 
Lewis  0.000033 0.000041 0.0000413 
Lincoln 0.000049 0.000057 0.0000421  
Livingston 0.00004 0.00004 0.0000404 0.0000404 
Logan  0.00125 0.00021 0.00015 
Lyon     
Madison     
Magoffin     
Marion     
Marshall     
Martin 0.00004 0.00004 0.000041  
Mason  0.00004  0.0000408 
McCracken     
Mccreary     
McLean   0.0025  
Meade  0.00004 0.0011  
Menifee     
Mercer 0.00004 0.000024 0.0000408 0.0000266 
Metcalfe  0.000034 0.0000617 0.0000406 
Monroe     
Montgomery     
Morgan     
Muhlenberg     
Nelson  0.000078   
Nicholas     
Ohio 0.00004  0.0000408  
Oldham 0.00004 0.000043 0.0000408 0.0000295 
Owen     
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Owsley     
Pendleton     
Perry 0.00004 0.00004 0.0000449 0.0000412 
Pike 0.000085 0.00004 0.000041 0.00148 
Powell 0.00004 0.00004 0.0000421 0.0000421 
Pulaski 0.0000285 0.0000425 0.0000412  
Rockcastle 0.00004 0.00004 0.0000421 0.0000404 
Rowan  0.00004 0.0000404 0.0000435 
Russell     
Scott 0.00004 0.00004 0.00004 0.0000234 
Shelby  0.00075 0.00216  
Simpson     
Taylor   0.003  
Todd  0.000524 0.000056 0.00016 
Trigg 0.000046 0.00037 0.000094 0.0000722 
Trimble     
Union     
Warren  0.000193 0.000127 0.000098 
Washington     
Wayne     
Webster     
Whitley 0.00004 0.00004 0.00004 0.0000404 
Wolfe     
Woodford       0.0000417 
Total Mean 5.00698E-05 9.71544E-05 0.000250517 9.83452E-05 
Total Median 0.00004 0.00004 0.0000417 0.0000411 
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Table 14. Seasonal Atrazine Averages by County for Year 2004 

County 2004 winter 2004 spring 2004 summer 2004 fall 
Adair  0.001   
Allen 0.000149 0.0000912 0.0000946 0.0000421 
Anderson 0.0000412  0.000421 0.0000415 
Ballard 0  0.000404 0.0000417 
Barren     
Bell 0.0000408   0.0000417 
Boone     
Bourbon  0.0000408   
Boyd     
Boyle     
Bracken     
Breathitt     
Breckinridge  0.00011 0.000143 0.000307 
Bullitt     
Butler     
Caldwell 0.000047  0.00005  
Calloway     
Campbell     
Carlisle   0.0000426  
Carroll 0.000043    
Carter     
Casey     
Christian 0.000079 0.0094 0.000173 0.00039 
Clark     
Clay 0.0000408    
Clinton     
Crittenden 0.0000404  0.0000417  
Cumberland 0.00005    
Daviess     
Edmonson     
Elliott  0.0000408   
Estill 0.0000408 0.0000419 0.0000413 0.0000041 
Fayette 0.000042 0.0000432 0.0000415 0.0000418 
Fleming     
Floyd    0.000043 
Franklin 0.0000404  0.0000412 0.0000408 
Fulton 0.0000412    
Gallatin 0.0000421    
Garrard 0.0000417  0.0000421 0.00004125 
Grant 0.00005    
Graves 0.0000417    
Grayson 0.0000408 0.000566 0.000693 0.0003434 
Green     
Greenup  0.0000408  0.0000412 
Hancock     
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Hardin 0.000042 0.00089 0.000046 0.000041 
Harlan     
Harrison     
Hart 0.0000426 0.0000417 0.0000417  
Henderson 0.0002 0.0027  0.0001 
Henry     
Hickman   0.0000412  
Hopkins   0 0 
Jackson     
Jefferson 0.0000426 0.0000512 0.0000399 0.0000417 
Jessamine 0.000043 0.00005  0.0000412 
Johnson     
Kenton 0.0001 0 0 0 
Knott     
Knox     
Larue 0.0000404 0.000354 0.0000629 0.0000417 
Laurel     
Lawrence     
Lee     
Leslie     
Letcher 0.0000411 0.0000408  0.0000408 
Lewis    0.0000417 
Lincoln   0.0000762 0.0000379 
Livingston 0.0000404  0.0000408  
Logan 0.000157 0.00286 0.0000769 0.00054 
Lyon     
Madison     
Magoffin     
Marion     
Marshall   0.0000421  
Martin 0.00004215    
Mason  0.0000204  0.0000408 
McCracken     
Mccreary     
McLean     
Meade  0.0018   
Menifee     
Mercer   0.0000426 0.00003235 
Metcalfe 0.0000421 0.000047 0.0000417 0.0000417 
Monroe     
Montgomery     
Morgan     
Muhlenberg     
Nelson     
Nicholas     
Ohio 0.0000404    
Oldham 0.0000426    
Owen     
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Owsley     
Pendleton     
Perry 0.0000408 0.0000408  0.0000444 
Pike     
Powell  0.0000421 0.0000417 0.0000417 
Pulaski 0.0000618  0.0000503 0.0000418 
Rockcastle 0.00004125 0.00004165 0.000042 0.0000422 
Rowan 0.0000417   0.0000417 
Russell     
Scott 0.00004258 0.0000462 0.00006 0.00004008 
Shelby     
Simpson     
Taylor     
Todd 0.000115 0.0035 0.000174 0.000114 
Trigg 0.00032  0.0000469  
Trimble     
Union     
Warren 0.000152 0.00032 0.0000538 0.0000408 
Washington     
Wayne     
Webster    0.001 
Whitley 0.0000408    
Wolfe     
Woodford 0.000053 0.0000454 0.000044 0.00004262 
Total Mean 6.36553E-05 0.000836757 9.68735E-05 0.000105668 
Total Median 0.0000421 0.000047 0.0000433 0.0000417 
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Table 15. Seasonal Atrazine Averages by County for Year 2005 

County 2005 winter 2005 spring 2005 summer 2005 fall 
Adair 0  0 0 
Allen 0.0000737  0 0 
Anderson 0.0000152 0.0000408 0  
Ballard   0 0.0000404 
Barren 0 0  0 
Bell 0 0.0000274 0 0.0000204 
Boone 0 0 0.0000204 0 
Bourbon 0 0  0 
Boyd   0  
Boyle 0 0 0  
Bracken     
Breathitt  0  0 
Breckinridge 0.0000437  0  
Bullitt 0  0.0000339  
Butler 0 0 0 0 
Caldwell 0.0000279  0  
Calloway 0.0000421 0.00019  0.000228 
Campbell     
Carlisle 0    
Carroll 0  0.0000284  
Carter 0 0   
Casey  0 0 0 
Christian 0.00005894 0.000794 0.0000302 0.0000767 
Clark 0 0.0000571   
Clay  0.00004  0.0000209 
Clinton  0 0 0 
Crittenden 0.0000408 0 0 0 
Cumberland     
Daviess  0 0  
Edmonson   0 0 
Elliott     
Estill 0.0000419  0.0000834  
Fayette 0.0000313 0.0000274  0.0000408 
Fleming  0 0 0 
Floyd    0 
Franklin 0 0.0000204 0 0.0000408 
Fulton 0.0000421 0   
Gallatin   0.0000834 0 
Garrard  0.0000145  0.0000204 
Grant  0  0 
Graves 0.0000213 0.0000446 0 0.0000605 
Grayson 0 0.000735 0.000205 0.0000206 
Green 0  0  
Greenup 0.0000417 0.00004   
Hancock   0.000086  
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Hardin 0 0.000041 0.000045 0.000052 
Harlan 0.000044 0 0 0.0000408 
Harrison  0   
Hart  0.0000435 0.0000417  
Henderson 0 0.00055 0.00055 0.0001 
Henry 0  0  
Hickman  0  0.0000412 
Hopkins 0.0000246 0 0.0000136 0.0000213 
Jackson   0  
Jefferson 0.0000729 0.0000136 0.000138 0 
Jessamine 0.0000228 0.000026 0 0 
Johnson  0.0000408   
Kenton     
Knott  0   
Knox   0  
Larue 0 0.0000435 0.000729 0.0000732 
Laurel  0 0  
Lawrence    0.0000426 
Lee  0   
Leslie  0  0 
Letcher 0.00004  0 0.0000317 
Lewis  0.00004   
Lincoln 0 0.0000484   
Livingston 0.0000206 0 0 0.0000404 
Logan 0.0000604 0.000895 0.000138 0.000168 
Lyon  0.0000275 0  
Madison 0 0 0  
Magoffin     
Marion     
Marshall  0.0000204  0.0000204 
Martin     
Mason 0 0 0.0000408  
McCracken 0 0.003 0 0 
Mccreary 0 0   
McLean 0 0.0067 0  
Meade 0  0  
Menifee  0.00000435 0.0000888 0 
Mercer  0.0000209   
Metcalfe 0.0000426  0.0000408  
Monroe     
Montgomery     
Morgan     
Muhlenberg 0 0   
Nelson 0 0 0  
Nicholas 0  0  
Ohio 0 0 0.0000136  
Oldham 0  0.0000166  
Owen 0 0   
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Owsley 0   0 
Pendleton     
Perry  0.0000204 0 0.0000198 
Pike  0 0 0.0000276 
Powell 0.0000404  0.0000842  
Pulaski 0 0.0000292 0 0.0000444 
Rockcastle 0.0000276 0.00002175 0.00005  
Rowan  0.0000444   
Russell 0  0  
Scott 0.00003318 0.0000428  0.0000408 
Shelby 0 0 0.00146  
Simpson 0 0.000531  0.0000532 
Taylor 0  0.00012  
Todd 0.0000765 0.00147  0.000092 
Trigg 0.0000524 0 0 0 
Trimble 0  0  
Union 0 0.0028 0  
Warren 0.0000945  0.0000475 0.0000224 
Washington     
Wayne    0.0000213 
Webster 0 0.0004   
Whitley 0 0.00002175   
Wolfe   0.0000435  
Woodford 0.0000416 0.0000139 0   
Total Mean 1.70249E-05 0.000263074 6.22324E-05 2.9855E-05 
Total Median 0 0.0000142 0 0.0000204 
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Table 16. Seasonal Atrazine Averages by County for Year 2006 

County 2006 winter 2006 spring 2006 summer 2006 fall 
Adair 0 0 0.0001308 0 
Allen     
Anderson   0.0000404  
Ballard 0 0.0000209 0  
Barren 0 0 0 0 
Bell  0.0000136 0 0.00002 
Boone 0  0  
Bourbon     
Boyd 0    
Boyle 0 0 0 0 
Bracken 0.0000408 0 0  
Breathitt  0   
Breckinridge 0  0.0000426  
Bullitt     
Butler 0 0.00029 0.00024 0 
Caldwell  0.0000412  0.0000601 
Calloway 0.0000206  0.0000213 0 
Campbell     
Carlisle  0   
Carroll    0.00004 
Carter  0 0  
Casey 0    
Christian 0.000041 0.00005769 0.0000422 0.000295 
Clark  0  0 
Clay  0.0000204 0 0.00004 
Clinton 0    
Crittenden 0 0.0000408 0 0.00002 
Cumberland 0  0  
Daviess     
Edmonson   0.00015  
Elliott  0 0  
Estill 0.0000417 0.0000204 0.0000272 0.0000422 
Fayette 0.0000404 0.000042 0.0000421 0.0000418 
Fleming 0  0 0 
Floyd 0.0000202 0 0.0000204  
Franklin 0.0000202 0.0000408 0.00002 0.0000291 
Fulton 0  0.0000208  
Gallatin 0 0 0 0.00004 
Garrard 0.0000408 0.0000417 0.00004 0.0000412 
Grant 0 0  0 
Graves  0 0.0000145 0 
Grayson 0.0000142 0.000139 0.0000404 0.0000327 
Green 0  0  
Greenup  0 0.0000104  
Hancock 0.0000455 0.0000416 0.0000137 0.0000135 
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Hardin 0.0000254 0.001086 0.000048 0.0000581 
Harlan 0.0000404 0.0000816 0.0000153 0.00004 
Harrison 0  0  
Hart 0.0000424 0.000138 0.000068 0.0000517 
Henderson 0 0.00000667 0.00005 0 
Henry     
Hickman   0.00005  
Hopkins 0 0.0000102 0.0000102 0.00004 
Jackson     
Jefferson 0.0000419 0.00002165 0.0000846 0.0000409 
Jessamine   0.00002 0 
Johnson 0.0000204  0.0000213 0.00004 
Kenton     
Knott  0 0.00002  
Knox 0 0   
Larue 0.0000326 0.00157 0.000149 0.000066 
Laurel 0 0 0  
Lawrence 0.0000427 0 0  
Lee 0    
Leslie     
Letcher 0.0000412 0 0  
Lewis 0.0000408 0.0000247 0.0000145  
Lincoln 0.0000169 0.0000408 0.0000533  
Livingston 0 0.0000204 0.00002 0.00002 
Logan 0.000435 0.000115 0.000967 0.0000777 
Lyon  0   
Madison  0 0 0 
Magoffin  0 0  
Marion    0 
Marshall 0.0000426 0.0000145 0 0 
Martin  0 0  
Mason  0 0  
McCracken 0 0 0.00023 0 
Mccreary     
McLean 0  0.00035 0 
Meade    0 
Menifee 0.0000222 0.0000215 0.0000204 0.0000202 
Mercer 0.0000419 0 0.000043  
Metcalfe     
Monroe 0  0  
Montgomery  0 0  
Morgan  0 0  
Muhlenberg  0 0  
Nelson 0 0 0 0 
Nicholas     
Ohio   0.00031 0.00004 
Oldham    0.0000426 
Owen 0 0 0 0 
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Owsley 0    
Pendleton  0   
Perry 0.0000408 0.0000311 0.0000213 0.0000413 
Pike 0 0.0000206 0.0000306  
Powell 0.000044 0.0000206 0.0000204 0.0000406 
Pulaski 0.0000417 0.0000241 0 0.00001 
Rockcastle 0.0000426 0.000426 0.0000412 0.00002 
Rowan 0 0 0 0.0000404 
Russell     
Scott 0 0.0000224 0.00004 0.00004 
Shelby 0 0 0 0 
Simpson 0.0000161 0.000011  0.000055 
Taylor   0  
Todd 0.0000565 0.0001445  0.0000962 
Trigg 0 0.0000272 0 0.0000648 
Trimble     
Union 0 0.000255 0.00027 0 
Warren  0.000415 0.000107 0.0000774 
Washington 0  0  
Wayne 0.000088 0.000027  0.0000385 
Webster 0  0.00041 0 
Whitley 0 0 0.00001 0 
Wolfe   0 0 
Woodford 0 0.0000312 0.0000352 0.0000275 
Total Mean 2.17113E-05 7.32001E-05 5.35795E-05 2.9582E-05 
Total Median 0 0.0000106 0.0000145 0.0000202 
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Table 17. Seasonal Atrazine Averages by County for Year 2007 

County 2007 winter 2007 spring 2007 summer 2007 fall 
Adair  0 0  
Allen    0 
Anderson     
Ballard   0.0000204 0 
Barren 0 0 0.000029 0 
Bell  0.0000434 0 0.000004 
Boone 0 0 0 0 
Bourbon     
Boyd 0  0  
Boyle 0 0 0 0 
Bracken     
Breathitt 0    
Breckinridge 0.0000412 0.0000444 0.0000204 0 
Bullitt 0    
Butler 0 0.00028 0 0 
Caldwell  0.000146  0.0000847 
Calloway   0 0.0000416 
Campbell  0   
Carlisle  0.00002   
Carroll     
Carter     
Casey     
Christian 0.000066 0.000168 0.0000615 0.000101 
Clark     
Clay  0.00004  0.00004 
Clinton 0 0   
Crittenden 0 0.0000615 0 0.0000404 
Cumberland 0 0 0  
Daviess 0.0000408    
Edmonson 0   0 
Elliott     
Estill 0.00004 0.000025 0.0000204 0.00004 
Fayette 0.0000436 0.000041  0.0000527 
Fleming  0 0.0000536  
Floyd 0 0.0000342 0.0000326 0.000041 
Franklin 0.00002 0.000023 0 0.0000267 
Fulton 0  0 0.0000425 
Gallatin  0 0 0 
Garrard 0.0000424 0.0000412  0.0000406 
Grant 0  0 0 
Graves  0 0 0.0000213 
Grayson 0.0000309 0.000161 0.00079 0.0000137 
Green 0  0  
Greenup 0.0000408    
Hancock 0.0000206 0.00004 0.0000416 0.0000418 
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Hardin 0.0000405 0 0.000046 0.000052 
Harlan 0.00002 0.000032 0 0.00004 
Harrison 0  0  
Hart 0.0000486 0.0000419 0.0000412 0.00004 
Henderson 0 0.0003 0.00015 0 
Henry     
Hickman  0.0000434   
Hopkins 0.0000404 0.0000426 0.0000404 0.0000416 
Jackson     
Jefferson 0.0000202 0.0000297 0.0000306 0.00003135 
Jessamine    0 
Johnson 0.00004108 0.00004 0.0000426 0.0000426 
Kenton    0 
Knott 0.0000408 0.0000426 0.0000426 0.00004 
Knox 0.0000416  0.00004  
Larue 0.0000444 0 0.000268 0.000193 
Laurel     
Lawrence  0.0000434  0.0000426 
Lee 0    
Leslie  0.0000408   
Letcher 0 0.0000402 0.0000337 0.0000408 
Lewis 0.0000422    
Lincoln 0.00000352 0.0000634   
Livingston 0 0.0000217 0 0.0000203 
Logan 0.0000348 0.0000467 0.000446 0.000154 
Lyon  0   
Madison  0 0 0 
Magoffin     
Marion   0 0 
Marshall  0 0  
Martin     
Mason 0.0000434    
McCracken 0 0.000021 0.0000202  
Mccreary     
McLean 0 0.0013 0 0 
Meade 0.0000405 0.00004   
Menifee 0.0000408 0.0000434 0.0000412 0.0000426 
Mercer     
Metcalfe     
Monroe     
Montgomery  0 0  
Morgan     
Muhlenberg  0.00056 0 0 
Nelson  0   
Nicholas     
Ohio 0 0 0.00005 0.000067 
Oldham     
Owen    0.0000434 
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Owsley     
Pendleton 0 0   
Perry     
Pike  0.0000422 0.0000402 0.0000396 
Powell 0.00004 0.0000204 0.0000202  
Pulaski 0 0.0000201 0 0.0000309 
Rockcastle 0.0000202 0.00004 0.0000412 0.0000423 
Rowan 0 0 0  
Russell     
Scott 0.0000416 0.00002  0.0000529 
Shelby   0  
Simpson 0 0.0000412 0.000187 0.0000412 
Taylor   0  
Todd  0.0000565 0.000147 0.000103 
Trigg  0.000327  0.000033 
Trimble     
Union 0 0 0  
Warren 0.0000677 0.00006245 0.0000256 0.0000852 
Washington 0  0  
Wayne  0.0000202 0.000108 0.0000425 
Webster     
Whitley 0.0000213 0 0 0.00004 
Wolfe  0.00004   
Woodford 0.0000304 0 0 0 
Total Mean 1.91717E-05 6.84051E-05 4.72774E-05 3.50664E-05 
Total Median 0.00001176 0.0000331 0 0.00004 
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Table 18. Seasonal Atrazine Averages by County for Year 2008 

County 2008 winter 2008  spring 2008 summer 2008 Fall 
Adair 0 0 0  
Allen 0  0  
Anderson 0  0  
Ballard  0 0  
Barren     
Bell  0   
Boone 0 0   
Bourbon  0 0 0 
Boyd     
Boyle 0 0 0  
Bracken     
Breathitt  0   
Breckinridge  0 0  
Bullitt   0  
Butler 0 0.0000195 0.000115  
Caldwell 0 0.00133 0  
Calloway 0  0.00002 0.00005 
Campbell  0   
Carlisle 0   0.0000412 
Carroll 0 0.00004 0  
Carter     
Casey   0  
Christian 0.0000937 0.00044  0.0000674 
Clark 0 0   
Clay     
Clinton 0 0   
Crittenden 0 0.0000471 0 0 
Cumberland 0 0 0  
Daviess  0   
Edmonson 0 0   
Elliott     
Estill 0.00004 0.0000208 0 0.00004 
Fayette 0 0.0000411 0.0000227  
Fleming 0.0000416 0.0000404 0.0000426  
Floyd 0.0000413 0   
Franklin 0.00002 0.0000423 0.0000332 0.00004 
Fulton 0  0  
Gallatin 0 0.0000202 0  
Garrard 0    
Grant 0  0  
Graves  0 0 0.0000412 
Grayson 0 0.000465 0.000327  
Green 0 0.00004 0  
Greenup 0.0000416 0 0.0000211  
Hancock  0.0000202 0.0000408 0.0000444 
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Hardin 0 0.000069 0.000064  
Harlan 0 0.00001 0  
Harrison 0.00004  0  
Hart 0.0000422 0.000041 0.0000417 0.00004 
Henderson 0 0.000277 0  
Henry 0  0  
Hickman    0.0000416 
Hopkins 0.0000416 0  0.0000133 
Jackson  0 0  
Jefferson 0 0.0000135 0.0000365 0.0000985 
Jessamine  0   
Johnson 0.0000426 0.0000404 0.0000404  
Kenton 0 0 0  
Knott   0  
Knox 0 0 0  
Larue 0 0 0.00038  
Laurel 0 0 0.0000213  
Lawrence 0.0000426 0.0000434   
Lee 0  0.0000211  
Leslie  0   
Letcher 0.00003105 0 0  
Lewis 0.0000416  0.0000408  
Lincoln 0    
Livingston 0  0.000258 0 
Logan 0.0000981 0.000282 0.0000958 0.000103 
Lyon  0.00021 0  
Madison 0 0 0 0 
Magoffin 0.0000411  0  
Marion   0  
Marshall  0 0  
Martin     
Mason 0.0000206 0.00068 0.0000434  
McCracken  0.000154 0.000135  
Mccreary 0 0 0  
McLean 0 0.00083 0  
Meade 0  0  
Menifee     
Mercer  0 0  
Metcalfe     
Monroe     
Montgomery  0 0  
Morgan     
Muhlenberg 0 0.000365 0  
Nelson     
Nicholas  0 0  
Ohio 0.0000135 0.000048 0.000648  
Oldham 0  0  
Owen 0  0  
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Owsley  0 0  
Pendleton  0 0  
Perry 0.0000213  0  
Pike 0.0000394 0.000041 0  
Powell 0.000043 0.0000422  0.0000404 
Pulaski 0.0000211 0.0000253 0  
Rockcastle 0.0000411 0.0000142 0 0.0000404 
Rowan 0 0 0  
Russell  0 0  
Scott 0.0000267 0.0000633 0.0000491 0.000047 
Shelby 0 0 0.00032  
Simpson 0.000051 0.000123 0.000224  
Taylor   0  
Todd 0.000108 0.000924 0.000261  
Trigg  0.000282   
Trimble 0  0  
Union 0 0.00007 0  
Warren 0.0000942  0 0.0000639 
Washington 0  0  
Wayne  0.0000436 0.0000694 0 
Webster 0 0.000255 0  
Whitley  0 0  
Wolfe   0  
Woodford 0 0 0   
Total Mean 1.59318E-05 9.75779E-05 3.96694E-05 3.8681E-05 
Total Median 0 0 0 0.0000404 
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Appendix C. 

Table 19.  Wilcoxon Scores (Rank Sums) for Variable Average Classified by 

Variable Season 

 Wilcoxon Scores (Rank Sums) for Variable Average 

Classified by Variable Season 

Year Season N Sum of 

Scores 

Expected 

Under H0 

Std Dev 

Under H0 

Mean 

Score 

2000 Winter 35 2476.50 3167.50 234.29 70.76 
 Spring 54 5099.50 4887.00 271.28 94.44 
 Summer  61 5059.00 5520.50 280.20 82.93 
 Fall 30 3655.00 2715.00 220.62 121.83 
2001 Winter 47 4832.50 5123.00 296.72 102.82 
 Spring 56 6572.00 6104.00 315.19 117.36 
 Summer 57 6155.00 6213.00 317.01 107.98 
 Fall 57 6093.50 6213.00 317.01 106.90 
2002 Winter 43 3225.00 4321.50 300.73 75.00 
 Spring 59 7309.00 5929.50 333.83 123.88 
 Summer 52 6004.00 5226.00 321.09 115.46 
 Fall 46 3562.00 4623.00 308.06 77.43 
2003 Winter 43 3034.00 4214.00 318.71 70.56 
 Spring 57 4250.00 5586.00 349.63 74.56 
 Summer 53 7018.00 5194.00 341.99 132.42 
 Fall 42 4808.00 4116.00 316.01 114.48 
2004 Winter 43 2855.00 3096.00 226.80 66.40 
 Spring 29 2542.00 2088.00 198.87 87.66 
 Summer 34 2687.50 2448.00 210.55 79.04 
 Fall 37 2211.50 2664.00 216.60 59.77 
2005 Winter 69 8250.50 9004.50 492.77 119.57 
 Spring 72 10101.00 9396.00 499.40 140.29 
 Summer 68 8414.00 8874.00 490.47 123.74 
 Fall 51 7164.50 6655.50 443.16 140.48 
2006 Winter 71 9317.50 10295.00 579.38 131.23 
 Spring 74 10645.50 10730.00 587.59 143.86 
 Summer 83 12441.00 12035.0 609.13 149.89 
 Fall 61 9501.00 8845.00 549.38 155.75 
2007 Winter 60 6560.00 7470.00 466.59 109.33 
 Spring 68 9259.00 8466.00 486.03 136.16 
 Summer 62 7031.50 7719.0 471.77 113.41 
 Fall 58 8025.50 7221.00 461.18 138.37 
2008 Winter 74 8687.00 9546.00 481.76 117.39 
 Spring 77 10943.50 9933.00 487.38 142.12 



73 
 

 Summer 85 9932.50 10965.00 500.56 116.85 
 Fall 21 3590.00 2709.00 291.44 170.95 
2000-
2008 

Winter 485 424064.00 482575.00 10796.64 874.36 

 Spring 546 568754.50 543270.00 11220.79 1041.67 
 Summer 555 549549.50 552225.00 11277.56 990.18 
 Fall 403 736687.00 400985 10106.43 1083.59 
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