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Nowadays, the web services and mobile technology advance to a whole new 

level. These technologies make the modern communication faster and more convenient 

than the traditional way. People can also easily share data, picture, image and video 

instantly. It also saves time and money. For example: sending an email or text message is 

cheaper and faster than a letter. Interactive communication allows the instant exchange of 

feedback and enables two-way communication between people and people, or people and 

computer. It increases the engagement of sender and receiver in communication.  

Although many systems such as REDCap and Taverna are built for improving the 

interactive communication between the servers and clients, there are still common 

drawbacks existing in these systems. These systems lack the support of the branching 

logic and two-way communication. They also require administrator’s programming skills 

to function the system adequately. These issues are the motivation of the project. The 

goal is to build a framework to speed up the prototype development of mobile 

application. The MABIC support the complex workflow by providing conditional logic, 

instantaneous interactivity between the administrators and participants and the mobility. 

These supported features of MABIC improve the interaction because it engages the 

participants to communicate more with the system. MABIC system provides the mobile 

electronic communication via sending a text message or pushing a notification to 

mobile’s device. Moreover, MABIC application also supports multiple mobile platforms. 
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It helps to reduce the time and cost of development. In this thesis, the overview of 

MABIC system, its implementation, and related application is described.
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Chapter 1: Introduction 

The growing availability of Web services and mobile technology significantly 

brings new opportunities to enhance effective communications: between people and 

people as well as people and computer systems. Unlike the traditional one-way 

communication like reading a book and watching TV, interactive communication is 

dynamic, two-way communication [7]. Nowadays, interactive communication is widely 

used in targeted marketing where personalized experience could increase the participation 

and satisfactions of the consumers.  

The motivation of this project is to build a framework to support fast prototyping 

of health and wellness applications. One of the biggest challenges in the traditional care 

and wellness industry is the lack of interaction between program administrators and 

participants. For administrators, they often want to track the health condition of 

participants frequently. This benefits for both administrators and participants because 

participants will receive essential information, good advice or treatment immediately 

from administrators. Moreover, by collecting the data from the participant instantly, these 

data can be processed by the system in real-time or be analyzed later for statistics, 

education or research purpose. The system also can respond feedbacks to participants 

rapidly. A well-design interaction system not only supports one-way connect with users, 

but also engage users in communicating back to the system. 

There are some software systems such as Research Electronic Data Capture 

(REDCap) [10] or Taverna [27] that try to solve these problems. Even though these 

systems have some advantages, there are still flaws exist in these systems. The REDCap 

project provides a good interface for collecting data from the users. Forms can be easily 
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created by the administrators, and the forms are then presented to the participant users for 

data collection.  All the information will be saved into databases and can be further 

processed to present to researchers. Three major drawbacks of REDCap [10] are:    

 The lack of supporting branching or conditional logic, all the question in the form 

is static.  

 REDCap also does not support real-time communication with its users and cannot 

engage the participants using current technologies like SMS or push notifications.  

 It requires continuous access to the Internet, thus limits the accessibility to the 

users. 

Another related system is Taverna, which has a suite of workflow tools. It is 

designed to combine distributed Web services and local tools into complex analysis 

pipelines. Most of the drawbacks of REDCap that are mentioned before are fixed in the 

Taverna software. For example, Taverna supports branching logic by providing the 

workflow management system. Besides, Taverna support deployment on the local 

machine so it can be used without the internet by using Taverna workbench, or it can still 

be used in standard ways, such as by a browser.  

However, both Taverna and REDCap system still do not support the instantaneous 

interactivity between administrators and participants or automated data collection for 

users. Also, both do not provide the appealing interface that attracts users. Still, these 

features are the most important in an interactive communication system. 

MABIC web services and mobile application is developed to resolve these 

problems. MABIC web service is designed as a platform for the interactive 
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communication between administrators and participants in the system. These are a few 

significant advantages of using MABIC system: 

 Firstly, MABIC supports branching logic.  The admin can not only create 

questions but also to set conditions for activating a question or a group of 

questions. Instead of moving linearly from one question to another, MABIC 

supports dynamic changes. Now, from one question, depends on the answer to 

that question, different questions will be presented. This feature is very useful; it 

helps administrators to create various complex forms. Besides, data collection 

also benefits from this feature. It allows administrators to create a form that is 

only collecting desired data from participants.   

 Secondly, MABIC system supports automated data collection. The administrator 

can create new forms without spending too much time because every form can be 

reusable. Also, the participant's collected data will be automatically sent to the 

server and stored safely there. MABIC system also provides tools for analyzing 

these data collections and then gives feedbacks immediately to the users.  

 Additionally, MABIC system interface is very simple but appeal, it is very easy 

for administrators to create a schema without worrying about what programming 

languages of the system are.  

 Another advantage of MABIC system is that it supports instantaneous 

interactivity and mobility. Also, MABIC supports multiple mobile platforms so 

that participants can easily respond at anytime and anywhere. Offline forms also 

are supported; participants do not need the internet to give the response. Instead of 

that they can go ahead and select the answer and when whenever the internet 
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connection is available, all data will automatically be synced with the server 

immediately. Besides, MABIC system can also send reminders to users to alert 

them about new forms or require participants to input data for the data collection.  

Overall, MABIC system supports branch logic for creating new forms, schemas 

or surveys, and instantaneous interactivity. Administrators can easily set up automated 

reminders or notifications to encourage participants engaging with the system. Moreover, 

mobility is another advantage of MABIC; participants can respond to the system at 

anytime and anywhere by text message, email or through the mobile application. These 

benefits of MABIC system can improve the interactivity communication between 

administrators and participants significantly. 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Chapter 2: Branching Logic  

Branching Logic is used when form makers want to send the responses of users to 

different paths of the survey. Branching logic is like the chosen answers on the 

adventures in the role-playing games [18]. The differences of surveys can be determined 

based on the condition of the answers, variables of the questions or the combination of 

multiple variables. Different paths will be taken depending on how users select their 

answers for certain questions. The conditions can be either simple or complicated. For 

example: if the reply to a question is A, next question will be X, or if the answer is B, 

next question will be Y. Moreover, the conditions can be a complex combination of 

multiple choices, e.g. if the answer of question X is A and answer of question Y is not B, 

question Z will be loaded, or if the condition is not matched, the survey will be 

terminated. 

Branching logic forms follows flowing order from top to bottom and left to right. 

Responders must answer the first question and go down to the next one. If the condition 

of a branch is met, next questions will be loaded following that branch until they reach a 

condition that they do not satisfy. A branch is also ended when it reaches to the end. 

Branching logic is applied to workflows by allow participants to follow one path or 

another path based on the actions of the application. For example: if responders do not 

input data on time, a reminder will be automatically sent to the device to notify them; 

otherwise, that reminder will never be fired off. 
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Chapter 3: Workflow Management Systems 

1. Introduction 

A workflow is a particular kind of process that from an activity, it can jump to 

another activity; or transform from a state to a different state per a set of conditions or 

procedural rules specified in the system. The specification of the rules for transitions is 

managed by Workflow Management Systems (WfMS). 

Even though definitions for a WfMS can vary significantly by different authors 

and the functionalities supported in workflow products are different from one to another, 

the WfMS standard definition can be clarified as: "Workflow Management Systems 

consists of a sequence of activities, the input, and output. Depending on the system, the 

input, and the output can serve different purposes. An activity is a distinct process stage 

in the system that can be performed by a user or an automated system. Each activity can 

include one or more task at the same time. A collection of a task is called worklist, and 

each task is described as a work item. WfMS supports creating and managing work item 

and present it to the user." [8]. 

WfMS supports creating workflows, each workflow created is called an instance. 

This instance works as a logical or generalized model of WfMS [12]. The job that to be 

executed when WfMS initializes a new workflow is often called a case. Depends on 

information of cases, WfMS will give different data to different cases. Therefore, each 

case will be handled differently by the WfMS. However, multiple cases are not necessary 

to be orderly processed but can be operated simultaneously. Due to the differences of 

data associated with various cases, each case can process through different paths. These 

processing mechanisms are controlled by the workflow system. 
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One of the advantages of WfMS is that it can separate the logic of workflows and 

the logic of applications [13]. This can help to push business process out of the 

application. The benefits of a WfMS can be illustrated as a benefit of Database 

Management System (DBMS) to data. A DBMS helps developers not to worry about the 

management of physical data in the system. Similarly, a WfMS can reduce the 

complexity of processing task in the system. By using WfMS, developers do not need to 

be concerned about managing the flow of the data and controller between the activities or 

tasks. It also will improve the flexibility and integration of applications. 

 

2. Model 

WfMS model is used to illustrate relationships between WfMS system, users, and 

other software systems. There are five perspectives of the WfMS model: functional, 

behavioral, informational, operational and organizational perspective [15]. 

 The functional perspective: this view indicates what workflows will do. This 

perspective breaks down workflows to a small task that can be assigned to users 

or automated computer. 

 The behavioral perspective: this view specifies conditions or procedural rules for 

each work item in the workflow. Each activity in the workflow will be associated 

with a pre-defined time that explains when will these events be triggers. It also 

shows what will happen after events are triggered. This perspective indicates that 

WfMS control the timing of when tasks will be executed. 

 The informational perspective: this view related to data that associated with each 

case of the workflow. It describes what data is consumed and what workflow will 
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produce. In general, it can be understood as what is the input and output of the 

workflow. Associated data can be documents, files, forms or databases that store 

important information of the application. 

 The operational perspective: this view explains how WfMS implement workflow 

tasks. Based on the conditions that are set up by the behavioral perspective, 

operational perspective will provide necessary tools and applications to complete 

the tasks. 

 The organizational perspective: this aspect is related to the people that perform 

the tasks. Each person will be assigned to a role. A role is a collection of tasks and 

responsibilities that belong to the users. A user needs to be authenticated and 

authorized to check if he/she has the rights to execute the tasks. The 

organizational perspective purpose is to provide the list of roles, users 

authentications, access authorizations, workflow documents and workflow 

manuals. It also provides the list of users, teams, groups and collection of 

software applications that are applied in the workflow. 
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Chapter 4: Component-based Software 

MABIC system works as a component-based software, just like the middleware 

between servers and clients. It provides users with a simple interface and a framework 

that helps users easily to create branching logic workflows. 

According to [16], the definition of a software component is "A software 

component is a unit of composition with contractually specified interfaces and explicit 

context dependencies only. A software component can be deployed independently and is 

subject to composition by third parties". 

As clarified in the definition, a component is independently deployed, and it is 

separated into another component. However, it cannot be deployed alone, but rather be 

deployed with another component. Moreover, the implementation of the component is 

enclosed, it means that it cannot interact directly with outside environments. Instead of 

that, the interaction occurs through a well-designed interface. There are six essential 

characteristics of a component: 

 Reusability: components are designed to be used again in many different 

applications or a particular program. 

 Replaceable: a component can be replaced by another similar component. 

 Not context specific: one component can be used in different context, instead of 

just focusing on an environment. 

 Extensible: the component can be extended to provide new features. 

 Encapsulated: component interacts with environments through an interface, 

therefore it does not expose internal details of the component. 
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 Independent: each component is designed to have minimum impact or 

dependency on another component. 
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Chapter 5: MABIC Application 

A. User Interface 

1. Server Side 

1.1. Main Menu 

MABIC user’s interface provides a lot of methods and menus that help 

administrators easily to interact with the program. Figure 1 shows a typical main menu 

view of MABIC application. From the main menu, administrators can access multiple 

functions of the application: 

 Invitation: administrators can generate and send an invitation to the participants. 

 Comm Templates: this is used for generating templates. Later, these pre-defined 

templates will be added to the action’s condition. 

 Custom Attributes: besides pre-defined attributes, administrators can also create a 

new custom attribute. 

 Org Profile: this is the organization information of current users. 

 Apps: this is the app management. Administrators can create, modify or remove 

apps and schemas. 

 Users: this is user management. A new user can be generated, modified or deleted 

by privilege user e.g. administrators. 
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 Profile: administrators can view and edit their profile information. 

1.2. Apps Interface 

“Apps” interface contains a list view that displays current apps that are created by 

administrators. Figure 2 shows a view of the app interface. Each app contains four 

different functions: 

 Edit App: this is used for modifying app’s information such as app title, app’s 

owner information. 

 Edit Schema: administrators can build a new schema by selecting Edit Schema of 

an app. 

 Report: a report that contains all information about the app will be generated. This 

report can also be exported to different formats e.g. pdf or word file. 

 User Resp: this will generate a report of participant’s responses for an individual 

app. This report can also be exported. 

The app is the main content of the system; administrators can generate an app and 

then construct it as they desire by creating multiple question items. The app holds the 

content that administrators the server want to send to participants on the client side. 

These contents can be a collection of questions, images, reports or reminders.  

Figure 1: Main Menu Webpage 
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Apps can be generated by clicking the tab Apps on the main menu and then 

choose the Create button. When creating a new app, there are some properties that 

administrators need to. Figure 3 shows a dialog of creating an app. 

 Title: this is the display name of the app such as inno1, inno2, etc. 

 Email: this is the email of the creator of the app, it can be used as contact 

information or local variables when creating conditions in schema section. 

 Phone: the phone number of the app owner. It can also be used in local variables 

in schema section. 

 Type: the type of the app. It can be simple or long term type. 

 Timeout: the duration time that app can exist before it is being removed from the 

server (0 means unlimited time). 

 Upload Schema: admins can upload schemas (JSON format) that are created 

before. Because the schemas are reusable, this will reduce app creating time. 

 New question item can be created by clicking on Edit Schema button. A list view 

that contains a list of current items that are created previously for the app will be 

displayed. There will be a few options to interact with the item such as creating a new 

Figure 2: Interface of Apps Webpage 
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item or editing the current one. After modifying an item, admins need to save the content 

of the current item by clicking Save button. If there are many items are generated, a new 

page list will be created. Figure 4 below shows an example of Edit Schema view. 

 

1.3. Data Collector 

Data collection module can be accessed by expanding “Data Collection” field in 

the main app. Each module is created by administrators to collect data from participants. 

Admins will create a data collector and then specify the content such as mood, blood 

pressure or body temperature, etc. Received data from participants will be sent back to 

the server and later be analyzed for different purposes. Administrators can create a new 

data collector or modify each module by using the Edit button. These are some required 

attributes that need to be defined for an app: 

a) Properties 

 Rolling Start: this property has two value, true and false. If it is true, participants 

must enter values for the full period; from the initial day to the complete day, e.g. 

30 days. Otherwise, participants can enter values from the current day to the 

ended day that was established up the system. 

 Num of days: the number of days that participants need to enter the value e.g. 15 

days. 

Figure 3: A dialog of app creation 
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 Markers: Markers indicate the time of the day that data will be collected. Markers 

can be a list of the string such as morning, afternoon, evening, etc. 

 Reminder Frequency: the reminder is used for notifying participants on the 

mobile device (as known as local notification). The local notification helps to 

remind users to response to the question or input data values. This attribute 

indicates how frequency the local notification will be triggered. It also can be 

combined with the reminder period to compute when notifications are triggered. 

 Reminder Period: this attribute indicates the period that notifications will be 

repeated; its value can be a day, week or month. It combines with the reminder 

frequency to compute the precise timing that triggering local notifications when. 

b) Variables 

 User Attributes: this contains attributes that belong to the owner of the schema 

such as first name, last name, email, phone, age and day of birth. 

 Defined Attributes: the administrators can create new attributes or remove the 

existing attributes for the individual app. 

c) Items  

The administrators can create questions or items for a schema. The type of a 

question item can be the choice, check, range, report or group type. Group type is a 

special type that contains multiple other different question types. Administrators can 

Figure 4: Edit Schema View 
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create, modify or remove any items. Also, they can also add the conditions and 

actions for each item. 

 Item: there are five question types: choice, check, range, report, and group. There 

are some basic fields for an item that need to be specified: id, title, instruction, 

description, isStart, and isEnd. 

 Choice: with this type, each question item will have multiple selections. Each 

answer will contain a label, value, and description. The answer of this type is 

unique; it means that there is only one correct answer for the question. 

 Check: check type has same properties as choice type. However, the answer is 

not unique; it can be a combination of the individual answer. 

 Range: range type contains only two values that indicate the maximum and 

minimum value of the answer. 

 Report: report type contains a text box that allows participants to enter 

required data. 

 Group: this is the combination of all previous types. For example, group type 

can be a combination of choice and check type or report and the range type. 

 Condition: item’s conditions allow administrators to indicate which question will 

be loaded after the previous one was answered. Each condition will be 

represented as a node. Different conditions can be combined to create a complex 

condition. Each condition is specified by three properties as in Figure 5: 

operations, operands, and targets.  
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 Operation: the operation specifies the comparison that will be used to indicate 

the condition such as equal (=), less than (<), larger than (>), less than or 

equal (<=), greater than or equal (>=), not equal (!=) and at (@) operation.  

 Operand: this indicates whom will perform the operation. Operands can be 

item id, local variables or global variables. This information can be retrieved 

from the app. 

 Target: this is the target of the operation. The target will be entered as this 

format @value@. This value can be a number or a string. When the operation 

matches with the target, this item will be processed. 

A compound condition is represented as a tree structure, with each node 

represents a condition. Each condition can be associated with another condition by 

logical operations AND, OR, NOT. The admins can specify operations between 

conditions by selecting a condition and then adding an operation. 

 Action: This is the action that admins want to set when an item appears or 

disappears. An action is created by specifying these properties: 

 PrePost: Pre means before an item appears and Post means after an item 

disappears. 

Figure 5: Setting Operations and Targets 
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 Operation: it can be an email, SMS or push. It means that the action can be 

sending an email, a text message or pushing a notification to participants. 

 Recipients: it can be the app, user or listed. The “listed” type is the list of 

recipients; this is useful for sending multiple recipients. 

 CommTemplate: this is body content of the action. 

 Subject: this is the subject content of the action. 

 Target details: this contains recipients’ information. It can be the email 

address or the phone number. 

 

2. Client Side 

The client side of MABIC application supports multiple platforms such as iOS, 

Android, Window Phone, etc. This mobile app is developed using web-based technology 

for the mobile application.  

Firstly, participants need to be authenticated by entering username and password 

in the login page. This login page including two text boxes that requiring participants to 

input. After logging in successfully, participants can access the main interface of the app. 

All important functions of the application can be accessed through the sidebar on the left 

side. This sidebar contains all the functions of the application including “Log Out,” 

“Setting,” “Profile,” “App” and “Data Collector.” 

2.1. Main Interface 

After participant’s login are approved successfully, a default app will be loaded. 

This default app is an app that is established by the administrator; it will automatically 

load when the application starts. From the main interface, participants can access the 
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sidebar by clicking on Menu button on the top-left of the screen. Here, participant’s 

information such as first name and last name will be presented. 

2.2. Sidebar 

The sidebar includes several buttons; each button is used to access different 

methods. This Menu button will be available most of the time in the application so that 

participants can easily change to another function. 

 In the sidebar, participants can get to the setting page by clicking on the Setting 

button. 

 Participants can also update or modify their information by clicking on My Profile 

button 

 They can also start another app or data collector by selecting the app button. 

2.3. Setting 

Reminders for each data collector can be accessed on the setting page. The current 

setting page allows participants to toggle on and off reminders. If an option for an item is 

turned off, there will be no local notification activated to remind participants to input 

required data that need to be collected. However, if this reminder is on, at the specific 

time of day, this reminder will check if the participant has already entered a value or not, 

then it will trigger the local. Moreover, if the reminder is on, the application will 

repeatedly check several times a day or week to keep notifying. 

2.4. My Profile 

Participant’s information will be displayed on My Profile page. This info can be 

accessed by selecting My Profile button on the sidebar. Participant’s information contains 

first name, last name, email, phone, password, age and date of birth.  
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All user’s info will be presented directly on the page, excluding the password. 

The password cannot be revealed because it is sensitive and require to be protected. The 

other information can be updated or modified by changing the value in the text box. After 

new value is entered; by clicking the Update button, all new info will be saved. The 

Profile page will be refreshed and display updated info of the participants. 

2.5. My Apps 

The app and data collector can be accessed through a list of buttons on the 

sidebar. This list is dynamic; it depends on the data that retrieved from the server side. In 

My Apps section, there are two different kinds of app, the main app, and the data 

collector.  

 The main app is represented as a color button without the arrow icon. Each app is 

followed by a list of data collectors. It means that app is the parent app of those data 

collectors. 

 A data collector is a simple white background color button with the arrow icon on 

the left side of the button text.  

a) The App 

When participants click on an app, the app will be loaded and the first question 

will be loaded and displayed on the screen. Participants need to answer each question by 

selecting the choice they want. If participants do not answer, they cannot go to the next 

question. An alert will be displayed to inform participants selecting an answer first. For 

example: if the question type is a choice, an answer needs to be selected before going to 

the next question; if it is a check type, at least one answer must be selected. After picking 
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an answer, they can click on Submit button and go to the next question. By submitting 

answers, all data will be saved sent to the server for analysis purpose. 

Participants continue to answer the list of the questions that loaded from the 

server until all questions are answered, or there are no more questions; then the app will 

be completed.  

b) Data Collector 

For the data collector, the interface is similar to the main app; a question will be 

displayed, and participants need to input required values for that question. However, 

unlike the app, there will be no question is loaded. Instead of getting next questions, an 

alert will be displayed to notify that these data are already recorded.  

Participants will input required values one time or multiple times per day or week. 

This recorded information will not only be saved in the local device but also be sent to 

the server. After the data is recorded, these history data of the app will be updated. 

History data can be accessed by clicking the History button on the top-right side of the 

application. These data are shown as an ordered list, each answer for the question and the 

date that these answers are inputted.  

There is also a synchronous mechanism that automatically updates data between 

the server and the client. This kind of mechanism works based on the timestamp value of 

which data on server or client is more updated. 
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B. Architecture 

1. Server Side   

 

1.1. Java Server Faces & PrimeFaces 

The MABIC server is developed using Java Server Faces (JSF) technology. JSF is 

a Java framework for building web applications. The development process will be 

simplified because the JSF provides a component-based approach to designing the web 

interface. The developers can just simply drag and drop the components to the web page. 

The JSF also use the Model-View-Controller design pattern to construct the web page. 

This design pattern makes the administrators can easily to manage the web content 

because the code of the view will be separated from the logic of the model. And the 

controller will handle the interaction between the user and the application 53[24]. 

Figure 6: An architecture of the server 
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The MOBIC server also uses the PrimeFaces library for designing user interface 

(UI). Primefaces is an open source of UI component library for the JSF. PrimeFaces 

provides a lot of useful resources for the developers. There are several advantages of 

PrimeFaces to develop a web application [1]: 

 Firstly, PrimeFaces supports AJAX (Asynchronous JavaScript and XML). 

AJAX is a client-side script that allows the communication between a server 

and client without refreshing the page. It can improve the server-client 

interaction to be fast and responsive.  

 Additionally, PrimeFaces provides the Prime UI. It is a collection of rich 

JavaScript widgets that is based on jQuery UI. 

By using PrimeFaces, developers can speed up the development progress of the 

application. It is also straightforward for developers to design the page layout for the web 

server pages because it is quite fast and quick to build beautiful pages with minimum 

effort.  

1.2. MySQL Database 

The MABIC application uses MySQL database for storing the data. MySQL is an 

open source database management system (DBMS) for managing and connecting 

databases with the software. A lot of important information in the system such as user, 

app, template, and the item is stored in the database. The advantages of using MySQL: it 

supports the scalability, flexibility, high performance, highly availability, secure data 

protection, open source and lower cost. The primary benefit of MySQL is that it is 

convenient and easily to manage. MySQL can also be controlled using visual web tools 
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such as phpMyAdmin. Moreover, MySQL can be run on multiple platforms such as 

Unix, Window or MacOS; and it is free for personal use. 

The server does not require heavy workload on the database. Therefore, MySQL 

software is a simple solution for this purpose. In the future, if more features need to be 

developed, MySQL can still be usage for improving the application. 

1.3. Apache Tomcat and Maven 

For the local development, MABIC application uses Apache Tomcat software. 

Apache Tomcat is an open source web server that is developed by Apache Software 

Foundation. Tomcat is used to run the web application on the local host. Also, Tomcat 

can be easily downloaded and set up from the Apache website. Combining with the 

Maven plugin, developers can manipulate WAR (Web ARchive) projects into the Apache 

Tomcat servlet container. Apache Tomcat and Maven can help to simplify the 

deployment of the web server. 

 

2. Client Side 

2.1. HTML and JavaScript 

The MABIC application on the client side is developed using web-based 

technology, HTML, and JavaScript. The advantages of HTML and JavaScript are 

 It is a relatively simple, effective and readable programming language, but 

also powerful. Besides, JavaScript makes HTML pages more dynamic and 

interactive with the users. JavaScript and HTML can easily make the 

application to be adaptable with users’ requirement. 
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 Another advantage of JavaScript is the application can be executed on the 

client’s processor instead of the web server. Thus, saving bandwidth and 

strain on the web server.  

 JavaScript is relatively fast. Mostly, the code will be executed on the client’s 

side. Because the task is usually simple, the computation and processing will 

be completed instantly and does not require many resources from the server.  

 

Figure 7: An architecture of the client 
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2.2. jQuery Mobile 

JavaScript contains several libraries supporting mobile application development. 

And one of the most popular libraries is jQuery Mobile; it is a convenience mobile 

framework for developing the mobile web-based application. 

 jQuery Mobile is a JavaScript library that is immensely simplifying the 

development process. There are several benefits of using jQuery Mobile: 

 It is a simple, easy-to-use framework and has condensed syntax. It is much 

easier when comparing to the standard JavaScript and another JavaScript 

library. JQuery’s syntax is simplified and therefore requiring fewer lines of 

code.  

 jQuery Mobile has a strong open source community, so it is not difficult to 

look for some appropriate plugins. There are hundreds of pre-written and 

ready-to-use plugins available for download. Thus this can speed up the 

mobile application development process.  

 jQuery also has comprehensive documentations and tutorials are available on 

the website, this can help beginners are easy to get ready to develop an 

application.  

One of the biggest benefits of jQuery is that it supports AJAX. jQuery’s AJAX 

call is implemented in a clear and understandable technique. The AJAX is an 

asynchronous request that is initiated by the browser on the client side. It is an approach 

to web application development that uses client-side scripting to exchange the data with 

the server-side. AJAX does not directly require page transition, so the web pages on the 

client side are dynamically reloaded without refreshing. Therefore, it will not interrupt 
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the interaction flow of the application. In MABIC application, the AJAX is used for 

sending the request from the client to the server.  

2.3. Apache Cordova 

Apache Cordova is a popular mobile application development framework that is 

owned by Apache. This framework enables software developers, programmers, and 

designers who want to build applications for mobile devices on multiple platforms by 

using CSS3, HTML5, and JavaScript. Therefore, Cordova helps programmers focus on 

developing an application without concerning about platform-specific APIs like in 

Android, iOS or Windows Phone OS.  

There are a lot of benefits when using Apache Cordova to develop mobile 

applications instead of using the native platform.  

 Firstly, Cordova supports cross-platforms; it means programmers do not need 

to write the code for every mobile system. But the developers only need to 

write the once and then can deploy it to another platform. It reduces the 

coding time for developers.  

 Secondly, if the developers use the native mobile APIs to develop the 

application, it is really difficult to maintain the code. For instance, whenever a 

new version of OS is released, there will be many codes is obsoleted. 

Therefore, the programmers should spend much time to update the code. This 

maintenance can be reduced by using Cordova because the Cordova only 

depend on the web-based APIs in the OS and it is rarely changed.  

 Another advantage of Cordova is the programming language. Cordova uses 

HTML5, CSS, and JavaScript, so it is easier for a web programmer to start 
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developing mobile applications. Moreover, the beginners do not need to learn 

multiple programming languages for deploying the application to different 

mobile platforms.  

 There are lots of libraries and examples available for developers to take 

advantages. This can help to reduce the time and work for developers. 

 

C. Workflow 

1. Server Side 

The workflow of the server side can be described as four steps: 

 Step 1: Firstly, the administrators need to be authenticated and authorized by 

logging into the system to use MABIC system.  

 Step 2: Following, the admins can be able to access all functions of the 

program by accessing the Main Menu tab bar. It can be creating a new app, 

generating schemas or deleting an existing user in the system.  

 Step 3: After the apps are created, the admins can also modify app 

information. 

 Step 4: For this step, the administrators can create new schemas for the main 

apps or data collections. The schema is created with JSON format then be 

saved into the server database and storage. Later, these schemas are retrieved 

to send information to clients. 

Figure 8 is an example the server workflow. Each step of the server workflow is 

described in details in the next section. 
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Figure 8: The Server Workflow 
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1.1. Login 

Firstly, administrators log into the system by entering their username and 

password. The login module uses Spring Security Framework to authenticate and 

authorize user’s information. This framework provides the expression-based access 

control to handle the login function simply. The advantages of the Spring Security are: 

 Firstly, it provides a flexible framework that supports user’s authentication and 

authorization.  

 Secondly, Spring Security uses Spring Expression Language (Spring EL) 

expressions to simplify the configuration of all attributes to authorize user’s role. 

Expression-based access control is introduced in Spring Security 3.0 [6].  

Figure 9 shows an example of pre-defined roles that are configured by using 

Spring Security Framework. In this figure, two roles are pre-defined: the admin and the 

user. If an account is authenticated as valid a user, he/she can access a web page with the 

link starting with /user/. Also, if this account has the admin role, he/ she can have 

permission to access a web page with the URL /admin/. This intercept URL is parsed 

from top to bottom. It means that the most specific pattern is standing on top and the 

catch-all is on the bottom. 

 

Figure 9: Pre-defined roles using Spring Security Framework 
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1.2. App and Data Collection Creation 

To access the app and data collector module, admins must click on “Apps” button 

in the Main Menu. Then, the apps page will be presented to the screen; this page contains 

a list of apps that are created earlier. For example: in Figure 10, there are two apps 

previously existing in the system, “App-1” and “DefaultApp.” 

 If the administrators want to create a new app, they must click the “Create App” 

button. Then a new window dialog will show up, and the admins must input all required 

information and click on the Save button to complete a new app. After an app is created, 

all app’s data will be saved to the database of the system.  

1.3. Schema Generation 

Schema is the most important feature of MABIC application. MABIC system 

supports branching and condition logic so it can generate the complex schemas. A 

schema contains a set of questions, conditions, and actions that are prescribed by the 

administrators. Schema info will be saved in a JavaScript Object Notation (JSON) 

format. Later, clients will send requests to the server, and these schemas are retrieved and 

processed. After being processed, the servers will send responses back to clients.  

To create a schema, either for the main app or the data collector, the 

administrators must select the Edit button. Then, if admins want to create main app’s 

schemas, they should click on the “New” button of the “Items” field. Otherwise, if they 

Figure 10: A view of existing apps 
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desire to edit schema for the data collector, they must expand Data Collection field and 

select a Data Collector. Then they must click on the “Edit” button to start editing a 

schema. An interface of editing schema will show up; it has a similar interface with main 

app’s schema. 

A schema can be generated as these following steps: 

 Create an item 

 Add condition for items 

 Add actions for items 

Firstly, admins start creating a new schema by selecting the “New” button of the 

“Items” field. A first question item needs to be defined in a schema. Later admins can add 

more question items to the schema. There are five types of question item: choice, range, 

check, report or group type.  

Next, admins can start adding conditions for each item by clicking on the 

Condition button on the item menu. MABIC system supports branching logic so 

administrators can be able to set complex conditions for each item; based on the 

condition, each item will have a different path. A condition editing view is displayed as 

in Figure 11. 

When condition editing view is presented, admins must click on “addP” button to 

add a new condition to the item. Next, a new dialog will show up. This dialog allows 

Figure 11: Condition Editing View 
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admins to specify the operations and targets for each condition of an item. A condition 

pointer will be created and added to condition editing view via the addP button.  

Each pointer will contain an operation, an operand, and a target. It can be 

described as if an item “thisId”’ has a condition with the operand is “itemId,” the 

operation is “=” and the target is “ansTarget.” If a participant answers the “itemId” 

question with the answer is “ansTarget,” this answer matches with the condition 

operation. If the condition is met, the “thisId” item is ready to load. However, a complex 

branching logic conditions can be created by adding more pointers. Each pointer 

condition will be associated with logical operation AND, OR and NOT. 

The final step is adding actions for schemas. The actions of each item indicate 

what will occur when a condition of an item is met. For example: if participants get all 

correct, the server will automatically send a congratulation text message or email to 

encourage them; or if the participant did not input data more than three days, the system 

would send a reminder notification to the device.  

The action of MABIC system is beneficial for improving the interaction 

communication between the administrators and the participants. An action will be pre-

defined and then be automatically triggered when it’s condition is fulfilled. The 

administrators define an action by declaring action’s attributes such as pre-post, 

operation, recipients, template, subject, target details and action delay. Figure 12 shows 

an example of the action information. 

 If the pre-post property is pre, it means this action will happen before a 

question appears; likewise, post property means that after a question 

disappeared, this action will be triggered.  
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 Operation property indicates the type of an action. An action can be sent 

through email, text message or pushing notifications to local mobile device.  

 Depends on the type of an action, others field will need to be specified. For 

example: if operation type is email, CommTemplate, subject and target details 

attribute need to be entered. If operation type is a push, recipients must be an 

app,  

 The targets can be individual, app or a list of people and apps. If it is a list, all 

individual contact will need to be entered. 

 The action delay is optional; the administrators can enter information for this 

field or not.  

After fulfilling all required information, the schema will be saved via the “Save” 

button. The schema’s information process can be described as following steps:  

Figure 12: Information of An Action 
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 Firstly, the servers will process schema’s information and transform these data 

into JSON object. Then, these JSON objects will be written to a JSON file. 

This file will be kept on the server.  

 Next, whenever participants make a request to the server, these schemas will 

be used for extracting data and return to participants. The “controlId” of a 

request is used for determining which schema will be used. 

 This request will trigger the RunTimeEnvonment (RTE) process on the server. 

The RTE will check if there is any data already existed in the server’s cache. 

If the data is already in the cache, it will be used for retrieving data. 

Otherwise, the RTE will go forward and read the contents of the schema file. 

 Then, the RTE will load the content of the JSON file such as a list of item, 

conditions, and actions, etc. The request’s body will control what will the 

RTE return to the participants. The important point is that the returning data 

does not contain the whole information of the schema. For example: if a 

schema includes multiple question and conditions the RTE will try to get the 

first question and only return that question’s data. When the participants the 

make same request, the RTE will automatically get the next question based on 

the pre-defined conditions of the schema.  

 Finally, the app will be stopped when the last question is reached. 

The schema is the most important and influential feature of MABIC application. 

Schemas hold all necessary information for displaying to participant’s device. A schema 

works as an information trading central between the server and the client. Whenever the 

clients make a request, the servers will retrieve data from a schema and only select 



36 

 

required information. Then the RTE will convert it to JSON format and return to the 

client side. Overall, these processes will be automatically handled on the server side 

rather than client side. 

 

2. Client Side 

Mostly, the participants interact with the servers via a specific request. Clients 

send a request with JSON format, each request’s content will be different depending on 

what kind of request is. When the server receives a request, it will process that request 

and return results back to clients. After receiving the result from servers, clients use that 

data to display to participant’s screen. The workflow of the client can be described as in 

Figure 13. 

2.1. Login 

When opening an application for the first time, participants are required to enter 

their username and password. The login page contains two textboxes and a button that 

allowing participants to enter credential information, and then submitting that info to the 

server for authentication. If the username or the password is incorrect, the application 

will display an error message indicating the information is incorrect and require 

participants to input again. Otherwise, if both information is correct, a request contains 

username and password will be sent to the server. The format of body request is showed 

in Figure 14. 
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Figure 13: Client Workflow 
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Next, this request will be sent and processed by the server. After the username 

and password of the participant are checked as a valid user, the server will go forward 

and send data back to clients. This data has JSON format and contains numerous different 

information. However, there are only a few relevant fields that need to be a concern of 

such as reasoncode, token, and apps. 

 

a) Reasoncode 

Reasoncode field is important information. This field indicates the status of return 

request from the server. If the code is 0, it means that username and password are valid. 

Therefore, the login process is successful and ready to use. However, if the reasoncode is 

returned 1, it means user’s credential is incorrect. Thus, participants need to log in again. 

If the value of reasoncode is 2, this username is expired. In this case, this user must 

contact the administrator to resolve it. In the meantime, this user cannot login to the 

system. 

b) Token 

The token is important information. The best way is never to use the plain 

password to process a request, thus improve the security of the application.  It will be 

unsafe; this password can be stolen while sending a request.  

To prevent this problem, when the clients send a login request, it will encrypt the 

password and return a token. This token will be used as a temporary password for 

Figure 14: An example of request body 
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processing the other request. This token is not permanent and only existing for a session. 

This token will be reset when participants log in to the application again. 

c) Apps 

The apps field is an array that including the number of apps and collectors 

belongs to the user. Each element in apps array is an app; each app contains default 

information such as appId, appName, appEmail, appPhone, parentApp and defaultApp.  

 AppId, appName attributes show the id and name of the app. AppPhone is the 

phone number of the app owner. 

 ParentApp indicates if the app is the main app or a data collector. If 

parentApp is an empty string, it will be the main app. Otherwise, it is a data 

collector, and parentApp value will be the appId of the main app.  

 DefaultApp attribute shows if this app is a default app or not. If the value is 

false, then it is not a default app; otherwise, it is a default app. A default app 

will be automatically loaded after participants log in to the application. 

Once this JSON data is obtained successfully from the server, it will be saved to 

the local storage so it can be used later.  

2.2. App and Data Collector 

There will be a sidebar menu that allows participants to select an app or a data 

collectors. When participants click on the main app via the app button, a request with 

appId, username, and token information will be sent to the server. All this information 

can easily to be retrieved from the local storage. Later, a response will be sent back to the 

client. Figure 15 is an example of an app’s request response. 
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The result contains a few things: the status of the request, a current token of the 

participant, a question data and different properties of the app.  

 The status of the request indicates if the request succeeds or not. If the status 

value is OK, it means this request is completed without any errors; otherwise, 

this request is incomplete.  

 The item field shows the details of the question. It includes the id, description, 

titles and other attributes. This field will be different for each request. This 

item is retrieved through the schema on the server. However, only one 

question is returned for each request.  

 Different attributes of the app are also returned. These attributes can be used 

to provide the proper behavior on the client side. For example: “nav” property 

indicates that if clients support the navigation between questions or not; the 

Figure 15: A request result of an app 
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“rollingStart” indicates if an app can be restarted when participants finish all 

questions or not; the “frequency” and “period” value supports to set up local 

notifications or reminders on the client side. 

When clients send the first request to the server, either an app or data collector 

request, the response is similar. The response is used for displaying the question. This 

response will contain some essential details such as the id, type, title, and choices. 

However, the differences are the request body and the response of the next request.  

Based on the kind of the question, the interface of that question will be designed 

differently. For example: if question type is a choice, the interface will contains multiple 

buttons. However, users can only pick one answer. If it is the check type, the interface 

will be similar to the choice type. But the participants can select multiple answers. For 

the range type, there will be a slider that allows participants to drag and move to change 

the value.  

The “choices” property contains a list of the answers. Each answer has a label 

value displaying the order of the response. Description field indicates the content of the 

answer. This value will be sent back to the server later. Figure 16 display an example of a 

question interface. The size of choices array is the number of the answers to the question. 

Figure 16: Example of a question 
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Also, “next” and “prev” attributes are used to specify if it is possible for 

participants to navigate back to the previous question or not. 

In the main app, each request will only return one item from the server. Although 

there are many questions are created in the JSON file on the servers, there will be only 

one question returned. When the clients make a request, the servers will parse this request 

info and process it. Only the appID is needed for retrieving the next question. This 

approach simplifies the client’s request. So, the client’s developers do not need to 

concern about altering the request body to retrieve the other questions. Figure 17 is an 

example of client’s request to the server.  

 

 

When participants submit an answer, a new request will be sent to the server. This 

request will also be in JSON format. This request is similar to the initial request. 

However, this request adds field name “rep”; this is the answer information of the 

question. This field contains appId; name field indicates the id of the question, the value 

was participant’s response and the time when the answer was selected. This data is kept 

in the local storage and will be dispatched to the server. 

Figure 17: An Example of Client's Request to Server 
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For the data collectors, the behavior is similar to the main app. However, there are 

a few differences.  

 Firstly, the responses can be different. The behaviors of the first request are 

the same. However, when clients send another request, it will not try to get a 

new question. Instead, it just sends participant’s answer back to the server for 

saving purpose. A message will be displayed when the answer is successfully 

submitted.  

 Another difference is the history button. There is a history view existed in a 

data collector app. This view is used for the read-only purpose. It shows all 

the submitted answers that participants already answered. The history data 

will be synchronized between clients and servers. Figure 18 shows an example 

of history view. 

The workflow of the synchronization can be described as these following steps: 

 Whenever the history view is accessed, the clients will make a request to the 

servers to retrieve the last timestamp info. This information indicates what is 

the last time that clients were synchronized with the server. There is also a 

Figure 18: History View of Data Collector 
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value named “lasttimesync” on the client. These values are being compared to 

determine which data on the server or the clients is updated.  

 If the timestamp from the client side is newer or later than the server side, all 

new responses that were added after timestamp on the server side will be sent 

back and stored on the server. However, if the timestamp on the server is 

greater on the client side, it means that there are more updated data on the 

server side than the client. In this case, new data from the server will be 

retrieved and then merged with current data to the client. After this process, 

both server and client side data is updated. 

 If the timestamp of clients and servers is equivalent, it does mean that the data 

does not need synchronization. This synchronization process makes sure that 

the data from the server and client will never be outdated.  

2.3. Profile Update 

From the menu on the client side, participants can easily access their profile 

information via the “Profile” button. Then, a profile page will be presented, and 

participants can look at their information including first name, last name, email, phone 

number, age and date of birth. This information is retrieved via sending a request to the 

server with username and token.  

Figure 19: Result of profile’s requestFigure 19 shows a result of profile request. 

This response is also in JSON format; it includes: 

 A status that indicates if the request is succeeded of not.  

 It contains various details about the user account such as last name, first name, 

email and mobile phone.  
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 There is also a field named “additional.” This field is used for including the 

other attributes that belong to the user, e.g. age, date of birth. The reason for 

additional existed because the administrators on server side want to add more 

details to user information later. Instead of changing the entire structure of the 

user detail on the server side, it will be more convenient if the administrators 

only need to add more information to the “additional” field. 

Participants also can update their profile. The update can be achieved without a 

hitch by changing the content of text boxes that is associated with each field. For 

example: if participants want to change their last name, they can just go ahead and 

Figure 19: Result of profile’s request 
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modify the last name text box; or if they want to update their phone number, it can be 

accomplished by replacing new number on the phone number text box.  

To get their changes updated, participants need to submit the new data to the 

server. A new request will be made. This request can be seen in Figure 20. When the 

server received the request, it will automatically update new value for the appropriate 

fields of the profile in the database. Then it will return the new values back to the clients. 

Thus, an updated profile information will be display immediately on participant’s screen. 

 

2.4. Local Notification 

The fundamental purpose of the data collector is trying to collect data from 

participants frequently. It can be two times per day or one time a week, etc. Because of 

this reason, MABIC application supports local notification. The local notification acts as 

a reminder that prompts the participant's input data at the particular time of the day.  

Figure 20: Update Profile Request 
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Participants can access local notification setting view via the “Setting.” A local 

notification setting view will be shown, as in Figure 21. The local notification is 

established based on the “frequency” and “period” value of data collector.  

 If both values are not empty, then a reminder for that data collector will be 

automatically turned on.  

 If the local notification status is on, for a specific time of the day or week, a 

reminder will display on the lock screen (if the device is locked). A banner 

notification will show up (if the device is unlocked) to informed participants that 

they must enter data value of those data collectors. 

 The reminders setting will be loaded automatically when participant login to the 

application. However, participants can change this setting later by toggle the 

setting on or off.   

All reminders can work offline without the internet. It does not send or receive 

any information from the server. These reminders only alter their behavior based on the 

setting of each app in the application. 

 

 

Figure 21: A Local Notification View 
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Chapter 6: Conclusion 

The growing of the web services and mobile technology improves the modern 

communication. It allows the communication between the administrators and participants 

to be easier. But many existing systems are not good enough to fully support this kind of 

communication.  

We have presented the architecture and how the workflow is working in the 

MABIC system. MABIC has the potential to be an excellent interactive communication 

system. It provides web services for the administrators and a mobile application for the 

participants. The content of the mobile app can be customized easily by the 

administrators. The server does not require the administrators has knowledge about 

programming skills; all the operation is simply done via a click or a drag-and-drop. The 

MABIC also support the instantaneous interaction by allow collecting data immediately 

from the participants or send the feedback to the participants. It has an automated 

mechanism which setting up the actions to send email, text message or push the 

notification to the client’s device. 

  While this thesis has demonstrated the advantages and potentials of MABIC 

system, many features can be implemented for enhancing the communication between the 

servers and clients. The voice calls or video call can be integrated into the mobile 

application to enable the faster and direct communication. This improvement benefits 

both administrators and participants because it provides more information than before. 

Furthermore, video calls technology allows the administrators to stream the media 

content to multiple participants simultaneously and efficiently. This feature improves the 
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two-way communication by engaging more people to interactive with the system at the 

same time. 
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