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 Glaciers are a major source of freshwater around the world, but they are melting 

at an increased rate due to atmospheric warming resulting from anthropogenic climate 

change. In addition to temperature increases, light-absorbing particulates on glaciers also 

are contributing to glacial melt. This research examines how black carbon, released into 

the air through partial combustion of biofuels, is affecting the surface albedo of glaciers. I 

also delineate possible sources of black carbon in the Cordillera Blanca region of Peru. 

Ground data were collected each year from 2011 to 2013 during the local dry season. 

Effective black carbon (eBC) values were determined using the Light Absorption Heating 

Method and satellite-derived albedo values were retrieved from NASA’s MODIS 

MOD10A1 data. Effective black carbon (eBC) values and albedo levels were moderately 

correlated, showing that albedo decreases with an increase of black carbon, and that this 

impact can be measured using satellite instruments. Values of eBC did not correlate with 

spatial proximity to mines, but did correlate with proximity to Huaraz, which likely is the 

major source of light-absorbing particulates in the region. Further research would benefit 

from a more extensive source dataset and surface albedo measurements over different 

seasons. 
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Chapter 1. Introduction 

Living in the contemporary world, we are constantly surrounded by harmful 

pollutants that have put our health at risk, contaminated our waterways, and helped to 

drive temperatures to record highs over the past few decades. Though climate change has 

always been a natural process on our planet, humans are now releasing high levels of 

carbon dioxide, methane, and other harmful gases into the atmosphere through fossil fuel 

burning, and these releases are intensifying climate change impacts. These gases have 

high heat-absorbing properties that trap radiation in the atmosphere and warm it to 

unusual levels. A warmer atmosphere has the capability to hold more water for longer 

periods of time, leading to more frequent droughts and floods (IPCC, 2013).  

Our cryosphere is also at risk from these changes, and both ice caps and glaciers 

are melting at an alarming rate, reducing overall global albedo, raising sea levels, and 

lowering water availability to downstream users (Lemke et al., 2007). This research 

examines how anthropogenic climate change and atmospheric pollutants, specifically 

black carbon, are affecting glacier stability and retreat in the Cordillera Blanca range of 

the Andes. This area is an important source of water for over a million people in the 

Ancash region of Peru. As both local livelihoods and long-term economic stability 

depend on the water that is sourced in local glaciers, it is crucial to find answers about 

what specifically may be causing local glacier recession.  

Glaciers are very sensitive to changes in precipitation, radiation, and 

temperatures; which are all factors that determine their growth and recession. Their 

seasonal melt-off provides water to local communities, their high reflectivity helps cool 

the Earth’s atmosphere, and they can be used to monitor changes in climate. Glaciers take 
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hundreds to thousands of years to form, and many glaciers are remnants from the last ice 

age (Paterson, 1994). Approximately 80% of the people living in tropical and subtropical 

montane environments rely strictly on snowfall and glaciers for their water supply (Vuille 

et al., 2008). This is especially important in the Andes Mountains, particularly Peru. The 

Andes are home to over 90% of the world’s tropical glaciers, and 70% of these are 

located in Peru (Rabatel et al., 2013).  

While greenhouse gas warming and precipitation changes are the major reason for 

glacial retreat, black carbon and other particulates also have an impact, especially in 

developing countries (Bice et al., 2009). Black carbon results from incomplete 

combustion of biofuels and is dangerous due to its high solar absorptive properties. It has 

a surface warming effect of up to 1° C, meaning the temperature of surfaces covered with 

black carbon can rise by 1° C (Ramanathan and Carmichael, 2008). Black carbon has one 

million times the heat-trapping capacity of carbon dioxide ounce per ounce (Schmidt, 

2011), and the capability to reduce glacial albedo levels dramatically (Warren and 

Wiscombe, 1985).  

This research measures levels of black carbon in the Cordillera Blanca mountains 

of Peru and evaluates how local emissions might be affecting glacier retreat and albedo 

levels. Since black carbon has high solar absorption properties, deposition of these 

particles will reduce surface albedo, thus causing the glaciers to absorb more heat and 

ultimately increase the rate of ablation. When ablation rates are higher than accumulation 

rates, the glacier begins to retreat (Paterson, 1994). Correlating black carbon 

concentrations with albedo levels and with glacier size can elucidate what influence the 

particulates have on local retreat. In addition to examining black carbon’s impact on 
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glacial retreat, potential sourcing of black carbon was investigated during this research. 

Sources including the large population center of Huaraz, and multiple mining sites were 

examined as possible sources of black carbon and other dust.  
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Chapter 2. Background 

Everyday our actions leave behind a footprint on the Earth. One major impact is 

on the retreat of glaciers, especially tropical glaciers. Temperature increases have been 

measured globally as far back as the 1930s, suggesting that retreat has been in process for 

some time due to atmospheric warming. In addition to temperature, local and global 

sources of pollutants are suspected to play a role in increased glacier melt-off around the 

world. Black carbon is of special interest as its high radiative absorption can change the 

radiative balance of snow and ice. Though black carbon has not been researched 

extensively, recent studies show how black carbon and dust are influencing melt rates 

(Andreae and Ramanathan, 2013; Barnett et al., 2005; Shrestha et al., 2010). 

 

2.1 Climate Change 

 

Variations in climate around the world are not a new phenomenon. Climate 

change can happen due to volcanic eruptions, varying outputs of solar radiation, global 

ice or snow coverage changes, or natural earth cycles (Le Treut et al., 2007). Even as 

recently as the 1700s, the Little Ice Age brought cooler temperatures to North America 

and Europe (Painter et al., 2013).The current change in climate has been attributed to 

anthropogenic factors rather than a natural shift in climate, and scientists working with 

the Intergovernmental Panel on Climate Change agree that the rapid rate of warming 

since the mid-20th century is caused by anthropogenic forcing (IPCC, 2007). 

2.1.1 Anthropogenic Forcings and Outcomes 

Greenhouse gas concentrations have been increasing since the Industrial 

Revolution such that anthropogenic climate drivers are contributing to warming the 

atmosphere. Concentrations of carbon dioxide, methane, and nitrous oxide in 2011 
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surpassed the 1750s’ concentrations by 40%, 150%, and 20%, respectively (IPCC, 2013). 

As industry advanced, so did emissions. In 1990, a study concluded that 43% of the 

increase in radiative forcing over the prior 10 years could be attributed to these gases 

(Lashof and Ahuja, 1990). In 2010, the highest levels of greenhouse gases in human 

history were recorded at 49 gigatonnes of carbon dioxide equivalent per year, with 76% 

of the impact being contributed by carbon dioxide (IPCC, 2014). An increase in surface, 

atmosphere, and upper-level ocean temperatures has resulted. NASA’s Goddard Institute 

for Space Studies has found that the average global temperature has risen by 0.8°C since 

1880, two-thirds of which have occurred since 1975, and, in 2014, the National Oceanic 

and Atmospheric Administration (NOAA) found that ocean heat content in the majority 

of the world’s ocean basins was above the historical average (Kennedy, 2015).  The most 

dramatic change occurred in June, 2009, when the world’s oceans reached their highest 

average temperature in recorded history (Biello, 2009). More frequent heat waves in the 

21st century have also been attributed to higher emissions (Marengo et al., 2009) 

Most climate change modeling has been done at a global scale. Regional climate 

change drivers and their feedback loops need to be studied further, especially in sensitive 

environments such as mountainous or glaciated regions.  

 

2.2 Glaciers 

A glacier is a mass of ice at least 0.1 km2 in size that originates over land and 

often moves due to gravity and its own mass (Paterson, 1994). During the last ice age, 

glaciers covered over 60% of earth’s surface, but now only 10% of the land area is 

covered by glaciers (Lemke et al., 2007). Glaciers are continuing to shrink worldwide in 

length, area, volume, and mass, with an average rate of loss of 275 gigatonnes of ice per 
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year (IPCC, 2007). Glaciers and snow melt provide water for over one-sixth of the 

world’s population (Barnett et al., 2005) and help to stabilize the Earth’s temperature 

through radiative reflectance. Although tropical glaciers are not large enough to impact 

significantly planetary albedo, studying current glacial processes could help to safeguard 

regional water supplies and provide critical information regarding future glacial melting 

at the higher latitudes.  

Glaciers form through years of snow accumulation. When the loss of snow is less 

than the accumulation of snow, over time the weight of each snowfall layer causes the 

previous layer to recrystallize, first into firn and then into ice (Paterson, 1994) (Figure 

2.1). The area where this happens is appropriately called the accumulation zone. The 

opposite occurs in the ablation zone, where the loss of snow exceeds snowfall amounts. 

Accumulation occurs through precipitation and refreezing of liquids, while ablation 

results from surface melting, calving, and sublimation; both ablation and accumulation 

can be impacted by avalanches and wind patterns (Vaughan et al., 2013). The boundary 

between the two zones where ablation and accumulation are equal is known as the 

equilibrium line (Paterson, 1994).  

A glacial moraine is an accumulation of debris, typically dirt and rock, which is 

pushed by the snout and, occasionally, the lateral edges of a glacier (Boulton, 1986). 

Moraines allow measurement of the maximum extent a glacier has reached. In certain 

cases, moraine dams develop over time and create glacier lakes as the ice melts and 

retreats, portending hazardous glacial lake outburst flooding (GLOF) (Richardson and 

Reynolds, 2000). Other components of a typical glacier include meltwater streams, 

headwalls, and occasionally medial moraines. 
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2.2.1 Tropical Glaciers 

Tropical glaciers are found between the Tropic of Cancer and the Tropic of 

Capricorn - though 99% are located in the Andes Mountains. These Andean glaciers have 

an area of 1920 km2 (Rabatel et al., 2013) and Peru contains 70% of those glaciers 

(Figure 2.2). All glacier landscapes are extremely sensitive to changes in temperature, 

precipitation, albedo levels, and even to human factors such as road development or 

mining (Knight and Harrison, 2014). Tropical glaciers, though, respond to these 

conditions more quickly and dramatically due to their smaller size and the greater solar 

radiation loads at the low latitudes (Bahr et al., 1998). This vulnerability to slight 

environmental changes is helpful for monitoring and research purposes, but is detrimental 

for the long-term survival of tropical glaciers. This is critical because these glaciers 

provide freshwater to 80% of people in tropical and subtropical mountain regions (Vuille 

et al., 2008). 

Figure 2.1. Process of transformation from snow to ice. On average, 

snow will take 5 years to reach the stage of glacier ice.                  

Source:  Hambrey and Alean (1992). 
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Glaciers in the Peruvian Andes have not had a period of advancement since the 

early 20th century (Rabatel et al., 2013). Between 1962 and the early 2000s, the northern 

part of the Cordillera Blanca showed a 20% to 30% decrease in surface area (Raup et al., 

2007), while the southern part showed a 35% decrease (Mark and Seltzer, 2005). This 

degree of retreat has not been seen since the Little Ice Age (Rabatel et al., 2013). Factors 

behind such glacier retreat include climate variables and light absorbing particulates that 

alter the energy and mass balance of the glaciers. (Salzmann et al., 2013). 

Various studies have examined the rate of temperature change in the tropical 

Andes. Generally, there has been a 0.68°C increase in temperature over the last 70 years, 

about 0.1°C per decade (Vuille et al., 2008). Mark and Seltzer (2005) concluded that 

Figure 2.2. Glaciers of Peru. 70% of the world’s tropical 

glaciers are located in Peru. Source: Somerville (2011). 
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there was a 0.26°C increase per decade from 1951 to 1999. Between 1939 and 1998, 

Vuille et al. (2000) found a decadal increase of 0.10-0.11° C. As of the early 2000s, the 

warming rate of the Andes had almost tripled in the previous 25 years, jumping from 

0.10°C to 0.32°C per decade (Vuille et al., 2000). Not only has there been a temperature 

increase, but the daily temperature range is decreasing (Vuille et al., 2008). Cold nights 

are getting warmer, and the number of these warm nights are increasing (Vuille et al., 

2008). Rain-snow lines retreat up slope with warmer temperatures, which, in turn, 

exposes glaciers to more rain in the ablation zone (Vuille et al., 2000). Ablation occurs 

year-round in the lowest portion of tropical glaciers, so extra rain in the ablation zone  

potentially could become a constant event in the future if these trends continue. 

2.2.2 Melt-off Hazards 

Glacial environments subject to rapid melting potentially can experience glacial 

lake outburst floods, river floods, and rock slope failures (Knight and Harrison, 2014). 

With a sudden increase in melt water, local rivers are inundated with excess water that 

overflows into surrounding flood plains. Not only is this bad for farmlands, but it can 

harm those communities close to the riverbank. Softening of permafrost causes human-

made structures to collapse, especially roads. In 1941, the city of Huaraz, located near the 

Cordillera Blanca, was devastated by a glacial lake outburst flood. A chunk of ice crashed 

into a glacial lake, forcing waves over the moraine dam and creating a wall of mud, 

water, and debris with cement-like consistency that wiped out one-third of Huaraz and 

killed 5,000 people (Carey, 2010). Though measures have since been taken by the 

government to drain reservoirs and strengthen the moraine dams, the threat of a 

catastrophic flood is always there. 
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It is important to note that an increase in temperature is not the only factor that 

can influence glacial retreat. A report on the cryosphere released by the IPCC stated that 

the extent of glaciers is not in balance with current climate conditions, so glacier loss will 

continue, whatever happens to global temperatures (Vaughan et al., 2013). Additionally, 

studies have found that a decrease in precipitation and cloud cover, along with rising 

temperatures, contributed to glacier retreat in the Cordillera Blanca between 1930 and 

1950 (Kaser and Georges, 1997). Beyond this, in the Cordillera Vilcanota region of the 

southern Peruvian Andes, another study also concluded that both decreased precipitation 

and increased temperatures cannot completely explain the observed ice loss, and that 

albedo changes are probably responsible (Salzmann et al., 2013). Another study found 

the same processes occurring in the Cordillera Blanca (Schauwecker et al., 2014). Instead 

of looking solely at climate as the cause of glacier retreat, more local causes should be 

investigated, including black carbon particulates. 

 

2.3 Black Carbon 

Black carbon, sometimes referred to as soot, results from partial, incomplete 

combustion of biomass or fossil fuels that releases light-absorbing particles into the 

atmosphere (Ramanathan and Carmichael, 2008). These particles play a large part in 

degrading air quality and generally are released from diesel engines, forest fires, and 

other biomass burning (Bahadur et al., 2011; Zimmer, 2013). Particles mix with clouds 

and water droplets and can linger over an area as brown haze or be brought down to earth 

via precipitation (Ramanathan and Carmichael, 2008; Monroe, 2008; Zimmer, 2013). Air 

polluted with black carbon creates health concerns for local residents, especially those 

with respiratory problems (Kim et al., 2004). Black carbon has a short residence time in 
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the air, but has the ability to travel long distances in that short amount of time (Lelieveld 

et al., 2002). Black carbon particulates can make their way onto glaciers through 

precipitation or dry deposition and can influence melt rates by darkening the snow and 

reducing the albedo (Figure 2.3) (Shrestha et al., 2010).  

 

 Research on how black carbon might be affecting the planet’s climate is fairly 

new, with evidence being gathered only since the mid-1990s (Schmidt, 2011). However, 

scientists have identified airborne black carbon as the second leading cause of global 

warming, behind carbon dioxide (Ramanathan and Carmichael, 2008). Recent studies 

show that, while carbon dioxide is accountable for 40% of global warming, black carbon 

is potentially responsible for nearly 18% of the warming (Rosenthal, 2009). 

From 2000 onwards, 7,500 kilotonnes of black carbon were emitted globally per 

year (Bond and Doherty, 2013). By 2009 that value had risen by an additional 500 

kilotonnes (Bice et al., 2009). One of the dangers of black carbon, as noted by Schmidt 

(2011), is that it has about one million times the heat-trapping capabilities of carbon 

Figure 2.3 Black carbon deposition. Particles are carried via air and precipitation onto ice and snow. 

Source: Leake (2011). 
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dioxide per ounce. With a surface warming effect from 0.5 to 1°C, even if the levels of 

black carbon are not extremely high or have not increased quickly, it will still have an 

influence on warming due to direct absorption solar radiation. Black carbon mixed with 

other aerosols such as sulphates can enhance that forcing factor by two and, in hotspots, 

the solar heating may increase by up to 50% (Ramanathan and Carmichael, 2008). 

 

2.3.1 Black Carbon Sourcing 

Unlike carbon dioxide, black carbon does not have a long residence time in the 

air, usually being removed quickly by precipitation within two weeks (Doherty and 

Warren, 2009; Ramanathan and Carmichael, 2008). The problem is that, because of its 

very small size, it travels easily and quickly through the air, and thus it can be deposited 

in locations far from its source. While there have been many sourcing studies for 

aerosols, most of the research does not include sourcing black carbon (Artaxo et al., 

1998; Tyagi and Singh, 2013). An important case study on black carbon sources in the 

Arctic was completed in 2007 (Hegg et al., 2009), with the results showing that black 

carbon found in Arctic snow was connected to sources in Russia, North America, and 

also marine environments near sea-ice sites of the North Pole. Black carbon produced by 

diesel fuels and other combustion sources in the U.S. and India have been found in the 

Arctic and Maldives, respectively (Rosenthal, 2009). Such long-distance transport of 

particulates means not only that source areas are affected by black carbon but neigh-

boring regions are as well. 

Most sources of black carbon are located in tropical regions with high solar 

irradiance values, with emissions sourced from open burning, diesel engines, industrial 

coal, and residential solid fuel (Figure 2.4) (Bond and Doherty, 2013; Ramanathan and 
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Carmichael, 2008). Depending on the region, main emission sources vary. Coal and 

biomass contribute 60% to 80% of emissions in Asia and Africa; diesel engines make up 

70% of emissions for European, North American, and Latin American countries; and 

China, the former USSR and some Eastern European countries have dominant emissions 

from residential coal (Figure 2.4) (Bond and Doherty, 2013). Overall, 77% of black 

carbon emissions are from developing countries (Bice et al., 2009). A major contribution 

to this problem is the use of cookstoves. The soot released while burning biomass such as 

wood to cook has a large impact on black carbon emissions, and is normally found in 

countries where the technology and economy are not advanced enough for more efficient 

means of producing energy (Rosenthal, 2009). 

 

Figure 2.4 Black carbon emissions in 2000. For each region, amount and source of black carbon are 

detailed Source: Bond and Doherty (2013). 
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2.3.2 Effects on Albedo 

Black carbon and other particulate deposition can greatly affect the albedo and 

melting rate of ice (Reznichenko and Davies, 2010). Black carbon can even overwhelm 

factors such as temperature and precipitation that would otherwise cause a glacier to 

advance (Painter et al., 2013).  Ice is highly reflective, but the albedo can be dramatically 

impacted by particles in or on the ice (Schmitt et al., 2014a). Different particles have 

different radiative properties, and many have lower light-absorbing capabilities than 

black carbon. According to Clarke and Noone (1985), black carbon can reduce glacial 

albedo up to 4%. Warren and Wiscombe (1985) found a 6% reduction in albedo values 

due to black carbon. Higher levels of black carbon result in decreased albedo, which 

leads to faster melting of the glaciers through heat retention. Although increased melt 

water might seem advantageous in the short term, loss of glacier area will diminish 

stream flow and water availability in the long term (Bradley et al., 2006). As discussed 

above, glacial melt water in the Cordillera Blanca is a critical contributor to drinking 

water, farmland irrigation, and hydropower, so it is important to sustain the water source.  

 

2.4 Remote Sensing 

Remote sensing uses specialized instruments from an overhead vantage point to 

measure electromagnetic (EM) radiation reflected or emitted by an object or area to 

interpret characteristics of said object or area (Jensen, 2007). Before the creation of 

satellite reconnaissance, distant remote sensing was limited to aerial photography. With 

the launch of Landsat 1 in 1972, remote sensing science gained a powerful new tool 

(Rocchio, 2016). Remotely sensed imagery can now be collected via ground-based 
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devices, aircraft, and satellites. Satellite imagery is most common, with instruments such 

as Landsat, MODIS, and AVHRR providing daily images of our planet.  

A geographic information system (GIS) is a computer-based tool used to 

represent, question, investigate, and interpret data to understand spatial relationships and 

trends (Chang, 2010). When combined with data acquired through remote sensing, GIS is 

a powerful platform to monitor glacial changes quickly and effectively. Whether through 

a database table of information or through visual representation, GIS has the necessary 

power to help accurately measure and map glacier size, displacement, movement, and the 

factors that may be impacting their retreat. 

Remote-sensing sensors can be either passive or active. Passive sensors use 

natural external energy emissions for object observations. This source is normally the 

sun, whose energy can be reflected by objects but also absorbed and re-emitted as 

thermal infrared energy. Unlike passive sensors, active sensors emit their own radiation. 

This radiation is then reflected or refracted by objects and measured by the sensor. Radar 

is a common type of active sensor that uses radio or microwave frequencies as the source 

of EM radiation. When measuring glacier properties via remotely sensed imagery, 

passive sensors typically are used because ice and water are so absorptive in the typical 

active remote sensing wavelengths (Roshani et al., 2007). 

Different types of sensors can be used for data collection. Panchromatic sensors 

create greyscale images by recording light reflected at a broad segment of the 

electromagnetic spectrum. More commonly, multispectral sensors record light from 

several parts of the electromagnetic spectrum and display them as separate band images 

(Jensen, 2007). When the bands are merged together, the result is an image that most 
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would refer to as a true-color image. LiDAR sensors use light pulses to measure distances 

between objects and present them in 3-D (McIntosh, 2012). This type of imagery is 

especially useful for measuring heights of objects from the ground (Figure 2.5).  

 

Figure 2.5. Differences in spectral resolution. The first image is from a panchromatic sensor. The middle 

image is from a multispectral sensor. The last image is from a LiDAR sensor. Source: McIntosh (2012). 

 

2.4.1 Remote Sensing of Glaciers 

Remote sensing is useful for examining the cryosphere, especially in alpine 

environments that are often inaccessible (Gao and Liu, 2001; Quincey et al., 2005). In 

glaciology, remote sensing has been used to study mass balance, areal extent, and albedo 

levels (Gao and Liu, 2001; Rabatel et al., 2005). The most common parts of the 

electromagnetic spectrum discussed in the literature are the visible bands and near 

infrared bands (Bindschadler et al., 2001; Knap et al., 1999). Figure 2.6 shows 

reflectance curves of different glacial surface types (Rees, 2009). These curves help 

determine which bands to use when examining different phenomenon.  

Glaciers are mostly found in mountainous regions and, depending on the time of 

day that the imagery was recorded, shadows from the mountains and cloud cover can 

obscure the imagery and glacial extent. Also, in some cases, it can be hard to differentiate 

between bare soil and shadowed glaciers through remote sensing imagery. There have 
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been techniques developed to solve this problem, such as the Normalized-Difference 

Snow Index (NDSI) (Dozier, 1989; Racoviteanu et al., 2008). The NDSI uses two bands 

to eliminate the problems associated with topography and cloud cover previously 

mentioned to determine boundaries of glaciers. Glaciers captured in shadows from 

surrounding hills or cloud cover are less likely to be mistaken for land or rock.  

 

 

 

In order to resolve a glacier (minimum 0.1 km2), you need appropriate remote 

sensing tools. An instrument may have high spatial resolutions of 1-30 m, which is 

acceptable for observing glaciers. Lower resolutions, such as a typical 1 km2 resolution, 

mean a loss in detail, which can make smaller glaciers indistinguishable. For this reason, 

spatial resolution may be a limiting factor when studying glaciers, depending on their size 

(Gao and Liu, 2001). 

Glacial mass balance is a product of averaging accumulation and ablation rates, 

measuring the change in mass over a given time (Rees, 2009). Climate change has 

accelerated the post-Ice-Age retreat of glaciers since the industrial revolution (Lemke et 

Figure 2.6. Reflectance values of ice surfaces. Corresponding Landsat TM 

bands also shown. Source: Rees (2009). 
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al., 2007). Recently, tropical glacier mass balance methods have been devised using 

remotely sensed imagery (Rabatel et al., 2013). The approach of using remotely sensed 

equilibrium line altitude measurements to calculate mass balance was originally 

developed by Rabatel et al. (2005) for mid-latitude glaciers, but it works for tropical 

glaciers as well. Another model for mass balance using remote sensing (GMB-RS) was 

developed by Rott et al. (2007). Advance Synthetic Aperature Radar and MODIS data, 

daily accumulation, and ablation rates are calculated for different surface elevations. The 

GMB-RS model combines temperature parameters and melt amounts with the remotely 

sensed accumulation and ablation rates to calculate the overall net balance. Comparing 

current mass balance with past mass balances can shed light on overall glacier loss, even 

when loss is not noticeable through areal extent changes. 

There are multiple methods to gather albedo measurements through remote 

sensing. MODIS provides a 16-day albedo product at a 500-m resolution accessible 

through the USGS and Department of the Interior (USGS, 2014). Knap et al. (1999) used 

Landsat TM band 2 and 4 to measure albedo levels before the MODIS albedo product 

was available. The Global Land Ice Measurements from Space (GLIMS) Program 

analyzes ASTER imagery to draw glacier outlines using a Normalized Difference Snow 

Index that is then made available for the public (Raup et al., 2007). Mass balance, glacier 

extent, and albedo levels all can be observed and compared to each other thanks to 

remote sensing, shedding light on glacial loss worldwide and areas of special interest. 
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Chapter 3. Study Area 

This research focused on the Cordillera Blanca range of the Andes Mountains, 

located in the Ancash Region of Peru. All samples were collected from inside Huascarán 

National Park. The Cordillera Blanca range stretches 180 km from north to south and 21 

km from east to west on average (Racoviteanu et al., 2008). As of 1970, there were 722 

glaciers that covered 723 km2 in the Cordillera Blanca (Kaser et al., 1990). There are 12 

mountain groups, with the highest peak reaching 6,768 meters (Figure 3.1) (Georges, 

2004). 

 

Figure 3.1. The Cordillera Blanca Mountain Range. The 1970 ice extent is shaded in grey. Also displayed 

are the 12 mountain groups of the region and the six highest peaks. Source: Georges (2004). 
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Climatically, the Cordillera Blanca has a wet season from October to May, during 

which snow accumulates, and a dry season from June to September, with less snow 

accumulation (Mark et al., 2010). Due to the location of the Amazon Basin and its 

contribution of moisture, the eastern side of the mountain range can be up to three times 

wetter than the western side (Racoviteanu et al., 2008). Huaraz is the largest city in the 

region, with a population estimated at just over 100,000 according to U.N. data. Most 

residents are engaged in agriculture and raising livestock (Mark et al., 2010). The Rio 

Santa is a major river transporting water to Huaraz and the other population centers at the 

foot of the mountains. The Cordillera Blanca provides up to 40% of the Rio Santa’s water 

throughout the year, with that number jumping to more than 66% during the dry season, 

Shorter wet seasons have caused shifts in the river’s flow timing, which, in turn, affects 

local farmers (Mark et al., 2010). Local land use includes extensive grazing, which has 

severely endangered Polylepis forests in the region and increased erosion in the valleys 

(Zimmerman et al., 2009). 



21 
 

Chapter 4. Data and Methodology 

This research investigated how black carbon levels are influenced by altitude, 

mineralogy, and proximity to pollution sources. Albedo levels from MODIS data were 

compared to quantities of black carbon found in collected snow samples to correlate any 

influence on solar absorption. The mineral profile was also compared to albedo levels to 

determine which particulates contribute the most to heat absorption. The effective black 

carbon values of the snow samples were compared with surrounding sources such as 

population centers and mines to determine which sources contribute to black carbon 

pollution. Inverse Distance Weighting was used in a GIS platform to interpolate black 

carbon levels across the glaciers, as sampling at every point was unfeasible.  

 

4.1 Data 

4.1.1 Snow Samples 

 In-situ snow sampling was the primary data source for this research. Each snow 

sample was collected at an altitude of at least 4,800 meters, and the data contain 

information on the location, depth, date of the sample, an effective black carbon value, 

and associated mineralogy. Sample locations for each year are mapped in Appendix A. 

 Schmitt et al. (2014a) developed a method for collecting and analyzing snow 

samples for black carbon levels that can be used on glaciers across the world. The 

American Climber Science Program has collected over 200 of these snow samples from 

2011 to 2013. Samples were collected from glaciers at least 4,800 m in altitude, 100 m 

above the snow line and at regular intervals of 500 m of elevation to the mountain 

summit. To study long-term trends, ice samples were also collected from crevasse walls 

at varying depths. Location was recorded using a Global Positioning System device at 
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every sampling point. Sampling locations across the range are standard year to year, 

though some vary based on weather conditions and overall safety for climbers. 

At the time of sampling, approximately 1 kg of snow from the surface (down to 

2.5 cm) and 1 kg from the sub-surface (past 2.5 cm) were hand-scooped into 

appropriately labeled 1-liter Ziploc bags. Once returned to basecamp, the samples were 

melted down to liquid. The snowmelt of each sample was pulled into a 60 mL syringe 

and then pushed through a filter. The filter used was a 0.7 micron “Pallflex tissuquartz” 

25mm quartz fiber filter. This was repeated 10 times, until 600 mL of snowmelt had been 

filtered. The filters were kept in plastic coin holders and sun-dried, then kept frozen until 

analysis. 

 Filters from snow samples underwent the LAHM process (Schmitt et al., 2014b) 

to analyze the particles on the filter and quantify their light absorption properties. During 

the LAHM technique, the temperature of a filter with a known amount of black carbon is 

exposed to directed visible light in the 300-800 nm range for 30 seconds using the Cole-

Parmer Fiber-Lite Fiber Optical Illuminator. An infrared thermometer measures the 

temperature of the filter before the visible light exposure, during the 30 seconds of 

exposure, and another 50 seconds after exposure. A temperature profile curve of known 

levels of black carbon is used to determine effective black carbon mass from the heat 

absorption data (Figure 4.1). The temperature profile value is the temperature increase the 

filter had under the Light Absorption Heating Method. The data were recorded for further 

analysis and compared with the mineral makeup of the samples, as discussed later.  
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Figure 4.1. Temperature profile of filters. Each filter has a known mass of black carbon. Source: 

Schmitt et al. (2014b). 

 

Mineral analysis was completed on each sample using a MiniFlex II Desktop X-

Ray Diffractometer. Standard Measurement software was used to record measurements 

for samples. A list of peak positions and intensities were examined and indexed using 

Topas software. With the aim of extracting structural properties from the data, the Le Bail 

method was used to fit the pattern of the peaks. Results from the Le Bail method were 

used to profile and extract intensities of each of the phases. The intensities show the 

weight of that individual mineral. Le Bail’s (2005) paper reviewed the applications and 

successes of his method. 

 

4.1.2 Remote Sensing 

In order to create a time-series analysis for the entire Cordillera Blanca, remote 

sensing was heavily utilized. Imagery was acquired through MODIS satellite instruments 

from the USGS EarthExplorer website to examine glacial albedo levels. Glacial extent 

data were retrieved through the Global Land Ice Measurements from Space (GLIMS) 

initiative. 
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 Reflectance of snow is one of the factors affecting the mass balance of a glacier 

(Dumont et al., 2012). As albedo decreases, the glacier absorbs more radiation and melts 

more quickly. It is, therefore, important to examine the albedo when studying glacial 

retreat. The Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument 

delivers a product specifically designed to produce albedo measurements around the 

globe. The MODIS/Terra Snow Cover Daily L3 Global 500m Grid (MOD10A1) is a 

daily product that maps snow cover, snow albedo, fractional snow cover, and quality 

assessment data in a HDF-EOS format (Hall et al., 2006). This mapping is based on the 

NDSI methods discussed above and was found to be 93% accurate in multiple previous 

studies (e.g., Hall and Riggs, 2007). MOD10A1 data were downloaded for the months of 

May through August for the years 2011-2013. Only images with less than 20% cloud 

coverage were retrieved to ensure adequate coverage of the area. Band 2 of MOD10A1 

was used, as it specifically provides ground albedo values.  

 

4.1.3 Albedo Values 

The daily albedo band for MOD10A1 used pixel values that directly correlated to 

albedo values from 0% to 100%. Table 4.1 shows other values that were used in the case 

where no reflectance was recorded. To retrieve the albedo value for each sample, the 

Extract Values to Points tool under the Spatial Analyst™ extension in ArcMap® was 

utilized. This extracts the pixel values of a raster based on point features and saves the 

values in an output feature class. The MOD10A1 raster used for each year was for albedo 

values in the middle of July. The point features used were the snow sample locations for 

that year. When the values were extracted, the output table was then joined to the original 

snow sample shapefile. 
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Value Description 

0-100 = snow albedo In percent 

101 = no decision No decision 

111 = night Darkness, terminator, or polar night 

125 = land Snow-free land 

137 = inland water Lake or inland water 

139 = ocean Open water 

150 = cloud Cloud obscured 

250 = missing Data missing 

251 = self shadowing Self shadowing 

252 = landmask mismatch Landmask mismatch 

253 = BRDF failure 
Bidirectional Reflectance 

Distribution Function failure 

 

254 = non-production mask Non-production mask 

Table 4.1. MOD10A1 albedo values. Source: Hall et al. (2006). 

 

Unfortunately, there were locations where albedo values were not between 0-

100%, but instead marked snow-free land or a cloud. In these rare cases, a second 

MOD10A1 raster was brought in, still attempting to use data from the middle of July. 

Manual extraction of albedo values was attempted for all samples, but 33 of the 232 

remained without an albedo reading. Of those samples, 25 were from 2013, while 12 of 

these were valued as land, showing resolution limitations of satellite imagery on glacier 

edges. These samples were not used in correlation analyses involving albedo. 
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Albedo estimates based on black carbon concentrations and snow parameters can 

also be calculated using the Snow, Ice, and Aerosol Radiation (SNICAR) model (Flanner 

et al., 2007). SNICAR uses snowpack thickness, snow grain radius, black carbon 

concentrations, and other parameters to model expected albedo values. For this example, 

the average snowpack thickness value used was 25 meters. Snow grain effective radius 

values of 50, 150, and 250 microns were tested in the model. The snow grain radius is 

especially important because it influences near-infrared reflectance (Dozier, 1989). 

Calculations of effective black carbon in the Cordillera Blanca have been measured 

between 0.5 and 75 ng/g. Values of 0.5, 25, and 75, therefore, were used for uncoated 

black carbon concentration along with snow grain radius to calculate albedo (Table 4.2). 

For each snow grain radius, albedo measurements do not vary more than 0.02, despite the 

amount of black carbon. Significant changes in albedo occur between the different radii, 

mainly that of 50 microns and 150 microns. The albedo values calculated in this model 

have a much smaller range than those found in MODIS data, so the changes in albedo 

found in the study area may not be influenced by black carbon. Such insignificant 

variations would be difficult for remote sensors to pick up as well, so even large 

concentrations of black carbon would not greatly influence albedo values of MODIS 

data. SNICAR’s model shows that, in theory, black carbon does not affect albedo values 

significantly. Since this is a theoretical model, it is also possible there may be parameters 

not accounted for that affect the calculated albedo value, thus producing higher albedo 

values with less variation. 
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Snow Grain 

Effective Radius 

(µm) 

Black Carbon 

(ppb) 
Albedo 

50 0.5 0.85 

50 25 0.85 

50 75 0.84 

150 0.5 0.81 

150 25 0.80 

150 75 0.79 

250 0.5 0.78 

250 25 0.77 

250 75 0.76 

 

 

Although the black carbon research in the Cordillera Blanca only started five 

years ago, it is important to look at how glaciers retreated over that time period. The 

Global Land Ice Measurements from Space (GLIMS) project aims to monitor glaciers 

around the world using multispectral satellite instruments, mainly using the ASTER 

instrument onboard the Terra platform, and can be used to compare with collected ground 

data (Raup et al., 2007). Analysis of glacier outlines is performed by regional centers 

such as universities and geological institutes and made available through the National 

Snow and Ice Data Center. Using the interactive GLIMS Glacier Viewer, a shapefile of 

glaciers in the Cordillera Blanca was downloaded. The file included glacier outlines for 

the years 2005, 2007, and 2015. 

 

4.1.4 Sourcing and Local Data 

 To determine possible sources of black carbon and dust, including population 

centers and nearby mines, a variety of GIS data layers were used. A layer of the 

Huascarán National Park and its associated buffer zone obtained from the University of 

Table 4.2. Calculated albedo values. Based on snowpack 

thickness and black carbon concentration 
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Huaraz was used as the study area and analysis mask. The geographical center of Huaraz 

was selected to represent the town, as it is the main population center in the area. A layer 

of mining location data was provided by the Peruvian INGEMMET, the Institute of 

Geology, Mining, and Metallurgy. The overall layout of the area was displayed using a 

90-meter resolution Digital Elevation Model (DEM) from the Shuttle Radar Topography 

Mission (SRTM) through the CGIAR-Consortium for Spatial Information. As previously 

mentioned, MODIS MOD10A1 imagery albedo data came from the USGS 

EarthExplorer. The glacier locations and outlines layer were downloaded from the 

GLIMS database.  

 

4.2 Analysis 

 The three main software programs used for analysis were IBM® SPSS® Statistics 

23, Microsoft® Excel®, and ESRI® ArcGIS™ Desktop 10.2. The SPSS® software was 

used for all regression analysis. ArcMap® was used for processing, refining, and 

presenting data. All imagery and files were projected into WGS 1984 UTM Zone 18 

South using ArcMap®. Excel® was used to store regression analysis values and perform 

preliminary refinement of data. 

 Before any analysis could be completed, all of the data needed to be joined 

together and available in one location. The original shapefiles for the snow samples 

included depth of the samples, the mountain name, the year the sample was collected, and 

location variables such as altitude, latitude, and longitude. The mineralogy data for all the 

samples were compiled in a separate table, including not only mineral weight but the eBC 

values as well. This table was joined with the snow sample shapefiles in ArcCatalog® for 

each individual year. All usable data were available in a shapefile for each year. 
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4.2.1 Proximity Calculation 

 Determining dust emission locations that could impact mineral weight or eBC 

values was not a straightforward process, but calculating proximity of snow samples to 

mines and population centers can show likely sources (Underhill et al., 2015). Snow 

sample locations were measured for proximity to three main mines by using the Generate 

Near Table tool in ArcMap®. The output table listed the distance from each sample to 

each mine and the angle between the sample and the mine. This process was also used for 

proximity of the snow samples to the main population center, Huaraz. All output tables 

were joined to the snow sample shapefile for correlation with the other variables. 

 

4.2.2 Regression and Correlation Analysis 

 With the goal of explaining how mineral weight or eBC may affect albedo values 

and vice versa, linear regression was performed between major variables using SPSS® 

software. Altitude, aspect, eBC, total mineral weight, and albedo values were all 

correlated against each other. Each of those was then also correlated with the weights of 

each individual mineral found in each sample. The resulting R-values described whether 

the two variables had a weak, moderate, or strong linear relationship, or no relationship at 

all. Since the geoscience community does not have a set correlation coefficient guideline, 

strength of association was determined using guidelines suggested by Cohen (1988) 

found in Table 4.3. Total mineral weight, eBC values, and albedo values were all used in 

bivariate coefficient correlation against proximity values in SPSS® software. Each 

mineral component was correlated with each other to determine if the amount of one 

mineral related to the amount of another. Mineral weights were also correlated with snow 

sample variables to see if they had impacts on eBC or albedo.  
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Coefficient 

Value 

Strength of 

Association 

0.1 < |r| < 0.3 Small correlation 

0.3 < |r| < 0.5 Medium/moderate 

correlation 

|r| > 0.5 Large/strong 

correlation 

 

 

4.2.3 Interpolation Technique 

While there are snow samples from many areas of the Cordillera Blanca, it is still 

too large and dangerous of an area for in-situ data to be collected across the entire range. 

Instead, the interpolation technique of Inverse Distance Weighting (IDW) was used. 

Similar interpolation techniques for pollution detection have been used in studies before, 

particularly for air pollution (Tyagi and Singh, 2013), but this is the first application of it 

for black carbon pollution. Inverse Distance Weighting is a weighted distance averaging 

technique that works under the assumption that objects closer to each other will be more 

similar than those that are farther apart (O’Sullivan and Unwin, 2003). The IDW tool in 

the ArcMap® Spatial Analyst™ toolbox was used to create a continuous raster of eBC 

values for each year and range. The rasters were then used for visual analysis of how 

these variables might be affected by proximity to nearest mines and the city of Huaraz. 

 

4.2.4 Glacier Extent 

 The GLIMS data downloaded for the Cordillera Blanca were brought into 

ArcMap® and separated into shapefiles based on year. The Dissolve tool was used on 

each shapefile to eliminate individual glacier outlines and create one polygon feature for 

all glaciers in the study area for 2005, 2007, and 2015. To show the area of change, the 

Table 4.3. Strength of association guidelines 

Source: Cohen (1988.) 
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Erase tool was used with 2005 as the input feature and 2015 as the erase feature. The 

result was a polygon of glaciers in 2005 that are no longer present in 2015. The Polygon 

to Line tool was used to create a shapefile of just the glacial edges. Elevation values were 

extracted from the DEM using this glacial outline shapefile and the Extract by Mask tool. 

The average glacial edge elevation was calculated for 2005 and 2015 from the resulting 

values. 
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Chapter 5. Results and Discussion 

5.1 Mineral Analysis 

 For each year between 2011 and 2013, at least five minerals were consistently 

detected on the filters. A complete breakdown of the minerals and their weights per year 

can be found in Appendix B. Quartz, muscovite, annite, albite, and kaolinite were found 

all three years, but illite was also found on the 2013 filters. Quartz comprised the 

majority of the total mineral weight on over 57% of the total 232 filters, and over 80% of 

the filters in 2011 alone. Since quartz is one of the most abundant minerals found in the 

earth, it is likely that the quartz particles found in the snow samples come from nearby 

agriculture sites and any local mining sites, deposited via wind and precipitation (Rosok, 

2007). 

Although quartz was the main mineral present in the filter analyses, there were a 

few oddities in the data. Annite was found in almost every sample for 2012 and 2013, but 

only found in small quantities in two samples from 2011. Annite is part of the mica 

mineral family, but is mined very rarely in South America. The only known locality is in 

Brazil (Ralph, 2015). The increase in annite particulates after 2011 suggests that a nearby 

mine might have started operations that released the mineral into the air, or that large-

scale wind patterns played a bigger role in 2012 and 2013. The sudden presence of illite 

in 2013 is also peculiar, but may be related to previous minerals found. Illite is a clay-like 

mineral that can form from disintegrating muscovite, which suggests that high muscovite 

weight in previous years led to formation of illite minerals by 2013 (Poppe et al., 2001). 

Correlation coefficients were calculated in SPSS® between all minerals within 

each year. The results can be found in Tables 5.1-5.3. Few moderate and strong 

correlations were found in any of the years. A strong positive correlation was found 
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between quartz and albite in both 2011 and 2013, though there was only a weak 

correlation between the minerals in 2012. Muscovite and annite showed a strong positive 

correlation in 2011 and a moderate positive relationship in 2013. In 2012, there was a 

very strong positive correlation between kaolinite and muscovite, but it was not as strong 

in the other years. A moderate positive correlation between quartz and annite was found 

in 2012 only. Albite had a strong positive correlation with muscovite in 2013, and a 

moderate positive correlation with kaolinite and illite. 

 

 

 

Table 5.1. Mineralogy correlation analysis, 2011. Pearson correlation coefficients, using absolute weight of 

minerals found in samples for each year. 

 

2012 Quartz Muscovite Albite Kaolinite Annite 

Quartz 1 0.071 0.191 0.154 0.428 

Muscovite 0.071 1 0.077 0.777 -0.061 

Albite 0.191 0.077 1 0.266 0.091 

Kaolinite 0.154 0.777 0.266 1 -0.146 

Annite 0.428 -0.061 0.091 -0.146 1 

 

Table 5.2. Mineralogy correlation analysis, 2012. Pearson correlation coefficients, using absolute weight of 

minerals found in samples for each year. 

 

2013 Quartz Muscovite Albite Kaolinite Annite Illite 

Quartz 1 0.243 0.536 0.103 0.185 0.233 

Muscovite 0.243 1 0.604 0.344 0.320 0.211 

Albite 0.536 0.604 1 0.462 0.343 0.474 

Kaolinite 0.103 0.344 0.462 1 0.526 0.280 

Annite 0.185 0.320 0.343 0.526 1 0.207 

Illite 0.233 0.211 0.474 0.280 0.207 1 
 

Table 5.3. Mineralogy correlation analysis, 2013. Pearson correlation coefficients, using absolute weight of 

minerals found in samples for each year. 

2011 Quartz Muscovite Albite Kaolinite Annite 

Quartz 1 -0.021 0.585 0.016 -0.033 

Muscovite -0.021 1 0.106 0.205 0.603 

Albite 0.585 0.106 1 0.288 0.221 

Kaolinite 0.016 0.205 0.288 1 0.176 

Annite -0.033 0.603 0.221 0.176 1 
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Despite multiple strong correlations, the R-squared values rarely explained a 

majority of the variance in the data. The highest correlation coefficient in the data was 

found between muscovite and kaolinite in 2012 at 0.777, meaning the model explained 

60% of the variation. The relationship between annite and muscovite in 2011 yielded the 

second-highest R-value of 0.603, which only explains 36% of the variance. This means 

that the presence or absence of a mineral, at most, will explain 36% of the variance in 

other minerals. There were also no values that showed statistical significance at the 0.01 

or 0.05 level.  

5.2 Correlation of Snow Sample Attributes 

 The attributes for all samples that were run through correlation analysis included 

altitude, effective black carbon, albedo, and total mineral weight for each year (Tables 

5.4 – 5.6). The range of values for the latter three attributes is illustrated in boxplots, 

found in Appendix B. Very few relationships were moderate or strong, but they were 

important nonetheless. In 2011, the coefficient between eBC and albedo was -0.339, 

showing a moderate negative correlation. Since eBC is increasing as albedo decreases, 

this illustrates that the amount of black carbon found on snow likely does affect the 

absorption and reflection of light. Although this relationship was weak in 2012 and 2013, 

they were also negative. A negative correlation in all three years is significant because it 

implicates that black carbon amounts can decrease albedo, no matter the strength. 

Effective black carbon also had a moderate negative relationship with altitude in 2011, 

although this only explains less than 14% of the variance. As altitude increases eBC 

decreases, suggesting that black carbon particles are less abundant at higher elevations.  
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2011 Altitude Albedo eBC 
Total Mineral 

Weight 

Altitude 1 0.111 -0.369* -0.146 

Albedo 0.111 1 -0.339* -0.020 

eBC -0.369* -0.339* 1 0.055 

Total Mineral 

Weight 
-0.146 -0.020 0.055 1 

 
Table 5.4. Variable correlation analysis, 2011. Pearson correlation coefficients, using variables of snow 

samples. *Correlation is significant at the 0.05 level. **Correlation is significant at the 0.05 level. 

 

 

 

 

2012 Altitude Albedo eBC 
Total Mineral 

Weight 

Altitude 1 -0.062 -0.141 0.008 

Albedo -0.062 1 -0.062 0.047 

eBC -0.141 -0.062 1 0.020 

Total Mineral 

Weight 
0.008 0.047 0.020 1 

 
Table 5.5. Variable correlation analysis, 2012. Pearson correlation coefficients, using variables of snow 

samples. *Correlation is significant at the 0.05 level. **Correlation is significant at the 0.05 level. 

 

 

 

2013 Altitude Albedo eBC 
Total Mineral 

Weight 

Altitude 1 0. 254* -0.250* -0.184 

Albedo 0.254* 1 -0.172 -0.033 

eBC -0.250* -0.172 1 0.343** 

Total Mineral 

Weight 
-0.184 -0.033 0.343** 1 

 

Table 5.6. Variable correlation analysis, 2013. Pearson correlation coefficients, using variables of snow 

samples. *Correlation is significant at the 0.05 level. **Correlation is significant at the 0.05 level. 
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The analysis for 2012 did not result in any moderate or strong associations. The 

2013 analysis shows a moderate positive correlation between total mineral weight and 

effective black carbon, indicating that eBC values increase as mineral weight of the 

sample increases. Unfortunately, there were no relationships consistent from year to year, 

implying that the other correlations found may not hold any significance or that other 

factors such as weather, especially snowfall, immediately before sampling may play a 

role. Dominate seasonal wind direction for the year, El Nino and Pacific climate patterns, 

location burning, and temperature inversions could all play a role. 

Snow sample attributes were also correlated with the mineralogy of the samples, 

found in Tables 5.7 – 5.9. The total mineral weight had almost all moderate or strong 

positive correlations with each mineral, but this is expected since individual mineral 

weights sum to the total mineral weight. Other relationships found were not consistent 

throughout all three years. Albite had a strong positive relationship with eBC values in 

2011, but only a moderate positive relationship in 2013 and a weak positive relationship 

in 2012. The only other strong correlation was between kaolinite and eBC in 2013, but 

this correlation was barely moderate in 2011 and very weak in 2012. Since all minerals 

analyzed are light-colored, this may explain why there was no correlation between 

individual minerals and albedo, nor consistent correlation with individual minerals and 

eBC values. 
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2012 Altitude Albedo eBC 
Total Mineral 

Weight 

Quartz -0.066 -0.071 0.187 0.437** 

Muscovite 0.042 0.088 -0.041 0.786** 

Albite -0.090 0.274 0.199* 0.332** 

Kaolinite 0.039 0.071 -0.078 0.947** 

Annite -0.100 -0.304 0.389** 0.060 

 

2013 Altitude Albedo eBC 
Total Mineral 

Weight 

Quartz -0.141 0.003 0.024 0.784** 

Muscovite -0.122 -0.035 0.109 0.548** 

Albite -0.253* -0.043 0.406** 0.810** 

Kaolinite -0.084 0.015 0.595** 0.561** 

Annite 0.057 0.045 0.372** 0.535** 

Illite -0.164 -0.140 0.228* 0.589** 

 

 

2011 Altitude Albedo eBC 
Total Mineral 

Weight 

Quartz -0.038 0.033 0.093 0.721** 

Muscovite -0.142 -0.065 -0.091 0.671** 

Albite -0.201 0.107 0.518** 0.558** 

Kaolinite -0.221 -0.086 0.317* 0.234 

Annite -0.032 0.063 -0.020 0.415** 

Table 5.7. Snow sample and mineralogy correlation analysis, 2011. Pearson correlation 

coefficients, using variables of snow samples and mineral weights. *Correlation is significant at the 

0.05 level. **Correlation is significant at the 0.05 level. 

 

 

Table 5.8. Snow sample and mineralogy correlation analysis, 2012. Pearson correlation 

coefficients, using variables of snow samples and mineral weights. *Correlation is significant at the 

0.05 level. **Correlation is significant at the 0.05 level. 

Table 5.9. Snow sample and mineralogy correlation analysis, 2013. Pearson correlation 

coefficients, using variables of snow samples and mineral weights. *Correlation is significant at the 

0.05 level. **Correlation is significant at the 0.05 level. 
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5.3 Proximity Analysis 

5.3.1 Mines 

 Regression analysis was performed to determine the relationship between a snow 

sample’s distance to each of three mines versus albedo, total mineralogy, eBC values, and 

individual mineral values. These correlation coefficients can be found in Tables 5.10 and 

5.11. Three main mining locations were used for this analysis (Appendix A): The Pierina 

mine owned by Barrick Gold Corporation mines mainly gold; the Antamina site mines 

copper, lead, silver, zinc, and molybdenum; and the Huanzala Mineral Company mines 

zinc, lead, copper, and silver. 

Analysis of individual mineral weights shows a very weak correlation with a 

sample’s proximity to any of the mines. Alternatively, analysis demonstrates that 

proximity to any mine influenced and eBC values, but had no bearing on albedo or 

mineral weight. The correlation between proximity to any mine and eBC values was 

moderately negative, showing that eBC values increased when the sample was located 

closer to a mine. While the correlation coefficients were all within a small range, Pierina 

had a higher coefficients than the other mines. This suggests that the Barrick Pierina mine 

may have a slightly larger influence on eBC values than the Antamina or Huanzala 

mines.  

Mines Quartz Muscovite Albite Kaolinite Annite Illite 

Pierina 0.176 0.047 0.009 0.082 -0.117 0.002 

Antamina 0.083 0.083 0.069 0.087 -0.203 0.003 

Huanzala 0.083 0.079 0.057 0.085 -0.197 0.006 

Table 5.10. Mine proximity and mineral correlation analysis. Pearson correlation coefficients, 

relating proximity of mines to mineralogy of snow samples for each year. 
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5.3.2 Huaraz 

 Since Huaraz is the most populated town in the Cordillera Blanca region, it was 

important to determine if proximity to the city impacted albedo, eBC, and total mineral 

weight. This analysis was performed exactly the same as the analysis with mine 

proximities. The results for the Huaraz proximity analysis can be found summarized in 

Table 5.12. For visual representation of eBC values in relation to Huaraz, as well as the 

nearest mines, maps can be found in Appendix A. 

Huaraz Albedo eBC 
Total Mineral 

Weight 

2011 0.519** -0.617 0.030 

2012 0.487** -0.358 0.171 

2013 0.139 -0.469 0.167 

 The correlation coefficients for effective black carbon (eBC) were negative for all 

years and at least moderately correlated, but only 2011 had a strong correlation of over -

0.60. The coefficient value for 2013 showed a moderate correlation of -0.469, though the 

value was only a few tenths from a strong correlation. The value for 2012 was smaller 

than the other years, but it was still at moderate correlation strength. R-squared values 

Mines Albedo eBC 
Total Mineral 

Weight 

Pierina -0.034 -0.447 0.136 

Antamina -0.142 -0.408 0.112 

Huanzala -0.118 -0.419 0.109 

Table 5.11. Mine proximity and attribute correlation analysis. Pearson correlation coefficients, 

relating proximity of mines to snow sample attributes for each year. 

Table 5.12. Huaraz proximity and attribute correlation analysis. Pearson correlation coefficients, 

relating proximity of Huaraz to snow sample attributes for each year. 
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show that the model explains 38% of the variation between effective black carbon and 

proximity to Huaraz for 2011. About 22% of the variance is explained by the model for 

2013, but less than 13% of the variance is explained by the model for 2012. 

 The relationship between albedo and proximity to Huaraz is positive for all three 

years, unlike the negative relationships seen with the previous variables. This positive 

relationship indicates that as the distance from Huaraz increases, so do the albedo values. 

Glaciers are found farther up in the Cordillera Blanca mountains, at a distance from the 

town, so the likelihood that albedo-reducing particulates could travel that far from town is 

logical. The 2011 albedo has a strong association with a correlation coefficient of 0.519, 

and 2012 has a moderate association with a coefficient of 0.487. Both are statistically 

significant. These values show that the model explains about 27% of the variation in 

2011 and about 24% of the variation in 2012. An anomaly occurs in 2013 though, as that 

relationship between albedo and proximity to Huaraz is very weak. The relationship 

between total mineral weight and proximity to Huaraz is also very weak, with no 

significance in any year.  

To illustrate further the impact that the proximity of Huaraz has on variables such 

as effective black carbon, a continuous raster of eBC values was created using Inverse 

Distance Weighting. The search radius was 10 kilometers, but at least four samples had to 

be included in the search. The results show the higher values towards the west-central 

edge of the park, closest to where Huaraz is located. The eastern edge, as well as the 

northern portion of the park, shows lower values of eBC than farther south. Effective 

black carbon mapping was also performed for each sample region above 4,700 meters. 

Since the analysis area was smaller for these regions, only areas with at least five sample 
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locations were included to ensure a more realistic representation of interpolated values. 

These maps can be found in Appendix A. 

The proximity of Huaraz to snow samples was also correlated with the individual 

mineralogy found in each sample (Table 5.13). Weak correlation was found between 

proximity and all minerals except for quartz in 2013. A positive moderate correlation of 

0.355 means that the abundance of quartz found in snow samples increase as distance 

from Huaraz also increases, although this only explains about 13% of the variance.  

Huaraz Quartz Muscovite Albite Kaolinite Annite Illite 

2011 0.054 0.031 -0.254 -0.187 -0.096 - 

2012 0.186 0.118 0.082 0.139 -0.177 - 

2013 0.355 0.041 0.099 -0.250 -0.153 118 

 

5.3.3 Aspect Analysis 

 

Proximity analysis was also broken down based on the aspect of the sample and 

the direction to the each mine. As seen in Tables 5.14-5.16, aspect clusters were created 

for each mining location. The directions can either be facing each other (North to mine – 

South aspect of sample, etc.), 90-degrees from each other (South to mine –East aspect of 

sample, etc.), or matching (West to mine – West aspect of sample, etc.). 

 The correlation between proximity and mineral weights based on clusters was 

mostly insignificant for all mines. A moderate positive relationship was found between 

the albite weight and proximity to Pierina for samples that faced the mine. A strong 

correlation was found in this same situation for the Huanzala mine. The analysis for 

Huanzala also shows that muscovite had a moderate positive correlation with proximity 

Table 5.13. Huaraz proximity and mineral correlation analysis. Pearson correlation coefficients, 

relating proximity of Huaraz to mineralogy of snow samples for each year. 
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to the main for samples that face Huanzala. For these instances, the mineral weight 

increases the further the sample is from the mine, but only when the sample has an aspect 

that faces the mine. 

Pierina eBC Quartz Muscovite Albite Kaolinite Annite Illite 

Facing -0.275 0.064 0.177 0.376 0.266 0.072 -0.188 

Ninety Degree -0.502 0.178 0.044 -0.016 -0.155 -0.156 -0.197 

Matching -0.426 0.322 0.061 -0.029 0.121 -0.188 0.163 

 
Table 5.14. Mine proximity based on sample aspect. Pierina. Pearson correlation coefficients, relating 

proximity of mine to mineralogy and eBC of snow samples. Categories listed for direction to mine and 

aspect of sample. 

 

Antamina eBC Quartz Muscovite Albite Kaolinite Annite Illite 

Facing -0.148 0.051 0.139 0.103 -0.017 -0.176 -0.206 

Ninety Degree -0.579 0.130 0.120 0.111 0.083 -0.146 0.058 

Matching -0.389 -0.043 0.094 0.257 0.054 -0.280 -0.134 

 
Table 5.15. Mine proximity based on sample aspect, Antamina. Pearson correlation coefficients, relating 

proximity of mine to mineralogy and eBC of snow samples. Categories listed for direction to mine and 

aspect of sample. 

 

Huanzala eBC Quartz Muscovite Albite Kaolinite Annite Illite 

Facing -0.580 -0.107 0.352 0.545 -0.173 0.068 -0.133 

Ninety Degree -0.290 0.078 0.095 -0.072 -0.084 -0.294 -0.159 

Matching -0.489 0.338 0.101 0.160 0.108 -0.058 0.092 

 

Table 5.16. Mine proximity based on sample aspect, Huanzala. Pearson correlation coefficients, relating 

proximity of mine to mineralogy and eBC of snow samples. Categories listed for direction to mine and 

aspect of sample. 

 

All correlations between effective black carbon and proximity to mine had a 

negative coefficient, so eBC values always increased as the distance to the mine 

decreased no matter the aspect cluster. These correlations were strong for the Pierina and 

Antamina mines when the sample had an aspect 90 degrees to the mine. This was not the 
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case for Huanzala though. All three mines showed moderate correlations for eBC when 

the sample’s aspect matched the direction to the mine. For samples whose aspects faced 

the mine, a strong eBC correlation occurred with only the Huanzala mine. As was done 

with mines, the proximities of the samples to Huaraz were correlated with sample 

attributes based on aspects of the samples and direction to Huaraz (Table 5.17). The 

directions can either be facing each other (North to mine – South aspect of sample, etc.), 

90-degrees from each other (South to mine –East aspect of sample, etc.), or matching 

(West to mine – West aspect of sample, etc.). 

When the sample is facing the direction of Huaraz, the correlation between 

effective black carbon and proximity to Huaraz is moderate and negative. This means that 

as the distance to Huaraz increases, eBC values decrease if the sample faces the town. 

This also applies to the illite correlation. Muscovite and albite both show moderate 

positive correlation with proximity to Huaraz when facing the town. As the distance to 

the town decreases, so does the amount of albite and muscovite found in the sample. For 

samples with aspects that are either at 90-degrees to the direction of Huaraz or matches 

the direction, eBC values decrease as distance from the city increases. This correlation is 

stronger with sample aspects that match the direction to Huaraz. 

 

Table 5.17. Huaraz proximity based on sample aspect. Pearson correlation coefficients, relating proximity 

of Huaraz to mineralogy and eBC of snow samples for each year. Categories listed for direction to Huaraz 

and aspect of sample. 

Huaraz eBC Quartz Muscovite Albite Kaolinite Annite Illite 

Facing -0.451 0.105 0.318 0.392 0.164 -0.035 -0.299 

Ninety Degree -0.386 0.140 0.069 -0.089 -0.085 -0.198 -0.090 

Matching -0.504 0.268 0.080 0.072 0.101 -0.176 0.071 
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5.4 Glacier Extent 

 

Data for this study have not been collected long enough to relate directly to 

glacier retreat over an extensive period of time, but glacier retreat can still be calculated 

for the last decade and monitored throughout the continued course of this research. 

GLIMS data give the area of glaciers worldwide since the early 2000s using satellite 

instruments. Calculating the difference in glacier area from 2005 and 2015, the total area 

loss in the past decade is 60.24 km2, approximately 6 km2 per year.  

 

When the glacial edges from 2005 are mapped in respect to the DEM, the average 

elevation is just over 5,116 meters in 2005. When the same analysis was done for 2015, 

the average elevation was almost 5,289 meters. Within 10 years, that is an average of 173 

meter elevation retreat of glaciers in the park. 

Figure 5.1. Huascarán National Park glacier loss. Total area of loss 

by glacier cluster. Source: Created by the author. 
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Table 5.19 Retreat by aspect. Percentage of 

retreated glaciers based on aspect. 

Number 
Glacier 

Loss (km2) 

Percent 

Loss 

Average 

eBC 

1 7.343 9.038 5.921 

2 9.162 13.187 7.007 

3 6.611 11.663 11.106 

4 9.887 8.609 - 

5 23.591 13.112 17.244 

6 3.641 23.230 - 

Although the previous analysis shows that eBC values are higher near Huaraz, 

glacier loss is not isolated to one specific area. As seen in Figure 5.1, glacier edges have 

retreated in all parts of Huascarán National Park. Table 5.18 shows glacier area lost based 

on mountain groups of the Cordillera Blanca. The locations of these groups are shown in 

Figure 5.1. When compared to aspect, over 33% of the areas that retreated had an eastern 

aspect, with a southern aspect close behind at over 25% (Table 5.19). 

 

  

 

 

 

  

Retreat 

Aspect 
Percent 

North 23.882 

East 33.352 

South 25.611 

West 17.155 

Table 5.18. Glacier loss by cluster. Areas calculated from 2005 and 

2015 GLIMS data 
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Chapter 6. Conclusions 

 Very little of the data allow for consistent conclusions applicable to all three 

years, but this may change as more data are collected every year. In the meantime, it’s 

important to focus on what the data can already tell us. The two essential attributes 

examined in this study are effective black carbon and albedo. The only year that these 

two attributes had a moderate relationship was in 2011. The correlation was negative with 

significance at the 0.01 level. The relationship between eBC and albedo was negative for 

2012 and 2013 as well, even though the correlation was weak. The fact that the 

relationship was negative means that increased eBC is lowering albedo values rather than 

raising them. If eBC becomes more abundant in coming years, we may see this 

relationship become more pronounced. 

Other attributes did not significantly correlate with either albedo or eBC from any 

of the three years, so any changes in albedo or eBC are likely not occurring due to 

altitude or total mineral weight. The only year in which this does not hold true is 2011, 

when altitude had a moderate negative correlation with eBC values, though one year is 

not significant enough for a solid conclusion. Mineral analysis showed that albedo was 

only very weakly correlated with mineral weight, so the minerals found in snow do not 

decrease albedo. eBC correlations with minerals show that increases in albite, kaolinite, 

and annite can increase eBC values in snow samples. 

Proximity analysis showed that distance to any of the mines did not have any 

significant correlation with individual mineral weights. Changes in these values cannot be 

attributed to their proximity to mining sites. Correlation showed that proximity to Huaraz 

did not affect individual mineral weights either, so minerals are sourced elsewhere 
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besides Huaraz and local mines. Possible sources that were not examined include smaller 

mining sites nearby, or deposition through wind and rain carried from farther sources. 

Proximity to a mine does have an influence on eBC values, no matter which of the 

three mines were examined. There was a moderate negative correlation with eBC values 

for all mines, though the strongest was for the Pierina mine, just northwest of Huaraz. 

The total mineral weight was not correlated with proximity to the mines though, so 

mineral deposition is not coming from either of these mines nor affecting eBC values. 

Other dust particulates besides mineral dust are influencing eBC values. Albedo values 

were only weakly correlated with proximity to any of the mines. 

Rather than proximity to mines, a sample’s proximity to Huaraz has a bigger 

impact on eBC and albedo values. A negative correlation of at least moderate correlation 

occurred for eBC values in all three years. The amount of eBC found in a snow sample 

will increase the closer it is located to Huaraz, suggesting that this is the largest source of 

black carbon particulates for the Cordillera Blanca region. Proximity to Huaraz is also 

likely affecting albedo values, as 2011 and 2012 showed strong and moderate positive 

correlations, respectively. Glaciers have higher reflectance and lower eBC values the 

further they are from Huaraz. 

Further aspect analysis shows that a sample’s directional relationship to the mines 

does not influence mineral weight found in snow samples. This suggests that even wind 

blowing from different directions does not carry mineral dust to sample locations. 

Directionality did affect eBC values, though. A consistent moderate relationship for all 

three mines shows that when the sample’s aspect faces the direction to the mine, eBC 

values will decrease further from the mine. A 90-degree directionality shows a strong 
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correlation with eBC, but only for the Antamina and Pierina mines. Huanzala is south of 

all samples, so wind from the south may not be depositing dust particulates on the 

glaciers. Aspect analysis for Huaraz showed similarly that directionality did not influence 

individual mineral weight, but all correlations with eBC were at least moderately 

correlated. No matter which direction the sample faces, eBC values decrease the further 

located from Huaraz. 

Although mines are influencing eBC values, Huaraz seems to be the main culprit 

for glacial retreat. Huaraz is located to the south of over 84% of all samples. Glacier 

retreat shows that 26% of the areas that have retreat have a southern aspect, a higher 

percentage than any of the other aspects. As seen in Figure 5.1, location 5 is the closest 

glacial area to Huaraz. Over 23 km2 of glacial area at that location was lost between 2005 

and 2015, 13% of its total area. Samples taken in this glacial area also had the highest 

average eBC value over three years (Table 5.18). Albedo and eBC values were 

influenced by proximity to Huaraz as well. The next largest influence will most likely be 

Pierina, as its proximity to samples shows a higher correlation with eBC than the other 

mines. It is also the closest to Huaraz, and may be affecting the glacial melt in location 5. 

Huanzala to the south may also have an influence, as its correlations with eBC were still 

moderate. It is also located closest to location 6, which has experienced 23% glacial loss 

in the past 10 years. Antamina likely has the least impact of factors that influence glacial 

retreat. 

It is important to note that while this research expands our understanding of 

glacial retreat, there are also improvements to be made. The number and location of 

samples taken can differ from year to year depending on timing and safety of the 
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expedition. Data cannot always be compared by location year to year for this reason, and 

certain areas will be underrepresented. Using correlation techniques such as IDW to 

cover these areas can result in unrealistic representations, but having more sample points 

can remedy this problem to a degree. 

More can be done for the mineralogy scope of this research. Along with 

examining mining locations, particles from nearby dirt roads and soil samples should be 

collected and compared with the filters. The reflectance spectrum values of these 

particles might be affecting albedo values, and also could be a large part of particulate 

matter found on the filters. Mineral analysis of the filters may need refinement, as certain 

compounds could not be measured. The current X-ray diffraction method uses copper 

radiation, which causes samples containing iron to burn. Any samples with significant 

hematite were difficult to examine because of this problem. In the future, the X-ray 

diffraction could be used for certain minerals like albite and quartz, while an X-ray 

fluorescence analyzer could be used for iron content. These improvements would help 

ensure more accurate and precise data in future years, while building on what has already 

been collected. 
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APPENDIX B: Tables and Graphs 

 

Note for all tables: *Correlation is significant at the 0.05 level. **Correlation is 

significant at the 0.05 level. 

 

Table B1: 2011 Snow Sample Data 

Filter Latitude Longitude Total Quartz Muscovite Albite Kaolinite Annite 

1 -9.384 -77.411 1.896 1.147 0.268 0.308 0.172 0.000 

2 -9.096 -77.585 0.982 0.513 0.105 0.237 0.127 0.000 

3 -9.392 -77.406 0.962 0.481 0.000 0.191 0.171 0.119 

5 -9.117 -77.618 5.970 0.230 5.291 0.119 0.232 0.098 

6 -9.117 -77.618 0.687 0.299 0.281 0.107 0.000 0.000 

7 -8.890 -77.649 0.279 0.000 0.211 0.068 0.000 0.000 

8 -8.890 -77.649 0.279 0.000 0.211 0.068 0.000 0.000 

9 -8.890 -77.649 5.956 5.529 0.182 0.245 0.000 0.000 

10 -8.890 -77.649 0.490 0.000 0.188 0.098 0.205 0.000 

11 -8.890 -77.649 0.588 0.263 0.154 0.000 0.171 0.000 

12 -9.010 -77.632 0.304 0.102 0.081 0.050 0.070 0.000 

14 -9.439 -77.461 0.455 0.184 0.098 0.047 0.126 0.000 

15 -9.419 -77.460 1.789 1.147 0.178 0.151 0.312 0.000 

16 -9.012 -77.636 1.789 1.147 0.178 0.151 0.312 0.000 

17 -9.014 -77.642 0.864 0.464 0.167 0.068 0.165 0.000 

18 -9.014 -77.642 1.858 1.024 0.285 0.149 0.399 0.000 

19 -9.019 -77.643 0.689 0.350 0.118 0.063 0.158 0.000 

20 -9.019 -77.643 0.731 0.380 0.115 0.063 0.172 0.000 

21 -9.470 -77.335 0.568 0.231 0.078 0.101 0.158 0.000 

22 -9.470 -77.342 1.157 0.587 0.162 0.133 0.274 0.000 

23 -9.470 -77.335 0.479 0.294 0.072 0.052 0.062 0.000 

24 -9.470 -77.342 0.422 0.048 0.119 0.112 0.143 0.000 

25 -9.466 -77.316 0.265 0.015 0.075 0.050 0.125 0.000 

26 -9.466 -77.316 0.285 0.106 0.059 0.054 0.067 0.000 

27 -9.427 -77.458 0.694 0.391 0.098 0.082 0.123 0.000 

28 -9.427 -77.458 0.781 0.430 0.123 0.073 0.155 0.000 

29 -9.434 -77.462 1.160 0.726 0.199 0.119 0.117 0.000 

30 -9.421 -77.457 0.664 0.393 0.129 0.057 0.086 0.000 

31 -9.439 -77.450 1.063 0.623 0.184 0.094 0.162 0.000 

32 -9.421 -77.457 1.509 0.863 0.312 0.211 0.122 0.000 

33 -9.357 -77.432 0.703 0.338 0.184 0.088 0.093 0.000 

34 -9.355 -77.434 1.234 0.743 0.225 0.119 0.147 0.000 

35 -8.944 -77.630 0.289 0.131 0.049 0.034 0.076 0.000 
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36 -8.952 -77.632 0.439 0.161 0.095 0.048 0.135 0.000 

37 -8.957 -77.631 0.236 0.069 0.073 0.037 0.056 0.000 

38 -8.965 -77.630 0.532 0.219 0.100 0.071 0.141 0.000 

39 -9.027 -77.577 0.544 0.261 0.096 0.071 0.117 0.000 

40 -9.027 -77.577 0.399 0.200 0.073 0.043 0.082 0.000 

41 -9.031 -77.583 0.742 0.454 0.098 0.049 0.140 0.000 

42 -9.031 -77.583 0.527 0.274 0.100 0.056 0.098 0.000 

43 -9.136 -77.633 0.993 0.577 0.174 0.109 0.133 0.000 

44 -9.126 -77.619 0.576 0.300 0.105 0.055 0.116 0.000 

45 -9.115 -77.617 0.576 0.300 0.105 0.055 0.116 0.000 

46 -9.115 -77.611 0.229 0.097 0.050 0.035 0.047 0.000 

47 -9.115 -77.611 0.178 0.034 0.056 0.038 0.049 0.000 

 

 

 

 

 

Table B2: 2012 Snow Sample Data 

Filter  Latitude Longitude Total Quartz Muscovite Albite Kaolinite Annite 

1  -9.010 -77.632 0.917 0.430 0.283 0.098 0.000 0.105 

2  -9.010 -77.632 0.712 0.061 0.000 0.246 0.405 0.000 

3  -9.012 -77.636 8.972 1.042 0.160 0.488 7.282 0.000 

4  -9.012 -77.636 12.346 0.219 2.675 0.167 9.284 0.000 

5  -9.014 -77.642 0.484 0.000 0.000 0.290 0.000 0.194 

6  -9.014 -77.642 1.881 0.322 0.112 0.473 0.974 0.000 

7  -9.019 -77.643 1.000 0.455 0.131 0.222 0.192 0.000 

8  -9.019 -77.643 0.508 0.000 0.114 0.231 0.164 0.000 

9  -9.117 -77.618 0.773 0.000 0.231 0.385 0.157 0.000 

10  -9.117 -77.618 0.980 0.299 0.198 0.270 0.213 0.000 

11  -9.117 -77.618 0.489 0.129 0.103 0.171 0.086 0.000 

12  -9.117 -77.618 0.493 0.000 0.110 0.250 0.106 0.027 

13  -9.117 -77.618 1.197 0.466 0.204 0.276 0.149 0.101 

14  -9.355 -77.436 0.396 0.026 0.099 0.181 0.090 0.000 

15  -9.355 -77.436 0.436 0.000 0.061 0.103 0.181 0.090 

16  -9.357 -77.432 0.361 0.000 0.068 0.101 0.118 0.073 

17  -9.357 -77.432 0.452 0.000 0.095 0.098 0.187 0.071 

18  -9.357 -77.432 0.643 0.168 0.106 0.135 0.172 0.061 

19  -9.384 -77.411 0.822 0.064 0.176 0.231 0.249 0.102 

20  -9.384 -77.411 0.531 0.057 0.141 0.158 0.130 0.045 

21  -9.397 -77.409 0.720 0.000 0.120 0.300 0.150 0.151 

22  -9.397 -77.409 0.517 0.119 0.089 0.092 0.167 0.050 

23  -9.387 -77.406 0.694 0.067 0.152 0.233 0.155 0.086 

24  -9.387 -77.406 0.584 0.140 0.105 0.156 0.125 0.059 

25  -9.392 -77.406 0.322 0.000 0.103 0.064 0.074 0.081 

26  -9.392 -77.406 0.449 0.161 0.071 0.097 0.095 0.026 
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27  -9.397 -77.417 0.476 0.000 0.073 0.227 0.061 0.114 

28  -9.439 -77.461 0.796 0.000 0.130 0.265 0.212 0.189 

29  -9.439 -77.461 0.657 0.000 0.144 0.165 0.238 0.111 

30  -9.427 -77.458 0.531 0.048 0.092 0.208 0.160 0.023 

31  -9.427 -77.458 0.374 0.000 0.111 0.119 0.102 0.041 

32  -9.427 -77.458 0.515 0.096 0.119 0.132 0.113 0.055 

33  -9.427 -77.458 0.579 0.086 0.129 0.146 0.141 0.078 

34  -9.427 -77.458 0.608 0.173 0.115 0.142 0.129 0.048 

35  -9.427 -77.458 0.616 0.133 0.120 0.203 0.127 0.033 

36  -9.427 -77.458 0.548 0.117 0.112 0.132 0.140 0.046 

37  -9.427 -77.458 0.538 0.150 0.111 0.126 0.095 0.056 

38  -9.427 -77.458 0.474 0.116 0.122 0.119 0.073 0.043 

39  -9.427 -77.458 0.412 0.000 0.120 0.139 0.073 0.081 

40  -9.427 -77.458 0.780 0.087 0.143 0.228 0.050 0.272 

41  -9.427 -77.458 0.637 0.148 0.130 0.156 0.130 0.073 

42  -9.427 -77.458 0.615 0.196 0.116 0.124 0.119 0.060 

43  -9.427 -77.458 0.508 0.125 0.109 0.103 0.118 0.053 

44  -9.427 -77.458 0.785 0.000 0.162 0.251 0.167 0.205 

45  -9.421 -77.456 0.903 0.107 0.178 0.248 0.175 0.195 

46  -9.421 -77.456 0.808 0.000 0.136 0.278 0.121 0.273 

47  -9.427 -77.458 0.949 0.000 0.141 0.307 0.255 0.247 

48  -9.427 -77.458 0.774 0.000 0.136 0.219 0.226 0.193 

49  -9.031 -77.583 0.795 0.161 0.084 0.235 0.100 0.214 

50  -9.031 -77.583 0.447 0.000 0.096 0.121 0.142 0.088 

51  -9.026 -77.578 0.573 0.000 0.172 0.168 0.167 0.066 

52  -9.026 -77.578 0.452 0.000 0.134 0.116 0.136 0.066 

53  -9.027 -77.577 0.823 0.151 0.183 0.180 0.194 0.115 

54  -9.027 -77.577 0.823 0.199 0.178 0.154 0.196 0.095 

55  -9.095 -77.591 0.306 0.000 0.054 0.128 0.087 0.036 

56  -9.095 -77.591 0.471 0.102 0.123 0.109 0.098 0.040 

57  -9.096 -77.585 0.495 0.126 0.110 0.095 0.104 0.059 

58  -9.096 -77.585 0.590 0.083 0.104 0.151 0.125 0.127 

59  -9.096 -77.582 0.753 0.240 0.144 0.160 0.128 0.082 

60  -9.096 -77.582 0.930 0.335 0.144 0.198 0.171 0.081 

61  -9.092 -77.574 0.627 0.130 0.132 0.127 0.120 0.118 

62  -9.092 -77.574 0.570 0.184 0.099 0.095 0.118 0.074 

63  -9.087 -77.574 0.437 0.000 0.122 0.091 0.111 0.114 

64  -9.087 -77.574 0.421 0.000 0.103 0.108 0.134 0.076 

65  -8.881 -77.654 0.899 0.378 0.101 0.166 0.106 0.149 

66  -8.881 -77.654 0.689 0.204 0.147 0.156 0.120 0.060 

67  -8.879 -77.653 2.281 1.137 0.290 0.407 0.421 0.026 

68  -8.879 -77.653 1.098 0.449 0.145 0.188 0.257 0.059 

69  -8.890 -77.649 1.435 0.766 0.135 0.197 0.122 0.215 

70  -8.890 -77.649 1.438 0.618 0.143 0.098 0.398 0.181 

71  -8.887 -77.654 0.619 0.138 0.162 0.155 0.092 0.072 

72  -8.887 -77.654 1.516 0.717 0.169 0.155 0.295 0.178 

73  -8.890 -77.665 0.487 0.132 0.094 0.096 0.115 0.049 

74  -8.890 -77.665 1.559 0.597 0.126 0.248 0.340 0.248 
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75  -8.894 -77.664 0.757 0.351 0.149 0.124 0.132 0.000 

76  -8.894 -77.664 0.271 0.000 0.088 0.110 0.073 0.000 

77  -8.885 -77.656 0.568 0.185 0.105 0.167 0.111 0.000 

78  -8.885 -77.656 1.923 1.080 0.220 0.258 0.155 0.210 

79  -9.465 -77.314 0.690 0.263 0.086 0.138 0.068 0.135 

80  -9.465 -77.314 0.847 0.356 0.136 0.127 0.109 0.120 

81  -9.392 -77.406 0.688 0.329 0.106 0.105 0.095 0.053 

82  -9.392 -77.406 1.719 0.824 0.168 0.248 0.165 0.314 

83  -9.463 -77.311 1.071 0.336 0.117 0.191 0.313 0.114 

84  -9.463 -77.311 1.124 0.417 0.133 0.173 0.244 0.157 

85  -9.463 -77.309 1.515 0.524 0.119 0.103 0.287 0.482 

86  -9.463 -77.309 3.476 2.067 0.311 0.312 0.278 0.507 

87  -9.472 -77.329 1.627 0.959 0.146 0.133 0.200 0.188 

88  -9.472 -77.329 1.101 0.573 0.120 0.220 0.000 0.189 

89  -9.470 -77.346 1.534 0.975 0.084 0.138 0.126 0.209 

90  -9.470 -77.346 0.267 0.000 0.000 0.000 0.122 0.146 

91  -9.469 -77.339 1.496 0.873 0.127 0.000 0.304 0.191 

92  -9.469 -77.339 3.367 2.117 0.123 0.118 0.775 0.234 

93  -9.010 -77.632 2.269 1.051 0.180 0.262 0.705 0.071 

94  -9.010 -77.632 0.266 0.000 0.090 0.000 0.082 0.094 

95  -9.012 -77.636 0.643 0.436 0.074 0.060 0.000 0.073 

96  -9.012 -77.636 0.775 0.000 0.196 0.153 0.181 0.245 

97  -9.014 -77.642 1.304 0.790 0.152 0.118 0.113 0.132 

98  -9.014 -77.642 1.943 1.346 0.163 0.141 0.182 0.110 

99  -9.019 -77.643 1.303 0.741 0.147 0.154 0.109 0.151 

100  -9.019 -77.643 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

 

Table B3: 2013 Snow Sample Data 

Filter Latitude Longitude Total Quartz Muscovite Albite Kaolinite Annite Illite 

1 -9.354 -77.414 0.845 0.133 0.082 0.127 0.219 0.094 0.190 

2 -9.354 -77.414 0.237 0.000 0.042 0.056 0.091 0.048 0.000 

3 -9.351 -77.409 0.355 0.081 0.036 0.056 0.079 0.050 0.054 

4 -9.351 -77.409 0.588 0.176 0.028 0.058 0.155 0.082 0.089 

5 -9.355 -77.413 0.656 0.239 0.036 0.069 0.119 0.089 0.105 

6 -9.355 -77.413 0.703 0.239 0.055 0.111 0.180 0.118 0.000 

7 -9.355 -77.413 0.340 0.071 0.055 0.061 0.078 0.076 0.000 

8 -9.355 -77.413 0.751 0.184 0.138 0.141 0.191 0.098 0.000 

9 -9.355 -77.413 1.065 0.281 0.154 0.152 0.353 0.124 0.000 

10 -9.343 -77.402 0.405 0.086 0.070 0.067 0.092 0.089 0.000 

11 -9.343 -77.402 0.389 0.088 0.078 0.062 0.069 0.092 0.000 

12 -9.344 -77.399 0.559 0.205 0.079 0.078 0.103 0.093 0.000 

13 -9.344 -77.399 0.455 0.144 0.073 0.066 0.076 0.095 0.000 

14 -9.348 -77.397 0.443 0.094 0.062 0.069 0.076 0.081 0.061 
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15 -9.348 -77.397 0.455 0.087 0.068 0.061 0.093 0.079 0.068 

16 -9.439 -77.462 0.779 0.079 0.079 0.121 0.195 0.059 0.246 

17 -9.439 -77.462 0.660 0.189 0.092 0.104 0.181 0.094 0.000 

18 -9.430 -77.459 0.826 0.195 0.080 0.124 0.278 0.019 0.130 

19 -9.430 -77.459 0.477 0.000 0.096 0.076 0.111 0.087 0.107 

20 -9.421 -77.456 1.244 0.231 0.101 0.121 0.265 0.268 0.258 

21 -9.421 -77.456 0.430 0.166 0.064 0.105 0.055 0.040 0.000 

22 -9.427 -77.458 0.528 0.182 0.075 0.070 0.093 0.079 0.029 

23 -9.427 -77.458 0.341 0.085 0.077 0.035 0.036 0.035 0.071 

24 -9.421 -77.456 0.855 0.275 0.083 0.050 0.269 0.093 0.084 

25 -9.421 -77.456 0.472 0.114 0.080 0.052 0.107 0.047 0.072 

26 -9.005 -77.608 0.607 0.143 0.153 0.081 0.072 0.057 0.100 

27 -9.005 -77.608 0.667 0.095 0.084 0.086 0.141 0.058 0.204 

28 -9.000 -77.605 0.518 0.139 0.097 0.082 0.091 0.000 0.108 

29 -9.000 -77.605 0.552 0.154 0.093 0.081 0.082 0.067 0.076 

30 -9.012 -77.636 0.774 0.179 0.132 0.116 0.155 0.079 0.112 

31 -9.012 -77.636 0.950 0.124 0.055 0.116 0.282 0.206 0.167 

32 -9.384 -77.411 0.746 0.103 0.075 0.145 0.195 0.071 0.157 

33 -9.384 -77.411 1.344 0.296 0.259 0.212 0.204 0.149 0.224 

34 -9.392 -77.406 0.782 0.198 0.111 0.090 0.088 0.083 0.212 

35 -9.397 -77.409 0.612 0.137 0.078 0.058 0.141 0.097 0.100 

36 -9.392 -77.406 0.476 0.237 0.077 0.093 0.070 0.000 0.000 

37 -9.434 -77.337 0.472 0.220 0.074 0.057 0.044 0.077 0.000 

38 -9.432 -77.331 0.495 0.217 0.053 0.072 0.070 0.083 0.000 

39 -9.434 -77.337 0.751 0.372 0.086 0.089 0.123 0.081 0.000 

40 -9.434 -77.333 0.503 0.230 0.074 0.063 0.136 0.000 0.000 

41 -9.432 -77.331 0.522 0.224 0.048 0.053 0.130 0.067 0.000 

42 -9.434 -77.333 0.398 0.082 0.071 0.066 0.077 0.051 0.052 

43 -9.027 -77.577 0.233 0.000 0.055 0.050 0.041 0.031 0.056 

44 -9.027 -77.577 0.427 0.080 0.072 0.060 0.076 0.048 0.091 

45 -9.028 -77.580 0.368 0.098 0.069 0.039 0.054 0.039 0.068 

46 -9.028 -77.580 0.429 0.069 0.071 0.076 0.077 0.072 0.064 

47 -9.387 -77.406 0.310 0.090 0.067 0.040 0.060 0.052 0.000 

48 -9.387 -77.406 0.270 0.060 0.038 0.058 0.064 0.000 0.050 

49 -9.397 -77.417 0.746 0.162 0.049 0.125 0.169 0.091 0.150 

50 -9.394 -77.407 0.298 0.051 0.028 0.082 0.043 0.032 0.061 

51 -9.357 -77.432 0.275 0.055 0.027 0.051 0.056 0.039 0.048 

52 -9.355 -77.434 0.394 0.119 0.058 0.052 0.095 0.041 0.030 

53 -9.355 -77.436 0.776 0.161 0.105 0.135 0.084 0.150 0.142 

54 -9.466 -77.316 0.665 0.245 0.050 0.066 0.136 0.074 0.095 

55 -9.467 -77.314 0.517 0.159 0.053 0.061 0.093 0.092 0.058 
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56 -9.463 -77.309 0.677 0.266 0.063 0.078 0.085 0.082 0.104 

57 -9.467 -77.314 0.492 0.215 0.049 0.080 0.092 0.056 0.000 

58 -9.463 -77.312 0.672 0.213 0.080 0.093 0.086 0.111 0.090 

59 -9.463 -77.309 0.961 0.433 0.095 0.115 0.109 0.079 0.131 

60 -9.463 -77.312 0.821 0.289 0.102 0.087 0.161 0.094 0.089 

61 -9.466 -77.316 1.140 0.526 0.086 0.121 0.144 0.112 0.151 

62 -9.010 -77.632 0.577 0.233 0.048 0.063 0.081 0.060 0.093 

63 -9.010 -77.632 0.550 0.166 0.055 0.076 0.089 0.063 0.100 

64 -9.010 -77.632 0.512 0.223 0.056 0.081 0.090 0.063 0.000 

65 -9.010 -77.632 0.695 0.257 0.065 0.078 0.135 0.063 0.097 

66 -9.012 -77.636 0.644 0.230 0.056 0.079 0.104 0.057 0.118 

67 -9.012 -77.636 1.592 0.745 0.186 0.198 0.147 0.137 0.178 

68 -9.012 -77.636 0.767 0.281 0.079 0.081 0.113 0.088 0.124 

69 -9.012 -77.636 0.635 0.214 0.071 0.059 0.112 0.060 0.119 

70 -9.014 -77.642 0.542 0.224 0.056 0.061 0.078 0.049 0.074 

71 -9.014 -77.642 0.939 0.430 0.117 0.097 0.117 0.084 0.094 

72 -9.014 -77.642 0.653 0.307 0.078 0.087 0.091 0.040 0.050 

73 -9.014 -77.642 0.635 0.259 0.073 0.081 0.063 0.073 0.087 

74 -9.019 -77.643 0.989 0.357 0.131 0.196 0.114 0.022 0.169 

75 -9.019 -77.643 0.726 0.331 0.078 0.092 0.073 0.054 0.097 

76 -9.019 -77.643 0.635 0.297 0.064 0.083 0.079 0.058 0.055 

77 -9.019 -77.643 0.878 0.360 0.133 0.103 0.098 0.045 0.140 

78 -9.010 -77.632 0.546 0.154 0.078 0.081 0.137 0.096 0.000 

79 -9.012 -77.636 0.733 0.351 0.073 0.091 0.105 0.113 0.000 

80 -9.014 -77.642 1.016 0.510 0.171 0.132 0.095 0.107 0.000 

81 -9.019 -77.643 1.365 0.827 0.026 0.155 0.118 0.103 0.135 

82 -8.954 -77.632 0.911 0.528 0.018 0.083 0.083 0.082 0.117 

83 -8.957 -77.631 0.662 0.369 0.044 0.119 0.000 0.000 0.129 

84 -8.962 -77.626 0.924 0.450 0.035 0.121 0.051 0.000 0.268 

85 -8.957 -77.631 0.465 0.120 0.069 0.091 0.084 0.100 0.000 

86 -8.962 -77.626 0.652 0.305 0.090 0.074 0.096 0.087 0.000 

87 -8.954 -77.632 0.470 0.198 0.073 0.088 0.111 0.000 0.000 
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Table B4: Pearson correlation coefficients - sample attributes and mineral weight, 2011 

2011 Altitude Albedo eBC 
Total Mineral 

Weight 

Quartz -0.038 0.033 0.093 0.721** 

Muscovite -0.142 -0.065 -0.091 0.671** 

Albite -0.201 0.107 0.518** 0.558** 

Kaolinite -0.221 -0.086 0.317* 0.234 

Annite -0.032 0.063 -0.020 0.415** 

 

Table B5: Pearson correlation coefficients - sample attributes and mineral weight, 2012 

2012 Altitude Albedo eBC 
Total Mineral 

Weight 

Quartz -0.066 -0.071 0.187 0.437** 

Muscovite 0.042 0.088 -0.041 0.786** 

Albite -0.090 0.274 0.199* 0.332** 

Kaolinite 0.039 0.071 -0.078 0.947** 

Annite -0.100 -0.304 0.389** 0.060 

 

Table B6: Pearson correlation coefficients - sample attributes and mineral weight, 2013 

2013 Altitude Albedo eBC 
Total Mineral 

Weight 

Quartz -0.141 0.003 0.024 0.784** 

Muscovite -0.122 -0.035 0.109 0.548** 

Albite -0.253* -0.043 0.406** 0.810** 

Kaolinite -0.084 0.015 0.595** 0.561** 

Annite 0.057 0.045 0.372** 0.535** 

Illite -0.164 -0.140 0.228* 0.589** 
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Table B7: Pearson correlation coefficients - snow sample attributes, 2011 

2011 Altitude Albedo eBC 
Total Mineral 

Weight 

Altitude 1 0.111 -0.369* -0.146 

Albedo 0.111 1 -0.339* -0.020 

eBC -0.369* -0.339* 1 0.055 

Total Mineral 

Weight 
-0.146 -0.020 0.055 1 

 

Table B8: Pearson correlation coefficients - snow sample attributes, 2012 

2012 Altitude Albedo eBC 
Total Mineral 

Weight 

Altitude 1 -0.062 -0.141 0.008 

Albedo -0.062 1 -0.062 0.047 

eBC -0.141 -0.062 1 0.020 

Total Mineral 

Weight 
0.008 0.047 0.020 1 

 

Table B9: Pearson correlation coefficients - snow sample attributes, 2013 

2013 Altitude Albedo eBC 
Total Mineral 

Weight 

Altitude 1 0. 254* -0.250* -0.184 

Albedo 0.254* 1 -0.172 -0.033 

eBC -0.250* -0.172 1 0.343** 

Total Mineral 

Weight 
-0.184 -0.033 0.343** 1 
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Table B10: Pearson correlation coefficients – mineral weight, 2011 

2011 Quartz Muscovite Albite Kaolinite Annite 

Quartz 1 -0.021 0.585 0.016 -0.033 

Muscovite -0.021 1 0.106 0.205 0.603 

Albite 0.585 0.106 1 0.288 0.221 

Kaolinite 0.016 0.205 0.288 1 0.176 

Annite -0.033 0.603 0.221 0.176 1 

 

Table B11: Pearson correlation coefficients – mineral weight, 2012 

2012 Quartz Muscovite Albite Kaolinite Annite 

Quartz 1 0.071 0.191 0.154 0.428 

Muscovite 0.071 1 0.077 0.777 -0.061 

Albite 0.191 0.077 1 0.266 0.091 

Kaolinite 0.154 0.777 0.266 1 -0.146 

Annite 0.428 -0.061 0.091 -0.146 1 

 

Table B12: Pearson correlation coefficients – mineral weight, 2013 

2013 Quartz Muscovite Albite Kaolinite Annite Illite 

Quartz 1 0.243 0.536 0.103 0.185 0.233 

Muscovite 0.243 1 0.604 0.344 0.320 0.211 

Albite 0.536 0.604 1 0.462 0.343 0.474 

Kaolinite 0.103 0.344 0.462 1 0.526 0.280 

Annite 0.185 0.320 0.343 0.526 1 0.207 

Illite 0.233 0.211 0.474 0.280 0.207 1 
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Table B13: Pearson correlation coefficients – mineral weight and mine proximity 

Mines Quartz Muscovite Albite Kaolinite Annite Illite 

2011 0.115 -0.176 -0.035 -0.064 -0.159 - 

2012 0.513 0.016 -0.105 0.036 0.275 - 

2013 0.459 -0.038 0.107 -0.090 -0.054 0.112 

 

Table B14: Pearson correlation coefficients – mineral weight and Huaraz proximity 

Huaraz Quartz Muscovite Albite Kaolinite Annite Illite 

2011 0.054 0.031 -0.254 -0.187 -0.096 - 

2012 0.186 0.118 0.082 0.139 -0.177 - 

2013 0.355 0.041 0.099 -0.250 -0.153 0.118 

 

Table B15: Pearson correlation coefficients – snow sample attributes and mine proximity 

Mines Altitude Albedo eBC 
Total Mineral 

Weight 

2011 -0.062 -0.009 -0.008 0.030 

2012 0.109 -0.194 -0.128 0.180 

2013 -0.184 -0.115 -0.210 0.267 

 

Table B16: Pearson correlation coefficients – snow sample attributes and Huaraz 

proximity 

Huaraz Altitude Albedo eBC 
Total Mineral 

Weight 

2011 0.188 0.519** -0.617 0.030 

2012 0.187 0.487** -0.358 0.171 

2013 0.044 0.139 -0.469 0.167 
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Table B17: Pearson correlation coefficients – mine proximity, eBC, and mineral weights 

based on sample vs. mine aspect 

Mines eBC Quartz Muscovite Albite Kaolinite Annite Illite 

Opposite 0.030 0.545 0.330 0.410 0.256 0.130 -0.098 

Ninety Degree -0.465 0.268 -0.103 -0.105 0.038 0.113 -0.087 

Matching 0.066 0.416 -0.056 -0.109 0.303 0.143 0.048 

 

Table B18: Pearson correlation coefficients – Huaraz proximity, eBC, and mineral 

weights based on sample vs. Huaraz aspect 

Huaraz eBC Quartz Muscovite Albite Kaolinite Annite Illite 

Opposite -0.451 0.105 0.318 0.392 0.164 -0.035 -0.400 

Ninety Degree -0.386 0.140 0.069 -0.089 -0.085 -0.198 -0.090 

Matching -0.504 0.268 0.080 0.072 0.101 -0.176 0.071 
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