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MODELING HOUSEHOLD HOURLY ELECTRICITY DEMAND IN SOUTHERN
KENTUCKY: A SINGLE HOUSEHOLD APPROACH

Craig M. Dickson August 2012 67 Pages
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In this study, we use a nonparametric technique, locally weighted robust least
squares regression (LOESS), to forecast a 24 hour demand profile at the household level
and compare it to existing aggregate demand models discussed in literature. Of these
aggregate demand models, a quadratic autoregressive model was selected to be used as a
basis for comparison with the LOESS forecasts. It was our goal to automate the
forecasting process by using the goodness of fit metric, AICC1, for smoothing parameter
selection. The statistical workflow was executed using SAS and data was provided by the
Glasgow Electric Plant Board of Barren County, Kentucky. Results show that LOESS
outperformed the autoregressive model in roughly 80% of all cases and that using LOESS
alone or as part of an ensemble model is a feasible approach to automating future
household demand profile for the purpose of generating different levels of power demand

profile aggregation as needed by Glasgow Electric Plant Board.
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INTRODUCTION

As the demand for energy increases throughout the world, there is a growing sense
of urgency to monitor and consume it more efficiently. The term "smart grid" is often used
to describe a system which meets those needs ([8]). While it serves as a compact
description for what is now an established marketing trend (i.e. smart phones, smart cars,
smart appliances, etc.), it is simply not one thing or one industry. It is a global movement
to harness the data available to us through technological innovation to repair the
inefficiencies, and our inefficiencies as consumers, in the power grid. The focus of this
research as it pertains to the smart grid initiative is the latter; the ability to inform the
power company and the consumer of their usage ahead of time is an invaluable tool for
altering consumer behavior and limiting demand spikes.

The Glasgow Electric Plant Board (EPB) in Southern Kentucky has already begun
to outfit a small portion of their customers with internet protocol based smart meters,
which have the ability to capture and relay usage data on a real time basis. This data can
be stored and analyzed to give meaningful feedback to these customers. In this study, we
process Glasgow’s data and construct a model to forecast demand by the hour for any
household in the grid. This will allow us to generate a 24-hour power demand profile for
the households. Our primary motivation is to predict critical usage times, or periods of
extreme load. With this information, Glasgow hopes to see a decrease in demand spikes
by incentivizing individuals to consume more uniformly throughout the day. The
challenge in doing this is different from a standard global consumption model where
demand is considered for an entire region. Such models required testing on individual

households to evaluate their effectiveness.



1.1 Objectives

A global predictive model considers every data point simultaneously to estimate the
parameters of the model. A study of the data provided by the Florida Power Corporation is
discussed by Mendenhall and Sincich and shows that parametric regression-autoregression
techniques are effective in predicting demand for aggregate consumption data [9]. A
priority of this study was to explore the predictive power of the models presented using
the technique at the household level. One model, a quadratic autoregressive model, was
selected amongst four candidate models that are presented in chapter 2.

In contrast to a global model, a local predictive model focuses on portions of the
data, and uses a series of models for each portion with their own parameters. A
nonparametric technique for local predictive modeling is locally weighted robust least
squares regression (LOESS). In effect, there is not an assumed relationship between the
response and explanatory variables by the researcher when the model is applied. LOESS,
is the candidate nonparametric technique which is competing against the parametric
technique, regression-autoregression. It is our goal to explain in detail the mathematical
construction of LOESS, how and what it is designed to do, and why we chose it for
modeling power demand in this study.

The two models are applied to data collected by the Glasgow EPB. We consider the
effectiveness of forecasts made by both models by comparing root mean cross validation
error (RMCVE), discussed in chapter 3. The purpose of this comparison is to create a
decision rule for when to use one model over the other. The results are aggregated by the
household location 1.D. and by hour of the day.

The final product of this research is the creation of an automated system for
producing a graphical 24-hour demand profile for any participant in Glasgow’s program.
These profiles can be used to relay predicted usage information to the customers to help
prevent power demand spikes in the grid. A sample profile is presented at the end of

chapter three.



METHOD

In this chapter we discuss selected aggregate models found in literature and present a
mathematical framework for locally weighted robust least squares regression (LOESS).
2.1 Aggregate Demand Models

The Florida Power Corporation provided aggregate data from November 1, 1982 to
October 31, 1983 to develop a forecasting model for daily peak electricity demand. Let
the demand on day ¢ be denoted as y;. Researchers presented three piece-wise models

which were then evaluated based on their complexity and goodness of fit to the data [9].

2.1.1 Model 1

Leti =1,2,---,n be the index for the i™ day in the data set and n be the sample

size. Model 1 is then described as

yi = Bo + Pr(x1 — 59)wa; + Loy — 78)xs; + Psra; + Laxsi + i, (2.1)

where

y; = Response variable for day 7,

x1; = Coincident temperature for day ¢,



( (
1 ifxy; <59 1 ifxy; > 78
T2y = T3 =
0 otherwise, 0 otherwise,
: p
1 if Saturday 1 if Sunday/holiday
Lai = Tsi =
0 otherwise, 0 otherwise.
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g; = residual for day ¢
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Figure 2.1: A U-shaped scatter plot of consumption within the FLPC grid

The model illustrates the relationship between coincident temperature and daily
peak demand using three line segments which correspond to weather sensitive time
periods. Researchers were able to determine the values of 78° and 59° by inspecting
Figure 2.1 [9]. They are expecting that at certain times of the year the factors that drive
demand are independent of temperature. In such cases x5 and x3; will be evaluated as
zero, and the only contributing deterministic factors will be the day of the week and/or
holidays.

Model 1 is a multiple regression model that relies on the standard regression
assumptions, and rarely are these assumptions satisfied, especially in the context of time

series modeling.



Standard Regression Assumptions:

Let{e; :i=1,2,---,n} be a sequence of error terms associated with Model 1 and
g be ann x 1 vector representation of {¢;}. Let Y be an n x 1 vector of responses and X
be an x p vector of predictors (for Model 1, p = 5). Then, our standard regression

assumptions are
(a) {e,;} are independent and normally distributed error terms.
(b) E[e] = 0isan n x 1 vector of zeroes.
(c) Homoscedasticity: V[e] = oI an n x n symmetric matrix

(d) Predictors are linearly independent. The implication of this is that X, the matrix of
has a full column rank such that XX is nonsingular. For Model 1, XTX isa 5 x 5

nonsingular symmetric matrix.

These assumptions are often disrupted by the nature of the data and our choice of models.
Autocorrelation, lack of fit, heteroscedasticity, and multicollinearity are terms for
violations of assumptions (a), (b), (¢) and (d) respectively. Remedial measures can be
taken to correct for such things. Graphical methods are a common way to detect
violations. For instance, in theory the residuals, ¢;, of the regression model should be
scattered randomly about the line y = 0. Any patterns could indicate an unstable variance
problem, a lack of fit, or serial correlation. Once this is seen, an analytical method can be
invoked to verify the violation. In the case of first-order serial correlation the
Durbin-Watson test is such a method [9]. In this study, a SAS printout shows that
first-order serial correlation was detected and a regression-autoregression model was

explored in model 2.



2.1.2 Model 2

Model 2,

yr = Bo + Pr(x1e — 59)xar + Bo(x1s — 78)x3 + B3xar + Laxse + Ry, (2.2)

where

R, = ¢1(Rt—1) + &4,

is a regression-autoregression model that corrects for first-order serial correlation in the
error term. A first-order model is appropriate when the correlation between residuals
diminishes as the gaps between them widen. It states that a residual at time ¢ is a function
of its uncorrelated residual and the previous residual which is scaled by a factor of ¢;. The
null hypothesis of the Durbin-Watson test assumes ¢; = 0 (no autocorrelation) and, in this
case, that the alternative is ¢; > 0. This can be extended using the Generalized

Durbin-Watson Test to j lags [3]. In model 3 this comes into play.

2.1.3 Model 3

Model 3,

yr = Bo + Pr(x1e — 59)war + Bo(x1s — 78)x3 + B3xar + Laxse + Ry, (2.3)

where

Ry = ¢1(Ri—1) + ¢o(Ri—2) + ¢5(Ri—s) + d7(Re—7) + €4,

extends (2.2) from first-order to seventh-order. Perhaps the researchers believed that
autocorrelation was present up to one week. Most statistical software packages are able to
test for significant lags up to a number set by the researcher. A SAS printout provided in

the study confirms high correlation at¢ — 1,¢ — 2, ¢t — 5, and ¢ — 7, meaning these



residuals will influence the outcome of R, [9].

2.1.4 Model 4

Models one through three attack the problem of forecasting demand with a
piece-wise model. However, Figure 2.1 can be described as having a parabolic shape.

While mentioning a quadratic least-squares model,

Yo = Bo + Bix1s® + Bow1s + Baxas + Bass + &4, (2.4)

researchers in the study dismissed the possibility for two reasons: one, due to the
symmetric shape of the model, it would not allow for independent estimates of the winter
and summer peak demand-temperature relationship, and two, based on their theory that
demand is independent of temperature at certain times of the year, the parabolic shape
would underestimate demand near the center of mild temperature ranges and over estimate
it near the outskirts around 59° and 78°. This can be seen in Figure 2.2 [9].

h

o
c
@
£
5
Pt Winter Summer
§ months months
> | :
@ i :
©
= Base demand
% (non-weather-sensitive)

| I

59° 78°
Temperature

Figure 2.2: A comparison between the proposed piece-wise and quadratic models [9]

These problems are specific to the data presented by the Florida Power Corporation.
It will be shown later in the chapter that hourly demand profiles seldom follow the "59/78"

model. Needless to say, "eye-balling" the proper temperature for each hour will not be an

7



option if we hope to automate the process. This is why we choose model four as our

candidate parametric model, which is discussed more in the results section.

2.2 Mathematical Framework for Least Squares Regression

It is the goal of this section to describe the foundation for global least squares
regression, which will then be extended to local regression in the context of LOESS. Since

our model uses just one predictor, we will proceed with the derivation as such.

2.2.1 Ordinary Least Squares (OLS) Regression

Consider

}/i:ﬁ(]‘i‘ﬁlXi—i‘é‘i fori:1,2,...,n (25)

as the relationship between two variables X and Y. Let 3, be the intercept term, [3; reflect
the slope of the line, and ¢; be the error, or vertical distance between the actual point
(X;,Y;) and the line. This is the setting for a simple linear regression model. Equation

(2.5) implies

Yi =00+ 58X +&

Yo =By + 51 Xs + 2

Yn = 60 + ﬁan + €n,



which can be represented using matrices in the following manner:

Y) 1 Xy

Y, 1 X, Bo
B

Y, 1 X,

€o

€1

En

where Y is an n x 1 vector of responses, X is an n X 2 vector of predictors (the first

column being a column of one’s), and € is an n X 1 vector of error terms. This allows us

to express Equation 2.5 as

Y=X3+¢

and the error term as

e=Y — X3.

(2.6)

2.7)

In practice, 3 is unknown and the goal of the ordinary least squares approach is to

find an estimator for 3 that will minimize the sum of squares error,

SSE =¢e"e = (Y - XB)' (Y - XP).

Distributing the terms accordingly we have the following results:

SSE=Y'Y - Y'X3 - 3"X"Y + 3"X"X}3.

=YTY —28"XTY 4+ B8TXTX}.

2.8)

(2.9)

(2.10)



To minimize (2.10) we must take the partial derivative with respect to 3, giving

0SSE

B —2X7Y + (X'X)8 + (XTX)3

= —2X'Y +2(XTX)B. (2.11)
Finally, set (2.11) equal to zero we obtain the estimator for 3, giving
B =(X"X)"1(X"Y). (2.12)

Equation 2.12 is the ordinary least squares (OLS) estimator for the regression parameters.
This formula holds true for any p number of predictors.
As discussed previously in the chapter, the assumptions of regression models are

often disrupted. LOESS compensates for violations using weighted regression techniques.

2.3  Weighted Least Squares Regression

We continue to build on the concepts from OLS regression by introducing a weight
into the regression model. Weights can be used to modify an observation with respect to

its squared error in the following manner:

WSSE =Y we?, (2.13)

1=1

where w; is an assigned weight for the i residual. In matrix form, let

w1 0 0
0 wy -+ 0

W = (2.14)
0O O W,

10



be a diagonal matrix of weights. Then
WSSE = (Y —XB8)"W(Y — Xf) (2.15)

is to be minimized in the same manner as (2.8). The final estimator, B is derived in a
similar fashion to (2.12),

B =(X"WX) (X"WY). (2.16)

If we let D to be a diagonal matrix of the square-roots of the weights found in W such
that W = DD and use the transformed X and Y as X* = DX and Y* = DY,

respectively, we obtain a similar result (2.12) under the transformed variables,
B = (X*TX*) /(X TY™). (2.17)

There are several reasons for wanting to modify the residuals of an observation. Mainly, it
stems from the fact that residuals are closely tied to the assumptions made by the

regression model. Mendenhall and Sincich [9] provide us with a few:

(a) Stabilizing the variance of ¢ to satisfy the standard regression assumption of

homoscedasticity.
(b) Limiting the influence of outlying observations on the regression analysis.
(c) Giving greater weight to more recent observations in time series analysis.

The weight function is largely dependent on the application. When it comes to outlying
observations, they tend to skew the regression line toward the deviant point, effectively
causing it to over or under predict. Keep in mind that the least squares method is trying to
minimize the sum of squared errors and not the absolute errors. This can affect how the
method calculates the regression parameters because it sees outlying observations as being

overwhelmingly influential. For example, imagine a linear regression has just been

11



calculated for three points (1, 1), (2,2), and (3, 3). The regression line is simply Y = X,
which is a perfect linear regression equation. Suppose a fourth point is inserted at (4, 12).
With the addition of the fourth point, our line of best fit becomes y = —4 + 3.4.X,
changing our original slope and y-intercept drastically, which means the fourth point is
both an outlier and an influential point. Now consider the original three points, but replace
(2,2) with (2, 12). The new regression line would be y = 1/3 + X. In this case, (2, 12)
may be an outlying point but is not as influential as (4, 12).

As for (¢), we discuss in the next section how Cleveland [1] uses weights to exclude

far off points and which weight functions he uses to define LOESS.

2.4 Locally Weighted Robust Least Squares Regression

LOESS can be identified as a method of fitting a series of regression lines to the data
by forming neighborhoods centered around a smoothing point, (x;, y;), in a manner which
can minimize the effects of deviant points using weights [1]. In this section we precisely
define the procedure according to Cleveland (with a few minor changes in notation) by
exploring the weight functions, the order in which they are to be used, and how we can

form neighborhoods given a smoothing parameter.

2.4.1 The Tricube Weight Function

Let C' be a weight function with the following properties:
(a) C(x) >0 for |z| < 1;
(b) C(—z) = C(x);
(¢) C(z) is a nonincreasing function for = > 0;

(d) C(z) =0 for |z| > 1.

12



For LOESS, the purpose of C'is to limit the influence of points whose abscissas lie further
from z; and to provide starting weights for future iterations. In his original paper [1],

Cleveland defined the tricube weight function as

(1—|2]?)? for|z| < L.
C(z) = (2.18)

0 for [z| > 1

An alternative form would be C'(z) = (1 — |2|*)*I (|z| < 1), where I(-) is an indicator
function. The "tricube" weight function, as Cleveland states, "was chosen since...it
enhances a chi-squared distributional approximation of an estimate of the error variance
[1]." It also satisfies the necessary properties for a weight function stated previously in this
section. This is, however, a general form for producing weights, and we modify the
tricube to suit our needs.

Assignment of the weight function dynamically changes as we predict using one
x-value at a time. For example, let z; be our center point and let ¢ be the smoothing

parameter such that z,, is the ¢™ order statistic relative to ;. Then, we assign the weight

cp(z;) =C (;lk) : (2.19)

where dj, = |z, — x;| and d, = |z; — x,|, for k = 1, ..., n. We then construct the weight

matrix as ) )
ca(z;)) 0 -+ 0
0 cofzy) -+ 0
W = . (2.20)
0 0 s ()

The initial fitted value, 7;, at x; is the result of fitting a d*" degree polynomial using

weighted least squares with weights {cx(z;) : k = 1,2,--- ,n}. We repeat the process by

13



letting another point z; be the center point. The whole process of iteratively fitting
weighted regression using is referred to as locally weighted regression [1].

To illustrate, consider the following numerical example. Let
X ={10,11,13,14,18} and Y = {7,19,6,6.2,6.1} and let the matrix X = [1.X| where
1isavector of 1I’s. Let x; = x3 = 13 be the center point and let x, = x4 = 10 be the
farthest point from the center with respect to the x-axis. Consequently,

d, = |10 — 13| = 3, and the corresponding sequence of absolute distances d; would be:

dy = |10-13| =3,
dy = |11-13] =2,
dy = |13-13| =0,
dy = |14-13] =1,
ds = |18 —13| =5,

leading to our sequence of weights

o= (1-{5}) (5 <2) o
o= (1= {5 ) 1 (5] <) -0
o= (1= {5} ) 1 1) -
o= (1= {5} ) 1] <) -0
= (1= () 1 (<) -o

14



We let W = diag {cx(z3) : £ =1,2,---,5} and using (2.16) we obtain our local linear

regression

~

Y =61.79 — 4.10X, (2.21)

and the smoothed point (3, 73) = (13, 8.46).
In computing software like R or SAS, the smoothing parameter is expressed in

terms of the proportion of the whole data set
=% for1<qg<n, (2.22)
n

where ¢ = fn is rounded to the nearest integer. The use of f instead of ¢ enables us to
maintain the proportion of neighborhood points relative to the sample size. As the term
implies, the smoothing parameter, f, determines the smoothness of the fitted curve. For
example, Figure 2.3 shows the resulting LOESS fit to the same data using two different
smoothing parameters. The graph shows that as f becomes larger, the smoother the line.

When f = 1 then LOESS becomes a global model with only one set of weights to use.

10 = 9003998, Hour = Twa AM 1D = 8003998, Hour = Two AM

sumption (kK\Whj
umption (kK\Wh)

Hourly Con
Haurly Cons:

Hourly Temperature {F) Hourly Temparature {F)

Loess, Smooth=0.1 Loess, Smooth=0.9

Figure 2.3: Contrasted smoothing parameters, for {=0.1 (left) and f=0.9 (right).
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2.4.2 Iteratively Reweighted Least Squares (IRLS) Robust Regression

The last piece, IRLS, helps deal with outlying observations which might pull the
regression line toward the deviant point. Outliers can also cause a departure from
normality by creating a heavy tail in the error distribution, which violates a regression

assumption. The following steps outline the procedure [7]:
1. Choose a weight function (e.g., the tricube function).
2. Iteratively obtain local weights by using x; as the center.

3. For each z; and its corresponding local weights, we obtain the fitted value y;, and

consequently, obtain our residuals e; = y; — ¥;.

4. Collect all the residuals and obtain a sequence of weights {s; : i =1,2,--- . n},
which serves as a correction factor to the local weights as we redo the local

regression fitting process.

Cleveland recommends the bisquare function as the weight function for {s;} [1], which is

(1 —2%)? for|z| <1
S(x) = (2.23)

0 for |z| > 1,

where © = ‘% is a standardized residual and m = median {|ex| : £ = 1,2,--- ,n}. The
bisquare is subject to sensitivities in starting values and generally is not the first weight
function to be used. In practice, the researcher chooses another weight function to form an
initial regression and then the bisquare is used in successive iterations [7]. In our case, the
starting weights are given by the tricube. Since Cleveland’s first publication, more
advanced scaling methods have been developed for weighted least squares to provide an

unbiased estimate of o, given independent observations from a normal distribution. See

Kutner et. al for more information [7].
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To summarize, here is the precise instruction on how to execute LOESS with respect

to this research:

1. For each x; obtain the local parameter estimate, B, of the polynomial regression of

degree d using weighted least squares given as the following:
B = (X"WX) ' (X"WY),

such that we obtain y; = Xiﬁ where X is the i™ row of the matrix X.

2. Collect all the residuals {e; = y; — y; : i = 1,2, -+ ,n}, standardize them by
dividing the vector by 6m, and obtain the vector of correction factors s; based on

the bisquare function.

3. Redo the local fitting in step 1, but this time multiply each weight by the correction

factor; i.e, weight scy(;), which is now used to obtain a new fitted value, ¥;.

4. We then collect all the residuals {d; = y; — ¥;}, and standardize them by dividing
by 6m, where m is the median of the absolute values of d;. From the standardized

residuals, we obtain a new correction factor, 7.

5. We then redo the local fitting in step 1, this time applying two correction factors to
the original weight factor ryscy(x;), which is used to estimate y;. The final y; are

the robust locally weighted regression fitted values.

LOESS is a derivative of IRLS Robust Regression, but it is used at the local level. It
also differs in that it combines two weight functions to produce fitted values instead of
one. Local fitting of polynomials had been in place for quite some time before LOESS
was developed, but the fundamental advancement made by Cleveland was the introduction
of a method that was more accommodating to unevenly spaced x; [1]. In effect, LOESS is

a generalization of all local regression models where the degree of the polynomial, the
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number of explanatory variables, and the spacing of those variables are allowed and
decided by the researcher. This means that any nonlinear curve, such as those in this
power demand study, can be approximated by a series of simple (but not limited to) linear
models.

As we saw in Figure 2.3, the smoothing parameter f plays a huge factor in the curve
fitting process, so it is important that we find a data driven method to find the optimal
value of f. The common strategy is to use a goodness of fit metric, such as the sum of
squares residual (SSE) or the coefficient of determination (R squared), such that we pick
the value of f that minimizes SSE or maximizes R-squared. Another measure is the
Akaike Information Criterion, or AIC, and later variants AICo and AIC¢q, which takes

into consideration model complexity in addition to minimizing the discrepancy function.

25 AlICeq

AIC, like many goodness of fit statistics, tries to quantify the information lost by
using a model to describe reality. It does so by identifying the tradeoff between model
complexity and accuracy. It was originally designed to be used for parametric models as
an approximately unbiased estimate of the expected Kullback-Leibler information.
AlCey and AIC¢ are similar to AIC, but are used in the context of nonparametric
regression. These two statistics are essentially the same, with AIC¢; being a
computationally friendly approximation to AICxq [4].

To understand, we must show how to find the Kullback-Leibler (KL) discrepancy

function and how it relates to AI/C. To begin, we define two models:

y=m+e€, where € «~ N (0, 0¢°1,) (2.24)

and

y=p+mn, where 7~ N(0, 0%L,,). (2.25)
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where m can be thought of as the "true model" for the data, and g is the researcher’s

model [4]. Suppose f(y) is the likelihood function for (2.24); then

d(p, 0%) = Eo[—2log f1(y)] (2.26)

is defined as the KL discrepancy function [4]. We start with the assumption that y is

normally distributed; then

d(p, 0*) = Eo[—2log fi(y)]

= Ey QIOgH\/—eXP{ (b 952 )2})]

= Bol-2log((2r0%) ¥ exp{— oy Sl —wD] @227)

i=1

where Ej is the expectation with respect to the true model. This further simplifies to
1 n
2y _ 2 2
%) = nlog(2n®) + 25 3 ol = ') (228)

We add and subtract m,; and distribute the expectation and use the facts that

Eo(y; — mi)(m; — pi) = 0 and Eo(y; — m;)* = 08, giving
d(p, 0%) = nlog(2m0”) Z Eo(y ?+ Eo(mi — ui)’]

2

= nlog(2mo?) + a_ noo? + Z Eo(m; — )] . (2.29)

It will be useful here to revert back to matrix notation, giving

2 _\T _
d(p,0*) = nlog(2mo?) + nag + (m = p) 2(m u). (2.30)
o o
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Now let o = m be an estimate of m and 02 = 52 be an estimate of the variance. Then,

2 o~ o~

nao (m —m)?(m — m)

d(m, %) = nlog(2r?) + (2.31)

As Hurvich, Simonoff, and Tsai state," A reasonable criterion for judging the quality of the
estimator m in the light of the data is Ah = E;[d(m, 5?)]"[4]. When we apply the

expectation to both sides, we obtain the following:

Ah = E [d(,52)]

= nEQ [log(27r32)} + n002E0 |:;2:| + E() |:<m — I/T\l);;(m — I/ﬁ) (232)

Let m = Hy be an unbiased estimator for m where H is called the hat matrix. In the
context of this thesis, the hat matrix is H = X (XTX)*XT, which is a symmetric

idempotent matrix. Recall that Fy(y) = m by construction; then

Hm = Ey(m) = m. (2.33)

Since y = m + € under the true model, we can express the variance estimator as

3

(y — Hy)" (y — Hy)

_ (m+e—Hm+e)) (m+e—H(m+e))
_ (m+e —Hm — He)" (m + e — Hm — He)
_ (s—Hs)’;(s—Hs) € (I—H);“ I-H)e 234)

At this point Hurvich and Simonoff point out that in practice the unbiasedness assumption

for m will rarely hold. However, they give some justification for doing so which is similar
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to the argument used in developing the classical hypothesis tests [4].

In a similar fashion, we can also show that

(m —m)"(m —m) = e’"H He. (2.35)

Substituting both (2.34) and (2.35) into (2.32), we obtain the Ah estimator

Ah = nlog(275?2) 4+ n2E L (2.36)

where B, = (I, — H)"(I,, — H) is an n x n matrix and I,, is an n x n identity matrix.
Since H is symmetric idempotent, it can be shown that B; is also symmetric idempotent.
We then rewrite it using Eigendecomposition, B; = I'DI'"! where D is a diagonal matrix
of Eigenvalues and I is the contains the corresponding Eigenvectors in its columns. Since
B, is symmetric then I is orthogonal and consequently, '’ T' = I,,. Using these results, it
can be shown that z = T /o is a vector of independent standard normal random

variables and
e’ Bie
2

=2z"Dz (2.37)
0o

zTDz
in (2.36). Then from Jones’ 1986 result [5],

is a quadratic form. Let A; = n*E, [ } so that it takes the place of the second term

1
A = n2/ £y 21"[ (1 —t + 2td;)~V2dt, (2.38)
0 :

where r is the rank of B; and d; is the j** diagonal element of D[4]. Furthermore, let
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B, = H'H and C = I'B,I""!. Then,

e"H"He _ (e"Bge) /o3

eTI-H)TI-H)e (¢7Be) /o2
(e"TT"B.I' " 'Te) /o

z"Dz
z"Cz
- . 2.39
zTDz (2.39)
using the result 'T7 = I'~'T" = I,,. Now let the third term in (2.32) be defined
Tc
Ay = nk [ZT Z}. From Jones’ 1987 result [6],
z"Dz
Ay = - 1+ 2d;t)~2dt, 2.40
2= [ > L0200 (2.40)

where c;; is the i*" diagonal element of C [4]. Finally, by using (2.38) and (2.40) and

dropping the constant term n log(27), we present the A/ C criterion:
AICCQ =N lOg(O’O2) + Al + AQ. (241)

AIC¢ can be found using one-dimensional numerical integration and eigensystem
routines. These are sometimes undesirable, especially in our case where SAS uses an
exhaustive approach (i.e. it will look at a predetermined number of smoothing parameters
defined by the researcher) to find the optimal smoothing parameter [11]. Much like SAS,
we will turn to AIC¢y, which is void of integrals and matrix decomposition. First, let the
distributions of z” Cz and z” Dz be approximated using methods described by Cleveland
and Delvin [2]:

2" Dz (52/51)X§g/52
and

z'Cz

zT'Dz

o~ (1/01) E2 .52 /5y
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where §; = tr(By), 6, = tr(B?), v; = tr(By) and vy, = tr(B2). The trace of a square
matrix is defined as tr(A) = > | a;, where a;; are the diagonal elements in the matrix.

Furthermore, we use the distributional result that if X ~ y? with v degrees of freedom,

. Consequently,

X

1 1
then X follows the inverse chi-square distribution with £ [—} = 5
V —_—

we can approximate the following expectation as

1] (& 1
o ama] = (5) (7 =2) @

E ZTCZ . V1(51/(52)
*12™Dz| ~ 02/5, — 2

and

Then the proposed criterion for AIC¢; as an approximation to A/ C¢y is

(2.43)

AICe1 = nlog(ao?) +n {(”1 il ”>(51/52>} .

02 /55 — 2

AICe is the final piece in building LOESS. By minimizing AIC¢; we are able to find
the optimal smoothing parameter using an exhaustive search. In the next chapter we

discuss more precisely how this is executed and automated using SAS.
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RESULTS

In this chapter we discuss the statistical workflow from data extraction to the final
model comparison. Details on how the data was cleaned, processed, and eventually

validated using the models are presented.

3.1 Data Formatting

In this study 20 households were sampled from a pool of roughly 800 in the
Glasgow EPB smart meter program. The cost of cleaning each household limited this
study to 20. Households were chosen randomly, but some were not used based on a count
of their records. The baseline for missing readings was set at 20% of the overall days, and
in general no more than two consecutive weeks of data were missing from any one
household. Most households used in this study contained upwards of 600 records, one for
each hour of each day, over a two year period from August 2007 to August 2009. Figure

3.1 shows a screenshot of a sample of raw data.

| A | B | & | D | E | F | G | H
‘1 |Location ID  Reading Timestamp_ CS5T Year Month ':? Day Hour Minute
4638 9000508  93324.103 8/1/2007 0:00 2007 8 1 0 0
4639| 5000508  93327.731 8/1/2007 1:00 2007 8 1 1 0
4640| 9000508  93330.915 8/1/2007 2:00 2007 8 1 2 0
4641 9000508  93333.845 8/1/2007 3:00 2007 8 14 3 0
4642 | 9000508  93336.816 8/1/2007 4:00 2007 8 1 4 0
4643 | 9000508  93339.557 8/1/2007 5:00 2007 8 i 5 0
4644 9000508  93342.229 8/1/2007 6:00 2007 8 1 6 0
4645/ 9000508  93345.762 8/1/2007 7:00 2007 8 1 7 0
4646/ 9000508  933439.707 8/1/2007 3:00 2007 8 1 8 0
4647 | 9000508  93353.632 8/1/2007 3:00 2007 8 1 8 0
4648 9000508  93357.724 8/1/2007 10:00 2007 8 1 10 0
4649 | 9000508  93361.839 8/1/2007 11:00 2007 8 1 11 0
4650| 9000508  93365.955 8/1/2007 12:00 2007 8 1 12 0

Figure 3.1: Raw data example

Each household is identified by a unique number known as its Location ID. Since
we are examining the consumption per hour per household, a reading difference was

computed by subtracting the reading of current hour from the next hour. Quality issues
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arose due to double readings, skipped readings, and inaccurate readings from the meter.
These records were expunged before being considered for modeling. It was clear that a
reading was inaccurate based on the magnitude of the reading compared to the others near
it and if the sign of the difference between two consecutive readings was not positive.

Of the original explanatory variables proposed in Chapter 2 (temperature, Saturdays,
Sundays/holidays) temperature served as the only relevant, easily accessible indicator of
consumption in the household. The other variables did not consistently deliver p-values
less than 0.05 in preliminary testing, where the autoregressive model was applied to a
sample of hours from varying households. Temperature governs how often customers use
their heat pumps and air conditioners. Since extreme temperatures prompt individuals to
stay indoors, it also explains why consumption from other appliances tends to rise during

such times. Temperature is a common thread in most power demand models for these

reasons.

- B c B Fo s B 5 H | [ |
1 |Location ID Reading Timestamp_CST  Year Month  Day Hour Minute  Reading_Difference TEMP
2 | 9000508 93324.1 01AUGO7:00:00:00 2007 8 1 ] 0 3.63 76.06
3 5000508 93548.68 03AUGO7:00:00:00 2007 8 3 0 ] 341 T7.30
4] 9000508 5365535 (4AUGO7:00:00:00 2007 8 4 0 0 5.02 80.84
5 9000508 93774.49 05AUG0O7:00:00:00 2007 8 5 0 0 3.97 79.62
b | 9000508 33906.75 06AUGO7:00:00:00 2007 8 ] ] 0 5 8L37
7 5000508 94031 07AUG07:00:00:00 2007 8 7 0 ] 4.09 81.76
& | 9000508  34146.76 08AUGO7:00:00:00 2007 8 8 o ] 4.68 83.64
g 9000508 3427618 09AUGO7.00:00:00 2007 g 9 0 ] 434 32.20
16| 9000508 94398.15 10AUG07:00:00:00 2007 8 10 ] 0 44 77.96
1 9000508 5451186 11AUGO7.00:00:00 2007 8 11 0 ] 3.83 7420
12 9000508 54625.33 12AUG07:00:00:00 2007 8 12 0 0 411 75.60
13 9000508  54733.97 13AUG07:00:00:00 2007 8 13 0 ] 4,09 76.30

Figure 3.2: A sample of forecasting data

It was important to gather as much temperature data as possible from the region.
The Glasgow EPB had collected some data from a local weather station. We also pursued
data from the National Weather Service [10] and sought to merge the two for a more
complete set. Glasgow’s temperature data was the primary set in the merging process in

the event that both sets contained a reading for a single day. Data was available in some
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cases by the minute, so this was averaged to get an hourly reading. Once the final data set
was prepared, it was merged with the consumption data set by year, month, day, and hour.
Then all dates missing either a temperature reading or a power reading were deleted. A

screenshot of sample data used for forecasting can be seen in Figure 3.2.

3.2 Autoregressive Forecasting

In Chapter 2, we discussed the autoregressive quadratic model found in literature. In

testing, temperature and squared temperature performed well. The model,

yr = Bo + Bz’ + Powry + Ry (3.1)

where

Ry = ¢1(Ri1) + ... + ¢7(Ri—7) + &4,

and xy; = hourlytemperature, differs from the model presented in Chapter 2. In this
model, we use an autoregressive error term with up to seven lags. Not every household
will have seven, as we will be using SAS’s "backstep" option to eliminate lags which are
not highly correlated, in which case they will be dropped. The model is simple and will be
used as a performance measure by comparing the results to LOESS. Our assumption is
that in order for this model to be effective we would have to see the data take on a
symmetric U-shape similar to that found in the Florida Power Corporation’s data. This is
the primary reason for using squared temperature as a predictor. As we can see from
Figure 3.3, this will not always be the case. While the U-shape was common amongst the
afternoon hours, it was not as prevalent in the early morning where average temperatures
rarely climbed above 80°F. Also, consider that our data comes from an electricity
provider. What if a household in the program is using gas for space heating during the

winter? This suggests that the symmetric U-shape will not be present coming from such a
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ID = 9003998, Haur = Two AM ID = 9003998, Haur = Seven PM
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-
.

Hourly Go
=
Hourly Go

Hourly Temperature (F) Hourly Temperature (F)

Figure 3.3: Contrasting profiles at different hours of the day.

household, as the demand will be rather flat during this period. Moreover, even when

conditions are ideal, the autoregressive model may not outperform LOESS.

3.3 LOESS Forecasting

After we examined the autoregressive model presented by Mendenhall and saw the
numerous shapes that demand graphs could take, it seemed natural to have a method that
was independent from the shape of the data. LOESS is a one-size-fits-all approach in that
we can approximate any demand curve with a series of linear models. This was discussed
in great detail in Chapter 2; however, we did not present the actual model used for
forecasting. It contains only one variable, temperature. We expect this to fit accurately at

the local level where the complexity of the entire data set will not be present. Let,

Y = Bo + Pizi + &, (3.2)

where ¢, is an unmodified stochastic error term which follows the assumptions of the OLS
method presented in Chapter 2, be the model used for forecasting. We predict this model
will be successful in the event that the smoothing parameter f < 1. Setting f = 1 will
produce a weighted simple regression model which may be inferior to the quadratic

autoregressive model. Fortunately, this was generally not the case.
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3.4 Process Flow

The journey our data takes from extraction to prediction was split into several
processes for quality control and debugging purposes. The data is extracted, cleaned, and
processed through a series of programs designed to determine the regression parameter
estimates. Figure 3.4 sheds light on the differences between the two models. The purpose
of each program is discussed. For the autoregressive model, the SAS procedure
AUTOREG (cite SAS) is used to calculate the regression-autoregression estimates. We
use the "backstep" option to select the lags with p-values below 0.05. We chose seven as

the maximum number of lags based on the study from literature discussed at the beginning

Cleaned Data

T

/\ / "y

/ Hourly_Quadratic_Made! \_> / Find_Smoaoth_Parm \H\\“\,

<“\ SAS Program // \SAS Program /
\/ /

| |

Regression Coefficients and Optimized Smoothing
Temperature Data Parameters

| |

4@ and Crass /mﬁ \>

Validation in Excel SAS Program

\\J/
Autoregressive Forecasts and LOESS Forecasts and Cross
Cross Validation SSE Validation SSE

Figure 3.4: A process flow diagram for regression parameter estimation and cross-
validation.
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of Chapter 2. This leads to the data set in the third tier of Figure 3.4, which contains the
temperature values and regression coefficients for every forecasted day.

We knew the Glasgow EPB was interested in forecasting for a household in the
program after a specified number of readings were collected; preferably, this time period
needs to be as short as possible so they can begin forecasting for the customer. It is unclear
how many readings are necessary to produce acceptable predictions, but we chose to begin
the process after 90 days of readings had been collected, roughly one seasons worth. After
the coefficients had been computed for 90 days worth of data, the 915! point was added,
and a new set of regression estimates were computed. This process continued until there
were 600 data points; this is the maximum number of data points for most households.

For LOESS, the first step is quite different. The SAS macro "Find Smooth Parm"
was written to find the smoothing parameter with the minimum A7C¢ by using the "step"
option in the LOESS procedure (cite sas). The step option sets the smoothing parameter
size to grow by a specified amount from the starting value. The smallest number of data
points to start the search was chosen to be seven to guarantee enough unique temperature
values needed to have a full-column rank X. Recall that the OLS regression coefficient
estimator is

B = (X"X)"'(x"Y).

The inverse of the X’ X matrix can be influenced by roundoff error if the temperature
readings are close enough together. When weights are added to the equation, such as they
are in LOESS, the danger of weighting too many points as zero can also cause singularity.
SAS would routinely return an error stating that the matrix was singular if four or fewer
data points were used as the starting neighborhood size. The frequency of this error
lessened if five points were used and was rarely seen at six. Seven is a conservative
starting size selected to keep this error from occurring.

To find the optimal smoothing parameter the AIC¢ is computed for every possible

smoothing parameter (based on step-size) for every hour of every household. As an
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example, the program computes the AIC¢; for 90 observations of the midnight hour for a
single household. They are ordered from least to greatest, and the record at the top of the
list is then selected as the smoothing parameter to use. Then the 91%¢ observation is pulled
in, and the process begins again. This method is an exhaustive search, and concerns arose
on the runtime of Find Smooth Parm. If the step-size was %, then the best smoothing
parameter could be found. However, there is a tradeoft between the step-size and the
speed of the algorithm. We saw it sufficient to grow the neighborhood by seven data
points at each step. The final data set seen on the third tier of Figure 3.4 contains the
smoothing parameters which are utilized in the next program.

Continuing down the LOESS side of Figure 3.4, the "Score Macro" program is
designed to make forecasts based on the smoothing parameters produced from the
previous program. Since it is only necessary to forecast one day in advance, we take the
model from the previous day’s hour and use today’s hour’s average temperature as input.
In reality, this temperature would be a prediction itself from the local weather service. For

convenience, we simply use the actual temperature. This concept is described by

Ui = Di_1(73), 3.3)

where D;_; is the deterministic part of the previous day’s model. The score statement in
the LOESS procedure makes this possible. After each day was "scored," as a means of
cross-validation the prediction is subtracted from the real reading that hour, and the error
and squared error are calculated in SAS. This squared error will be referred to as the
cross-validation error. This creates the data set in the fifth and final tier of Figure 3.4.

A similar data set is computed for the autoregressive model, but unfortunately the
score statement is not available in the AUTOREG procedure. Each hour’s regression
coefficients were joined with temperature and reading data. This information was output

to Microsoft Excel, and forecasts were made for all 480 hours using the method described
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by (3.3). Then error and cross-validation error were computed.

Appendix A contains all SAS code used in processing and forecasting with detailed

comments as to how the programs are executed.

3.5 Model Comparison

To see which model performed better, the cross-validation error, or CVE, was
transformed by computing the average CVE for the hour, and then taking the square root
of the result. This is referred to as the root mean cross-validation error, or RMCVE. This
is similar to the root mean squared error, which is the sample standard deviation. This will
allow us to express the results in terms of the actual readings, measured in kilowatt hours

(kWh). A model indicator was attached to each hour to show which model performed
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Figure 3.5: The data appears to have two tiers.

better. A "0" indicates LOESS has the lower RMCVE, and a "1" means the autoregressive
has the lower RMCVE. As it turns out, LOESS outperforms the autoregressive model in
about 80% of all hours. To better understand the performance of each model, the results

were aggregated by hour and by household. The full output for each household can be
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Table 3.1: Average RMCVE with proportion to LOESS aggregated by hour.

Hour Autoreg ARMCVE | LOESS ARMCVE | Proportion to LOESS
12:00 AM 0.98 0.92 90%
1:00 AM 0.89 0.83 75%
2:00 AM 0.88 0.80 85%
3:00 AM 0.89 0.81 95%
4:00 AM 0.95 0.86 80%
5:00 AM 1.00 0.92 85%
6:00 AM 1.01 0.99 65%
7:00 AM* 1.09 1.07 70%
8:00 AM 1.12 1.08 75%
9:00 AM 1.21 1.18 70%
10:00 AM 1.26 1.23 75%
11:00 AM 1.27 1.25 70%
12:00 PM 1.26 1.22 70%
1:00 PM 1.25 1.21 80%
2:00 PM 1.24 1.18 80%
3:00 PM 1.26 1.19 90%
4:00 PM 1.28 1.21 80%
5:00 PM 1.24 1.18 85%
6:00 PM 1.27 1.21 90%
7:00 PM 1.28 1.23 85%
8:00 PM 1.28 1.23 75%
9:00 PM 1.22 1.18 75%
10:00 PM 1.09 1.05 75%
11:00 PM 0.97 0.92 75%
"Missing household 9200108 from calculation due (o extreme value,
found in Appendix B.

If LOESS is outperforming the autoregressive model in 80% of all hours, then Table
3.1 confirms this assumption if we look at the performance across all hours. It only dips
below 70% in one instance. However, if we examine the performance by household (Table

3.2), certain profiles prefer the autoregressive model.
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Table 3.2: Average RMCVE with proportion to LOESS aggregated by household.

Location ID | Autoreg ARMCVE | LOESS ARMCVE | Proportion to LOESS
9000508 0.963 0.930 92%
9100456 1.070 1.000 100%
9100720 0.938 0.890 100%
9003998 1.694 1.542 100%
9006578 0.405 0.401 33%
9109645 0.786 0.643 83%
9109922 1.209 1.205 50%
9109950 0.302 0.318 21%
9110002 1.985 1.956 100%
9110003 1.461 1.448 83%
9110004 1.331 1.312 88%
9199920 0.723 0.710 79%
9200108%* 1.430 1.398 100%
9200155 0.824 0.793 63%
9200161 0.787 0.804 25%
9200800 1.277 1.086 96%
9201610 1.739 1.611 100%
9202469 0.910 0.891 1%
9202473 1.631 1.597 96%
9202475 1.198 1.124 100%

*Missing 7:00a.m. hour from calculation due to extreme value.

A sign that LOESS might not be performing well is the tendency for the smoothing
parameter to converge to % as more points are added. This is just a sign that LOESS has a
difficult time determining the trend in the data for these households. To further investigate,
consider Figure 3.5, which is the typical shape of the data for this location.

For LOESS, the AIC¢; in Figure 3.5 is decreasing as more points are being
absorbed into the pool for calculation. For the autoregressive model, though, temperature
and squared temperature are still relevant explanatory variables. We believed initially the
shape of the data was a key factor for the autoregressive model to predict well — this may

still be the case, depending on the prediction and how close it is — but it turns out that
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LOESS requires this feature even more so. It is reasonable to believe that any number of
models, even the mean, would all perform similarly in the situation illustrated in Figure

3.5. For this reason, in practice, we recommend LOESS for all hours and all households.

3.6 The 24-Hour Demand Profile

One of the main objectives of this study is to create a 24-hour demand profile for
each household. This can be done by aggregating the predictions for each hour of a single
household by date. Figure 3.6 is an example of such a profile.

The line graph is the actual readings, while the blue bars are the predictions given by
LOESS. We can see two hours where our predictions were far from the actual value. This
is more prevalent for hours where the data is amorphous, such as that of Figure 3.5. The
program, "Profile", to generate profiles like this one can be found in Appendix A.

Ideally for the Glasgow EPB, the demand profile should predict a constant demand
for electricity. While this will not be possible, it can help consumers realize when their
usage is expected to be high, and hopefully there will be some incentive to keep it low

during these periods.

Location ID = 9110003 Date: 12/20/2008

Predicted Reading_Difference

0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

[= Predicted Reading Difference —&— Reading Difference (Sum) |

Figure 3.6: A 24 hour demand prediction for Location 9110003 on 12/20/2008.
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CONCLUSION

The downfall or success of a simple parametric model, such as the one used for this
study, is the amount of variability that can be explained with one predictor. For the
autoregressive model, the value of simplicity was overcome by its lack of explanation. It
could be possible to design a custom model for each household while still incorporating
temperature as the primary predictor. Factors such as insulation grade of the home,
thermostat preferences, work schedule, and a host of other tailored variables could be
tested for relevance for each program participant. This, of course, was not a luxury we
had, and moreover we wanted to see if it could be done differently.

On the other hand, while LOESS finished first, is it a good forecaster of demand? In
most cases the RMCVE ranges from 0.5 to 3.0 kilowatt hours (kWh). Given that most
people are consuming somewhere between 2 and 10 kWhs per hour, we believe the error
is admissible. Ultimately, The Glasgow EPB will have to decide whether this is good
enough. At any rate, the outcome of this study shows that forecasting power demand using
LOESS should not be overlooked.

It is worth noting that the computational load of finding the smoothing parameter
should not be ignored. This harks back to the idea that whatever system is implemented, it
should be feasible. If it takes 100 hours to make the forecast for all households in the
region each day, then measures must be taken to reduce this time. As an example, for a
processor with a clock speed of 2.0 GHz, the minimum smoothing parameter for 90 data
points can be found in 0.18 seconds. To find this for 600 data points SAS takes 7.09
seconds. This is partially due to the construction of the algorithm. SAS allows for a user
defined starting smoothing parameter and then uses the "step" option to increase the
smoothing parameter by a specified amount until it reaches one. This approach lets the
neighborhood size vary as more points are added to the data set and keeps the number of

steps fixed. We chose to do the opposite and let the number of steps vary, while keeping
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the neighborhood size fixed. This creates a greater level of precision when finding the
minimum smoothing parameter as more points are added, but the trade-off is run-time. To
illustrate further, even if it takes 1 second to make a prediction per household, for 50,000
households it would take 13.89 hours if they were processed sequentially. This is not
feasible since customers would not be aware of their demand forecast until roughly 2:00
p-m. Thus, parallel processing is recommended.

Other measures can be implemented to ensure timely forecasts. It might be effective
to compute the coefficients for each hour’s model and use the model for more than one
forecast. It was expressed that Glasgow would not be tracking weekends as part of the
program. This time could be spent computing a model to be used for forecasting demand
for the entire week using temperature data as it becomes available. This would bypass the
time consuming process of finding the optimal smoothing parameter. A future study could
be done to determine the maximum amount of days one could use the coefficients before
forecasts become too deviant.

One last piece of information to relay is a warning to SAS users. SAS will not allow
LOESS to extrapolate for those temperatures which fall outside the range of values
already used to form the model. This is not the case for the AUTOREG procedure. The
90-data-point minimum does provide a wide range of temperatures, but only because of
the time period in which it was taken. The data is collected starting in late August, a month
that produces some of the highest temperatures during the year, and ends with November,
which is traditionally much cooler. As new temperatures are absorbed that fall outside the
current range, they become the new maximum/minimum temperature. Fortunately, we

only see around 10 cases out of roughly 500 per hour where the prediction is missing.
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Macro Name: Find Smooth Parm *
Author: Craig Dickson *
Purpose: Find the optiomal smoothing parameter for each hour *
Input: n = Starting hour in the list *
index = last hour in the list

base = minimum number of points to be used

max = maximum number of points to be used

ghourly. 24hour sets = List of Hours for each household
Output: ghourly.&name AICC1 which contains: *
Year, Month, Day, Hour, Temperature, Actual Power Reading, *

Smoothing Parameter to be used, Data points used, AICC1 *

E I S T
E

libname ghourly ‘\\vmware-host\Shared Folders\gstudent documents\desktop
\Craigs Folder\Thesis\Data\SAS Data\Glasgow Hourly’;

$macro Find Smooth Parm(n, index,base,max) ;
/*--Outer Loop--x/
%$DO %$WHILE (&n<=&index) ;

data _NULL_;
obsnum=&n;
set ghourly. 24hour sets point=obsnum; /+Points to the name of the current hour in the list«/
call symput ('name’,compress (filenames)) ;
/+*Creates a macro variable name from filenames in _24hour set.
An example of this would be h09000508 ten amx/
output;
stop;
run;

proc sort data=ghourly.&name out=&name; /+«Sorts tha data for quality assurancesx/
by Timestamp CST;
run;

%let loopcounter=1l; /+xCounter used to identify the first iterationsx/

$let obscounter=&base; /xkeeps count of the current number of points used for LOESSx/
/*--Inner Loop--x/

%$DO $WHILE (&obscounter<=&max) ;

ods output FitSummary=&name. Summary; /+Outputs a fit summary for LOESSx/

%let step=%sysevalf (7/&obscounter); /+«Defines the step sizex/
%$let start=%sysevalf (1x&step) ;
/+«Defines the starting neighborhood size in terms of the step sizex/

proc loess data=&name (obs=&obscounter) ;

/*LOESS, computing for the number of points specified by obscounterx/
model Reading Difference=Temp / smooth=&start to 1 by &step dfmethod=exact r clm;
run;

proc SQL OUTOBS=1; /xGrabs the smoothing parameter with the minimum AICClx/
CREATE TABLE MianICCl AS

SELECT =«

FROM &name._ summary

WHERE Labell="AICC1"

ORDER BY cValuel;

quit;

%$if &loopcounter=1 %$then %do;
/*Creates the data set which holds the smoothing parameters,at the
first iteration this will be the smoothing parameter for &base pointsx/
data &name. AICCI;
set Min AICC1;
n=&obscounter;
/*Creates a column which stores the current number of points used for LOESSx/
run;
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%$end; %else %do;
data currentobs;
/+stores the current number of pointsx/
n=&obscounter;
run;

data Min AICCI;

/+*Merges the number of points used with the smoothing parameter for that many pointsx/
merge Min AICC1l currentobs;
run;

data &name. AICC1l; /xSets the current calculations to those before itx/
set &name. AICC1 Min AICC1;

run;

%$end;

%let obscounter=%eval (&obscounter+1) ;
/*Prepares the program to absorb the next data point and compute the new modelsx/
%$let loopcounter=%eval (&loopcounter+l) ;

$END;
/*--Closes Inner Loop--x/
data ghourly.&name. AICCIL;
/*Stores the temporary data set for the current hour into the SAS library ghourlysx/
merge &name. AICC1l ghourly.&name (firstobs=&base obs=&max) ;
Filenames="&name";
keep Filenames Year Month Day Hour Temp Reading Difference SmoothingParameter n cValuel;
output;
run;

%let n=%eval (&n+1) ;

/+*Increments n which will grab the next hour in the list. For example,
if the current hour was Ten AM then the next one is Eleven AMx/

%END;

/*--Closes Outer Loop--x/

$mend Find Smooth Parm;

$Find Smooth Parm(1,480,90,600); /+user inputx/
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Macro Name: Hourly Quadratic Model *
Author: Craig Dickson *
Purpose: Compute the regression coefficients for the parametric model *
Input: n = Starting hour in the list *
index = last hour in the list

base = minimum number of points to be used

max = maximum number of points to be used

ghourly. 24hour sets = List of Hours for each household
Output: ghourly.&name_autoreg which contains: *
SSE, intercept term, coefficient for temperature squared, *

coefficient for temperaure, data points used, actual reading *

AICC, temperature *

E I T R S
E

libname ghourly ‘\\vmware-host\Shared Folders\gstudent documents)\
desktop\Craigs Folder\Thesis\Data\SAS Data\Glasgow Hourly’ ;

$macro gm_autoreg(n, index, base,max) ;
/*--Outer Loop--x/
%$DO %$WHILE (&n<=&index) ;

data _NULL_;

obsnum=&n;
set ghourly. 24hour sets point=obsnum; /+Points to the name of the current hour in the list«/
call symput ('name’,compress (filenames)) ;

/+*Creates a macro variable name from filenames in 24hour set.

An example of this would be h09000508 ten amx/
output;
stop;
run;

proc sort data=ghourly.&name out=&name; /+«Sorts tha data for quality assurancesx/
by Timestamp CST;
run;

data &name; /+«Squares the temperaturesx/
set &name;

temp_sg=tempxtemp;

output;

run;

%let loopcounter=1; /+Counter used to identify the first iterationsx/

%let obscounter=&base; /xkeeps count of the current number of points used for LOESSx/
/*--Inner Loop--x/

%$DO %$WHILE (&obscounter<=&max) ;

ods output fitsummary=fitsum; /+Outputs a fit summary for AUTOREGx/

proc autoreg data=&name (obs=&obscounter) outest=est;
/*AUTOREG, computing for number of points specified by obscounterx/
model Reading Difference = temp sqg temp / dw=7 dwprob method=ml nlag=7 backstep;
/+backstep for lag selectionx/
run;

proc SQL OUTOBS=1; /xFinds the AICC for each modelx/
CREATE TABLE MiniAICCl AS

SELECT Label2, cValue2

FROM fitsum

WHERE Label2="AICC"

ORDER BY cValue2;

quit;

%$if &loopcounter=1 %$then %do;
/+Creates the set which will contain the AICC’sx/
data &name. AICCI;
set Min AICC1;
n=&obscounter;
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output;
run;

/*Creates a column which stores the current number of points used for AUTOREGx/

data Q Model; /xCreates data set which holds regression coefficientsx/
set est (rename = (_SSE =SSE Autoreg temp sg=Temp sq Coeff temp=Temp Coeff)) ;

n=&obscounter;

keep n SSE Autoreg Intercept Temp sq Coeff Temp Coeff;

output;
run;
%$end; %else

do;

data currentobs;/xstores the current number of pointsx/

n=&obscounter;

output;
run;

data Min AICC1l; /xMerges the number of points used by AUTOREG with AICC datax*/
merge MinﬁAICCl currentobs;

output;
run;

data &name.

AICC1l; /«Adds more observations to the AICC setx/

set &name. AICC1 Min AICCI;

output;
run;

data est; /xmerges the currentobs set with the est set created by AUTOREGx/
merge est currentobs;

output;
run;

data Q Model; /+Adds more observations to the Q Model setx/
set Q Model est (rename = (_SSE =SSE Autoreg temp_ sqg=Temp sq Coeff temp=Temp Coeff));
keep n SSE Autoreg Intercept Temp sqg Coeff Temp Coeff;

output;
run;
%$end;

%let obscounter=%eval (&obscounter+1) ;
/*Prepares the program to absorb the next data point and compute the new modelsx/
%$let loopcounter=%eval (&loopcounter+l) ;

%END;

/*--Closes Inner Loop--x/

data &name;

/*Grabs the temperature and readings data from the original data set
between the base and max observationsx/
set &name (firstobs=&base obs=&max) ;
keep reading difference temp;

output;
run;

data ghourly.&name._autoreg;
/+*Merges Q Model, AICC, and &name to form the output set in ghourlysx/
merge Q Model &name. AICCl (rename = (cValue2=AICC_AR)) &name;

drop Label2;
output;
run;

%let n=%eval (&n+1) ;
/*Increments n which will grab the next hour in the list. For example,
if the current hour was Ten AM then the next one is Eleven AMx/

%END;

/*--Closes Outer Loop--x/
$mend gm_autoreg;

%$gm_autoreg(l,480,90,600); /+user inputs/
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Macro Name: Score Macro *
Author: Craig Dickson *
Purpose: Make the power demand forecast for each day *

Input: n = Starting hour in the list *
index = last hour in the list

base = minimum number of points to be used

max = maximum number of points to be used

ghourly. 24hour sets = List of Hours for each household
ghourly.&name_ AICCl = Contains smoothing parameters for LOESS
Output: ghourly.&name prediction which contains: *
Year, Month, Day, Hour, Temperature, Actual Power Reading, *

Smoothing Parameter to be used, Data points used, *

Forecasted Reading, Residual, Residual Squared *

E T I S T N N
EE N

libname ghourly ’\\vmware-host\Shared Folders\gstudent documents\desktop
\Craigs Folder\Thesis\Data\SAS Data\Glasgow Hourly’;

$macro Score Macro (n, index,base,max) ;
/*--Outer Loop--x/
$DO %WHILE (&n<=&index) ;

data _NULL ;
obsnum=&n;
set ghourly. 24hour_ sets point=obsnum;
/+xPoints to the name of the current hour in the listx/
call symput (‘name’,compress (filenames)) ;
/+*Creates a macro variable name from filenames in 24hour set.
An example of this would be h09000508 ten amx/
output;
stop;
run;

%let loopcounter=1l; /xCounter used to identify the first iterationsx/

%let obscounter=&base; /xkeeps count of the current number of points used for LOESSx/
/*--Inner Loop--x/

%$DO $WHILE (&obscounter<&max) ;

data currentsp;
/*Grabs the smoothing parameter for the current number of points used for LOESSx/
obsnum=&loopcounter;
set ghourly.&name. AICC1l point=obsnum;
call symput (’sp’,SmoothingParameter) ;
output;
stop;
run;

data futuretemp;
/*Grabs the next day’s temperature as the temperature to forecast today’s demandsx/
obsnum=&loopcounter+1;
set ghourly.&name. AICC1l point=obsnum;
output;
stop;
run;

ods output FitSummary=&name. Summary /+«Outputs a fit summary for LOESS*/
ScoreResults=&name._ scored; /+Outputs the results of the forecasted demandsx/

proc loess data=ghourly.&name (obs=&obscounter) ;
/*LOESS, computing the model with the optimal smoothing parameters*/
model Reading Difference=Temp / smooth=&sp dfmethod=exact r clm;
score data=futuretemp ID=(Temp); /*Score statement which gives the forecasted demandsx/
run;

data &name. scored; /xComputes the resiedual and residual squared from the score resultsx/

set &name._scored;
residual=Reading Difference-p Reading Difference;
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residual sqg=(Reading Difference-p Reading Difference) x*2;
drop scoredata obs;

output;

run;

%$if &loopcounter=1 %$then %do;
/+«Creates a data set which stores the scored datax/
data &name. prediction;
set &name._scored;
run;
%$end; %else %do;
data &name. prediction;
/+*Adds new results to the prediction data setx*/
set &name. prediction &name._ scored;
run;
%$end;

%let obscounter=%eval (&obscounter+1) ;
/«Prepares the program to absorb the next data point and compute the new modelx/
%$let loopcounter=%eval (&loopcounter+l) ;

%$END;
/*--Closes Inner Loop--x/
data ghourly.&name. prediction;
/+Outputs the predictions to the SAS library ghourlyx/
set &name. prediction;
output;
run;

%let n=%eval (&n+1) ;

/*Increments n which will grab the next hour in the list. For example,
if the current hour was Ten AM then the next one is Eleven AMx/

%$END;

/*--Closes Outer Loop--x/

$mend Score Macro;

%$Score Macro(1l,480,90,600); /xuser inputs/
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* Macro Name: Get Profile *
* Author: Craig Dickson *
* Purpose: produce a 24 demand profile graph *

* Input: n = Starting hour in the list *

*+ index = last hour in the list *

* month = selected month *

* day = selected day *

* year = selected year *

* ghourly. 24hour sets = List of Hours for each household *

* ghourly.&name prediction *

* Output: A bar graph of the predicted demand in kilowatt hours *
* A Line plot of actual readings which overlays the bar graph *

e e */

libname ghourly ’\\vmware-host\Shared Folders\gstudent documents\desktop
\Craigs Folder\Thesis\Data\SAS Data\Glasgow Hourly’;

$macro get profile(n, index, month, day, year);

%let loopcounter=1; /+Counter used to identify the first iterationsx/
/*--Begin Loop--x/
%$DO $WHILE (&n<=&index) ;

data _NULL_;

obsnum=&n;
set ghourly. 24hour_ sets point=obsnum;

/+xPoints to the name of the current hour in the listx/

call symput ('name’,compress (filenames)) ;

/+*Creates a macro variable name from filenames in 24hour set.
An example of this would be h09000508 ten amx/
output;
stop;
run;

data grab_row;
/+*Grabs the row which contains the actual and predicted readingssx/
set ghourly.&name. prediction;
where Year=&year and Month=&month and Day=&day;
output;
run;

$if &loopcounter=1 %then %do;
/+*Creates the profile data set with grab rowsx/
data profile;
set grab_row;
output;
run;
%end; %else %do; /+Adds hours to the profile setx/
data profile;
set profile grab row;
output;
run;
%$end;

%$let loopcounter=%eval (&loopcounter+l) ;

%$let n=%eval (&n+1) ;

/*Increments n which will grab the next hour in the list. For example,
if the current hour was Ten AM then the next one is Eleven AMx/

%END;
/*--Closes Loop--x*/
ODS PDF FILE="\\vmware-host\Shared Folders\gstudent documents\desktop
\Craigs Folder\Thesis\SAS Stuff\Plots\profileplot.pdf";
proc sgplot data=profile; /«Creates the output plotsx*/
title "Location ID = 9110003 Date: &month./&day./&year";
VBAR Hour/ RESPONSE:piReadingiDifference BARWIDTH=1 FILLATTRS= (COLOR=blue) TRANSPARENCY=.
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VLINE Hour/ RESPONSE:ReadingiDifference LINEATTRS= (COLOR=black) BREAK MARKERS;
run;

quit;
ODS PDF CLOSE;

$mend get profile;

$get profile(1,24,12,20,2008); /+user inputx/

45



APPENDIX B

46



Table 6.1: Root mean cross-validation error (kWh) model comparison: 9000508

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9000508 | 12:00 AM 0.795 0.663 0
1:00 AM 0.596 0.571 0
2:00 AM 0.716 0.555 0
3:00 AM 0.659 0.532 0
4:00 AM 0.605 0.512 0
5:00 AM 0.579 0.502 0
6:00 AM 0.733 0.734 1
7:00 AM 0.696 0.689 0
8:00 AM 0.880 0.871 0
9:00 AM 1.055 1.041 0
10:00 AM 1.032 1.021 0
11:00 AM 1.146 1.125 0
12:00 PM 1.072 1.058 0
1:00 PM 1.081 1.071 0
2:00 PM 1.075 1.062 0
3:00 PM 1.057 1.045 0
4:00 PM 1.080 1.061 0
5:00 PM 1.158 1.143 0
6:00 PM 1.314 1.300 0
7:00 PM 1.285 1.285 0
8:00 PM 1.318 1.316 0
9:00 PM 1.266 1.267 1
10:00 PM 1.071 1.069 0
11:00 PM 0.842 0.822 0
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Table 6.2: Root mean cross-validation error (kWh) model comparison: 9100456

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9100456 | 12:00 AM 1.008 0.913 0
1:00 AM 0.942 0.846 0
2:00 AM 0.948 0.847 0
3:00 AM 0.958 0.865 0
4:00 AM 0.971 0.888 0
5:00 AM 0.952 0.873 0
6:00 AM 0.819 0.773 0
7:00 AM 0.905 0.842 0
8:00 AM 0.927 0.859 0
9:00 AM 0.989 0.932 0
10:00 AM 1.178 1.098 0
11:00 AM 1.147 1.096 0
12:00 PM 1.224 1.177 0
1:00 PM 1.217 1.185 0
2:00 PM 1.186 1.132 0
3:00 PM 1.243 1.194 0
4:00 PM 1.344 1.299 0
5:00 PM 1.288 1.218 0
6:00 PM 1.167 1.090 0
7:00 PM 1.097 1.041 0
8:00 PM 1.059 0.991 0
9:00 PM 1.078 1.006 0
10:00 PM 1.061 0.957 0
11:00 PM 0.979 0.888 0
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Table 6.3: Root mean cross-validation error (kWh) model comparison: 9100720

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9100720 | 12:00 AM 0.850 0.744 0
1:00 AM 0.656 0.582 0
2:00 AM 0.597 0.520 0
3:00 AM 0.576 0.536 0
4:00 AM 0.446 0.431 0
5:00 AM 0.458 0.443 0
6:00 AM 0.628 0.591 0
7:00 AM 0.815 0.760 0
8:00 AM 0.829 0.780 0
9:00 AM 0.898 0.861 0
10:00 AM 1.032 0.994 0
11:00 AM 1.194 1.155 0
12:00 PM 1.233 1.183 0
1:00 PM 1.190 1.143 0
2:00 PM 1.177 1.135 0
3:00 PM 1.231 1.188 0
4:00 PM 1.106 1.059 0
5:00 PM 1.116 1.064 0
6:00 PM 1.140 1.092 0
7:00 PM 1.211 1.183 0
8:00 PM 1.133 1.083 0
9:00 PM 1.198 1.158 0
10:00 PM 1.003 0.934 0
11:00 PM 0.797 0.732 0
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Table 6.4: Root mean cross-validation error (kWh) model comparison: 9003998

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9003998 | 12:00 AM 1.473 1.249 0
1:00 AM 1.495 1.260 0
2:00 AM 1.853 1.506 0
3:00 AM 2.501 2.152 0
4:00 AM 3.923 3.110 0
5:00 AM 4.232 3.744 0
6:00 AM 1.695 1.681 0
7:00 AM 1.801 1.778 0
8:00 AM 1.464 1.409 0
9:00 AM 1.343 1.306 0
10:00 AM 1.424 1.382 0
11:00 AM 1.526 1.443 0
12:00 PM 1.556 1.461 0
1:00 PM 1.498 1.435 0
2:00 PM 1.436 1.381 0
3:00 PM 1.329 1.263 0
4:00 PM 1.435 1.347 0
5:00 PM 1.356 1.289 0
6:00 PM 1.196 1.126 0
7:00 PM 1.219 1.195 0
8:00 PM 1.463 1.400 0
9:00 PM 1.301 1.222 0
10:00 PM 1.071 0.984 0
11:00 PM 1.062 0.883 0
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Table 6.5: Root mean cross-validation error (kWh) model comparison: 9006578

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9006578 | 12:00 AM 0.121 0.137 1
1:00 AM 0.125 0.129 1
2:00 AM 0.119 0.121 1
3:00 AM 0.111 0.005 0
4:00 AM 0.106 0.121 1
5:00 AM 0.121 0.141 1
6:00 AM 0.167 0.179 1
7:00 AM 0.288 0.310 1
8:00 AM 0.225 0.243 1
9:00 AM 0.396 0.445 1
10:00 AM 0.576 0.586 1
11:00 AM 0.595 0.592 0
12:00 PM 0.515 0.520 1
1:00 PM 0.544 0.568 1
2:00 PM 0.497 0.522 1
3:00 PM 0.579 0.563 0
4:00 PM 0.707 0.624 0
5:00 PM 0.691 0.653 0
6:00 PM 0.766 0.726 0
7:00 PM 0.743 0.728 0
8:00 PM 0.684 0.653 0
9:00 PM 0.559 0.571 1
10:00 PM 0.317 0.326 1
11:00 PM 0.160 0.169 1
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Table 6.6: Root mean cross-validation error (kWh) model comparison: 9109645

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9109645 | 12:00 AM 0.569 0.494 0
1:00 AM 0.482 0.442 0
2:00 AM 0.425 0.426 1
3:00 AM 0.405 0.398 0
4:00 AM 0.373 0.382 1
5:00 AM 0.358 0.369 1
6:00 AM 0.421 0.430 1
7:00 AM 0.482 0.452 0
8:00 AM 0.643 0.553 0
9:00 AM 0.786 0.688 0
10:00 AM 0.975 0.870 0
11:00 AM 1.081 0.973 0
12:00 PM 0.948 0.809 0
1:00 PM 0.972 0.770 0
2:00 PM 1.103 0.821 0
3:00 PM 1.082 0.778 0
4:00 PM 1.147 0.821 0
5:00 PM 1.280 1.033 0
6:00 PM 1.179 0.881 0
7:00 PM 1.052 0.736 0
8:00 PM 0.892 0.645 0
9:00 PM 0.845 0.656 0
10:00 PM 0.707 0.526 0
11:00 PM 0.659 0.471 0

52




Table 6.7: Root mean cross-validation error (kWh) model comparison: 9109922

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9109922 | 12:00 AM 0.753 0.751 0
1:00 AM 0.577 0.592 1
2:00 AM 0.569 0.559 0
3:00 AM 0.634 0.624 0
4:00 AM 0.613 0.608 0
5:00 AM 1.069 0.991 0
6:00 AM 1.076 1.041 0
7:00 AM 0.990 0.996 1
8:00 AM 1.133 1.131 0
9:00 AM 1.312 1.316 1
10:00 AM 1.362 1.353 0
11:00 AM 1.192 1.203 1
12:00 PM 1.210 1.211 1
1:00 PM 1.138 1.150 1
2:00 PM 1.207 1.215 1
3:00 PM 1.357 1.339 0
4:00 PM 1.499 1.508 1
5:00 PM 1.712 1.652 0
6:00 PM 1.694 1.687 0
7:00 PM 1.953 1.961 1
8:00 PM 1.961 1.988 1
9:00 PM 1.738 1.777 1
10:00 PM 1.267 1.277 1
11:00 PM 0.995 0.981 0
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Table 6.8: Root mean cross-validation error (kWh) model comparison: 9109950

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9109950 | 12:00 AM 0.329 0.327 0
1:00 AM 0.325 0.334 1
2:00 AM 0.315 0.301 0
3:00 AM 0.307 0.302 0
4:00 AM 0.299 0.296 0
5:00 AM 0.323 0.306 0
6:00 AM 0.251 0.264 1
7:00 AM 0.255 0.262 1
8:00 AM 0.258 0.270 1
9:00 AM 0.266 0.276 1
10:00 AM 0.308 0.334 1
11:00 AM 0.323 0.355 1
12:00 PM 0.312 0.342 1
1:00 PM 0.328 0.350 1
2:00 PM 0.332 0.357 1
3:00 PM 0.324 0.343 1
4:00 PM 0.320 0.336 1
5:00 PM 0.316 0.342 1
6:00 PM 0.319 0.346 1
7:00 PM 0.314 0.349 1
8:00 PM 0.190 0.210 1
9:00 PM 0.309 0.332 1
10:00 PM 0.325 0.366 1
11:00 PM 0.307 0.321 1
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Table 6.9: Root mean cross-validation error (kWh) model comparison: 9110002

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9110002 | 12:00 AM 0.923 0.912 0
1:00 AM 0912 0.906 0
2:00 AM 0.823 0.807 0
3:00 AM 0.804 0.784 0
4:00 AM 0.835 0.828 0
5:00 AM 1.115 1.113 0
6:00 AM 3.803 3.761 0
7:00 AM 3.112 3.050 0
8:00 AM 2.361 2.303 0
9:00 AM 2.983 2.945 0
10:00 AM 3.200 3.153 0
11:00 AM 3.040 2.994 0
12:00 PM 2.715 2.690 0
1:00 PM 2.253 2.220 0
2:00 PM 1.993 1.992 0
3:00 PM 1.940 1.927 0
4:00 PM 2.177 2.151 0
5:00 PM 2.182 2.168 0
6:00 PM 2.109 2.086 0
7:00 PM 2.078 2.060 0
8:00 PM 1.911 1.891 0
9:00 PM 1.730 1.648 0
10:00 PM 1.377 1.314 0
11:00 PM 1.260 1.241 0
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Table 6.10: Root mean cross-validation error (kWh) model comparison: 9110003

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9110003 | 12:00 AM 1.284 1.274 0
1:00 AM 0.961 0.942 0
2:00 AM 0.773 0.767 0
3:00 AM 0.740 0.731 0
4:00 AM 0.704 0.656 0
5:00 AM 0.712 0.686 0
6:00 AM 1.194 1.185 0
7:00 AM 1.386 1.381 0
8:00 AM 1.529 1.505 0
9:00 AM 1.569 1.571 1
10:00 AM 1.420 1.418 0
11:00 AM 1.586 1.556 0
12:00 PM 1.670 1.664 0
1:00 PM 1.737 1.717 0
2:00 PM 1.812 1.792 0
3:00 PM 1.891 1.889 0
4:00 PM 1.784 1.789 1
5:00 PM 1.604 1.594 0
6:00 PM 1.759 1.742 0
7:00 PM 1.870 1.843 0
8:00 PM 2.139 2.140 1
9:00 PM 1.923 1.919 0
10:00 PM 1.596 1.596 1
11:00 PM 1.418 1.401 0
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Table 6.11: Root mean cross-validation error (kWh) model comparison: 9110004

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9110004 | 12:00 AM 1.017 0.990 0
1:00 AM 0.756 0.725 0
2:00 AM 0.690 0.659 0
3:00 AM 0.631 0.601 0
4:00 AM 0.753 0.733 0
5:00 AM 1.075 1.048 0
6:00 AM 1.240 1.225 0
7:00 AM 1.391 1.386 0
8:00 AM 1.472 1.477 1
9:00 AM 1.530 1.514 0
10:00 AM 1.491 1.473 0
11:00 AM 1.501 1.500 0
12:00 PM 1.359 1.365 1
1:00 PM 1.265 1.241 0
2:00 PM 1.208 1.185 0
3:00 PM 1.242 1.220 0
4:00 PM 1.213 1.208 0
5:00 PM 1.406 1.396 0
6:00 PM 1.822 1.768 0
7:00 PM 2.074 2.060 0
8:00 PM 2.067 2.070 1
9:00 PM 1.773 1.745 0
10:00 PM 1.682 1.636 0
11:00 PM 1.280 1.256 0
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Table 6.12: Root mean cross-validation error (kWh) model comparison: 9199920

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9199920 | 12:00 AM 0.855 0.837 0
1:00 AM 0.693 0.698 1
2:00 AM 0.525 0.511 0
3:00 AM 0.482 0.474 0
4:00 AM 0.415 0.412 0
5:00 AM 0.461 0.461 0
6:00 AM 0.487 0.501 1
7:00 AM 0.467 0.483 1
8:00 AM 0.510 0.531 1
9:00 AM 0.591 0.593 1
10:00 AM 0.779 0.770 0
11:00 AM 0.992 0.980 0
12:00 PM 0.949 0.925 0
1:00 PM 0.939 0.933 0
2:00 PM 0.792 0.784 0
3:00 PM 0.803 0.789 0
4:00 PM 0.894 0.861 0
5:00 PM 0.907 0.854 0
6:00 PM 1.048 1.012 0
7:00 PM 0.798 0.740 0
8:00 PM 0.781 0.748 0
9:00 PM 0.717 0.689 0
10:00 PM 0.661 0.643 0
11:00 PM 0.816 0.805 0
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Table 6.13: Root mean cross-validation error (kWh) model comparison: 9200108

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9200108 | 12:00 AM 1.489 1.469 0
1:00 AM 1.618 1.577 0
2:00 AM 1.583 1.543 0
3:00 AM 1.608 1.556 0
4:00 AM 1.489 1.435 0
5:00 AM 1.295 1.250 0
6:00 AM 1.221 1.185 0
7:00 AM 721.325 717.775 0
8:00 AM 1.408 1.359 0
9:00 AM 1.587 1.550 0
10:00 AM 1.342 1.299 0
11:00 AM 1.214 1.198 0
12:00 PM 1.178 1.175 0
1:00 PM 1.286 1.286 0
2:00 PM 1.343 1.343 0
3:00 PM 1.424 1.407 0
4:00 PM 1.430 1.394 0
5:00 PM 1.422 1.391 0
6:00 PM 1.570 1.554 0
7:00 PM 1.454 1.420 0
8:00 PM 1.592 1.582 0
9:00 PM 1.501 1.475 0
10:00 PM 1.437 1.407 0
11:00 PM 1.335 1.310 0
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Table 6.14: Root mean cross-validation error (kWh) model comparison: 9200155

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9200155 | 12:00 AM 0.932 0911 0
1:00 AM 0.969 0.729 0
2:00 AM 0.976 0.764 0
3:00 AM 0.993 0.837 0
4:00 AM 1.090 0.988 0
5:00 AM 1.046 0.937 0
6:00 AM 0.660 0.649 0
7:00 AM 0.796 0.800 1
8:00 AM 0.998 1.002 1
9:00 AM 0.917 0911 0
10:00 AM 0.709 0.717 1
11:00 AM 0.603 0.613 1
12:00 PM 0.731 0.714 0
1:00 PM 0.747 0.744 0
2:00 PM 0.615 0.630 1
3:00 PM 0.625 0.640 1
4:00 PM 0.622 0.629 1
5:00 PM 0.630 0.667 1
6:00 PM 0.720 0.718 0
7:00 PM 0.998 0.994 0
8:00 PM 1.017 1.015 0
9:00 PM 1.062 1.051 0
10:00 PM 0.871 0.869 0
11:00 PM 0.459 0.508 1
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Table 6.15: Root mean cross-validation error (kWh) model comparison: 9200161

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9200161 12:00 AM 0.316 0.336 1
1:00 AM 0.325 0.350 1
2:00 AM 0.337 0.359 1
3:00 AM 0.330 0.359 1
4:00 AM 0.283 0.316 1
5:00 AM 0.289 0.315 1
6:00 AM 0.411 0.444 1
7:00 AM 1.189 1.190 1
8:00 AM 1.505 1.497 0
9:00 AM 1.635 1.634 0
10:00 AM 1.598 1.610 1
11:00 AM 1.478 1.483 1
12:00 PM 1.447 1.448 1
1:00 PM 1.498 1.493 0
2:00 PM 1.446 1.424 0
3:00 PM 1.461 1.448 0
4:00 PM 1.309 1.292 0
5:00 PM 0.377 0.445 1
6:00 PM 0.303 0.325 1
7:00 PM 0.260 0.286 1
8:00 PM 0.321 0.348 1
9:00 PM 0.252 0.296 1
10:00 PM 0.246 0.287 1
11:00 PM 0.264 0.308 1
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Table 6.16: Root mean cross-validation error (kWh) model comparison: 9200800

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9200800 | 12:00 AM 0.743 0.647 0
1:00 AM 0.674 0.612 0
2:00 AM 0.721 0.620 0
3:00 AM 0.672 0.593 0
4:00 AM 0.590 0.594 1
5:00 AM 0.632 0.609 0
6:00 AM 0.799 0.786 0
7:00 AM 1.010 0.968 0
8:00 AM 1.277 1.117 0
9:00 AM 1.481 1.363 0
10:00 AM 1.661 1.539 0
11:00 AM 1.715 1.696 0
12:00 PM 1.809 1.625 0
1:00 PM 1.749 1.534 0
2:00 PM 2.004 1.476 0
3:00 PM 1.997 1.422 0
4:00 PM 1.822 1.382 0
5:00 PM 1.682 1.312 0
6:00 PM 1.623 1.256 0
7:00 PM 1.490 1.169 0
8:00 PM 1.509 1.079 0
9:00 PM 1.306 1.032 0
10:00 PM 0919 0.867 0
11:00 PM 0.764 0.759 0
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Table 6.17: Root mean cross-validation error (kWh) model comparison: 9201610

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9201610 | 12:00 AM 1.966 1.715 0
1:00 AM 1.901 1.675 0
2:00 AM 1.929 1.659 0
3:00 AM 1.911 1.655 0
4:00 AM 1.954 1.665 0
5:00 AM 1.893 1.611 0
6:00 AM 1.786 1.590 0
7:00 AM 1.670 1.589 0
8:00 AM 1.755 1.612 0
9:00 AM 1.565 1.475 0
10:00 AM 1.577 1.503 0
11:00 AM 1.650 1.617 0
12:00 PM 1.578 1.522 0
1:00 PM 1.654 1.613 0
2:00 PM 1.718 1.687 0
3:00 PM 1.805 1.765 0
4:00 PM 1.886 1.835 0
5:00 PM 1.777 1.694 0
6:00 PM 1.647 1.532 0
7:00 PM 1.584 1.500 0
8:00 PM 1.546 1.462 0
9:00 PM 1.556 1.490 0
10:00 PM 1.686 1.614 0
11:00 PM 1.744 1.590 0
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Table 6.18: Root mean cross-validation error (kWh) model comparison: 9202469

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9202469 | 12:00 AM 1.158 1.145 0
1:00 AM 1.051 1.011 0
2:00 AM 0.938 0.895 0
3:00 AM 0.897 0.857 0
4:00 AM 0.928 0.897 0
5:00 AM 0.963 0.863 0
6:00 AM 0.760 0.776 1
7:00 AM 1.168 1.118 0
8:00 AM 0.760 0.752 0
9:00 AM 0.709 0.726 1
10:00 AM 0.733 0.744 1
11:00 AM 0.716 0.721 1
12:00 PM 0.837 0.844 1
1:00 PM 0.755 0.763 1
2:00 PM 0.799 0.791 0
3:00 PM 0.793 0.772 0
4:00 PM 0.742 0.705 0
5:00 PM 0.960 0.939 0
6:00 PM 0.740 0.724 0
7:00 PM 0.923 0.906 0
8:00 PM 1.023 1.010 0
9:00 PM 1.157 1.138 0
10:00 PM 1.216 1.179 0
11:00 PM 1.115 1.121 1
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Table 6.19: Root mean cross-validation error (kWh) model comparison: 9202473

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator

9202473 | 12:00 AM 1.745 1.695 0
1:00 AM 1.542 1.482 0
2:00 AM 1.354 1.308 0
3:00 AM 1.137 1.084 0
4:00 AM 1.151 1.111 0
5:00 AM 1.063 0.995 0
6:00 AM 0.855 0.852 0
7:00 AM 1.229 1.201 0
8:00 AM 1.301 1.269 0
9:00 AM 1.479 1.440 0
10:00 AM 1.647 1.624 0
11:00 AM 1.546 1.553 1
12:00 PM 1.728 1.697 0
1:00 PM 1.916 1.867 0
2:00 PM 1.930 1.879 0
3:00 PM 1.868 1.849 0
4:00 PM 1.967 1.918 0
5:00 PM 1.819 1.773 0
6:00 PM 1.981 1.931 0
7:00 PM 1.866 1.849 0
8:00 PM 1.887 1.878 0
9:00 PM 2.059 2.046 0
10:00 PM 2.113 2.080 0
11:00 PM 1.968 1.936 0
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Table 6.20: Root mean cross-validation error (kWh) model comparison: 9202475

Location ID Hour Autoreg RMCVE | LOESS RMCVE | Model Indicator
9202475 | 12:00 AM 1.315 1.264 0
1:00 AM 1.267 1.218 0
2:00 AM 1.323 1.203 0
3:00 AM 1.396 1.164 0
4:00 AM 1.484 1.234 0
5:00 AM 1.413 1.185 0
6:00 AM 1.131 1.096 0
7:00 AM 1.108 1.091 0
8:00 AM 1.150 1.068 0
9:00 AM 1.069 1.030 0
10:00 AM 1.139 1.119 0
11:00 AM 1.215 1.186 0
12:00 PM 1.097 1.061 0
1:00 PM 1.134 1.093 0
2:00 PM 1.097 1.053 0
3:00 PM 1.087 1.042 0
4:00 PM 1.027 0.995 0
5:00 PM 1.060 1.032 0
6:00 PM 1.357 1.305 0
7:00 PM 1.356 1.304 0
8:00 PM 1.171 1.144 0
9:00 PM 1.107 1.045 0
10:00 PM 1.113 1.063 0
11:00 PM 1.125 0.983 0
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