•  
  •  
 

Abstract

The nature and degree of fatigue in muscles that control finger position during repeated sustained efforts in rock climbing have not been described. The purpose of this study was to identify changes in maximum hang time and forearm electromyogram (EMG) during repeated maximum duration hangs from a simulated rock feature. A second objective was to determine the effect of different recovery times between hangs upon changes in finger force. Five experienced rock climbers performed 2 test sessions on different days in a randomized order. Each session involved 8 repetitions of a maximum duration hang with either 1 min (R1) or 3 min (R3) resting recovery between hangs. Finger force (FF) was measured for the right hand via a piezoelectric force sensor fitted with a plate to accept the distal digits of four fingers. Peak EMG (EMGPK) and EMG Area (EMGAREA) were recorded from the anterior forearm for each hang and standardized as percent of maximum FF EMG prior to statistical analysis. Hang duration progressively decreased over repetitions but tended to plateau around repetition 5 for both R1 and R3 conditions. A significant difference was found for both recovery conditions and repetitions (p<.05) as well as a significant interaction of the two factors (p<.05) for hang duration. There were no significant differences for EMGPK among repetitions or between recovery conditions (p>.05). EMGAREA decreased initially with repeated hangs during both R1 and R3 but this trend tended to plateau at repetition 3 for the R3 condition. A significant difference was found in EMGAREA for both recovery conditions and trials (p<.05) as well as a significant interaction of the two factors (p<.05). Mean FF decreased between pre- and post-hangs for both R1 and R3 however the difference was not significant. It was concluded that the overall decline in hang time is less with 3 min recovery vs 1 min recovery between hangs. Peak EMG does not appear to change despite this evidence of fatigue. A 3 min recovery interval between hang repetitions decreases the magnitude of fatigue experienced and enables a greater EMGAREA per hang.

Share

COinS