
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

Spring 2016

In the Face of Anticipation: Decision Making under
Visible Uncertainty as Present in the Safest-with-
Sight Problem
Bryan A. Knowles
Western Kentucky University, bryan.knowles951@topper.wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Computer Sciences Commons, and the Operations Research, Systems Engineering
and Industrial Engineering Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Knowles, Bryan A., "In the Face of Anticipation: Decision Making under Visible Uncertainty as Present in the Safest-with-Sight
Problem" (2016). Masters Theses & Specialist Projects. Paper 1565.
http://digitalcommons.wku.edu/theses/1565

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wku.edu%2Ftheses%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.wku.edu%2Ftheses%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.wku.edu%2Ftheses%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages

IN THE FACE OF ANTICIPATION:
DECISION MAKING UNDER VISIBLE UNCERTAINTY

AS PRESENT IN
THE SAFEST-WITH-SIGHT PROBLEM

A Thesis
Presented to

The Faculty of the Computer Science Department
Western Kentucky University

Bowling Green, Kentucky

In Partial Fullfillment
Of the Requirements for the Degree

Master of Science

By
Bryan A. Knowles

May 2016

Contents

1 Introduction 1
1.1 A Clear Road Lies Ahead . 3
1.2 Bridges, and How to Cross Them . 4
1.3 A Man Named Dijkstra . 6
1.4 A Free Tour of the Multiverse . 8
1.5 Planning Ahead . 11
1.6 Horizons . 14
1.7 Dissolving Uncertainty . 15

2 Foundations 19
2.1 Graph Theory . 20
2.2 Probability Theory . 24
2.3 Avoiding Digital Monsters . 27
2.4 Asking the Right Questions . 30
2.5 Dynamic Programming . 34

3 Analysis 38
3.1 As Easy As Possible . 38
3.2 Like the Opposite of Easy . 42
3.3 Difficulty is a Fine Line . 45
3.4 Slight Adjustments . 47
3.5 Minor Improvements . 48
3.6 Planning for the Future . 50

4 Solution 52
4.1 Encoding . 54
4.2 Expected Maximum . 56
4.3 Complexity Analysis . 59

5 Approximation 62
5.1 Our Limits . 63
5.2 Ignorance is Bliss . 65
5.3 Mr. President, . 67
5.4 Gearing Up . 70
5.5 And Ready to Go . 72

iii

6 Survey 75
6.1 Leeland on Case Based Reasoning . 75
6.2 Beneroya on Convolution Integrals 77
6.3 Dreyfus on Dynamic Programming 78
6.4 Bertsekas on Stochastic Modeling . 81
6.5 Aboudolas on Rolling Horizon . 85
6.6 Carey on Network Performance . 86
6.7 Nickerson on Decision Modeling . 87
6.8 Almost There . 88

7 Conclusion 89

A Proofs 95

B Code Used 100

iv

IN THE FACE OF ANTICIPATION:
DECISION MAKING UNDER VISIBLE UNCERTAINTY

AS PRESENT IN
THE SAFEST-WITH-SIGHT PROBLEM

Bryan A. Knowles May 2016 118 Pages

Directed by: Mustafa Atici, James Gary, Qi Li

Department of Computer Science Western Kentucky University

Pathfinding, as a process of selecting a fixed route, has long been studied in

Computer Science and Mathematics. Decision making, as a similar, but intrinsically

different, process of determining a control policy, is much less studied. Here, I propose

a problem that appears to be of the first class, which would suggest that it is easily

solvable with a modern machine, but that would be too easy, it turns out. By allowing

a pathfinding to anticipate and respond to information, without setting restrictions

on the “structure” of this anticipation, selecting the “best step” appears to be an

intractable problem.

After introducing the necessary foundations and stepping through the strangeness

of “safest-with-sight,” I attempt to develop an method of approximating the success

rate associated with each potential decision; the results suggest something fundamen-

tal about decision making itself, that information that is collected at a moment that

it is not immediately “consumable”, i.e. non-incident, is not as necessary to anticipate

than the contrary, i.e. incident information.

This is significant because (i) it speaks about when the information should be

anticipated, a moment in decision-making long before the information is actually

collected, and (ii) whenever the model is restricted to only incident anticipation the

problem again becomes tractable. When we only anticipate what is most important,

solutions become easy to compute, but attempting to anticipate any more than that

and solutions may become impossible to find on any realistic machine.

v

Chapter 1

Introduction

The Unknown is to be discovered. The Unknown excites us. Imagine–the stands are

full, thousands of fans, their foam fingers in the air as they cheer their team on. No

one, save for Lady Luck, knows who will win the game. And when the final score

is displayed high up on the board, a series of lit and unlit lightbulbs, some broken,

but the message still clear, the winning team will attribute their victory to skill, hard

work, and dedication. The losers will curse their luck. They will blame the angle of

the Sun or maybe haze the junior players for not following to the key the pre-game

rituals.

In the audience, the statisticians watching view the game with rigor. They model

the outcome as a result of a random variable, a number selected from a basket follow-

ing the well-defined rules of a probability distribution, a mathematical function that

assigns a likelihood to each possible outcome. Likewise, the dieticians and biologists

ponder the meals the team may have had for breakfasts, the dinners, and exercise reg-

iments consumed in preparation for the big day. They hypothesize about the effects

of carb and protein intake on the players’ energy reserves and mental alertness.

The Unknown tempts us in this area of game-playing because we know, by some

specific time in the future, that we will come to learn the outcome, to see what The

1

Unknown has in store for us. The contest can only last for so long–even in the event

of multiple overtimes–, after which the victor will be certain. It will then be clear. It

will then be known.

But The Unknown can also exhaust us. What if the “game” is one that may never

end, when the answer is one that may never come? Think of the astronomers who

dedicate their lives to counting the innumerable stars. No one knows when another

planet will be discovered, or even who will do the discovering or how they will do

it. Perhaps it will be through the development of a new class of space telescope.

Perhaps it will be deduced that a new planet exists past our visible horizon by how

its gravitational pull is affecting the smaller heavenly bodies that we can see.

Despite these uncertainties, the world of science dedicates its life to braving such

frontiers. Perhaps it is this relentless drive for discovery that lends itself to the

storytelling archetypes of the eureka! moment and the mad scientist. Scientists have

bad hair: there is no time to waste on such trivial matters and they are always running

their fingers along their scalp as they ponder depths of The Unknown. Scientists drink

coffee from beakers: they have so surrounded themselves in their studies that the line

is blurred between home life and work. Scientists are benevolent: they seek only

to change the lives of their fellow humans for the better. Separately, we have evil

scientists, in which case they instead seek the power to bend the natural world to

their will.

These are, of course, overgeneralizations, Hollywood movie stereotypes. If the

tropes are accurate, then I’ve never even met a scientist. Who’ve I’ve met instead

are curious people, people comfortable, or at least complacent with, the academic

funding model. I’ve met people who want to solve and to teach.

It is only when we seek absolutes about the Universe, certainties about our fates,

or trivialties about intractable problems, incessantly, that we fall into the scholarly

madness that popular culture holds to be true. I have untaken such a task. The

2

difficulty was accidental, much like how carving through of Hoosac Mountain was

illusory [8]. Geologists predicted that the multi-million dollar project would be com-

plete much sooner, much more easily, and for much less cost than The Unknown

would have it be. I was intruigued by a subject far less grand than mountain carving

though. I just had a dumb question about sidewalks.

1.1 A Clear Road Lies Ahead

In the summer of 2012 I was mid-way through my courses at Western Kentucky

University for a Bachelors in Computer Science. Having completed the manditory

two years’ dormatory residency, I moved into a house, accompanied by four roommates

I had known since high school. The house was close to campus, only 1.2 miles south

from my old dorm. I borrowed a bike from my then-sweetheart and started my days

crossing through campus on my way to my job as a web developer. My legs soon felt

what old men talk about when they use the cliche, “uphill both ways.”

Summer, that summer in particular, was the season of reconstruction at the uni-

versity. The central building, Downing University Center, was being renovated, piece-

wise and in whole. It was to be renamed two years later as Downing Student Union.

Repair work to the schools infrastructure–power, water, waste–was also slated to be

carried out at the time. But any reconfiguration, in any system, must be done at

the temporary cost of some resource. For example, cleaning the house may require

waste to be accumulated in one area, consuming that once free space, until it can be

removed from the home. Like sweeping. Being the only clean one of five roommates

soon makes apparent any restrictions of already clean space to further clean with.

Sidewalks were the obvious such temporary resource at WKU. With pedestrian

traffic reduced to negligible numbers, utility workers were free to lift out sidewalks

to access the infrastructure lines lying beneath, to park their work vehicles on the

3

sidewalks to keep the roadways clear, and to remove sidewalks altogether, curving the

pedestrian traffic differently to better suit the buildings being added or torn down.

Change was happening at Western Kentucky University, and I was biking through

it twice a day, uphill both ways, weekdays. Keeping to the sidewalks kept the tires

spinning with the least physical exersion, but the sidewalks that were “up” and

“down” changed each day.

The maintainence crews moved quickly. I knew the particulars of WKU’s pathways

by heart, and yet I failed, several days in a row, to find a path from one side to the

other, a path that did not require me to go offroad, in the road, or turn my vehicle

around.

I asked myself, “What is the path that maximizes my chances of cutting through

campus, on bike, without leaving the sidewalks or backtracking?” The climb up–the

carving through–my mountain of difficulty began, innocently, then. This problem

plagued me incessantly, so it follows that in a few years I too would certainly be a

mad scientist.

1.2 Bridges, and How to Cross Them

It turns out that finding the safest route through campus is pretty damn trivial.

Imagine, for example, that I’ve spread throughout campus a bucket’s worth of

special coins. Each time you come across such a coin, I challenge you to a coin

tossing game. If you flip heads, you may pass. But if you flip tails, I break your

knees, like in a classic mafia film with a baseball bat, duct tape, and two chairs. It

only makes sense that you should take the path with the fewest coins; I’ll even let

you know in advance exactly where each coin is, just to make things easier for you.

And your knees.

Graph theory is already well-equipped to handle this problem. This is the study

4

of points and the lines that connect them. The origins of this subject area is usually

attributed to the Konigsberg Bridge problem, which asks if there is a way to cross

each of the city’s bridges–those of Konigsberg, a German city–exactly once, without

having to swim through the river or take to flight, to put it in networking terms.

The regions of the city could be taken as points and the bridges as their inconnecting

lines. Next, consider the degree of each point (region). This is the number of lines

coming into or out of each point. If there is one, three, or more points (but not two)

with an odd degree, then a path that crosses each bridge exactly once is impossible.

The proof is easy. To enter a region of the city, we must cross a bridge, removing

it from our list of bridges we can, and must, still cross. To then leave that region,

we again cross a bridge and cross it off our list. In this way, we can remove exactly

two bridges from the list. Passing through the region again marks off another two

bridges. And again, another two. If we pass through the region k times, 2k bridges

are eliminated.

So what if there is a region with 2k+1 bridges connecting to it? If we pass through

it k times, we’ll still have exactly one bridge left. If we try to pass through it again,

we’ll become stuck in that region. There will be no bridges left for us to leave by.

But there is a special case: if there are exactly two points with odd degree, we

might be able to leave one and enter the other, resolving the odd-difficulty, but one,

three, four, or seventeen points with odd degree and we’ve become trapped again.

It is this sort of problem that graph theory is most comfortable solving. In the

formal parlance of the theory, we say a graph (city) G is composed of two components,

a set of vertices (regions) V and a set of edges (bridges) E, or more commonly put,

G = (V,E).

If we add extra information to our graph, like distance, the applications quickly

expand, and a famous algorithm for solving the “shortest path” problem, Dijkstra’s

Algorithm, is exactly what we are looking for to solve the “special coin” problem.

5

1.3 A Man Named Dijkstra

First, determine the “distance” of each edge (sidewalk). It’s simplest to just let that

be the number of special coins spead out along that length of sidewalk. Then, apply

Dijkstra’s Algorithm, which seeks to find the shortest path from all points to one

point in particular, the “starting point,” thus minimizing the number of special coins

you must flip.

function Dijkstras(G)

unvisited_vertices = Int[]

distances_to_start = Int[]

previous_vertex = Int[]

for i in vertices(G)

push!(unvisited_vertices, i)

push!(distances_to_start, Inf)

push!(previous_vertex, Inf)

end

distances_to_start[1] = 0

while length(unvisited_vertices) > 0

i = remove_closest!(unvisited_vertices, distances_to_start)

for j in neighbors(G, i)

alternative_distance =

distances_to_start[i] +

direct_distance_between(G, i, j)

if alternative_distance < distances_to_start[j]

distances_to_start[j] = alternative_distance

previous_vertex[j] = i

end

end

end

end

The above code is in the Julia programming language. This language is chosen

because of its balance between expressiveness–for my sake–and its readability–for your

sake. This code shows an example of how we can write out Dijkstra’s Algorithm. In

English, we start with a very bad guess of the overall distances between points and

update it, one step at a time:

1. first we say that the total distance from all points to the starting point is

6

infinity–no number could be worse;

2. next we say that the distance from the starting point to itself is zero–an obvious

statement really;

3. we then “visit” each vertex, one at a time, each time selecting to visit the vertex

closest to the starting point, according to the total distances we have written

down so far;

4. the first vertex to be visited will be the starting point itself, since everything

else is as far away as can be–zero is much, much smaller than infinity;

5. then, for each neighbor of the visited vertex (those connected directly to it) we

ask ourselves the question, “is it better to go from the starting point, through

the visited vertex, then continue on to the neighboring vertex, or is it better to

just keep whatever path we’ve figured out so far for that neighboring vertex?”;

6. if our answer is yes, then we update the information we have stored about what

paths are best to follow;

7. and so on, in this incrementally-improving fashion, we go from distances of

infinite length to paths of shortest distance.

The time it takes for Dijkstra’s Algorithm to find all the shortest paths to the

starting point is, computationally speaking, small. The number of machine operations

it takes for the for section to complete is proportional to the number of the graph’s

vertices, and the same goes for the while section. So, if we have n points to find

paths through, it will take a computer something like 2n steps to find the answer.

Consider, if n is of any concernable magnitude and it takes n! or 2n steps to solve

the problem, regardless of how fast of a computer the NSA has, the Sun will explode

long before it will respond. The human race and the whole of our solar system engulfed

in an unimaginable heat-bomb, and it will be the government’s fault–because they

chose a subpar algorithm. Grimly put, this notion is still at the heart of computer

science. It leads us to search for stars of our own, the efficient algorithms, the ones

7

that require no more than nk steps: the polynomial algorithms.

If I leave this safest route problem as is–a search for a fixed path that minimizes

the number of opportunities I have to break your knees–, then it is said to have a

solution in polynomial time and our work is done.

But I’ll do no such thing. It turns out I can create a problem whose solution

requires that forbidden 2n steps by adding two new rules:

• you can use your eyes to see dangers ahead of you; and

• you can “reroute” yourself, mid-course, around these.

1.4 A Free Tour of the Multiverse

Graph theory is no longer equipped to solve this new problem on its own.

The addition of vision complicates things because not only are there just vertices

and the edges that connect them, but also there’s “lines of sight” that connect points

to the edges. We can “see” edges from vertices through these lines-of-sight. Equiva-

lently, as far as computation is concerned, we could say that vertices provide vision of

other vertices, that edges provide vision of other edges, or that edges provide vision of

vertices; these formulations are strange, hard to imagine, or needlessly complicated.

We could just transform any of these alternatives back into the herein-preferred “ver-

tex vision of edges” definition anyway and keep the language human-readable.

These transformations–in computer science speak, reductions–become apparent

8

when we spend some time viewing the world from different angles. First, imagine the

grid-like roadways of Manhattan as a graph, as points (intersections) connected by

edges (roads). At each intersection, our driver brings her taxi to a stop, turning her

head from left to right, back to the left, and back to the right, gathering information

about the nearby traffic situation. Perhaps her phone will ring and, in a short conver-

sational burst, she will learn from her caller about a wreck further down towards our

destination. In this view, we only receive information about the city while stopped

at an intersection (and we’ll assume that Manhattan is as Manhattan is and we hit

every possible red light). Also, we only learn about the traffic along the roads, not

at the intersections. This Manhattan is just like the “vertex vision of edges” version

of the safety problem.

To reduce this to an “edge vision of vertices” formulation, consider how we chose

to represent the city as a graph: instead of letting vertices represent intersections and

edges represent roads, as is natural, we can let vertices represent roads and edges

represent intersections. To see this new world, imagine a map of Manhattan. Picture

yourself circling a point along each road. This point (vertex) will represent that road

in its entirety. Then, every time that you see that two roads share an intersection,

draw, right on top of the map, a line (edge) connecting the points that represent those

roads.

With some stretching of the imagination, we should be able to see that this “inside-

out” view of Manhattan is possible, even if it is contrived. Computer science, when

speaking about reductions, is not concerned with whether our definitions resemble

the real world anymore, but that it’s possible, in any manner, to translate from the

language of one problem to another and back again. Here, we have just shown that

possibility, so we continue.

To reduce to the “vertex vision of vertices” case, we first examine how two vertices

are already connected, by a shared edge, in “vertex vision of edges.” Instead of

9

drawing two points connected by a single line, we draw the same two points connected

by the same line, but then break that line in two. These two new edge-pieces will be

connected by a new point added to the mix. In this version of the world, there is no

traffic. Instead, there is a police officer standing in the middle of each road, directly

between each pair of neighboring intersections. This police officer is either mad–he

hadn’t had his coffee that morning–, in which case he will not let us pass. Otherwise,

he is happy and lets us on by with a wave and a smile. And, instead of looking left,

then right, then left again to see how traffic is flowing, our driver now looks around at

the police nearby, reading their facial expressions when able, taking us along a route

filled only with smiles or, when that isn’t possible, along a route filled only with smiles

and officers whose backs are turned to us. Since we can’t read them clearly, passing

these officers would regretfully be a gamble.

This police state version of the world is also reducible to “vertex vision of edges”–

all the worries we had regarding the edges, those that were once about traffic or torn

out sidewalks, have been transformed into worries of equal magnitude, those about

which of the city’s “boys in blue” had a worthwhile breakfast.

The final reduction is now much simpler than the others to state, it so happens.

Reduce the preferred “vertex vision of edges” version of the world into that of the

police state version just discussed; then, just as we flipped the world “inside-out” to

derive the “edge vision of vertices” formulation, we flip the police state world inside-

out, leading us directly to a strange, strange “edges vision of vertices” world. An

inside-out, police state world.

As such is computer science. Frequently, it is more efficient to solve a problem by

transforming it to another problem for which an efficient solution is already known.

Apply that solution, then transform the result so it again applies to the original

problem of interest. Along the way, though, we may find ourselves operating in

“uncomfortable dimensions.”

10

Herein, we have chosen to work strictly with a definition of our safe-passage prob-

lem where, upon reaching each intersection, the cab driver is given information about

the city’s roads. This choice is made without loss of generality; we could easily ap-

ply this same language for solving problems where, for example, a “vertex vision of

vertices” representation would be more natural. Consider a computer network. The

machines frequently ping one another, keeping tabs on whether their neighbors–those

they have a direct connection to–are still online. A message, just as the taxi driver

in our previous examples, travels from node to node along those connections, but

instead of considering whether the connections are still intact, it checks whether the

nearby nodes along its current trajectory are operational.

We hope that the applications of a solution to our sidewalk problem are becom-

ing more apparent for the reader. The original inspiration was, admittedly, silly in

nature; however, translating real problems into the “language of sidewalks” can lead

to an improved safety in several domains. To name a few, consider networking, GPS

navigation, operations research, economics, and autonomous vehicles–which Apple,

Google, and other large companies have been “getting behind” for years now [13].

Fittingly, then, although graph theory will no longer suffice, now with the addition

of vision into the problem, we can reach into “mathematically nearby” domains for

assistance, a task we attend to in the following chapter.

1.5 Planning Ahead

The second addition to the “special coin” version of the problem, that you can change

your mind as you go, does not complicate matters in the same manner that the

previous addition did; no, this changes the class of problem we are facing altogether.

We aren’t searching for a safest-path through campus anymore. The course that

you plot might change frequently–hear, if you’ve ever heard one, a GPS navigator

11

saying that dreaded phrase, “Recalculating,” repeating it at every single intersection

as it is provided incremental knowledge about the city.

We now need a safest-policy, as Niknami put it in his 2014 preprint [15]. We

need a way to determine, quickly if we can, at each step what one next step should be

taken in response to the new information that is expected to be gathered. This policy

captures not just one path–it captures all paths that might be traveled and when they

should be traveled. It captures all of reality itself. It explores all of The Unknown,

searching ahead for us, laying out a clear sequence of events in the language of “if

this, then do that.”

But calculating such a structure is no trivial task. It requires first tackling a

notoriously difficult idea, from statistics to physics, operations research, and computer

science–expected maximum. This is, to put it in terms of a Dungeons and Dragons

example, the average value we can expect to receive if we are taking the best of rolling

several d20s. Obviously, if we roll a single die, our expected maximum will be just

the mean value of the integers 1, 2, . . . , 20, which is 10.5. As we increase the number

of dice, we increase our opportunities for improving this value.

Sidewalks are not dice. Before I decide to head north down one sidewalk instead of

heading east down another, I must first consider how I would behave once I reach my

next step in either case. I know that at each step I will choose the “best” option, the

one that maximizes my probability of successfully reaching my destination. However,

I don’t know what those probabilities are. Once I take either step, I will learn more

information about the status of the campus sidewalks, more about which have been

parked on or torn out or otherwise obstructed. So, I don’t yet know what my future

actions will be–it all depends on what I learn.

Instead consider the expected maximum success of my next step. At each inter-

section, I determine which step I can take next has on average the best follow-up

step. I then take that step, collect whatever new information fate has in store for me,

12

and lather, rinse, repeat. The difficulties of actually doing this, however, of actually

coming up with expected maximums, are icebergs.

Without knowing, right now, what information values I will learn after my next

step, even if I know exactly which edges I will be provided vision of, I am forced

to resort to considering, right now, all possible outcomes and what my response will

be to each. If I will be learning about n edges next step, I have to think about 2n

possibilities–2 for the first edge, which might be “up” or “down,” times 2 for the

second edge, which also might be up or down, times 2 for the third edge, and so on,

leading to n’s exponentiation.

But even if I try to make the problem easier by saying I will only ever learn

about, say, some small number h of edges at each step, so that 2h is of an acceptable

magnitude, I encounter another problem when I start to think about the number of

possible routes I might take.

In the event that each path I can take to each intersection provides me with a

different set of information–a worst possible scenario, but in the art of designing

algorithms for solving problems, these sort of things must still be considered–, I am

forced to work out the “what ifs” of each possible path. In a strange, strange world

where every single intersection connects to every other intersection after it, there

are 2v−2 possible paths, each beginning at the starting point and terminating at the

destination, where v is the number of intersections. For a campus of limitless size,

the significance of the −2 in the exponent falls away and we again must deal with

computing, altogether, something akin to 2h × 2n steps.

Our villian has reared his ugly head, and his name is 2× 2×

13

1.6 Horizons

Operations research, to my knowledge at least, does not typically concern itself with

problems that are directly about pathfinding. It does, however, possess the language

for developing mathematically-grounded policies.

Each day, week, month, quarter, or so on–in general, each timestep–, a manager is

expected to make a decision, say, to determine how many of a particular item to order

for the next timestep. Afterwards, fate takes its turn: weather and world events are

moved into play and buyers come and go. Then, at the next timestep, the manager

makes a similar decision, deciding how much of that item to have in stock for the

next round, and the “game” continues.

It is common to purposely think of this as a game, a game played between the

manager, who makes a move by setting the value of some variable, u, and Nature, a

cruel mistress who is only out to hurt the company’s profits, or Lady Luck, who plays

totally unpredictably, in either case responding by setting the value of some other

variable, x.

The goal of the manager in this game is to maximize the profits of the company,

an “objective function,” J , which observes the moves made by each player at each

step and returns with a calculation of how much cold hard cash would be made.

Generally, there are two primary versions of this view of the world: the infinite

horizon problem, where the two play their game on into forever; and the finite horizon

problem, where upon some agreed date the game will end and the players will cash in

their coins. Campus is, in a sense, much more like the latter problem–there is a limit

to how long I can wonder around if I’m not allowed to visit the same place twice.

But there is a third, much less researched view, one that is significantly more

readily related to our safest-policy problem: the rolling horizon [16] problem. In this,

the decision maker is given, by some mechanism, advance knowledge of the next few

moves that Lady Luck will make; the game may continue indefinitely, but the forecast

14

information made available is always finite.

In the four years that I’ve so far spent on this problem, I’ve yet to discover a model

of any problem closer to this one than rolling horizon. But even it is incomplete for

what we need: the number of timesteps in rolling horizon is always either fixed or

infinite, but the number of steps I will make to cross campus will certainly vary,

contingent on the information I will gather as I go. I could “pad” the number of

steps I take by saying that, upon reaching the destination, I will walk in circles for

as many steps as necessary to ensure that all possible paths through campus are of

equal length. This, however, is awkward, contrived, not lending itself to any useful

interpretation of the problem.

What it does make easier, though, is imagining a larger, more encompassing, albeit

more theoretical problem, one that both our safest-policy and the various horizon

problems are reducible to. And, fittingly, the equation that governs it is pretty.

1.7 Dissolving Uncertainty

A common image in storytelling, from the Illiad to Return of the King, is that of the

prophet. The hero does not know what he will learn when he reaches the oracle’s door

and gained her favor, but he knows what he will ask her about. “What weakens my

enemies,” he says, just as a child might ask the Magic 8-Ball, “Why doesn’t mommy

love daddy anymore?” As we, the readers, travel alongside the protagonist on his

journey up the mountain to seek answers, we, just as he, start to anticipate what we

will learn. It is that anticipation that keeps us on our toes, that keeps us reading the

murder-mystery until the very last word, that keeps us invested. This anticipation,

too, is the common thread conneting safest-path and finite horizon.

Before I begin my trek across campus or the manager makes her first managerial

decision, I do not know the values that the future holds. But I am not lost. Math-

15

ematically, we can say that this information–everything there is to know about the

future–is held within a variable X. This X is not one value, but a set of values, each

random, chosen by Lady Luck according to some rules that only she truly knows and

that we may approximate with our models, our probability distributions, though we

will fail to capture every nuance of the problem.

If we were to ask the oracle at the onset of our journey what the future holds, she

may tell us all there is to know about X, divulging that X, the perfectly unknown,

is truly x, the perfectly known. In this case, we can live our lives according to the

following equations:

Li(x) = max
j

[φij(x) + Lj(x)]

Ld(x) = 0

Here, L will tell us how “good” our lives will be if we always make the best choices.

At some moment in time or place on the campus graph i–the distinction between

space and time does not matter here–, we choose, from all of options available to

us, a choice j. We move towards j, whatever it represents. Perhaps j is a future

life for the manager wherein she made some choice, chose some particular number

of plastic forks to reorder for her restaurant chain; or perhaps j is chosen from the

paths leading north, east, or south, those available to me during my campus-sidewalk-

traversal. Whatever j represents, it is the choice that maximizes the “goodness” of

the next step. A function φij measures how good of a life will be lead if j was chosen

from point i and the oracle had told us x.

And so on, for each step, we choose from all available next steps and collect

whatever is due according to φij. We only cease our decision making upon death,

reaching the destination on the other side of campus, represented by Ld. We set

16

this to zero: life is thus over, a life measured only by the decisions made during it.

Mathematically speaking.

Several particulars are hidden away by the use of φ, which can only be determined

by experimentation or reasoning, the goal of the researcher being to select a definition

that makes this view of optimization one that suitably represents the problem they

face.

But do not dwell on φ long. It is general and magical. Dwell, instead, on the

oracle’s willingness to provide us with a clear picture of all The Unknown, all at once,

for no cost, up front. This will not do, for it does not resemble the real nature of

things.

So imagine that at each step, the oracle provides us with new, but partial infor-

mation. And, just as I know what sidewalks I will see as I round the corner and the

manager knows what questions were asked on the company’s latest consumer survey,

we know what variables will be prophesized–although we know not, yet, their values.

In a 1991 paper, Sethi posed a similar problem, rolling horizon [16]. That framework

allows the manager to purchase information. Rolling horizon also found its way into

Dimitriadis’s work, in 1997, and Godfrey’s, later in 2002 [6, 9]. These works were,

respectively, concerned with factory scheduling and fleet deployments. Our problem

is based on the notion that information is collected freely, yet strictly in accordance

with what information could be naturaly gathered via lines-of-sight. If you can’t see

it, you can’t see it.

Our variable X is this free, but limited information, and it was important earlier

that X be a collection of values; this allows us to say X(i), the subset of that collection

that we know will be divulged to us upon reaching i. With this particularity in hand,

we can approach a modified expression of L.

Li(X) = EX(i)
max
j

[φij(X) + Lj(X)]

17

The only addition was that of the E symbol, an operator that stands for “expected

value,” the average, the mean, of that which sits to its right. Under it has been

placed a subscript X(i); by this we can say that we are averaging not over all of X,

the entire future, but over the limited forecast given us by the seer. The other change

was a formality, a substitution of the perfect information, x, with the incomplete

information, X.

The power, then, of these L-equations lies in this partitioning of information.

What structure is hidden away within φ? does every φij require the whole X to make

an accurate measure, or is there information about X that is simply irrelevant to

some φijs? Or is the power within X(i)? are the forecasts of the future scattered

throughout all of X, or are they localized, given in clusters somehow “close” to i?

Answering these questions are not easy, by any merit. Any small change to how

we view φ or X(i) may change the methods of analysis entirely–much in the same

vein as being allowed to reroute mid-journey changed our problem’s class wholely.

Nor can I make any prediction to what those answers would provide to humanity, to

science, to philosophy, perhaps even art and design itself.

Herbert Simon, a notable economist who founded the idea of satificing to replace

brute optimization and show that solving incomputable problems may still be approx-

imatable if we are willing to except “good enough” answers, once explained everything

from artistic decisions to chessplaying as a pathfinding problem through a messy, un-

clear space of possibilities [18]. Paradigm shifts, for any discipline, are unforeseeable

in this way–satisficing feels natural, obvious, only once it has been presented to us,

but discovering it for ourselves may very well be a messy, unclear journey.

But our first step–no, I cannot claim this term, “first,” for mankind has fought

uncertainty long since the time of Plato’s Cave and before. The next step through

this “mountain of difficulty” begins here. It begins at WKU one summer, on my bike,

getting cut off course by a utility vehicle.

18

Chapter 2

Foundations

Our analysis of uncertainty should begin by being formally clear about the subject.

I have set out to solve a problem henceforth named “safest-with-sight,” which I will

later resort to approximating. In this chapter I lay the groundwork of the minimum

mathematics required to begin this solution. I move slowly, considering cases of the

problem of increasing difficulty. To that end, this and the following chapter will be

exceedingly more technical than the others. I make my best attempt to keep the

language general without sacrificing rigor.

The logic ahead will expect the reader to understand themes of graph theory, mea-

sure theoretic probability theory, and dynamic programing. The first of these concerns

itself primarily with the organized connections between entites and is commonly used

to describe problems of routing and sequential decision-making. The second deals

with the technical details of probabilities. Although the name contains the word

“theory” twice, it can be naturally summarized by a familiar structure–a spreadsheet,

one of enormous size yet built out of regular patterns–, so this topic should still be

accessible to a non-mathematical reader. The last provides language for approaching

problems that can be solved by solving smaller “subproblems,” each solution being

“cached” to reduce the total amount of work needed. The hope is that each step will

19

boil down, down towards trivial, immediately solvable “base cases.”

It is with these three together that we shall work towards the definition of a

function P that describes, through probabilities, the behavior of an ideal pathfinder

tasked with a simulated traversal of campus sidewalks. If we can say how the ideal

pathfinder would act, why not adopt its policies for ourselves?

2.1 Graph Theory

A graph is typically written G = (V,E), a tuple containing two components. The

first, V , is a finite set of “vertex identifiers;” if i is in V , then i is the name for one

of the points on our graph. Further, each point has a globally unique identifier; if

there is a “Springfield,” there is only one “Springfield,” whereas “Springfield, KY”

and “Springfield, CA” would represent entirely different point, as expected.

The second component, E, is a finite set of edges; if ij is in E, then there is some

relationship, defined by the problem, between i and j. At this point, an important

decision must be made regarding what class of graph we are using: is it directed or

undirected? In the first of these, if there is a connection from i to j, then there is not

guaranteed to be a similar connection from j back to i. An example of this would be

the “parent of” connection–obviously, this relationship does not go both ways equally.

In the latter class, ij’s inclusion in E does imply that ji is also there. For example,

“is a friend of” is a mutual relationship as Facebook would have it.

If we choose the first of the two, to have directed edges, then another distinction

must be made: is the graph cyclic or acyclic? In first case, there is at least one

point that we can visit, depart from, and eventually find our way back to, each step

moving only in accordance with the direction of the edges provided. Since a “cycle”

exists, all points within that cycle may bevisited an indefinite number of times. Just

keep driving in circles. Roadways, for example, are necessarily a cyclic graph. In the

20

acyclic case, no such cycle exists.

Regardless of whether the directed graph is cyclic, a set of terms becomes necessary

to speak candidly about extended relationships between vertices. First, vertex i is an

ancestor of j and j is a descendant of i if there is a path, following directed edges,

from i to j. Second, vertices k and h are relatives of one another if they have any

ancestor in common. It is very possible for k and h to be relatives without either being

an ancestor of the other; for example, consider the relationships connecting distant

cousins in family trees. And third, vertices m and n are disconnected if neither is an

ancestor of the other.

Next, a restriction may be placed on the graph making it simple, meaning that

(i) at most one edge may connect each pair of vertices and (ii) no vertex connects

directly to itself. Depending on how we encode a map of the country as a graph we

could require either case: a map showing how many highways connect each pair of

cities might require a nonsimple graph, whereas a map showing the connections at

the intersection-to-intersection level does away with this need.

Finally, a frequent practice in graph theory applications, we may associate extra

information with each edge and/or vertex, such as distance, cost, weight, etc. Usually

these are defined through the introduction of an accompanying structure. For example

Dij might represent the distance between vertices i and j along the edge ij.

Once a suitable graph has been constructed, we can carry out common and easy-

to-compute operations upon it. For example, the breadth-first-search from a starting

vertex s explores all vertices that may be reached, by any path, if we were to begin

at s and move forward, checking each point only once. In the undirected case, this

21

operation would be useful for detecting whether the graph is disconnected–if it is

broken cleanly into two or more “subgraphs,” none having a connection outside of

itself, then it is disconnected. For the directed case, a breadth-first-search can be

used to determine which vertices are reachable from s–in some sense, “after” it.

A breath-first-search can also be used to construct a directed acyclic graph from

an undirected one; of particular use for our problem, this will construct the graph we

effectively restrict ourselves to when we follow the “cross no more than once” rule.

function make_directed(G, s)

H = blank_graph()

need_to_visit = Int[]

already_considered = Int[]

enqueue!(need_to_visit, s)

push!(already_considered, s)

while length(need_to_visit) > 0

i = dequeue!(need_to_visit)

add_vertex!(H, i)

for j in neighbors(G, i)

add_edge!(H, i, j)

if j not in already_considered

enqueue!(need_to_visit, j)

push!(already_considered, j)

end

end

end

end

This algorithm proceeds as the conventional breadth-first-search, except it adds

visited vertices and crossed edges as they are discovered to a new, initially blank,

graph H. It functions by keeping track of all vertices that still need to be “visited”

and those that have already been “considered” for visitation. Next, it populates these

lists by inserting s, our starting point, into them. Finally, until it has no more points

that need to be visited, it removes a point-to-be-visited from our list, informs H that

it has a vertex by that name, record each edge incident to that vertex, and adds all

unconsidered neighbors of that vertex to the queue of vertices to be visited during

22

future iterations. An important distinction must be made in these instructions to

ensure the search is breadth-first: the vertex removed from the need to visit list

must be the vertex that has “waited the longest.” In other words, this list is a “first

in, first out” structure, no different than standing in line to buy some chop sticks.

This algorithm will properly encode a map of campus as a directed acyclic graph,

which captures the “cross no more than once” rule “for free.” However, solving

safest-with-sight still requires that a third component be considered.

So now, G = (V,E,W), where V and E are as before and W stores the “lines

of sight” of each vertex; if ijk is in W , then vertex i provides vision of edge jk; it

is possible for i and j to be the same vertex, meaning that i can see the path to

its immediate neighbor, k. It has been mentioned already that our graph is directed

in safest-with-sight, as well as simple and acyclic, so integer identifiers (names like

1, 2, . . .) may be given to the vertices; if ij is in E, then i < j; and if ijk is in W , then

i ≤ j < k. We also must say we have been given or somehow estimated the additional

information β about the problem. This structure encodes the probabilities of each

edge’s “failure,” which is any event that prevents the pathfinder from successfully

crossing that edge; in this regard, we say that βij is the “risk” of edge ij.

I have chosen this definition of G and related graph theory concepts minimally,

without sacrificing rigor or generality, while maintaining a structure that permits

the use of language close to safest-with-sight’s inspiration–campus sidewalks. But, it

should come of no surprise that the sudden introduction of probabilities (β) leads to

the requirement of additional mathematical tools.

23

2.2 Probability Theory

Much of the probability work that we will be doing involves the concept of a measure,

which is a function that simply tells us how large some input is. It is a function µ

that assigns (i) a value of zero to ∅, the “empty set,” (ii) a value of at least zero to

everything else, and (iii) assigns the value of µ(A)+µ(B)−µ(A∩B) to the expression

µ(A ∪ B); it is much to this latter note that µ is called a measure, for we can say

intuitively, that the measure of A union B must be the same as the measure of A,

plus the measure of B, minus anything they might have in common. This “cancels

out” anything that might have been counted twice.

For example, if µ is the “people counting” measure, it will count the number of

people in the world that match its input. So, say T is the set of people tall enough to

ride the scariest ride at the nearest amusement park to my thesis advisor, wherever

he is at this very moment. Next, say R is the set of people wearing the color red.

• µ(T) is the number of tall people;

• µ(R) is the number of people wearing red;

• µ(T ∩R) is the number of people both tall and wearing red; and

• µ(T ∪R) is the number of people either tall, wearing red, or both.

Calculating this last value, if we knew the first three, is cake: the number of tall-

or-red people is the number of tall people, plus the number of red people, but don’t

forget to subtract out the tall-and-red people, as we would otherwise count the guy

leading the line and wrapped-up in a red raincoat twice.

When speaking of probability, it is natural to do so in terms of measures. Con-

vention has it that, instead of using µ to notate our measure, we should prefer the

letter P . Additionally, to compliment the “empty” value ∅, we have the “universe”

or “anything” value Ω, for which we say P (Ω) is a hundred percent. Regardless of

what happens, something in the universe will happen.

24

So, with P , instead of counting the number of people in the world, it counts

the percent of people in the world. Returning to our tall-red example, P (T), the

probability that a tall person is randomly abducted by aliens, could be written as

µ(T)/µ(Ω)–the number of tall people divided by the number of all people, a simple

fraction. Measure theoretic probability theory is, in this way, little more than count-

ing. However, for the sake of expressiveness, probability theory comes with additional

symbols, many with multiple equivalent interpretations.

First, it is common practice to abbreviate P (Ω− A), the probability of anything

but A occuring, as P (¬A) or P (Ac) or 1 − P (A) or P (Ā), read “the probability of

not A” or “A’s compliment.”

More notably, it is also common to abbreviate P (A ∩ B) as P (A,B), read, “the

probability of both A and B.” Sometimes, though, the number of events is easier to

enumerate, such as in P (X1, X2, . . . , Xn). In this case, for compression, we may write

it P ({Xi}ni=1). Through this use of {ab}db=c, we’d mean that one could “join together”

with commas all the values ac, ac+1, and so on, up to, including, ad. In the context

of P , we’d mean “the probability of every single ab happening.”

Next, just as terminology exists to distinguish the extended relationships between

vertices in directed graphs, probability theorists have a language their own used to

maintain rigor. If A and B are mutually exclusive, then the event that A occurs

nullifies any probability of B occuring, and vice versa. For example, if I break your

knees tonight, then any chance of your running that race tomorrow is immediately

thrown out. If A and B are joint, then knowing whether A is true has an effect

on the probability of B. For example, due to the uneven distribution of wealth and

education, if the aliens only abduct from Manhattan, then there will be an effect

on the probability that they end up probing a Agriculture student. In constrast, A

and B are said to be disjoint when the two have absolutely no effect on one another;

selecting only people of a particular gender has no effect on the probability that a

25

wealthy person is abducted. Right?

Finally, one of the most important tools in a probability theorist’s belt, the concept

of conditional probability is written in a manner like P (X | Y), read “the conditional

probability of X with respects to Y ,” or, briefer, “the probability of X given Y .” This

expression represents the value we would get if we restrict Ω, our universe, to only

those cases where Y was true. For example, P (R | T) would stand for the percent of

tall people who are also wearing red.

Commonly, conditional probability is substituted with any of the following alter-

native forms.

P (X | Y) =
P (X ∩ Y)

P (Y)

P (X | Y) =
P (X)× P (Y | X)

P (Y)

P (X | Y) =
P (X ∩ Y)∑
i P (Zi ∩ Y)

, Z are mutually exclusive and
⋃
i

Zi = Ω

The first and the simplest is taken from how one might think about “the percent

of tall people who are also wearing red.” This is obviously the fraction of the number

of tall-and-red people over the number of red people in general.

The second is known as Bayes Theorem. It is named after its founder, Thomas

Bayes, which replaces the “tall and red” in the numerator with an equivalent expres-

sion. The replacement stems from the fact that P (X ∩ Y) = P (X)× P (Y | X).

The last interpretation of conditional probability is the most complex, but deriv-

ing it parallels that of Bayes Theorem: instead of replacing the numerator with an

equivalent expansion, we do the same for the demoninator. This expansion is that of

total probability, a theorem that states that the probability of Y happening is equal

to the probability of Y or any other one thing happening; some careful restrictions

26

must be placed on the meaning of “other one thing.” If the “other things” that we

consider are mutually exclusive with one another and, when combined together, con-

tain all possible events within Ω, the “anything” value–that is to say, the universe

has been divided into clean Z “chunks”–, then the probability of Y is the probability

of Y -and-Z1, plus that of Y -and-Z2, and so on.

Each interpretation has its uses: the first is the easiest to state; the second is

simple to transform algebraically; and the last captures closest the computational

difficulties in calculating joint probabilities.

Making sense of these tools, regretfully, can at times feel unintuitive, especially

when speaking abstractly with events like A, B, X, and Y . Therefore, any application

of probability theory requires that the events and outcomes being reasoned about are

clearly defined.

2.3 Avoiding Digital Monsters

Imagine a virtual world. This world is model of campus. The sidewalks in this

simulation are connected in the same way, they have the same risks, and here we are

faced by the same “game rules:”

• at each intersection,

• we can see which sidewalks are obstructed in some way,

• after which we decide which sidewalk to take next,

• restricted in that we can never visit the same sidewalk more than once.

What if we randomly set obstacles throughout the campus in accordance with

the edges’ given probabilities of failure? We could then imagine a virtual version of

the ideal pathfinder–it is a perfect algorithm, one that always suggests the step that

maximizes its chance of reaching its destination on the other side of campus, for what

it knows at the moment and might learn along the way.

27

Let this pathfinder loose upon the virtual world: it would still not always succeed.

There is always the possibility that all entrances to the destination have been cut off,

yet the pathfinder would not be informed of this disaster until it is too late to reroute

around it. The oracle, although she bestows upon us information for free, she does

so only in strict accordance with the lines-of-sight W .

Even in the face of the pathfinder’s odds, it behaves ideally, and we could virtually

follow along, recording its travels–if the pathfinder is Virgil, call us Dante, and pray

that safely do we reach the end of the Inferno.

But one “trial” does not tell us everything about what the pathfinder would do.

So, after the first trial, however it ended, we randomly assign new virtual obstacles

and start again. After the second trial, a third, then a fourth, ad infinitum.

Once we have a limitless amount of data, we return to the real world. We gather

what information we can–call it ξ–via lines-of-sight then measure the percent of our

records where ξ occured and the virtual pathfinder took this step or that step. Ideally,

by cross referencing enough information from the simulations with what we can see

in the real world, we will know, with absolute certainty, how the pathfinder would

behave in our shoes.

To use this probability measure, P , to this end we must decide what sort of

information we would be recording on our trips through the Inferno.

We could say, for each edge ij, the event that it was obstructed is represented by

αij. Conveniently, P (αij), the probability of each failure event, is given by βij, the

risk of each edge: P (αij) = βij. I hope this draws an important distinction between

an event, the thing that we are counting, and its likelihood, the count (as a percent)

we come up with for that thing.

Next, we could say that the pathfinder decided upon crossing edge ij is represented

by δij. However, this does not, by any means, imply that made it to the other end.

Imagine a scenario where the campus contains a sidewalk that is not well lit, so at

28

no point are we given vision of it. This sidewalk is our only option left–all the other

routes are visible and blocked–, so we select it. But, unfortunately, an obstacle lied

there too, so our trial ends in defeat.

Third, we could say that the pathfinder reached the destination is represented by

π–everyone likes pie.

Finally, to compliment each of these events, we can say by ᾱij, δ̄ij, and π̄ that

ij was not obstructed, the pathfinder chose not to cross ij–perhaps it never was in

a position to make that choice anyway–, and that it failed to reach the destination,

respectively.

With these in hand, we can write expressions like P (δij, ᾱij) compactly, this one

representing that the pathfinder crossed ij and did so successfully.

Consider what the following represents.

∑
j

P (δjd, ᾱjd)

If we continue our convention of letting d strictly represent the destination, then

this expression is the total probability of crossing any edge leading into the destina-

tion, and doing so successfully. Since this can only appear in our records when we

have “followed the rules” all the way up to j, this is the probability that we succeed

in our trial, however we end up going about it.

∑
j

P (δjd, ᾱjd) = P (π)

Therefore, since we, for the sake of mimicing the pathfinder’s actions, only care

about our events when they are written inside a P–that is, we only care about their

likelihoods, not their particulars–, then we can discard π altogether–it is now redun-

dant as far as the math is concerned.

This leaves our probabilistic model in a very minimal state:

29

• through αij we record the “moves” made by Lady Luck, the state of the network;

• and through δij we record the ideal reactions to those moves.

2.4 Asking the Right Questions

As the inside-out-police-state, described in section 1.4, will attest, computer science

is fraught with “alternative” thinking. Almost every problem that is solved in this

field, it seems, requires first explaining something else. This “something else,” before

it is explained, is so remote from the original problem that any connection couldn’t

possibly be helpful. Then, as the explication comes to an end, the listener walks away

just as they would from a good magician’s show; a good computer science lecture

leaves the audience believing two distant things are one and the same and have been

all along.

I say this because, before the magician goes on stage, he must have perfected his

tricks. And, no differently, before the lecturer walks into class, she must have chosen

the right analogies to make, the right questions to ask, lest the proofs and solutions

become muddy, correct only because “someone said so,” and not obvious.

So, imagine that we have generated an infinite spreadsheet, each row recording

the details of a single simulation trial. We have also written code to scour through

that shreadsheet. Now all we’re to do is feed it the proper input and interpret the

output.

Our input could be β. Since β describes “half” of P , the P (αij) = βij “half,” the

values of β could be set to encode which edges have not yet been seen by leaving them

at their original values and those that have been seen by setting them to a modified

value. For an edge ij known to be down, we set βij to 1, a hundred percent chance

of failure, and for an edge kh known to be up, we set βkh to 0, no chance of failure.

And to draw a parallel with the input, the machine’s output could be ε. Just as

30

β, the greek letter after α, holds the likelihoods corresponding with a set of “failed

edge” events, ε, the greek letter after δ, would hold the likelihoods corresponding with

a set of “chosen edge” events.

P (δij) = εij

Then, our algorithm would generally be:

1. For every edge ij we’ve seen or can currently see, if that edge is down, let

βij = 1, or if that edge is up, let βij = 0, or otherwise just leave βij at its

original value. By doing this we modify β to encode the knowledge we have

collected so far.

2. For every edge ij we’ve selected to cross so far, let εij = 1, or otherwise leave

it undefined for now. By doing this we initialize ε to encode the choices we’ve

made so far.

3. Input the modified β and ε into the “machine.” This is an imaginary machine,

but it will suffice to illustrate our intentions here.

4. The machine will load all rows from the “infinite” spreadsheet that “match”

the given β and ε. By doing this we are enumerating all possible scenarios that

our ideal and virtual pathfinder experienced that start with the same events as

we, in real life, have experienced.

5. For every edge ij where εij was left undefined, the machine will let εij be the

percent of the loaded rows where ij was selected by the pathfinder.

6. Finally, the machine outputs the modified ε. By doing this, it “fills in the

blanks” left by us in step 1.

On the surface then, this algorithm is outputing how likely it is that the pathfinder

will choose to cross each edge under the given unknowns/downs/ups scenario. In some

applications, this could be vital information. For example:

31

A social engineer is planning changes to community pathways. Numbers

have been collected by the company statistician on the likelihood of each

road being obstructed according to historical data. Without knowing

what paths the city folk have traveled so far within a day, the engineer

only knows, for certain, that the travellers will know the information about

the city that the engineer has told them. See, the changes she is planning

are where to place overhead road signs, which will be connected to a

computer network to pass along information about wrecks and delays

ahead. Therefore, she needs to know, for an ideal pathfinder, what options

would tend to be made in response to information; with this in hand, she

could perform simulations to determine whether additional byways would

need to be added so as avoid further congestion-related accidents.

Or, another example:

A policy expert is considering what information citizens have about how

to complete a particular sort of paperwork. There is an online option, a

number of clerks willing to handle the transaction over the phone, and

two or three centers, depending on the weekday, that will process forms

sent the old fashioned way through the post office. There are several steps

that need to be carried out–making sure the right signatures have been

collected, the right tax information is included, approval has been given

by employers, and so on. The policy expert has draw a flow chart of

the whole process–alternative routes and all. He now wants to perform,

for a preliminary study, a probabilistic analysis on which routes will tend

to be taken, depending on at what steps certain information is made

available to the participants: information such as office hours, scheduled

site maintainance, and other “downtime” during which going a different

route would be quicker.

32

These examples are related to safest-with-sight, but only marginally. Still, they

are asking precisely the right questions if we take the algorithm’s “modifed ε” output

at face value.

“Dig deeper into the meaning of ε,” the good lecturer says. Consider what values

it would contain if we give “perfect” information–if we tell it through the values of

β everything there is to know about the ups and downs of the network. Because

the pathfinder is ideal, it does not behave randomly, so if we expose it to the same

scenario repeatedly, it will respond identically each time. Therefore, ε will contain

only 1s and 0s, values effectively letting us know “yes” and “no” for the question, “Is

this what the pathfinder would do?”

In practice, though, we would not have the “true” values of β. If we did, then we

needn’t worry about this problem at all–the oracle has told us everything, so we can

take any path we see that reaches the desired destination.

As long as β contains 1s or 0s for everything the pathfinder could see in the

simulation at the point in question, then it’s behavior will still be deterministic. This

is because all other information is of no use to the spreadsheet-scouring algorithm:

adding any information to β, other than what is required for determinism, can have

no effect on ε because, since it was unknown to the pathfinder during the trials, it

can have no effect on δ, the events capturing the ideal behavior.

This concept deserves a name. If the pathfinder were truly optimal, then it would

always find a path to the destination when any such path exists. But, this can only

be done when the oracle tells us everything at the onset. More realistically, then, the

pathfinder is sight-wise optimal. It behaves in whatever way maximizes its chance

of success, according only to what it can see, has seen so far, and knows about the

probabilities of the other edges

This term gives further insight into the task at hand, to interpret the output of

this algorithm. Although asking the question, “Is this what the pathfinder would

33

do?” accomplishes the goals of safest-with-sight, to describe how one should behave

in the face of partially-visable uncertainty, we can do better.

Because the pathfinder is sight-wise optimal, we know that it always selects the

edge that maximizes the probability of successfully reaching the destination. There-

fore, a more general question, one that even the pathfinder itself must ask is, “How

likely will I succeed if I choose this edge next?” Given the answer to this for each

edge that could be selected next, we go the way of the ideal and choose whichever

choice had the highest “score.”

This, I hold, is the right question to ask. The first two interpretations of ε provide

interesting information in their own right, and they are both direct derivatives of this

hypothetical algorithm, but this last sort of query represents the true nature of the

algorithm–it represents not the input, nor the output, but a means by which that

output might be decided.

Our final step, then, is to tackle this new perspective on the safest-with-sight

problem, a task which we will do with the language of dynamic programming.

2.5 Dynamic Programming

I hate the name Dynamic Programming.

The coiner of the term, Richard Bellman, admitted that the term was purposely

selected to be distracting in the 1950s politics surrounding his research [5]. The true

nature of dynamic programming is that it is a mathematics for planning–a common

vein of the computer science field. The general flow is little more than the following:

1. Begin with a problem.

2. If that problem is too hard, solve a simpler “subproblem,” or even multiple if

need be.

3. Combine the results of the subproblems to find a solution for this problem.

34

4. Keep the answer to this problem written down in case you need to solve it again.

This paradigm is a good fit for problems whose solutions can be expressed as

some summary of the “future,” such as the maximum, minimum, average, etc. of

those futures. When we can write the solution, say to problem i as a function of

its subproblems ’ solutions, say the solution to each j “next to” i, we should thank

Dr. Bellman.

Si = fi({Sj}j)

The only other requirement for the use of dynamic programming is the reduction

to base cases, to subproblems so simple that their solutions are trivial. The time it

would take to solve the desired problem, then, would be proportional to the number

of subproblems that we needed to first solve–that is, the space filled by the cache of

subproblem solutions. The time it takes to paint a wall, after all, is always relative

to the size of the barn.

Following the instructions of a dynamic program, the machine would begin at the

“top,” at the hardest problem to solve, then work its way down, towards successively

simpler cases. Eventually, it reaches a base case, whose solution becomes the first

entered into the cache. It may then solve and store other base cases until it has

35

enough information to solve and store a subproblem–a subproblem still much simpler

than the original, one just above the base cases.

And so on, it continues, solving solving harder and harder subproblems. As it

nears completion much of the work required by the harder subproblems near the

“top” may have already been entered into the cache, so whole “trips” back down

needn’t be made twice.

This “automated simplicity,” so to say, lends itself to (i) few required lines of code

and (ii) straightforward formal proof that the code is, indeed, correct. These, of the

latter point here, take the form of a proof by induction:

1. Prove the succession of subproblems always approaches a base case. If we will

never stop breaking the problem down into subproblems, then we will never

finish solving it.

2. Prove all base cases are correctly solved. If any one of the base cases are handled

improperly, the entire logic of our solution collapses.

3. Prove any non-base case will be correctly solved by assuming all of its subprob-

lems will be solved correctly. With this and the previous two points shown, the

proof, in a sense, completes itself, built, just as our solution is, recursively from

trivial base cases.

This will be the general outline of our treatment of safest-with-sight, calling back

to concepts of graph theory and probability where necessary. Before I proceed with

the analysis, though, we must first make clear, just as we made clear the events

recorded within our probability outcomes, how we plan to frame safest-with-sight in

a dynamic programming context.

First, it is precisely meant, by a solution to a safest-with-sight problem, the prob-

ability a sight-wise optimal pathfinder would successfully reach the destination if an

edge ij is taken, given that it is currently situated at vertex i and it currently knows

36

some information ξ about the status of the network. From this perspective, a problem

is defined entirely by the two inputs ij and ξ. Therefore, we can say what we are

seeking an exact means to calculate in a much more compact expression.

S(ij, ξ) = P (π | δij, ξ)

Next, a subproblem for helping find S(ij, ξ) can be denoted S(jk, ξ′). Here, jk is

obviously any possible step that would be available after ij and ξ′ is what information

will be available to us in the future–what we know now plus what we will learn upon

reaching j. This latter variable, ξ′, is a slippery creature, for although we do not

know what information we will know in the future, we still know what edges we will

have information about. The following will become a useful gear for our probability

machine.

P (ξ′ | ξ)

We may frequently be interested in the likelihood of some possible future occuring;

however, we mustn’t forget to account for what is already known, mustn’t forget to

use the conditional probability with respects to ξ.

Finally, I must attend to the base case, the elements that will compose our final

solution. As we make steps successively closer towards the destination, at some point

we will reach that destination and be done with it. But move back one step, to

that last step. We are guaranteed that there is at least one step that is closer to

the destination than any other along its path; there may, in fact, be several such

sidewalks coming into the destination from alternative routes. Solving this last-step

subproblem, S(id, ξ), is none-so-brag-worthy, as their solutions had already been given

to us–in β.

37

Chapter 3

Analysis

There is only one step left. Our destination is just outside our reach. We’ve come

far, far enough that there is no way out–we are committed. This is the base case,

speaking dynamical-programming-wise.

3.1 As Easy As Possible

The solution for this case is denoted S(id, ξ), where d is understood to be the desti-

nation and id is understood to be that last step. Since the solution to a subproblem

is the probability that we will reach our destination, we can state the value of S

here quite easily: if the edge is down, we fail, and S here is 0; if the edge is up, we

succeed, and S here is 1; if we have no idea whether id is a failed edge, then S here

can considered the probability that id is in the more favorable state.

We do not have the probabilities on hand for the probabilities of each edge’s

succeeding, not directly; however, we do have the probabilities of each edge’s failing,

β. Success is just the compliment of failure, so the base case solution should be

obvious.

S(id, ξ) = 1− βid

38

This is incomplete, only accurate when the edge’s state is still unknown. The

information of what edges have been seen so far and their states are “encoded” within

ξ. When ξ contains αij, we know ij has been seen and that it has failed; when

ξ contains the compliment, ᾱij, we know ij has been seen and that it is intact;

otherwise, ξ contains neither α/ᾱ term and the above solution holds. Therefore, we

can give a more verbose formulation of S here.

S(id, ξ) =


1 ᾱid ∈ ξ

0 αid ∈ ξ

1− βid Otherwise

Although we’ve given the math expression of the base solution, it is always im-

portant to consider how this will be implemented by a machine, the algorithm, the

unlucky intern. Since the solution is one of three fixed values, we can use a three way

logical branch.

function baseCase(beta, xi, i, d)

if edgeKnownAndUp(beta, xi, i, d)

return 1

elseif edgeKnownAndDown(beta, xi, i, d)

return 0

else # edge unknown

return 1 - risk(beta, i, d)

end

end

The runtime required for this algorithm relies on the runtimes of the methods that

were assumed, edgeKnownAndUp, edgeKnownAndDown, and risk. How these operate

are in turn contingent on the structures the machine uses to store β, α, ξ, and so on.

Some approaches to these storage mechanism could be efficient in terms of space–bits

of memory required–, but suffer with a trade off in time–steps required to perform

basic operations; for others, the concern would be reverse. Nonetheless, I do not fear

39

that selecting an appropriate structure would be an arduous task, even for the junior

programmer.

For example, as I have elected to use my own simulations, one may use a sparse

matrix for many of these structures, in particular a sparse dictionary of keys. This

is a structure that stores data and allows insersions and look ups to be carried out

almost immediately. It’s power, though, comes in how it treats missing values–those

we have not yet inserted. Instead of raising an error and crashing the program as a

non-sparse structure would do, it responds with whatever value is assumed to fill all

the “empty” space of the structure–thus the name sparse.

Regardless of how the data is stored, it will have no effect on the simplicity of the

base case solution–we have three cases to check and we respond with whatever fixed

value is appropriate. And, even when we step back from the destination further, the

subproblem to be solved can still be just as trivial to solve.

Consider the case where we’ve step into not a final step, but a final “leg” of the

journey. From here on out, there are no more choices to be made. The path ahead

no longer branches, there are no “lefts” or “rights” to choose from. We just keep

moving. It doesn’t matter in this “final leg” case what we see along the way: our

only chance of success is if all the edges ahead of us succeed. If any one of them is

down, the entire path is worthless and we fail the trial.

To this end, it may be useful to have a form of the base case calculation that can

be used at any time, on any edge.

Ŝ(ij, ξ) =


1 ᾱij ∈ ξ

0 αij ∈ ξ

1− βij Otherwise

Here, Ŝ, read “S hat,” does exactly what S does in the base case–it gives us

40

the probability of that one edge being up, as far as we can tell via ξ–, but for any

edge at all. With this, solving the “no more branches” case becomes straightforward.

Imagine that we are at vertex i. Ahead of us, in a straight line, are j, k, and so on,

ending with d; our path ahead will be something like ij, then jk, and so on, ending

with zd. The exact number of steps does not matter, just so long as the traversal is

without branches.

From what we can see, right now, from i, according to ξ, the variable that holds

all the information we’ve learned so far, we can only succeed if ij is up, then jk is

up, and so on.

S(ij, ξ) = Ŝ(ij, ξ)× Ŝ(jk, ξ)× · · · × Ŝ(zd, ξ)

If any one of these calls to Ŝ returns zero, meaning that any one of these edges

are down, then the whole multiplication result will be zero–the whole path might as

well have failed.

It doesn’t matter if the probabilty of success will change as we continue to walk

along that path and learn more. Obviously, everytime we see that more of our path

is unobstructed, we can rejoice as S increases. That is not what S, the solution to a

subproblem, is asking.

A solution to a safest-with-sight problem is not the path itself. It only cares

about (i) what is known right now and (ii) what is known at decision times. Because

a straight path provides no such case of the latter, only the present moment’s knowl-

edge, that of i, matters for the current moment’s subproblem solution, that of the

probability of success from i through j and on towards the destination.

With this last point in mind, then, it should come with no surprise that adding

branches–opportunities for decisions–changes how solutions must be approached and

formulated altogether.

41

3.2 Like the Opposite of Easy

This was introduced earlier as the total probability formulation of conditional prob-

ability. Here, we begin to use it.

P (X | Y) =
P (X ∩ Y)∑
i P (Zi ∩ Y)

, Z are mutually exclusive and
⋃
i

Zi = Ω

A fair warning, syllogism follows. To that end, keep what we are moving towards

in mind: an expression, as detailed as necessary to convert that expression into ex-

ecutable code that calculates the probability of eventually reaching vertex d, given ξ,

assuming we are at vertex i and will move along edge ij next.

That is, find x, where P (π | δij, ξ) = S(ij, ξ) = x.

Now break x in two: x = x1 × x2. We are using × to represent typical multipli-

cation, preferring it here in an aspect of readability.

Let x1 be the probability of success now and x2 that of later.

When we cross ij, one of two things will happen. The first, we could fail

immediately–the “now,” or x1. The second, we could succeed in crossing ij, then

continue–the “later,” or x2.

In the same vein as solving the “no branches” case, it is obvious that x1 = Ŝ(ij, ξ).

That “later” case can then assume that we crossed ij successfully. Other than

that, though, the “later” case is complicated. Our probability of “later” success is

dependant on what we learn once we reach j. However, we have not yet learned that

information. So, we can imagine all possible cases of what could be learned and,

following total probability, combine them into a single expression.

x2 =
∑
ξ′

[
P (ξ′ | ξ) max

jk
[S(jk, ξ′)]

]
Here,

∑
echoes the sum of mutually exclusive Zi events above, so if ξ′ is just

one of the all possible cases of what could be learned upon reaching j, then P (ξ′ |

42

ξ) is the likelihood of that case happening. We must remember to include within

that likelihood the condition that everything in ξ is already known–we only want to

consider the likelihood of new information.

So, x2 can be found by enumerating all possible values of ξ′. For each, we find

the max S(jk, ξ′), which is the probability of success of the best next step, the one

the ideal pathfinder will certainty take. Therefore, x2 is the expected value of the best

subproblem’s solution.

x2 = Eξ′

[
max
jk

[S(jk, ξ′)]

]
Reunite the xs, then with minimal algebraic rearrangement, arrive at the solution.

S(ij, ξ) = x1 × x2

S(ij, ξ) = Ŝ(ij, ξ)× Eξ′

[
max
jk

[S(jk, ξ′)]

]

S(ij, ξ) = Ŝ(ij, ξ)×
∑
ξ′

[
P (ξ′ | ξ)×max

jk
[S(jk, ξ′)]

]

S(ij, ξ) =
∑
ξ′

[
Ŝ(ij, ξ)× P (ξ′ | ξ)×max

jk
[S(jk, ξ′)]

]

S(ij, ξ) =
∑
ξ′

[
P (ξ′ | ξ)×max

jk

[
Ŝ(ij, ξ)× S(jk, ξ′)

]]

S(ij, ξ) = Eξ′ max
jk

[
Ŝ(ij, ξ)× S(jk, ξ′)

]
The similarities between S here and Li, in an earlier chapter, are worth noting,

as doing so will give insight into the time required to compute their results exactly

43

in a “less than simple” case.

Before, I defined Li as follows.

Li(X) = EX(i)
max
j

[φij(X) + Lj(X)]

In the original, Li, i and j were understood to represent neighboring states in

which a decision maker could find herself. In the parallel, ij and jk can be under-

stood as not neighboring states, but neighboring edges–subsequent decisions. Further,

X(i) has become ξ′, although the analogy between the two can again be easily drawn:

both represent a set of knowledge provided by reaching some point. Although X(i)

represents the knowledge provided by i and ξ′ represents the knowledge “accumu-

lated” up to j, we must keep in mind how the E operates–it, in Li, together with

X(i), mimics the “accumulation” of information present more clearly in S.

What is different between the two lies in that φ has finally been given form–as

Ŝ–and that S combines values with multiplication instead of addition. Similarly, X

has been defined as a form of ξ, a collection of “seen up,” “seen down,” and “not yet

seen” values. Therefore, we might be able to say–with further analysis not carried

out here–that calculating Li is at least as hard as doing the same for S–the latter

may be just one special case of the former, which, it is easy to imagine, contains

several other special cases, some of which might require even more effort to solve

than safest-with-sight.

So how hard is our problem? In it’s most compact formulation, it is tranquil.

S(ij, ξ) = Eξ′ max
jk

[
Ŝ(ij, ξ)× S(jk, ξ′)

]
But this equality conceals a sea of complexity: because the expected max operation

must iterate over all possible realizations of ξ′, that step alone may consume an ornate

amount of computation. Imagine that, upon reaching j, we see at most h edges that

44

have not been seen before. This captures every possible case, since h can always be

selected to be large enough. The number of realizations for ξ′ is 2h, two cases, one

up, one down, for each of the h edges, so 2× 2×

But let’s assume h is a small number, maybe 2 or 3. This way, there is a limit to the

amount of new information that must be anticipated by the expected maximization

operation. However, this does not prevent an even larger problem from happening.

What if every single path to every single vertex i produced a different ξ? If this

happens, then caching solutions will be of little help, since each time we reach i in

our exploration of subproblems, all the work ahead of it must be computed again.

The total number of operations, then, would be 2v–where v is the number of vertices

in between the starting point and the destination, each of which may or may not be

included within whatever path we take, so again 2 × 2 × Restricting h may be

an easy assumption to make–I can only see so far–, but limiting the number of paths

is less than permissable. We have little or no control on what roads lie ahead of us

after all.

So, it may seem that safest-with-sight cannot escape the jaws of 2× 2× We

are all doomed, and the Sun will singe us all long before anyone can figure out what

step to take first to cross campus. Why bother thinking this hard at all?

3.3 Difficulty is a Fine Line

Safest-with-sight’s computational complexity requires one of two things to be occur:

either h, the maximum amount of new information gained upon reaching any vertex,

must be large enough; or each path through the graph must produce a different

“accumulation” of knowledge. Without these, safest-with-sight falls into a category

of problems known to have very, very efficient solutions.

Andrey Markov, the story goes, studied a problem of state transitions around the

45

time between the nineteenth and twentieth centuries. A system M is said to have n

states. For each pair of states i and j, we are given the probability that the system

will transition from i to j next whenever it is in i, written Mij.

In this way, M is a matrix storing the likelihoods that precisely describe how the

system behaves by moving from one configuration to the next. Because these are

probabilities:

• each Mij is between 0 and 1; and

• the sum of each column of M totals to 1.

In other words, there are no negative probabilities or those greater than a hundred

percent. Also, each state has a hundred percent chance of going somewhere, even if

that somewhere is staying still (the state leads back into itself).

The most important feature of markovian systems is that they are memoryless.

It does not matter how we got to i, we will still behave with the same probabilities.

When safest-with-sight has two paths to the same point that produce different sets

of information, we are faced with a non-markovian system; but when all paths to

each vertex produce the exact same set of information, our behavior can be said to

be memoryless and we, when we reach that vertex, will always proceed in the same

manner–thus reducing the required computations by fathoms.

First, we start our solution at the end: since it doesn’t matter how we get to

the easiest cases, S(jd, ξj), we know ξj will be the same (we give a subscript here

for disambiguation for the current discourse only). So, we find ξj, a simple task

accomplished by finding any path leading from the starting point to i and recording

what information we will pick up along the way. Next, we calculate S here, which

we know to be an easy value to produce since it is a base case. Then, we step back

to i, a point that leads into j, and solve that subproblem, S(ij, ξi). Since all possible

subproblems of i will have been solved and thier solutions stored, solving this problem

will be simple too.

46

And so, working backwards this way, we visit each edge exactly once. During each

visit, 2h realizations of ξ′ may be needed, but when h is small enough this term can

be forgotten. Therefore, the necessary number of computations needed is some small

multiple of E, the number of edges in the graph, a feasible runtime indeed.

What we are seeking, then, as we begin to convert S to code, as we have al-

ready done for Ŝ, is to design our “problem solving system” to be a “machine” that

will behave efficiently when a markovian problem is given it or when it discovers a

markovian subproblem hidden within a larger, non-markovian problem. This requires

several components working in tandem:

• storage structures for the graph and β;

• a component for solving Ŝ;

• a component for encoding, storing, and retrieving inputs and solutions to S;

• a component for iterating over possible ξ′ realizations;

• and a coordinating component, for solving S.

Before we design these components, though, we believe it necessary to first con-

sider the special cases in which the machine can perform fast and to lay out exactly

how solutions in these cases should be calculated.

3.4 Slight Adjustments

Regardless of the case we are considering, we can improve our lives by making two

adjustments to the structure of the vision.

First, if every parent of a vertex provides the same line of sight, then effectively

the child of all of these parents may as well provide that same line of sight itself.

Repeatedly adding such “effective lines-of-sight” to the graph (i) does not change the

meaning of the graph as it pertains to our problem and (ii) reduces the complexity

when considering a “working backwards” approach to solving the problem.

47

And second, if a vertex provides vision of an edge, but there is no path connecting

the two, then why bother with that information? In these cases, we can just remove

the line-of-sight altogether, again with no effect on the meaning of the problem and

greatly simplifying the analysis.

Therefore, hereonout, these two adjustments will have been assumed aready made.

3.5 Minor Improvements

In the simplest possible case, there is no vision, no lines-of-sight, no 2h to worry

about. In these cases, ξ is always the same value, regardless of where we are in

solving our subproblems–it is empty. Also, though, without any information to guide

it, the pathfinder will be forced to select a single path and stick to it–the path that,

from much earlier, minimizes the number of “special coins” that must be flipped.

In this case, our code just needs to solve the problem from the bottom-up, each

step based on the maximum probability of success through each possible next step,

visiting each edge only once in all. Dynamic programming, by working towards the

base case, the last possible step, and storing solutions for later, automatically behaves

in this way for us.

When we allow vision to be of incident edges only, to only allow vision from i to be

of the edges to its neighbors ij, we achieve a similar speed to before, but we must be

careful in the order that we do things. This case is obviously markovian, since each

time we step, the only information brought along with us is of edges now behind us,

so it can be forgotten. Therefore, we should be able to work in the same bottom-up,

cache as we go manner as the “no vision at all” case. The difference, though, comes

when we are combining solutions to subproblems. Instead of just taking the best next

step, we have to consider the case when the best might be down, so we would resort

to the second best, unless it’s down too, and so on.

48

Let’s say that we are at i and that its neighbors, the js and ks, are named

1, 2, 3, . . . , in order from best to worst.

if j < k then S(ij, ξ) ≥ Ŝ(ik, ξ)

If j comes before k, then we know that our likelihood of success is better, or equal,

if we choose to take ij next. Of course, we would not be normally given vertices with

names in this way, but once we’ve calculated the value of S for each subproblem after

i, temporarily renaming the vertices, to no effect on the meaning of the graph, allows

our math to be stated much more compactly.

So, we ask, “What is our probability of success if we start at i, given ξ?” This is

different from what S calculates, since it does not include the assumption that we are

taking some edge ij next; having it, though, makes the calculation of the latter much

simpler. Hell, this question is just the value of x2 from before, when we reasoned

that x2 needed to be an expected maximum. When our pathfinding behavior is more

regular, as it is in the markovian case, we can state it more descriptively.

x2 = S(i1, ξ) + βi1S(i2, ξ) + βi1βi2S(i3, ξ) + . . .

When our best option is available, we will cross that edge and continue. This

probability is already given–it is simply S. However, when the best option is down,

which happens with probability βi1, we will take our second option in the same

manner, and so on, but then when do we stop this pattern?

It may seem that we continue through all possible next steps, but that is not

the case–not when there is at least one option we cannot see. These options are

“gambles,” since the pathfinder is given no assurance that it will cross safely.

Let’s say that the best gamble, in this sense, is named g. If we are confronted

with multiple gambles, we will only ever take the best of those, and if there is a

49

non-gamble whose “score” is worse than g’s, we will never choose that non-gamble

either–why would we? So, the last term in our sum, for x2, must be that corresponding

with g, if such a gamble exists.

x2 =

g∑
j=1

S(ij, ξ)

j−1∏
k=1

βik

If we plug this modification of x2 back into our definition for S, we receive a

regretfully more complex, but easier to compute, function.

S(ij, ξ) = Ŝ(ij, ξ)

g∑
k=1

S(jk, ξ)
k−1∏
m=1

βjm

3.6 Planning for the Future

There is a fundamental difference between lines-of-sight that are incident and those

that are not, between the “near” and the “far,” between the “now” and the “later.”

When we are given information that we can use now, our behavior is a simple

direct response to that knowledge. We choose the best reaction to make, we make

it, and we do away with that info–it will aid us no further. Even when the vertex

that provides that vision is ahead of us and we have yet to learn what those lines-

of-sight have to teach us, anticipating that information is simple too: we are, of

course, anticipating not just what moves Lady Luck will make, but what moves we

might make to counter. Our future responses to this fleeting information of incident

lines-of-sight, in markovian systems, are trivially predictable, modeled, and reasoned

about. Therefore, working through the calculations involved with this information is

straightforward, linear–easy.

But information even one step further than incidence is–well, it’s damn hard to

deal with. The probabilities associated with paths to the left versus those on the right

are disjoint up to incident edges; these, by the nature of directed acyclic graphs, do

50

not “overlap.” The first step I can take in either direction can never, in any case, be

a step that could be taken at some point later if I were to choose the alternative path

instead.

The second steps in either path, however, do not hold this property. Once we move

past the incident lines-of-sight, our probabilities can become joint again, overlapping

in some sense, having in common the variables that make up their values. It is

because of this that, I am afraid, we must consider all 2h possible combinations of

the information we might learn at each step when vision is non-incident. Whereas

the disjoint probabilities of incident edges can be reasoned about algebraically, the

joint probabilities of further edges require an exhaustive search through a slew of

“what ifs.” It is this latter point that causes “future planning” in safest-with-sight

and similar problems to take too long to calculate to be useful.

Thus, we combine the two.

S(ij, ξ) = Ŝ(ij, ξ)Eξ̃′

g∑
k=1

S(jk, ξ̃′)
k−1∏
m=1

P (αjm | ξ̃′)

Here, ξ̃′, like ξ′, represents realizations of how ξ might change upon reaching j.

However, ξ̃′ is only a subset of ξ′ for it does not realize the yet-unknown statuses of

incident edges to j; so, if information tends to be of edges closer to a vertex, as is

easy to imagine, and only h̃ edges’ worth are non-incident, then only 2h̃ cases of ξ̃′

need be considered.

This new equation considers all information, but it partitions how we reason about

incident and non-incident information: one as a weighted sum, one as an expected

maximum. By doing this, it can be more easily converted to code that runs 2h−h̃

times faster than it would have if we naively follow the original formulation of S. S

has grown large, so I have given a formal proof of its correctness in the appendices.

As one should expect though, the code for this will either be incomprehensibly

compact or lousy with specialized components. I like the latter.

51

Chapter 4

Solution

Before we design the code for calculating the newest formulation of S, an important

note needs to be made about β and ξ–they are, as far as we are computationally

concerned, the same object.

Whenever an edge has been seen by the pathfinder, the corresponding α or ᾱ is

inserted into ξ, thus allowing the accumulation of knowledge about what edges are

down or up, respectively. To a similar end, β holds the original probabilities of each

edge’s being down; what does it mean, then, if βij = 1 for some edge? or βij = 0? In

these cases, we know that the edge is either always or never obstructed from the very

beginning.

Why don’t we just modify β then, leaving ξ out of the equation altogether? This

is, of course, figuratively speaking. For the sake of simpler proofs, we wish to keep

the two concepts distant “in the math,” which allows analysis to be carried out much

clearer. However, doing the same when we are coding causes more headaches than

its worth.

Therefore, in the code here, instead of inserting an “edge is down” or “edge is up”

token into whatever structure represents ξ, we will modify the values of β, saying,

when an edge is seen to be down, that the probability of it being down is, from here

52

forward, is a hundred percent; and similarly so when an edge is seen to be up. These

modifications will be unmade, the corresponding values of β returned to their original

values, whenever we are done with that information and need to “move back up” to

an earlier subproblem when that edge was out of sight.

For example, we can now state the base case, when only a single edge is being

considered, in a single line of code.

function baseCase(beta, i, d)

return 1 - risk(beta, i, d)

end

When id is down, βid equals 1, so the probability of success is 1− 1, or simply 0,

impossible. Conversely, when id is up, βid equals 0, so the probability of success is

1− 0, or simply 1, guaranteed. In all other cases, when the edge has not been seen,

the probability of success is the inverse that edge’s risk, or 1− βid.

On a related note, the general case can be written in only a few lines as well.

function generalCase(G, beta, i, j)

key = encodeInput(G, beta, i, j)

if not haskey(CACHE, key)

if j == DESTINATION

CACHE[key] = baseCase(beta, i, j)

else

CACHE[key] = baseCase(beta, i, j) * expectedMaximum(G, beta, j)

end

end

return CACHE[key]

end

In fact, only a single line is doing any “real” work, that where the solution’s value

is being inserted into the cache. The complexity of the problem is then masked away

behind the calls to two “helper” functions, encodeInput and expectedMaximum.

53

4.1 Encoding

Imagine that we are faced with two subproblems. Apart from only a single edge, the

two are exactly the same: in one, the edge has been seen and is up; in the other, the

edge has been seen and is down. Are these two in fact the same?

The answer to this depends on where that edge is. What if we can, from our

current position within the graph, still reach that edge? Perhaps it is behind us,

or perhaps it has been cut off by a “wall” of downed edges. If that edge is still

visitable, then it may be best to consider these two subproblems different and solve

them individually. But otherwise, when we are disconnected from the edge, then who

cares? We can just treat them as the same subproblem. They are, after all, effectively

the same thing.

This idea is central to how I have chosen to encode input for our subproblems. For

each input, we produce a sequence of 1s, 0s, and question marks. Every 1 corresponds

with an edge that is seen and up; 0, seen and down; and question mark, unseen.

However, we also use a 0 to represent an edge that is unvisitable–as far as I care, it

might as well be down.

function encodeInput(G, beta, i, j)

encoding = str(i, "/", j, "/")

if edgeUp(beta, i, j)

encoding += "1"

elseif edgeDown(beta, i, j)

encoding += "0"

else

encoding += "?"

end

if not edgeDown(beta, i, j)

for (m, n) in bfsearch(g, j)

if connected(G, beta, j, m, n)

if edgeUp(beta, m, n)

encoding += "1"

elseif edgeDown(beta, m, n)

encoding += "0"

else

54

encoding += "?"

end

else

encoding += "0"

end

end

end

return encoding

end

The code for this encoding process appears long, but its length is due only to

the multiple times we have to consider “if this then that, or otherwise this,” which

correspond with the different points at which we must decide what to add to the

encoding: a 1, a 0, or a question mark. To cut out ambiguities, we should start each

code with a label of what vertex we are at, i, and what vertex we are considering

visiting next, j. Finally, the order of the ones and zeros and unknowns corresponds

to a breadth-first search that starts at j. Since the breadth-first search only visits

edges that j is possibly connected to, it will automatically ignore the edges that are

behind j. It still must check, however, if we are actually connected each edge. This

is to to account for the cases where an edge ahead of j might be cut off from it by

edge-failures.

Once we have this encoding, we will know where in a dictionary-like structure to

look if a solution has already been added. Much like an English dictionary, a data-

dictionary allows the computer to quickly locate the value of an entry corresponding

with the name of the entry; the encoding here is that name. It is the job of the

generalCase code to calculate the solution’s value for the first time and write it into

the dictionary for later look-up. Although this may require a large amount of memory

storage to record all the necessary values, the time saved is worth the tradeoff.

55

4.2 Expected Maximum

With additional helper functions, the expectedMaximum too can be written simply.

We can use a realizeFuture! function–the ! is a Julia convention to note that it

modifies at least one of its inputs, in this case beta–to iterate through all the possible

realizations of the nonincident edges that will be seen upon reaching the next vertex.

We can then calculate the expected maximium by a sort of weighted sum.

function expectedMaximum(G, beta, nextVertexToTake)

answer = 0

for likelihood in @task realizeFuture!(G, beta, nextVertexToTake)

answer += likelihood*incidentAverage(G, beta, nextVertexToTake)

end

return answer

end

This works through realizeFuture!’s returning, for each realization in the it-

eration, the likelihood that that realization occured. Just before this likelihood is

returned, the value of beta is updated to reflect the realization.

function realizeFuture!(G, beta, s)

found = (-1, -1)

for (i, j) in nonIncidentVision(G, s)

if edgeUnknown(beta, i, j)

if connected(G, beta, s, i, j)

found = (i, j)

break

end

end

end

if found == (-1, -1)

produce(1.0)

else

i, j = found

temp = risk(beta, i, j)

makeEdgeUp!(beta, i, j)

for likelihood in @task realizeFuture!(G, beta, s)

produce(likelihood*(1-temp))

end

makeEdgeDown!(beta, i, j)

56

for likelihood in @task realizeFuture!(G, beta, s)

produce(likelihood * temp)

end

makeEdgeUnknown!(beta, i, j, temp)

end

end

To minimize the number of lines of realizeFuture!, I have defined it recursively.

When it is first called, from within expectedMaximum, it searches for any edge that

meets the proper criteria: any edge that is within the nonincident vision of our next

step, that is yet-unknown, and that is our next step is connected by some path, we

consider the found edge. If we are unable to locate such an edge, then we do not

need to update beta and we just produce the likelihood 1.0, a hundred percent.

The produce function–whose name comes from the classic producer/consumer

problem in distributed programming texts–, in Julia, along with the @task decorator

is used to create functions that can return a value to an iteration elsewhere, paus-

ing their own execution. After each step of the loop, the paused function resumes,

continuing exactly where it left off until it either produces another value for the

elsewhere-loop or ends. In the latter case, the loop has no more values to consume

and halts.

The reason I have chosen to take the produce approach to writing

realizeFuture! is made clearer when we consider what happens when it does locate

a found edge. In this case, it must modify beta. This is broken into five stages:

1. Update the value of beta such that the found edge is up. This does not mean

that we know, right now, from where we stand at the entrance to campus, that

the edge is up. We are instead just consider one “what if” that might happen.

2. With the found edge up, we loop through realizeFuture! again, which will

find a different edge, modify it, call realizeFuture! again, find another edge,

and so on, until the base case of the recursion is reached: the case when no

57

more edges can be found. In this way, the first realization considered is the

“optimistic case,” where all edges that we will see will be seen up.

3. For each realization we see here, we re-produce the likelihood we recieve from

the recursive call, but we first multiply that likelihood by the probability that

the found edge would actually be up.

4. After considering all cases where the current found edge is up, we change the

value of beta again. This time, we set it to where the found edge is down. Then,

we recurse again, exploring all the what ifs of all the other edges that will be

found again. In this case, we re-produce likelihoods just as in the previous step,

except the multiplier is the probability that the found edge would actually be

down, not up.

5. And finally, after all recursion is complete, we return beta to its original

state, ending the method and whatever elsewhere-loop that initiated this call

to realizeFuture!.

In this way, realizeFuture! modifies beta to every possible value that it might

be, calculating the likelihood for each state.

The last helping function we need to define is the incidentAverage, which, in

a much simpler process, considers the up/downs of incident edges. These were pre-

viously ignored by realizeFuture!, which adopts the nonIncidentVision helper,

because, as discovered during analysis, we can process incident edges more efficiently

by using a different technique.

function incidentAverage(G, beta, i)

options = Any[]

for j in neighbors(G, i)

if not edgeDown(beta, i, j)

optionScore = generalCase(G, beta, i, j)

push!(options, (optionScore, j))

end

end

sortBestFirst!(options)

58

answer = 0.0

probabilityToBeChosen = 1.0

for (optionScore, j) in options

answer += probabilityToBeChosen*optionScore

if (i, j) in incidentVision(G, i)

probabilityToBeChosen *= risk(beta, i, j)

else

probabilityToBeChosen = 0.0

end

if probabilityToBeChosen == 0.0

break

end

end

return answer

end

First, this function considers all the options for our step-after-next. It builds

a list of these options, the “scores”–probability of eventual success–for each, then

sums them together, following the analyzed incremental weighting. To that end, we

must weight the score of the second best option by the probability that both the best

option was unavailable and the second best option was available, and so on for the

subsequent options. However, we must also remember to stop this summing process

after the first “gamble,” the best gamble, has been considered, since we will never

know whether that edge is down, so we will never even attempt any edges worst than

it. If it is up, good for us; otherwise, Lady Luck gets the better of us and we fail.

4.3 Complexity Analysis

On its own, each function we have covered here, save one, is computationally efficient.

The baseCase is a trivial “look up and return” function, as is the

generalCase once it has updated the solution cache. Next, expectedMaximum and

incidentAverage are both linear, each little more than “loop through a list once”

and “calculate a weighted sum.” Then there is encodeInput, also linear, which loops

59

through a list of visitable edges and, not summing, concatenates a dictionary key, one

charater at a time. However, we know from formal analysis that this algorithm-system

is necessarily computationally expensive to execute. Several other helper functions

are referenced in our example code here, such as edgeDown and risk, but these too

are simple functions, simple enough to warrant exclusion here–their names describe

their behaviors precisely enough.

All that remains that could contribute to the computational expense is

realizeFuture!; it is, fittingly enough, the only function here with a ! in its name.

Two things can lead to a hard to solve safest-with-sight problem: a large amount of

nonincident vision at a single vertex; and a vertex that we can reach in two different

paths with two different “accumulations” of knowledge. Our dangerous function

contributes to the first of these plainly: the more nonincident vision, the more edges

that will be found, and the more recursion that must be done. Since each step of the

recursion calls the next step twice, we find the familiar 2× 2× Pity.

To understand how the latter, the “multiple paths/multiple accumulations,”

is produced by realizeFuture!, we must consider both how the value of beta

stores which edges have been seen and how encodeInput controls the entries to

our dictionary–a good measure of how much time we need is, easily, the size of the

dictionary-like structure we must compute.

1. Path A through the graph is taken.

2. We are able to see set EA of nonincident edges at the end of that path.

3. The value of beta, as realizeFuture! is called over time, as we are traversing

that path, is changed.

4. The possible values of beta at the end of that path are contained in set βA.

5. Each value of beta is given to encodeInput.

6. Each possible encoding produced by that function are contained in the set CA.

7. Let’s say the size of EA is at most h.

60

8. The size of βA is then at most 2h.

9. The size of CA is then at most the size of βA, 2h, since some encodings may be

simplified together; for worst-case analysis’s sake, we will assume the maximum.

10. Now a different path is taken, path B.

11. We see a different set of nonincident edges, EB.

12. We have a different set of possible beta values, βB.

13. We have a different set of possible encodings, CB.

14. In the worst case, the 2h encodings for A have no overlap with the 2h encodings

for B.

15. So, we have 2h + 2h = 2× 2h encodings for these two paths.

16. We take another path, then another path, then another path, until n paths have

been taken, each producing a different 2h encodings.

17. In all, we have n × 2h encodings, each requiring an answer to be computed

before it can be added to the dictionary.

18. How big can h and n each be?

19. h can be at most the number of edges in the graph, say E.

20. And n can be at most the number of possible paths through the graph, equal

to 2V−2.

21. Therefore, 2E+V−2, a very big number, entries may be needed.

All this complexity, measured in terms of how many different ways encodeInput

might be called upon, stems from the different ways that realizeFuture! might

behave, the different ways it can modify beta through the different paths we can

take. It is the job of encodeInput to reduce the number of dictionary entries as best

it can, but the future may still hold too many possibilities–a regrettable, unavoidable

side effect of fate.

61

Chapter 5

Approximation

In computer science, we always consider the worst possible case. We must do so not

because it is possible, but because doing any worst than that is not possible. We

always know the slowest our problems will take us to solve. It is immensely regretful,

though, that will oftentimes can never know the fastest we can do something. Perhaps

this is for the best–it forces us to always try to do better.

There is an open problem that is famous in the discipline, namely P-versus-NP.

Absolutely no one, in the history of mankind, has been able to give a rigorous proof of

whether the problems that require at most nk steps, for any fixed k, are fundamentally

different from those that can be solved in nk time if we had a machine that could

explore unlimited potential solutions simultanouesly. What is more annoying, no one

has even been able to prove that such a proof could even exist–we may never be

allowed to know. Such are the dank confines of Plato’s Cave.

The implications of this, for our primary discourse here, is that there may be a

faster way to solve safest-with-sight. The limits of reason being as they are, though,

we cannot say for certain. If we could make such a claim, either way, then P-versus-NP

may be suddenly solved, an undertaking we are far underprepared for.

62

5.1 Our Limits

There are many ways to refer to the NP problems, such as “decision problems,”

“satisfiability problems,” and “bin packing,” but most importantly here, they are

the verifiable problems. Imagine that the oracle imparts on us the solution to our

problem, whatever that problem may be. We run back down from the mountain–

where we trekked to listen to the oracle’s wisdom–and happily tell our king what we

have learned. He, however, is distrusting of the oracle, and asks us to double-check

the oracle’s answer. If the problem was so hard to solve in the first place that we

even resorted to mysticism, we certainty can’t verify the proposed solution by solving

it ourselves and comparing numbers.

Can you satisfy E(X) = (X1 ∧ ¬X2) ∨ (X2 ∧ ¬X1)?

For example, the “satisfiability problem,” for which NP receives one of its names,

goes as follows: given a boolean statement, is there an assignment for its variables such

that the statement is true? In the worst case, we would need to imagine all true/false

combinations of the n variables. Again, we go head-to-head with our villian. Yet,

we can still verify the oracle’s solution, although we are only given either a “yes” or

“no” of whether the boolean statement is satisfiable–we just have to climb back up

that mountain.

Say our variables are X1, X2, If the oracle said the expression, say E(X), was

satisfiable, then we ask the oracle another question, “is E(X) satisfiable if we set X1

to true?” If she says “yes,” then we know we can leave that variable fixed as true;

otherwise, it must be false in all “satisfying configurations.” Then, we repeat this

process until we’ve found the correct value for each variable. Now with our “yes” and

“no” responses transformed into a potential configuration, we plug those values into

our original boolean statement and see whether the result is true. The number of

63

steps required for this verification is relative the number of follow-up questions asked:

1 + 1 + · · · = n.

But if the original answer, the first answer our king asked us to double check, was

“no,” then the oracle’s words simply must be trusted. Alas, the only way to prove a

negative is through an exhaustion of possibilities.

Is safest-with-sight verifiable? If the oracle tells us, for free, as many times as we

need, the value of x in expressions like S(si, ξ) = x, can we use this to verify that

she tells the truth? It appears as though our problem is fundamentally harder than

the NP problems–we are asking for more than a “yes” or a “no” response from the

oracle, for a number that could be anywhere between zero and one. Safest-with-sight,

therefore, is a function problem; how can we be certain though that it still can’t be

reduced to some weird, inside-out, unrelated decision problem like satisfiability?

Nonetheless, we can, in some cases, verify that the oracle is full of it. We do

this by determining a lower and an upper bound that x must fall within in order

to be correct. Of course, x cannot be lower than zero, nor can it be greater than

one. However, if also cannot be lower than the probability of success of a similar

safest-with-sight problem where we remove all lines-of-sight. More information can

only improve the score of the ideal pathfinder, so it can obviously do no worse than

if it never gained any information at all. Similarly, x cannot be greater than S would

be if we give the pathfinder all the information there is to know up front so that it

will only fail to reach the destination when no such path exists. Both of these values

are easy to compute. We could even do better for the lower bound by removing the

fewest lines-of-sight necessary to ensure a markovian system, the cases where our code

runs quickly. In the appendices, I provide an extra test condition, showing that x

can’t be just any number within these bounds, but a number generated by a set of

rules from β; the details, though, are merely technical.

So what if the oracle’s x passes all of these checks? I don’t know. These are not

64

easy questions. So, for the meantime, we will keep ourselves to our humble sidewalk

problem. We need accept that safest-with-sight may not be solvable any faster and

proceed to approximate our solutions. On one hand, the villian has won; 2× 2× . . .

has been assured victory. On the other, who needs the sharpest needle in the haystack

anyway? We can probably just find one that’s good enough to sew with [18].

5.2 Ignorance is Bliss

It is common knowledge that, in the restaurant and web design industries for example,

consumers suffer from the “choice paradox.” When confronted with too many options,

which, logically, should increase the quality of the choice they eventually make, the

customer may instead feel overwhelmed and make poor, hastily made calculations.

We appear to face a similar problem here.

When we are confronted with several lines-of-sight ahead of us, it can be difficult

to resolve the number of possible realizations we may face upon reaching the vertex

providing that vision. If we just forget about a few of those lines–slim down the menu

or simplify the website–, then we can solve safest-with-sight quickly. It is remarkable,

even, how only a few lines-of-sight take us out of a managable n to an intractable 2n.

Perhaps it is this sort of leap in difficulty that Oscar Wilde refered to when he said

“brute logic”–by refusing to forgo a little information here and there, aren’t we just

making our lives needlessly hard?

Is the path we would follow, if we trust the solution to an “incident vision only”

variant of whatever problem confronting us, really all that bad?

It is with this in mind that we propose these means of approximation for safest-

with-sight:

• the “semirandom” solution, which always returns zero for edges known to be

down and a random number–greater than zero and at most one–for all others;

65

• the “quick” solution, which removes all vision from a safest-with-sight problem

before solving, thus minimizing the time needed to solve the approximation;

• the “incidence” solution, which removes all nonincident vision from the problem,

which rectifies the issue of 2h possible paths needing consideration;

• and the “hammy-down” solution, which removes all vision from subproblems

starting from j that was not guaranteed to be passed along to it from any of

its possible calling problems, those starting at i.

This last approximation scheme allows each subproblem to pass information along

to its own subproblems, but only if that information is a “fitting hammy-down,” so

to say. This ensures that each time we visit a subproblem for ij that we will do the

same had we began our adventure at ij–in short, making the process markovian.

I expect that “quick” will be outperformed by “incidence,” but will that lose

out to “hammy-down” in turn? It is hard to predict how the two will compare,

since, although “hammy-down” retains more information, it also discards informa-

tion throughout the computation process, something that is strange and alien to the

pathfinders actual behavior. Is the benefit of more information worth it for the price

of “impurity” we must pay to achieve it? Also, how would we even compare the

approximations? If we select only one graph to run our tests on, then our comparison

results will only be applicable for that one graph; but then if we run tests on an

ensemble of randomly generated graphs, the process we use to generate those random

graphs may impose a bias upon our results.

Before we can proceed then, these are pressing concerns that must be attended to

presently.

66

5.3 Mr. President,

The simplest way, I have found, to work with random graph generation is to take an

approach akin to that of Duncan Watts and Stephen Strogatz [20]. They defined a

random graph process that produced “small world” networks. These are graphs that

exhibit the anecdotal properties of “it’s a small world after all,” where the network

is both highly clustered into distinct groups, or cliques, yet the distance between

any two points tends to be small. This research ties heavily with the notion of “six

degrees of separation,” which posits that any two people on Earth tend to be at

most six hops apart. One hop moves from me to my mother. Another, from her

to her rabbi; then to his family friend in Pittsburg; to his neighbor, a professor at

Carnegie-Mellon University; who had worked during her doctoral research years with

the now Secretary of Defense; who, on occasion, has a meeting with the President of

the United States.

Six degrees, each feasible, connecting me to President Obama.

The Watts-Strogatz model begins by constructing a large graph with a regular

pattern: the vertices are arranged in a ring and are connected to their K nearest

neighbors, K/2 on either side. Next, with probability β–a different value than our β,

only the letter, not the meaning, is in common–, each edge of the graph is randomly

“rewired.” So, if we are rewiring edge ij, then we choose a new edge ik that could

be there, but isn’t yet, and exchange ij for ik. When β is low, close to zero, the

resulting graph is fairly regular; in contrast, when β is high, close to one, we see a

more “random” graph. Somewhere in the middle, though, is a sweet spot for β–where

“small world” networks come from.

In a similar way, we can construct a random graph with vision.

1. Begin with N = 100 vertices laid out in a line.

2. Add an edge from each vertex to the K = 3 vertices after it, or all the vertices

67

after it when K is too large near the end of the line.

3. Rewire each edge with probabilility rE.

4. Add a line-of-sight from each vertex to each of its incident edges.

5. Rewire each line-of-sight with rW .

6. Set βij = 0.25 for all edges ij.

68

This process should, I expect, produce graphs of varying “noise” in two different

ways, “structure noise” and “vision noise.” A fixed, but low value is chosen for the

initial β values, since small chances of failure compound as the network grows large;

similarly, K is chosen to be a small value to better reflect the properties of the real-

world networks safest-with-sight will be primarily applicable for. You rarely come to

an intersection with four options of where to go–there’s left, there’s right, and there’s

straight ahead.

What I plan to do with this process is to let rE and rW each be be 5, 25, 50,

75, or 95 percent, for all 25 different combinations thereof, and generate for each

combination a hundred different random graphs. For each graph, we then follow the

“instructions” given to us by each approximation scheme. We do this by asking the

approximation scheme, what the probability of success would be through each of our

possible next steps; given these values, we take (what the scheme believes to be) the

best choice. After ending the trial for that approximation scheme, either in success or

69

failure, we reset the trial, “forgetting” everything we’ve learned and moving back to

the starting vertex, and continue with the next scheme. Trials would only be run on

the approximations when at least one path exists to the destination; I am not setting

my children up for failure–their success is nonetheless up to them still. My goal in

all this is to determine which scheme tends to better guide our virtual less-than-ideal

pathfinder to the destination. I hope to then be able to say, not, “this is better than

that,” but, “in situations like this, choose that.”

5.4 Gearing Up

Coding “incidence” can be done in a few different ways. We could code an entirely

new system based on the equations found for S earlier when incident-only vision is

given. We could modify the graph that we’ve been given, then pass that as input

to our existing code. Or, preferably, we will create a “drop-in replacement” for

realizeFuture!, the function that has been causing us so much headache on its

own.

function realizeFutureIncidence(G, beta, s)

produce(1.0)

end

That’s it. Because this replacement just produces the likelihood 1.0, it doesn’t

modify any β values; this already occurs, anyway, in incident-only vision cases, since

realizeFuture! is only supposed to operate on nonincident edges. Therefore, all

of the “heavy lifting” occurs withing incidentAverage, the bread and butter of

“incidence.”

More work is required for the drop-in replacement for “hammy-down.”

function realizeFutureHammyDown!(G, beta, s)

found = (-1, -1)

where = "nowhere"

for (i, j) in nonIncidentVision(G, s)

70

if edgeUnknown(beta, i, j)

if connected(G, beta, s, i, j)

found = (i, j)

where = "unknown"

break

end

end

end

for i in parent(G, s), (j, k) in nonIncidentVision(G, i)

if edgeKnown(beta, j, k) and not visibleFrom(G, s, j, k)

found = (j, k)

where = "known"

break

end

end

if found == (-1, -1)

produce(1.0)

elseif where == "unknown"

i, j = found

temp = risk(beta, i, j)

makeEdgeUp!(beta, i, j)

for likelihood in @task realizeFutureHammyDown!(G, beta)

produce(likelihood*(1-temp))

end

makeEdgeDown!(beta, i, j)

for likelihood in @task realizeFutureHammyDown!(G, beta)

produce(likelihood * temp)

end

makeEdgeUnknown!(beta, i, j, temp)

else

j, k = found

temp = risk(beta, j, k)

makeEdgeValue!(beta, j, k, 0.05)

for likelihood in @task realizeFutureHammyDown!(G, beta)

produce(likelihood)

end

makeEdgeValue!(beta, j, k, temp)

end

end

This function, realizeFutureHammyDown!, is not far from being identical to the

original realizeFuture!. Much of the logic is the same, that of the found, but only

when the edge that was found was in the “unknown” part of the graph visible by

71

the vertex s. Otherwise, when the edge is found, but was seen earlier and is thus in

the “known” part of the graph, yet is now “out of range from” s, we must handle

things differently. It is at this latter step that the “destruction” and “impurity”

of the algorithm occurs–we revert the β-value of the found edge back to 0.25, its

original value when it was unseen, explore the graph further via a recursive call to

realizeFutureHammyDown!, then return the found edge to whatever value it had

when the function’s execution began. In this way, we “forget” information whenever

it goes out of our sight.

A watched pot never boils anyway.

5.5 And Ready to Go

The following is a 3d surface plot of our results.

It is admittedly a mess on first glance. However, I feel that this method of display

was the clearest to show what our experiment sought to discover: how the success

rates of the approximation schemes, in general, compare. This data was inherently

three dimensional, one for rE, another for rW , and a third for the variable of interest,

the number of graphs out of a hundred for which each scheme guided us safely towards

72

our destination.

To read this plot, begin at the annotations in the upper right of the image. follow-

ing the arrows. We see that the “surfaces” corresponding to each scheme are neatly

sorted in this corner of the plot, with “incidence” on top down to “semirandom,” the

worst, on bottom. The higher the surface for a scheme is on the vertical axis, the

more times it paid off to follow that scheme’s directions. As we move from the fore-

ground of the image towards the back-left, we are moving from lower to higher values

of rE. The heights of the surfaces in the front, then, correspond to trials run on more

orderly graphs and those in the rear to more random graphs. This increase in general

success rates as we move away from orderly graphs may seem counter-intuitive at

first, but consider how the more random a graph, the more opportunity we have for

“shortcuts” here and there. Therefore, this increase in success can be attributed to a

decrease in average path length. As we read from the right to the left, rW increases,

so the heights on the right correspond to graphs closer to incident-only vision, and

those of the left to graphs with almost no incident vision at all. The results here are

as expected–the less incident-vision, the more gambles we must make, and the less

certainty we have in reaching our destination.

Although there are regions of the surface plot where “hammy” shows through

on top, suggesting that those are regions where this scheme is the best, we could

attribute these winnings to chance alone. It is difficult to say, with this data, whether

“hammy” really is the best choice in the rW ≈ 0.50 region, which intuitively could

make sense–“hammy” does, after all, try to strike a balance between incident and

non-incident vision while maintaining Markovianness. But, for so much more of

the plot, green comes out on top, suggesting “incidence” really is the best of the

approximation schemes proposed herein. The occasional points where red, or even

orange, in the back left corner, show through on top, could all be little more than

“noise,” a regrettable side effect of stochastic modeling.

73

So who cares if “hammy” might be slightly better around rW = 0.50? It takes 2h

longer to solve, so why not just use “incidence” and be done with it?

More importantly though, what does it mean that “incidence” is usually no worse

than “hammy?” For this question, we need to consider what it means for “hammy”

to be a good approximation for the exact solution: any naturally markovian safest-

with-sight system is exactly solved by “hammy.” Since markovian is defined by having

all routes to each point producing the same vision set, “hammy” will never remove

vision when it recurses into subproblems, since any vision j will have it will have

regardless of the i that led into it. So, “hammy” never modifies the information in

any way and must behave, precisely, like the naive, exact solution–the one that is

typically hard to calculate.

Therefore, since “incidence” is typically just as successful as “hammy,” “incidence”

must tend to be a good approximation in any markovian or near-markovian setup.

Finally, the non-markovian cases, corresponding to the surface heights along the

left edge of the plot, prompt us to ask: are these naturally harder to be successful on,

meaning that the success rates for the exact solution would also “dip” strongly there–

taking on a similar shape as the approximations–, or are they just naturally harder

to solve, meaning that the exact-surface would not drop down on the left–taking on

a distinct shape of its own, tending to be higher, flatter, further out of reach, beyond

the trappings of complexity set out by the antagonist, 2× 2× . . . ?

74

Chapter 6

Survey

Before I conclude, I feel the need to say, “we are not alone,” if only for one last men-

tion of alien abductions. Uncertainty, prediction, probability, statistics, randomness,

oracles, decisions, path-finding, expected maximization, and, all of it really, is nothing

new to Man. These topics have interested us since Antiquity–the term “oracle,” a

formal term used in computer science proofs stems, perhaps, from the mythological

use of the same idea, of a being who gives boundless knowledge, oftentimes at a price.

What I have collected in these sections are those resources which have aided this

research the most. Although the final approach was much our own, pieces of it–either

bits of notation or just ways of looking at the problem–would never exist had I not

stumbled upon these papers.

Presently then, let’s give these works what they are due.

6.1 Leeland on Case Based Reasoning

At one point, primarily to extend the scope of this work for the sake of conference

submission, I entertainted the thought of designing a cased-based reasoning system

for approximations. Leeland [12] collects nine papers by various authors on this topic.

Case-based reasoning, often abbreviated CBR, is a technique for approximating

75

or bootstrapping solutions to problems of high complexity or dimensionality. This

is done by comparing subproblems to similar subproblems that have been already

solved, or cases. A common theme among the nine papers is the four Rs of case-base

reasoning, which act as a general framework for all its applications:

• Retrieving the most similar case to the given problem from memory;

• Reusing the information about the case’s configuration and solution for solving

the given problem;

• Revising that solution to better fit the given problem; and

• Retaining new information gained through this process about the given problem

in memory.

In general, individual papers from this collection seek to either (i) show careful

application of this framework to a particular problem, determining methods of quan-

tifying distance/similarity between cases, regression methods used to approximate a

new solution from old solutions, and storage/retrieval schemas; (ii) further formalize

the four Rs, such as one article accomplishes by relating the process to absorbing

Markov chains ; or (iii) survey the history and trends of the topic.

Further common themes in the collection include:

• comparison of reasoning models;

• case encoding/decoding schemes;

• regression techniques;

• probabilitistic and fuzzy techniques; and

• parameter-tuning techniques.

Regretfully though, time constraints prohibited further application of this

paradigm to safest-with-sight.

76

6.2 Beneroya on Convolution Integrals

Once I had resigned us to our fate of coming at this problem with a solely analytical

attack, I realized that we needed to be equipped with the right weapons–the formali-

ties of probability theory. Beneroya [2] provides a thorough, yet general, introductory

text for probability modeling in engineering and science. The first four chapters lay

the groundwork for set theory, probability theory, and random variables, modeled as

probability density functions. This follows how most texts commence the subject.

The remaining chapters explore systems and processes of random variables and

their dynamics, paying close attention to their formalizations, analyses, and appli-

cations. For example, vibrating systems, those that can be modeled using a single

degree of freedom to describe motion, can be analyzed using convolution integrals.

∫ ∞
−∞

F (τ)G(t− τ), dτ

Such integrals are used to combine multiple random variables, resulting in a de-

scription of the system’s overall behavior. Analyzing systems of more than one de-

gree of freedom can be done with similar convictions by writing the system in a

matrix/vector form, naturally leading into discussions of eigenvalues of random dis-

tribution.

Systems with dynamics that are continuous in both time and one-dimensional

space can often be modeled as or with analogy to taut strings and vibrating beams,

either axially or transversely, particularly with how such systems oscillate and respond

to forces. Reliability of a system can be modeled through the analysis of when or

how often a system will enter undesirable states, such as a stress or capacity level

falling too high or too low. Nonlinear dynamics, which should be familiar to any

reader already familiar with chaos, are grounded by Beneroya also in terms of density

functions. Nonstationary models, those in which the distributions of random input

77

variable may vary with time or space, are of particular interest anddifficulty due to the

amount of data needed, but may be approximated by building up stationary models,

like bricks to a building.

Beneroya’s discussion next leads into Monte Carlo methods, in particular how

this method can be used to solve complex models. I must note that the text did not

mention Monte Carlo Markov Chains as they are used in Bayesian approaches, but

the connections between the two will be clear for any statistical-savvy reader. And,

finally, the author shows that fluid dynamics under perturbations can be modeled as

a system that is continous both in time and multi-dimensional space.

Much of this text is based on modeling real-world problems as density functions

and on techniques for combining multiple input distributions together to result in a

single output distribution. This, one hopes, perfectly describes the behavior of the

system of interest, much in the same vein as the analyses carried out in a previous

work of mine [11] on the antifragilty of hypothetical rabbit populations.

Before proceeding, I bring attention to a practice carried out in this text that I

have not witnessed elsewhere: whenever a proper noun is first used in the name for

a term (e.g., Marvok chains), a substantial section is included nearby that features,

when available, a photograph of the namesake (e.g., Markov himself) always along

with a detailed history of that person’s life and contributions to math and science. I

enjoyed these asides and would like to thank the authors and editors of this text for

their inclusion.

6.3 Dreyfus on Dynamic Programming

The closest works to ours, those of Dreyfus [7] and Bertsekas [3], are two texts in the

Mathematics in Science and Engineering series. Although old–respectively, they are

from 1977 and 1976–, they have proved particularly relevant to our research, together

78

covering the full scope of mathematics required to treat safest-with-sight.

Dreyfus grounds dynamic programming in terms of pathfinding, using a notation

throughout for selecting the minimum of two values, x and y, written compactly as

the following.

min

x
y


This is particularly useful for fitting on the page the minimization of two long

equations, such as the following, an example also using a generic function S, repre-

senting the solution to the problem under some particular input (x, y).

S(x, y) = min

a+ b+ c+ d+ e

f + g + h+ i+ j


For cases where minimization must occur over multiple terms, the following sort

of notation is used instead.

S(x, y) = min
k=1, 2, ..., N

[ak]

In this way, Dreyfus builds up ever-simple examples of non-random problems

that can be stated in terms of optimal pathfinding on directed graphs, either cyclic

or acyclic. Once this groundwork has been laid, stochastic modeling is introduced,

requiring only simple (rational) probabilities from which weighted sums can easily

be expressed without requiring densities or measures. Multiple control policies are

explored and compared: is it better to minimize the maximum error or to maximize

the expected payoff? Different problems call for different controls. Following that,

special cases are discussed where particularly useful techniques can be employed.

In problems where the state can be said to move to one of a set of subsequent

states, each with an associated probabilistically, regardless of previous states explored,

79

we can model the system as a transition probability matrix and use Markovian tech-

niques. This requires determining the probabilities associated with such transitions,

but allows for fast, linear, matrix-based algorithms.

Consider problems where we can model the solution as follows, where Vi(x) rep-

resents some optimized expected value of stage i in state x, B(i) is the set of random

variables associated with i, and f is some function quadratic with respect to the

elements of B(i). Where boundary cases VN(x) are defined, Dreyfus analyzes such

systems by induction.

Vi(x) = min
y

∑
B(i)

f(B(i))


Next, consider systems where the decision maker is given information after each

decision made, effectively allowing it to “change its mind” as it goes. This is notably

similar to our problem, and can be refered to as adaptive control, dual control, or

bayesian control, all based on different ways of framing the problem, but all ultimately

the same thing. Here, the author uses a technique we have become familiar with on

our own right: recasting condition probabilities such as P (a | b1, b2, . . . , bn)–that is,

where the probability of a single event given multiple other events–explicitly as in the

following.

P (a | b1, b2, . . . , bn) =
P (a, b1, b2, . . . , bn)∑
a′ P (a′, b1, b2, . . . , bn)

=
P (a, b1, b2, . . . , bn)∫∞

−∞ P (a′, b1, b2, . . . , bn) da′

Normally in probability treatments, the denominator is left simply as

P (b1, b2, . . . , bn) in either case, but the explicit noting of an iteration may better

correspond with the computations required. Further connections could be made to

80

Beneroya’s convolution integrals to demonstrate the benefits of Dreyfus’s notation.

As used in the current discussion, probability densities are computed in this way to

solve for expected values given some decision is assumed to be taken by the decision

maker; that which optimizes the expected value is taken as the solution.

Note that this precisely describes the general approach we have taken in solving

safest-with-sight.

6.4 Bertsekas on Stochastic Modeling

Bertsekas [3], in contrast to Dreyfus, approaches the stochastic dynamic programming

class of problems not from pathfinding up, but from measure theory up. These differ-

ences allow Dreyfus to arrive at implementations of solutions quicker, but Bersekas,

and ourselves, to arrive at axiomatically-grounded proofs quicker.

This work begins with a clear introduction formalizing optimality in terms of total

orders, where information is freely available, and partial orders, where information is

imperfect. Random variables, responses from other “players,” imperfect information,

and so on are all described as events “chosen” by Nature, a well-known classic interpre-

tation in game-theoretic models. By considering expected values of utility functions

over all possible outcomes in the outcome set, we can develop a probabilistic total or-

dering (assuming some notion of tiebreaking is given), where i < j whenever E [U(i)]

< E [U(j)]. That is, we arrange our choices in order of their average values.

Still within the introduction, sequential decision models, stated as the primary

focus of the remainder of the text and which can represent the adaptive control

scenarios treated in Dreyfus, are modeled by an iterative process:

• xk+1 = fk(xk, uk, wk), where

• xk is the state of the system at discrete time k,

• uk is the decision made by the decision maker according to some component

81

function uk = µk(xk) at time k, and

• wk is Nature’s input to the system at time k.

Note that the transition functions, as well as some underlying utility function,

may vary at each time step. An overall utility function can be given, then, as a

summation of all component functions over time: U(µ, u, w) =
∑
Uk(xk, µk(xk), wk).

Finally, the general sequential decision making problem reduces to finding some set

of functions µ that optimizes the expected value of U–expected value because w will

be “chosen” by Nature or Lady Luck. Additionally, akin to the form used by Dreyfus,

this work prefers notation such as the following.

J(x, y) = inf
k=1, 2, ..., N

[ak] (6.1)

Infima are prefered to minima except in cases where existance of lower bounds

either are obvious or have been explicitly shown, a formal technicality.

In following chapters, the work proceeds by laying out the conventional set the-

oretic basis for measure theory and its application to probability theory. Critical

note is made that modeling in this way requires countability to either be shown or

assumed; for some applications of measure theoretic probability, this can be almost

negligibly trivial, and in other cases (involving infinities or continuous intervals, for

example), substantial work may have to be done to validate proofs. In our work the

former holds, the countable, discrete nature of graphs working to our advantage, so

I, as Bertsekas does, let countability be assumed except where noted.

The general technique above is applied out under different perfect information

classes of problems where different assumptions hold, leading up to considerations

about the imperfect information classes. Reduction, in these cases, is performed to a

weighted sum of similar perfect information cases. Then, in manners again much like

82

Dreyfus, albeit breifer, this work explores solving linear systems with quadratic con-

trols and finite state markov chain models. Several other examples are given, showing

analyses involving expected values over finite spaces that in turn are approached by

linear algebraic techniques.

An issue rising out of the reduction to perfect information cases is that the iteration

over all possible values can suffer from the curse of dimensionality. Approximations,

then, must be performed in order for the result to be computable. We encountered

this problem ourselves–at each step we must consider the 2h “what ifs” that might

occur.

This work next explores discretization of continuous intervals, where convergence

towards the continuous solution is often the primary topic of analysis. Of more

relevant interest to safest-with-sight, a definition of adaptive controllers is given, being

informally those that are not optimal but still use the “measurements” collected “as

it goes” to some advantage.

Two fundamental controllers are given to illustrate this class of controllers: the

naive feedback controller, which simply assumes at each step that Nature inputs an

expected value of some distribution; and the open loop feedback controller, which

calculates probable inputs from Nature given past inputs, but assumes that no future

information will be collected. Neither of these approaches to control have proved

useful for our application, since neither makes sense for “all or nothing” failures–

there is no “average” between up and down, and the probabilities between failures

are all disjoint, so the latter type of controller has nothing to learn based on Nature’s

past.

The final chapters of the text revisit several of the classes of problems already dis-

cussed here, above in this section and previous, but in the countably infinite scenarios.

Much of the distinction between this section and what has already been recounted is

technical and to summarize it would be, for the most part, repetition.

83

“Well tell me about Bertsekas’s appendices,” you say. “Well of course,” I say.

The first sets out mathematical foundations, in the conventional sense, for set

theory, countability, spaces, topologies, matrices, compact sets, continuous functions,

convexity, and so on. The second, of more interest to safest-with-sight, sets out

theorems for existance and necessary and sufficient conditions for optimality:

• any finite set has a minimum,

• any infinite set X has a minimum if there exists a continuous f : Rn → R and

X is a compact subset of Rn, and

• when X = Rn, ∇f(x∗) = 0 is required to show x∗ minimizes f(x).

The third appendix lays the groundwork for measure theoretic probability theory.

A probability space is given by (Ω, F, P), where:

• Ω is the set of possible outcomes, F is the set of possible events, and P is the

probability measure;

• F is a set of subsets of Ω that contains Ω, Ā if it also contains A, and
⋃
k Ak if

it also contains each of the countable and disjoint sets Ak; and

• P is a measure mapping F to the interval [0, 1] such that P (ω) = 1, P (∅) = 0,

and P (
⋃
k Ak) =

∑
k P (Ak) for countable and disjoint sets Ak.

A random variable, unlike in other works that first treat them using density func-

tions, is a function that maps Ω, the outcomes, to R, the real numbers. In this sense,

the random variable associated with a die maps the physical orientation of the die

after being tossed to a numeric value. A cumulative density F can then be defined

for a random variable x in measure theoretic terms: F (z) = P ({ω ∈ Ω | x(ω) ≤ z}).

The final appendix formalizes finite state markov chains. In a stationary case, we

are given a single n× n matrix p where, for each element, 0 ≤ pij ≤ 1 and each row

and column sums to some value π also in that interval. Then, the probability that

84

the system will enter state sj next is given by P (xk+1 = sj | xk = si), equal simply

to pij.

In the nonstationary case, we are given a similar matrix pk for time step k. The

probability that the state will transition from i initially to j at time k can be given

by (
∏k

m=1 pm)ij. This reduction is just as in the stationary case, thus showing the

author’s reasoning for using only stationary finite markov chains elsewhere in the

text.

A markov chain p is ergodic if it is possible to go from every state to, via some

path, to every other state; we also call these irreducible chains. The first passage

time of sj is defined as the time step k when the system first enters state sj. The

mean first passage time is the expected value of k and is, a random variable in its

own right.

The final proof of the text, within this appendix, is one relating to an assumption

made in an earlier chapter about there being a state s∗ such that the mean first

passage time of s∗ is not infinite, implying that s∗ is almost certainly accessible by

the system, albeit not necessary likely.

6.5 Aboudolas on Rolling Horizon

More recently, Aboudolas published a paper applying rolling horizon to the man-

agement of traffic congestion [1]. Solving the traffic control problem is nontrivial,

since balancing the relationships and expectations between each redlight is a partic-

ularly difficult problem. This paper begins by discussing the various strategies that

the literature has proposed and studied, sometimes even tested in the real world by

city officials. The means of these strategies are wide in comparison, but the general

scheme is: each light has sensors with which to collect, store, and share data with

traffic control. How traffic control responds is what is meant here by “strategy.”

85

Aboudolas adopts rolling horizon decision making for this task. A model-predictive

scheme is proposed that behaves as follows:

1. At time step k0

2. we solve a quadratic programming control problem

3. based on a measured or estimated input, x(k0),

4. and also based on available predictions of traffic demans, d(k0).

5. A control “trajectory,” or sequence of proposed actions, is calculated,

6. based on the solution to that problem and estimates of x and d at future time

steps.

7. However, we only put into action the first few steps–the rolling horizon–of that

trajectory.

Although the problem and perspectives taken by Aboudolas do not match those

of our discourse here, on safest-with-sight, this prediction-based movement matches

our general strategy exactly: the entire future is planned for, but only a single step is

taken at a time before we must respond to the new information we collect, resulting

in the preference of a policy over a fixed path.

6.6 Carey on Network Performance

Much work exists on the subject of networks, what happens when they fail, and

how we can prevent those failures. Carey gave a thorough paper on the subject [4].

Fortunately, this paper is also closely relevant to the probabilitistic perspective taken

for solving safest-with-sight.

For Carey, a network had N vertices and a set of directed edges connecting those

points, denoting A. These edges represented branches in waterways, and the event

that a branch would become obstructed due to a seismic event was given by the

variable θa.

86

θa =


1 Link a is up

0 Otherwise

The probability of each edge’s being up is seen as the expected value of this

variable for that edge over all possible realizations. This work then concerned itself

with the flow patterns that the water would take through the network. The maximum

flow, for a given realization of θ, is denoted MF (θ), and the expected maximum flow,

a known computationally hard problem [19, 17], would be denoted EθMF (θ).

Although calculating this value exactly is intractable, Carey attempts to find

closer bounds on that value than previous works. Ideally, this range will be narrow,

permitting a decision maker to select its midpoint as an approximation to EθMF (θ).

Parallel considerations are given, as the paper continues, to optimal flows when

paths must be fixed in advance and the economic benefits that arise from the relation-

ships between parties. The now-calculatable bounds on these values are then applied

to a toy model based on Salt Lake City. Still, though, this work does not contain a

component analogous to our lines-of-sight.

6.7 Nickerson on Decision Modeling

Nickerson says in his paper, “Prior to receiving the information contained in Y we

must weight the expected value of each alternative by the probability of receiving

Y ” [14]. Written in 1980, in the same operations-research-laden era as Bertsekas and

Dreyfus, Nickerson was setting forth a way of modeling decision modeling itself. In

this, the context of Y is given as imperfect information–neither do we know nothing,

nor do we know everything, but only what the oracle, Nature, and Lady Luck would

have us know. Its use here is in calculating the “expected value of modeling,” a

problem of considering, as a decision maker, which models to use in our problem

87

solving process and how to update the information our models previously gave.

In all, this is perhaps the most abstract paper I have encountered during this

research, but in a way it captures all of safest-with-sight in its thesis, that “the

value of the model to the decision maker is in the information provided about the

problem.” The analogy between our two works is more apparent when I say, “the

value of the next step to the ideal pathfinder is in the information provided about

the paths ahead.”

Nickerson’s work strives to rationalize, rigorously, the close interaction between

the decision maker–the boss in charge–and the analyst–the recently-hired number

cruncher. There, the two are caught in a ballet, one making decisions, leading to new

information being gathered from the visible world, and the other, fitting those values

into her analyses, responding to the boss with these predictions about the “invisible

world.” In pathfinding, these are naturally joined, the pathfinder serving both roles.

It steps, observes, and considers, repeating as necessary.

6.8 Almost There

For additional survey, I refer the reader to the preliminary works, [10, 11]. Because (i)

the texts from the 70s, [7, 3], cover all the necessary techniques and (ii) I have been

unable to find works more specific to our formulation of the stochastic pathfinding

problem than those treated above, I do not recreate those surveys here. This should

provide a more unified, concise reference for the reader.

88

Chapter 7

Conclusion

We have arrived at our destination. The path we have taken to get here has been

fraught with measure theory and other dangers. But we kept our smarts about

ourselves, and we found a solution to our problem–we solved S(ij, ξ) = x. We did

this in the simplest of cases, when our starting point and our destination were in

close proximity, we did this when our path ahead is straight, the only difficulty being

commitment; and we did this for the general case, for all cases.

But we can never, I fear, actually compute that solution. Instead, we could only

have feasibly gotten here, this, the destination, the other side of campus, through the

swamps of summer construction projects, by approximation. We produced a 3d sur-

face plot. This graphic suggested that the approximation scheme, named “incidence,”

which cares only about vision if it is of an incident edge to the current position, was

the best of those proposed here, beating out three other contenders, “semirandom,”

“quick,” and “hammy.”

Yet more can be gleaned from the surface plot. The stories it has to tell aren’t

over.

Turn back to the plot and look closely, notice that all of the surfaces behave sim-

ilarly. Although their heights differ consistently throughout, the curves they exhibit

89

across the 3d space are nearly equivalent. On the side of high structure and long

distances, success rates are low, but as the structure of the network is scattered by

the increase in rE, this success rate likewise increases. I expected as much.

Along the other dimension, of rW , the curves are more interesting. On the

side of hight incident vision–when most information is immediately available for

“consumption”–, the success rates are significantly higher, regardless of approxima-

tion scheme. Even “semirandom,” which always takes a random step except those

known to be down, sees a marked performance increase. And, to no surprise, “inci-

dence,” if for no reason other than its namesake, performs clearly better than the

other schemes as information is mostly incident.

But the other two schemes, “hammy” and “quick,” also perform well here, yet

do not have any direct mathematics regarding incidence or non-incidence. The latter

doesn’t even take vision into account at all! To understand this, think, “how exactly

were these schemes used in the simulation that produced this plot?”

Although “quick” operates by proposing the best fixed path towards the desti-

nation, it still only ensures that the first step of that path will actually be traveled.

Once the simulated pathfinder has taken that step, it is given more information about

the problem–the values of β used by “quick” are updated–and the scheme is again

invoked. Because of this, the path proposed by this approximation scheme at the first

step may not be the path traversed by the pathfinder in the end.

How, then, does the amount of incidence of the graph tie in with the natural

dynamics of the “step, observe, plan” pattern? It would appear that having infor-

mation about a future decision is less conductive of success simply due to the fact

that that future decision is less likely to be taken. Therefore, can I conclude that

decision making, when a goal is in mind, coupled with the ability to choose how we

observe, should be done in a way that observations are “immediately consummable,”

observations whose values play a role in the choices we will soon be considering?

90

We, of course, cannot make such claims certainly yet. More work will have to be

done to solve our open problems:

• What shape does the exact solution produce on the surface plot?

• Is safest-with-sight NP? NP-Complete? NP-HARD? #P?

• What is it about incident vision that makes pathfinding so much easier?

What I will say, though, is what we have, throughout this discourse, touched upon

about decision making in general. Simon described the thought-process as pathfinding

through an abstract space [18]. He posited that our actions and facilities are simple

machines; the only reason we are apparently complex actors is because we are acting

in response to a complex world. So we too wish to adopt this philosophy–decision

making as pathfinding. The world we behave in has an inextricable hold on our

behaviors, just as the structure of a graph and its lines-of-sight have on our ability

to successfully traverse it. In our limited capacity, as humans, as simple machines,

to understand the “graph of the world,” so to say, what is it we should pay attention

to? What features of decision making, of pathfinding, are most conductive of success,

of a good life?

Don’t gamble, if you can avoid it. Don’t cross edges that you haven’t seen yet,

whose missteps that will cut our traversals short.

Don’t overcommit, if you can avoid it. Even if you stick to your observations,

starting down a route that you’ve only partially observed and that provides no escape

is no better than a gamble. Its adversity is only delayed until a downed edge later

becomes inevitable.

And don’t ever tempt the oracle. Information about the far future is only useful

when that future is certain–in which case, who cares if we know what that future has

to hold. Either we have a say in the cards we’re dealt, or we are along for the ride.

Regardless, the Unknown is ahead of us. It is unimaginably large, holding untold

secrets, ills, and fortunes. And it begs to be explored.

91

Bibliography

[1] K. Aboudolas, M. Papageorgiou, A. Kouvela, and E. Kosmatopoulas. A rolling-

horizon quadratic-programming approach to the signal control problem in large-

scale congested urban road networks. Transportation Research C, 2009.

[2] Haym Benaroya, Seon Mi Han, Seon Mi Han, and Mark Nagurka. Probability

Models in Engineering and Science (Mechanical Engineering (CRC Press Hard-

cover)). CRC Press, 2005.

[3] Dimitri P. Bertsekas. Dynamic programming and stochastic control, Volume 125

(Mathematics in Science and Engineering). Academic Press, 1976.

[4] Malachy Carey and Chris Hendrickson. Bounds on expected performance of

networks. Networks, 14, 1984.

[5] Bill Cherowitzo. Richard bellman’s biography. Salvador Sanabria, 2003.

[6] A.D. Dimitriadis, N. Shah, and C.C. Pantelides. Rtn-based rolling horizon al-

gorithms for medium term scheduling of multipurpose plants. Computers chem.

Engng, 21, 1997.

[7] Stuart E. Dreyfus and Averill M. Law. The art and theory of dynamic program-

ming, Volume 130 (Mathematics in Science and Engineering). Academic Press,

1977.

[8] Malcolm Gladwell. The Gift of Doubt. New Yorker, June 2013.

92

[9] Gregory A. Godfrey and Warren B. Powell. An adaptive dynamic programming

algorithm for dynamic fleet management, i: Single period travel times. Trans-

portation Science, 36, 2002.

[10] B. Knowles and M. Atici. Fault-Tolerant, but Paradoxical Path-Finding in Phys-

ical and Conceptual Systems. ArXiv e-prints, June 2014.

[11] B. A. Knowles. Initial Analysis of a Simple Numerical Model that Exhibits

Antifragile Behavior. ArXiv e-prints, August 2015.

[12] Antonia M. Leeland. Case-Based Reasoning: Processes, Suitability and Applica-

tions (Engineering Tools, Techniques and Tables). Nova Science Pub Inc, 2010.

[13] Alexis Madrigal. Meet the Robotics Company Apple just Anointed. Atlantic,

June 2013.

[14] Robert C. Nickerson and Dead W. Boyd. The use and value of models in decision

making. Operations Research, 28, 1980.

[15] Mehrdad Niknami, Samitha Samaranayake, and Alexandre M. Bayen. Tractable

pathfinding for the stochastic on-time arrival problem. CoRR, abs/1408.4490,

2014.

[16] Suresh Sethi and Gerhard Sorger. A theory of rolling horizon decision making.

Annals of Operation Research, 29, 1991.

[17] Yuhong Sheng and Jinwu Gao. Chance distribution of the maximum flow of

uncertain random network. Journal of Uncertainty Analysis and Applications,

2, 2014.

[18] Herbert A. Simon. The Sciences of the Artificial - 3rd Edition. The MIT Press,

1996.

93

[19] Steven Stern. Approximate solutions to stochastic dynamic programs. Econo-

metric Theory, 13, 1997.

[20] Duncan J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton

& Company, 2003.

94

Appendix A

Proofs

Definition 1 (SWS Problem). An SWS problem is defined by (i) an acyclic digraph

G = (V,E,W), (ii) an edge ij, a destination vertex d, (iii) a collection of probabilities

of failure β, (iv) a set of mutually exclusive events ξ, and a probability measure P .

Where G, β, P , and d are understood, an SWS problem is denoted S(ij, ξ).

If a ∈ V , then there exists a vertex a in the graph. If ab ∈ E, then there exists a

directed edge from a to b and a < b. If abc ∈ W , then there exists a line-of-sight from

a to bc and a ≤ b < c.

The events of P are π and for all ab ∈ E, αab and δab, as well as their compliments,

denoted with an overbar. These respectively represent the event that a pathfinder could

traverse the graph from i, immediately to j, then through some path to d without

encountering a deadend or cross a failed edge; the event that edge ab has failed; and

the event that the pathfinder included ab in its traversal. Given β, P (αab) = βab.

When the pathfinder reaches or begins its traversal at vertex a, it is informed of the

failure status of each edge bc where abc ∈ W . The pathfinder is assumed to traverse

edges optimally for what it knows about the graph via G, β, and the information given

it through W .

The solution to an SWS problem is the value of the call to S in the expression

95

S(ij, ξ) = P (π | ξ, δij).

Definition 2 (Expected Value). In the context of S(ij, ξ), the expected value

operator Eξ′ is defined by Eξ′f(ξ′) =
∑

ξ′∈R(ξ) P (ξ′ | ξ)f(ξ′), where R(ξ) =

{ξ′ | abc ∈ ξ′ iff (abc ∈ ξ or jbc ∈ W)} and abc is either αbc or its compliment.

Theorem 1 (Inductive SWS Solution Theorem). If j = d, then S(ij, ξ) = P (ᾱij | ξ).

Otherwise, S(ij, ξ) = P (ᾱij | ξ)Eξ′ maxjk S(jk, ξ′).

Proof. The base case is trivial given the definition of the problem. Since P (π | ξ, δij)

assumes ij is being crossed, we must conclude that all edges previously crossed were

done so without failure; otherwise, ij would not have been available for selection.

The only way the pathfinder can fail now is if this last edge itself fails; therefore, its

probability of success is just the probability of that edge not failing.

For the general case, we assume that all jk subproblems have been calculated

properly. We also must assume that all edges previously crossed did not fail in the

same manner as before. The pathfinder still must cross edge ij without failing and

continue. These are disjoint events, so the ”and” here is a simple multiplication. The

probability that it crosses the edge without failure is analogous to the base case, and

the probability of continual success is that of the next edge, jk, that maximizes S

here. This follows from the definition of the pathfinder’s behavior. Therefore, we find

this by an expected maximum operation.

Definition 3 (Nonincident Expected Value). In the context of S(ij, ξ), the noninci-

dent expected value operator Eξ̃′ is defined by Eξ̃′f(ξ̃′) =
∑

ξ̃′∈R̃(ξ) P (ξ̃′ | ξ)f(ξ̃′), where

R̃(ξ) =
{
ξ̃′ | abc ∈ ξ̃′ iff (abc ∈ ξ or [jbc ∈ W and j 6= b])

}
and abc is either αbc or its

compliment.

Definition 4 (Ordered Neighbors). In the context of S(ij, ξ), iif jk, jm ∈ E and

P (π | ξ, δij, δjk) ≥ P (π | ξ, δij, δjm), we say jk = r(a) and jm = r(b), where a < b

96

and the domain of r is the integers 1, 2, . . . , deg(j).

Definition 5 (Best Gamble). In the context of S(ij, ξ), iff ξ ∩ {αjk, ᾱjk} = ∅, jjk 6∈

W , and, for all jm where jm = r(a) and a < g, either ξ ∩ {αjm, ᾱjm} 6= ∅ or

jjm ∈ W , we say jk = r(g) and reserve the name g for this usage.

Lemma 1 (Incidence and Subproblems). If r(1) is up, then S(r(1), ξ′) = S(r(1), ξ̃′).

Proof. The difference between ξ′ and ξ̃′ is that the latter does not include events that

(i) are incident to j and (ii) are not yet in ξ. Following that G is directed acyclic,

the only such events that would affect S here are αr(1) and its compliment. Since

r(1) was assumed up, the compliment is also assumed. Therefore, there are no more

events that could be excluded by the use of ξ̃′ that affect the value of S.

Theorem 2 (Inductive SWS Solution with Incident Speed-Up Theorem). If

j = d, then S(ij, ξ) = P (ᾱij | ξ). Otherwise, S(ij, ξ) = P (ᾱij |

ξ)Eξ̃′
∑g

k=1 S(r(k), ξ̃′)
∏k−1

m=1 P (αr(m) | ξ̃′).

Proof. This definition of S differs from the previous definition only in its treatment

of incident vision. From the definition of the pathfinder’s behavior, we know it will

prefer to select r(1) as its next step. This will be done exactly when the pathfinder

does not see that r(1) is down. If g = 1, then r(1) will never be seen and will always

be selected. Otherwise, r(1) will be selected whenever it is up, which happens with

probability P (ᾱr(1) | ξ̃′). This, however, is already included in the definition of the

r(1) subproblem, S(r(1), ξ̃′), so we need not express it explicitly here.

If g = 2, then r(2) will never be seen, but will only be selected when r(1) is down,

which happens with probability P (αr(1) | ξ̃′). Similarly, in general, r(g) will never

be seen, but will only be selected when r(1), r(2), . . . , r(g − 1) are all down, which

happens with probability
∏g−1

m=1 P (αr(m) | ξ̃′).

97

Therefore, we may rewrite S as a sum following this total probability of how the

pathfinder will behave next.

Remark 1. The latter definition of S eliminates the maxjk term and requires fewer

iterations from the expected value operation, since, it is trivial to observe, 2h
∣∣∣R̃(ξ)

∣∣∣ =

|R(ξ)| for some nonnegative integer h. Therefore, a speed-up of 2h may be expected.

Definition 6 (Beta Space). By B we mean the a finite space generated by a finite

application of (i) 0, 1 ∈ B, (ii) βij ∈ B for all ij ∈ E, (iii) if b ∈ B, then 1 − b ∈ B,

(iv) if b1, b2 ∈ B, then b1b2 ∈ B, and (v) if b1, b2, b3 ∈ B, then b1b2 + (1 − b1)b3 ∈ B.

We note that (v) implies (iii) and (iv), but they are nonetheless included in this list

for clarity.

Lemma 2 (Expected Value in Beta Space). If f(ξ) ∈ B, then Eξ′f(ξ′) ∈ B.

Proof. We prove this inductively. When ξ′ takes on a single realization, the expected

value is equal to f(ξ) without changes and is in B by assumption. For the general case,

consider how the expected max is a sum weighted by a P (ξ′ | ξ) term and how this

is equalivant to some P (a1, a2, . . .) = P (a1)P (a2) · · · = b1b2 . . . , where a1 ∈ {αij, ᾱij}

for some ij. It follows that each bk ∈ B and therefore P (ξ′ | ξ) ∈ B. With this in

mind:

Eξ′f(ξ′) =

∑
ξ′

f(ξ′)P (ξ′ | ξ) =

∑
a

f(a)P (a1, a2, . . .) =

∑
a

f(a)P (a1)P (a2) · · · =

98

P (a1)
∑
a|a1

f(a)P (a2) · · ·+ P (ā1)
∑
a|ā1

f(a)P (a2) · · · =

P (a1)Ea|a1f(a) + P (ā1)Ea|ā1f(a) =

b1b2 + (1− b1)b3

This final step is made following the inductive assumption that smaller calls to the

expected value are in B; therefore, by assumption (v) of definition 6, Eξ′f(ξ′) ∈ B.

Theorem 3 (Range of SWS Solutions). For all ij and ξ, S(ij, ξ) ∈ B.

Proof. The value of S in the base case is 1− βij for some ij, which is by definition in

B. For the general case, we can appeal to the previous lemma to reduce the solution

to the multiplication of two terms, b1 and b2: the first of these follows the base case

and is trivially in B; the latter is the expected value of a function which, by inductive

assumption here, is in B. Therefore, the value of S too must always be in B.

Remark 2. Tighter bounds can be made during approximations, etc. by considering

B as the range of S instead of the full interval [0, 1].

99

Appendix B

Code Used

dictionary of keys that returns the zero of the given type

class sparse_dok(dict):

def __init__(self, t=bool):

self.t = t

def zero(self):

return self.t(0)

def __missing__(self, key):

return self.zero()

sparse_dok implementation of adjancency matrix

also stores neighbors in/out as a linked list structure

class adjacency_matrix(sparse_dok):

def __init__(self):

self.t = bool

self.before = []

self.after = []

def grow(self, k):

if len(self.before) <= k:

need = k-len(self.before) + 1

self.before += [[] for x in range(need)]

if len(self.after) <= k:

need = k-len(self.after) + 1

self.after += [[] for x in range(need)]

def ins(self, j):

self.grow(j)

for i in self.before[j]:

yield i

100

def outs(self, i):

self.grow(i)

for j in self.after[i]:

yield j

def __setitem__(self, key, value):

i, j = key

self.grow(j)

if not self[key]:

self.after[i].append(j)

self.before[j].append(i)

super().__setitem__(key, value)

similar to adjacency matrix, tracks vision

class sight_matrix(sparse_dok):

def __init__(self):

self.t = bool

self.lines = []

def grow(self, k):

if len(self.lines) <= k:

need = k-len(self.lines) + 1

self.lines += [[] for x in range(need)]

def vision(self, k):

self.grow(k)

for i, j in self.lines[k]:

yield i, j

def __setitem__(self, key, value):

k, i, j = key

self.grow(k)

if not self[key]:

self.lines[k].append((i, j))

super().__setitem__(key, value)

a sparse_dok, but it returns 1.0 for missing values

class state_matrix(sparse_dok):

def __init__(self):

self.t = float

def zero(self):

return 1.0

base class for functions

class nonchainable(object):

def __init__(self, func):

self.func = func

def __call__(self, *args):

return self.func(*args)

101

def __str__(self):

return self.func.__name__

base class for functions such that

the range and domain are the same

class chainable(nonchainable):

def __and__(self, other):

def temp(*args):

if len(args) == 1:

args = (self(*args),)

else:

args = self(*args)

return other(*args)

temp.__name__ = "{0}_{1}".format(self, other)

return type(self)(temp)

we make the A and W here; the func

that is decorated with @base_graph just

needs to make edits

class base_graph(nonchainable):

def __call__(self, N):

A = adjacency_matrix()

W = sight_matrix()

G = (int(N), A, W)

self.func(G)

return G

decorates a function that, given a G, makes edits

to add edges

class grapher(chainable):

def __call__(self, G):

(N, A, W) = G

G = (int(N), A, W)

return self.func(G)

similar to grapher, but for vision

class sighter(chainable):

def __call__(self, G):

(N, A, W) = G

G = (int(N), A, W)

return self.func(G)

similar to grapher, but modifies

a given bstat instead

class betastate(nonchainable):

102

def __call__(self, G):

(N, A, W) = G

G = (int(N), A, W)

bstat = state_matrix()

self.func(G, bstat)

return bstat

similar to grapher, but returns

a modified copy of the graph

class modder(chainable):

def __call__(self, G):

(N, A, W) = G

G = (int(N), A, W)

return self.func(G)

a special sparse_dok for caching

dynamic programming results

defined by its encode/search system

class solver_cache(sparse_dok):

def __init__(self):

self.t = float

def zero(self):

return False

def encode(self, S, I, path, G, bstat):

return str((S, I, path, G, bstat))

def search(self, encoding):

return super().__getitem__(encoding)

def __setitem__(self, key, value):

S, I, path, G, bstat = key

key = self.encode(S, I, path, G, bstat)

super().__setitem__(key, value)

def __getitem__(self, key):

S, I, path, G, bstat = key

key = self.encode(S, I, path, G, bstat)

return self.search(key)

decorator for a substater that, given

several variables, yields possible visable substates

class substater(nonchainable):

def __call__(self, bstat, path, G):

for (substate, likelihood) in self.func(bstat, path, G):

yield (substate, likelihood)

decorator for a pruner

class pruner(nonchainable):

103

def __call__(self, best, i, j, path, G, subbstat):

return self.func(best, i, j, path, G, subbstat)

constructor for a config

note the reset_solver method

class config(object):

def __init__(self, **cfg):

self.cfg = {
number of vertices

"N": 10,

minimally connected graph

"base_graph" : line_graph,

adds edges to base

"grapher" : random_graph(50),

adds vision to graph

"sighter" : random_vision(50),

risk-state of edges

"betastate" : coin_betastate,

encode based on visitability

"solver_cache" : visitable_cache,

yields substates of a subproblem

"substater" : what_ifs,

modifies the graph, usually making it simpler

"modder" : identity,

prunes unnecessary subproblems

"pruner" : apriori_prune,

"solver" : success # solves the problem

}
for (key, value) in cfg.items():

self.cfg[key] = value

def __getattr__(self, key):

return self.cfg[key]

def reset_solver(self):

self.solver.cfg = self

self.solver.cache = self.solver_cache()

decorator for a solver

defined by a func that returns a solution

between 0 (bad) and 1 (good) and a boolean

of whether we need to multiply it by the

expected max solution of the next step

this boolean return separates the config-touching

logic of th substate iteration and the math-touching

logic of the solver

class solver(nonchainable):

104

def __init__(self, func):

self.func = func

self.cache = None

self.cfg = None

self.top_call = True

def expected_max(self, i, path, G, bstat):

(N, A, W) = G

wsum = 0.0

path.append(i)

substater does is not REQUIRED to explore the incident edges

allows for a 2^h to h speed-up

for (subbstat, likelihood) in \
self.cfg.substater(bstat, path, G):

solutions = []

best = 0.0

for j in A.outs(i):

if subbstat[i,j] < 1 and \
self.cfg.pruner(best, i, j, path, G, subbstat):

subsolution = \
self.cfg.solver(i, j, path, G, subbstat)

solutions.append((subsolution, j))

best = max(best, subsolution)

solutions.sort(reverse=True)

temp = 0.0

choice = 1.0

for subsolution, j in solutions:

temp += choice * subsolution

choice *= subbstat[i,j]

if not W[i,i,j]:

choice = 0.0

if choice == 0.0:

break

wsum += likelihood*temp

path.pop()

return wsum

I’m at s and know everything at s and along the path before

path starts at 0 and ends with s

I take i next; what is my probability of success?

There are 2^h |V| ways to say I’m at s and know

everything at s -- in a markovian system.

There are deg(s) ways to say I take i next.

Therefore, there are 2^h |V| deg(s) subproblems,

or simpler, 2^h |E| -- in a markovian system.

105

h, here, is taken to be a small number representing the

maximum *new* information that will be seen upon entering

a any vertex.

def __call__(self, s, i, path, G, bstat):

format(self.func.__name__)

if self.top_call:

self.top_call = False

result = self(s, i, path, G, bstat)

self.top_call = True

return (result, len(self.cache))

else:

result = self.cache[s, i, path, G, bstat]

if result is not False:

return result

else:

(value, done) = self.func(s, i, path, G, bstat)

if not done:

value *= self.expected_max(i, path, G, bstat)

self.cache[s, i, path, G, bstat] = value

return value

from random import random, choice, shuffle

a base graph to build on top of

each vertex is connected to the one

immediately after it

@base_graph

def line_graph(G):

(N, A, W) = G

for j in range(1, N):

A[j-1,j] = True

edges have density chance of being set,

def random_graph(density=50):

def temp(G):

(N, A, W) = G

for i in range(N):

for j in range(i+1, N):

if random() < density/100:

A[i,j] = True

return G

temp.__name__ = "random_graph_{0}".format(density)

106

return grapher(temp)

lines of sight have lighting chance of being set

def random_vision(lighting=50):

def temp(G):

(N, A, W) = G

for i in range(N):

for j in range(i+1, N):

if A[i,j]:

for k in range(i+1):

if random() < lighting/100:

W[k,i,j] = True

return G

temp.__name__ = "random_vision_{0}".format(lighting)

return sighter(temp)

Assume risk=50% everywhere

@betastate

def coin_betastate(G, bstat):

(N, A, W) = G

for i in range(N):

for j in range(i+1, N):

if A[i,j]:

bstat[i,j] = 0.5

from collections import deque

if we start at s, yield all edges

assumes all are visitable

def bfsearch(G, s):

(N, A, W) = G

Q = deque()

appended = [False for i in range(N)]

Q.appendleft(s)

appended[s] = True

while Q:

i = Q.pop()

for j in A.outs(i):

yield (i, j)

if not appended[j]:

107

Q.appendleft(j)

appended[j] = True

If I’m at S and I take I next, what all vertices

do I have a chance to visit, including those two?

let S be None to assume to reach I no matter what

def visitable_vertices(S, I, path, G, bstat):

(N, A, W) = G

Q = deque()

visited = [False for i in range(N)]

if S is not None:

visited[S] = True

if bstat[S,I] < 1:

Q.appendleft(I)

visited[I] = True

else:

Q.appendleft(I)

visited[I] = True

while Q:

i = Q.pop()

for j in A.outs(i):

if bstat[i,j] < 1 and not visited[j]:

Q.appendleft(j)

visited[j] = True

return visited

solver_cache that uses an encoding based on visitability

class visitable_cache(solver_cache):

encoding based on what edges can still be visited

def encode(self, S, I, path, G, bstat):

(N, A, W) = G

encoding = "{0}:{1}:".format(S, I) # where are we?

visitable = visitable_vertices(S, I, path, G, bstat)

if bstat[S,I] == 0: # encoding for first edge state

encoding += "1"

elif bstat[S,I] == 1:

encoding += "0"

else:

encoding += "?"

if visitable[I]: # if it isn’t, who cares about the rest?

for (i, j) in bfsearch(G, I):

if visitable[i] and visitable[j]:

if bstat[i,j] == 0:

108

encoding += "1"

i and j may both be visitable,

but not the edge that connects them,

so still have to check == 1 here

elif bstat[i,j] == 1:

encoding += "0"

else:

encoding += "?"

else:

encoding += "0"

return encoding

bstat[i,j] == 0 when ij is up

== 1 when ij is down

== risk otherwise

bstat is existing bstat or passed from parent call of what_ifs

path is actually modified path from success

note, bstat is actually just share memory between calls

@substater

def what_ifs(bstat, path, G):

(N, A, W) = G

s = path[-1]

visitable = visitable_vertices(None, s, path, G, bstat)

found = None # check everything we can see for something to change

for (i, j) in W.vision(s): #bfsearch(G, s):

if i != s: # incident vision is handled by expected max

if visitable[i] and visitable[j]:

if bstat[i,j] not in [1, 0]:

found = (i, j)

break

base case, no seen and unassumed edges found, so just yield

when we find something, put it up, down, then back to normal

if found is not None:

i, j = found

risk = bstat[i,j]

bstat[i,j] = 0

for (subbstat, likelihood) in what_ifs(bstat, path, G):

yield (subbstat, likelihood*(1-risk))

bstat[i,j] = 1

for (subbstat, likelihood) in what_ifs(bstat, path, G):

yield (subbstat, likelihood*risk)

109

bstat[i,j] = risk

else:

yield (bstat, 1.0)

don’t make any modifications to the graph

@modder

def identity(G):

return G

if the current best is better than even crossing i to j, then

don’t bother computing success from i through j to d.

@pruner

def apriori_prune(best, i, j, path, G, bstat):

(N, A, W) = G

return W[i,i,j] or best < 1-bstat[i,j]

true solution

simply, the safety and whether we are done

@solver

def success(s, i, path, G, bstat):

(N, A, W) = G

sfty = 1-bstat[s,i]

if i == N-1 or sfty == 0.0: # base case, no "later" to worry about

return (sfty, True)

else:

return (sfty, False)

handler for running a single trial

def trial(cfg, path, G, bstat, reset=True):

cfg = config(**cfg)

if reset:

cfg.reset_solver()

(N, A, W) = G

likelihood = [float("-inf") for i in range(N)]

s = path[-1]

runtime = 0

for i in A.outs(s):

succ, runtime = cfg.solver(s, i, path, G, bstat)

likelihood[i] = succ

return likelihood, runtime

random graph, except each vertex can only connect to

110

and see the x after it

x=0 adds no edges

x=-1 all edges

x=-2 adds all but the longest edge

def neighborhood_graph(dist=3, density=50):

def temp(G):

(N, A, W) = G

x = dist

if x < 0:

x = N+x

for i in range(N):

for j in range(i+1, min(i+x, N)):

if random() < density/100:

A[i,j] = True

return G

temp.__name__ = "neighborhood_graph_{0}_{1}".format(dist, density)

return grapher(temp)

each vertex can see its incident edges

@sighter

def incident_vision(G):

(N, A, W) = G

for i in range(N):

for j in range(i+1, N):

if A[i,j]:

W[i,i,j] = True

return G

modder that applies noise to the edges at a given rate

def noiseEdges(rate):

def temp(G):

(N, A, W) = G

B = adjacency_matrix()

V = sight_matrix()

for i in range(N):

for j in A.outs(i):

k = j

if random() < rate/100:

candidates = \
[x for x in range(i+1, N) \
if not A[i,x] and not B[i,x]]

111

if candidates:

k = choice(candidates)

B[i,k] = True

for m in range(j):

if W[m,i,j]:

V[m,i,k] = True

G = (N, B, V)

return G

temp.__name__ = "noiseEdges_{0}".format(rate)
return grapher(temp)

like noiseEdges, for for lines-of-sight

def noiseLines(rate):

def temp(G):

(N, A, W) = G

V = sight_matrix()

for i in range(N):

for j, k in W.vision(i):

n, m = j, k

if random() < rate/100:

candidates = [(x, y) for (x, y) in bfsearch(G, i) \
if not W[i,x,y] and not V[i,x,y]]

if candidates:

n, m = choice(candidates)

V[i,n,m] = True

G = (N, A, V)

return G

temp.__name__ = "noiseLines_{0}".format(rate)
return sighter(temp)

a modder that removes all vision from the graph

@modder

def remove_all_vision(G):

(N, A, W) = G

V = sight_matrix()

H = (N, A, V)

return H

a modder that removes all but incident vision from the graph

@modder

def incident_vision_only(G):

112

(N, A, W) = G

V = sight_matrix()

for k in range(N):

for j in range(N):

if W[k,k,j]:

V[k,k,j] = True

H = (N, A, V)

return H

a modder that adds effective vision to the graph

@modder

def effective_vision(G):

(N, A, W) = G

V = sight_matrix()

for j in range(N):

counts = {}
num_parents = 0

for k, m in W.vision(j): # copy all from original j

V[j,k,m] = True

for i in A.ins(j): # copy all shared by its new parents

num_parents += 1

for k, m in V.vision(i): # note the V here and not W

if k >= j:

if (k, m) not in counts:

counts[k,m] = 0

counts[k,m] += 1

for k, m in counts:

if counts[k,m] == num_parents:

V[j,k,m] = True

H = (N, A, V)

return H

solver for hammy down

def hammy_down_substater(a):

def temp(bstat, path, G):

(N, A, W) = G

found = None

in_child = None

s = path[-1]

visitable = visitable_vertices(None, s, path, G, bstat)

113

so here’s the thing with the visitability

in the what_if and hammy substaters.

when we set a nearby edge to down, and that

prevents us from even getting

to some other edge we can see, who cares what

#the up/down of that unreachable

edge is? once we set the nearby edge back up,

then we’ll care.

for i in path:

for j, k in W.vision(i): # first, turn off in parents

if j != i: # incident vision is handled by expected max

if visitable[j] and visitable[k]:

if i == s: # then, turn on here

if bstat[j,k] not in [1, 0]:

found = (j, k)

in_child = True

break

else:

if not W[s,j,k] and bstat[j,k] in [1, 0]:

found = (j, k)

in_child = False

break

if found is not None: # needed to break out of two loops

break

if found is not None:

if in_child:

risk = bstat[j,k]

bstat[j,k] = 0

for (subbstat, likelihood) in temp(bstat, path, G):

yield (subbstat, likelihood*(1-risk))

bstat[j,k] = 1

for (subbstat, likelihood) in temp(bstat, path, G):

yield (subbstat, likelihood*risk)

bstat[j,k] = risk

else:

risk = bstat[j,k]

bstat[j,k] = a/100

for (subbstat, likelihood) in temp(bstat, path, G):

yield (subbstat, likelihood)

bstat[j,k] = risk

114

else:

base case, no changes to make, so just yield

yield (bstat, 1.0)

temp.__name__ = "hammy_down_substater_{0}".format(a)
return substater(temp)

a "solver" for the semirandom walk

@solver

def guesser(s, i, path, G, bstat):

(N, A, W) = G

sfty = 1-bstat[s,i]

if sfty == 0.0:

return (0, True)

else:

return (random(), True)

helper for the main-ish area below

def make_graph_bstat(cfg):

cfg = config(**cfg)

draw_config_table(cfg)

G = cfg.base_graph(cfg.N)

G = cfg.grapher(G)

G = cfg.sighter(G)

bstat = cfg.betastate(G)

return G, bstat

helper for the main-ish area below

def modify_graph(G, cfg):

cfg = config(**cfg)

return cfg.modder(G)

helper for the main-ish area below

def traverse(G, cfg, scheme, bstat, real_bstat):

(N, A, W) = G

start at source

path = [0]

build config for the trial by combining default and scheme configs

trial_cfg = {}
trial_cfg.update(cfg)

trial_cfg.update(scheme)

modify how the solver wants the graph, if needed

H = modify_graph(G, trial_cfg)

copy_bstat = state_matrix()

initialize "seen" risk-states

115

for i, j in bfsearch(G, path[-1]):

copy_bstat[i,j] = bstat[i,j]

runtimes = []

while True:

update risk-states with new information

for j, k in W.vision(path[-1]):

copy_bstat[j,k] = real_bstat[j,k]

solve the problem, starting from scratch

at a further point with new info

only reset the solver at the first step

big speed up, no adverse effects

likelihood, runtime = trial(trial_cfg, path, H, \
copy_bstat, path[-1]==0)

runtimes.append(runtime)

select the best next step,

prefering higher indices in case of ties

choice, to_beat = -1, 0

for (i, score) in enumerate(likelihood):

if score >= to_beat:

choice, to_beat = i, score

if the choice was bad, give up, return false

elif the choice let us win, we’re done, return true

else, just update the path and continue

ij = (path[-1], choice)

path.append(choice)

if choice == -1:

return (False, runtimes, path)

elif to_beat <= 0:

return (False, runtimes, path)

elif not A[ij]:

return (False, runtimes, path)

elif real_bstat[ij] == 1:

return (False, runtimes, path)

elif choice == N-1:

return (True, runtimes, path)

create Q random graphs each with N vertices

for each, run T oracle-positive trials

def verify(Q, T, N, **schemes):

starting configuration

cfg = {"N": N,

116

"betastate" : fixed_betastate(25),

"base_graph" : line_graph,

"grapher" : neighborhood_graph(4, 100) & noiseEdges(5),

"sighter" : incident_vision & noiseLines(25)

}

print("{0}\t{1}\t{2}\t{3}".format(Q, T, N, len(schemes)))

collect the names of the scheme arguments

scheme_names = [k for k in schemes.keys()]

start histograms

hists = {scheme_name: [0 for t in range(T+1)] \
for scheme_name in scheme_names}

for q in range(Q):

create a random graph based on the configuration

G, bstat = make_graph_bstat(cfg)

(N, A, W) = G

num_succeed = {scheme_name: 0 \
for scheme_name in scheme_names} # start counts

t = 0

while t < T:

realize the risk-state for the edges,

but keep this hidden from the solvers

real_bstat = state_matrix()

for i, j in bfsearch(G, 0):

if A[i,j] and random() < bstat[i,j]:

real_bstat[i,j] = 1

else:

real_bstat[i,j] = 0

first check the oracle, using the default cfg and

giving it all the info up front

success, runtimes, path = \
traverse(G, cfg, cfg, real_bstat, real_bstat)

if success:

t += 1

only attempt the approximations

if the oracle could find a solution

(i.e., one exists)

shuffle(scheme_names)

if the scheme can traverse all the

way to the end, give it a tally

for scheme_name in scheme_names:

117

scheme = schemes[scheme_name]

success, runtimes, path = \
traverse(G, cfg, scheme, bstat, real_bstat)

if success:

num_succeed[scheme_name] += 1

print("{0}\t{1}\t{2}\t{3}\t{4}".format(\
scheme_name, len(runtimes),\
"\t".join(map(str, runtimes)),\
"\t" .join(map(str, path)),\
success))

update hists and output

for scheme_name in scheme_names:

hist = hists[scheme_name]

hist[num_succeed[scheme_name]] += 1

print("{0}\t{1}".format(scheme_name,\
"\t".join(map(str, hist))))

print("\n------------------\n")

def main():

verify(100, 1, 100, # Q, T, N

random={
"solver": guesser

},
incident={

"modder": effective_vision & incident_vision_only

},
hammy={

"substater": hammy_down_substater(50),

"modder": effective_vision

},
quick={

"modder": remove_all_vision

}
)

118

	Western Kentucky University
	TopSCHOLAR®
	Spring 2016

	In the Face of Anticipation: Decision Making under Visible Uncertainty as Present in the Safest-with-Sight Problem
	Bryan A. Knowles
	Recommended Citation

	Introduction
	A Clear Road Lies Ahead
	Bridges, and How to Cross Them
	A Man Named Dijkstra
	A Free Tour of the Multiverse
	Planning Ahead
	Horizons
	Dissolving Uncertainty

	Foundations
	Graph Theory
	Probability Theory
	Avoiding Digital Monsters
	Asking the Right Questions
	Dynamic Programming

	Analysis
	As Easy As Possible
	Like the Opposite of Easy
	Difficulty is a Fine Line
	Slight Adjustments
	Minor Improvements
	Planning for the Future

	Solution
	Encoding
	Expected Maximum
	Complexity Analysis

	Approximation
	Our Limits
	Ignorance is Bliss
	Mr. President,
	Gearing Up
	And Ready to Go

	Survey
	Leeland on Case Based Reasoning
	Beneroya on Convolution Integrals
	Dreyfus on Dynamic Programming
	Bertsekas on Stochastic Modeling
	Aboudolas on Rolling Horizon
	Carey on Network Performance
	Nickerson on Decision Modeling
	Almost There

	Conclusion
	Proofs
	Code Used

