Background: Knowledge of metabolic outcomes, such as maximal oxygen consumption (VO2) or running economy, has wide-ranging application. Metabolic outcomes are widely reported in literature yet the metabolic sampling interval (example: breath-by-breath, 30-sec average) utilized for collection is rarely ever stated. Purpose: The purposes of the present investigation were to probe the potential discrepancies created when analyzing running economy and VO2max raw metabolic data with four different metabolic sampling intervals. Methods: Five recreationally-active and endurance-trained subjects were included in the present analysis and four metabolic sampling intervals were analyzed: 30-sec average, 20-sec average, 8-breath, and 4-breath. Subjects engaged in 4-min running economy phases at 55 and 65% of their VO2max before entering into a maximal protocol purposed to elicit VO2max in 8-12 minutes. Utilizing the steady state and maximal VO2 data, metabolic sampling intervals were analyzed for their effect on reported VO2 values. Results: For running economy at 55%, there was no differences found (f = 0.207; df = 1.862; p = 0.799) between sampling frequencies when analyzed by repeated measures analysis of variance and corrected with Greenhouse-Geisser for a violation of sphericity. For running economy at 65%, there were also no differences ­found (f = 1.456; df = 3; p = 0.799) between sampling frequencies. For inspection, the relative VO2 values were: 27.2 (±3.1), 27.9 (±4.1), 28.4 (±3.6), and 28.8 (±5.1) for the 30-sec, 20-sec, 8-breath, and 4-breath average, respectively. Maximal VO2 values of 53.0 (±6.6), 55.1 (±7.2), 55.1 (±7.2), and 59.6 (±9.4) for the 30-sec, 20-sec, 8-breath, and 4-breath average, respectively, were found to be significantly different (f = 21.062; df = 1.278; p < 0.001) after adjusting for a violation of sphericity (p < 0.001). Bonferroni analysis indicated differences between the 30-sec average and all other averages and also the 20-sec and 8-breath averages when compared against the 4-breath average. The 4-breath average yielded the highest VO2max value. Coincidentally, the 20-sec and 8-breath averages were identical. Conclusion: In the present investigation of raw metabolic data, sampling interval was found to impact the maximal oxygen consumption (VO2max) values but not running economy values when investigating a small sample of data with four select sampling intervals. The report of maximal VO2 is rather common in the literature and knowing sample interval is vital for between-study comparison, determination of regression-related activities, or for pre-post comparison of data from the same or different labs.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.