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PH 560: Environmental Management and Risk Assessment                            Divya Gade 

 

MERCURY EMISSIONS FROM COAL-FIRED POWERPLANTS 

 

ABSTRACT 

Mercury is a neurotoxic heavy metal that pose a risk to the public as well as the 

environmental health. It is a naturally occurring element that is released into the environment 

from the natural or anthropogenic emissions. Among the anthropogenic emissions, coal-fired 

powerplants account for approximately 50 percent of the emissions because of the lack of 

regulations for the emissions from these facilities. The other larger sources of mercury emissions 

such as municipal waste combustors and medical waste incinerators are subjected to the stringent 

regulations thereby minimizing their total contribution. Mercury is a natural component of coal 

and is released into the environment during the combustion of coal. Use of coals that contain less 

mercury can reduce the total mercury emissions. Mercury is liberated into the environment in 

several forms that can be categorized into elemental, inorganic and organic mercury. All these 

forms differ in their degree of toxicity and the utmost toxic species is the organic mercury. After 

emitting from the powerplants, mercury circulates in the atmosphere and gets deposited on the 

land and surface waters where the toxic species of mercury are formed. Reducing the mercury 

emissions from the powerplants can reduce the risk of this neurotoxic metal on humans. The use 

of control technology can significantly reduce the total mercury emissions in the future in a 

timely and cost effective manner.  

 

1. INTRODUCTION 

Mercury is a heavy metal that is hazardous to the humans and it is ranked third on 

Agency for Toxic Substances and Disease Registry’s priority list after arsenic and lead (ATSDR, 

2015). Mercury is released into the environment through natural processes or human activities. 

The natural sources of mercury emissions are from the volcanic eruptions and from the ocean 

emissions. Anthropogenic sources includes the emissions from the fuels or from the industrial 

processes. Among the human activities, more than 50% of mercury is released from coal-fired 

power plants (USEPA, 2015).  

According to the USEPA (2015), in 1990, two-thirds of the mercury emissions in the 

United States is from three sectors that include medical waste incinerators, municipal waste 

combustors and power plants. In 2005, the emissions from medical waste incinerators and 

municipal waste combustors is reduced by more than 95 percent but in contrast, the mercury 

emissions from coal fired power plants is reduced only by 10 percent. Unlike other sources of 

mercury emissions, coal fired powerplants has no limitations for mercury emissions that causes a 

significant increase in the emissions (USEIA, 2015). Because the mercury emissions are 

concentrated locally, the coal fired powerplants are the major source of local impacts of mercury 

(Driscoll, 2007). There are certain species of mercury that travel for longer distances and result 

in global contaminations (Kuiken & Stadler, 2003).   
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2. MERCURY IN COAL 

 Mercury occurs naturally in coal. The average concentrations of mercury in the coals 

range from 0.12 to 0.28 g/g (NJ DEPE, 1993). Mercury is released from coal during the 

combustion process. The average concentration of mercury that is present in the gas emissions 

from the power plant is less than 10 g/m3 (Prestbo & Bloom, 1995). Mercury content varies 

based on the coal types. According to Yudovich & Ketris, (2005), there are more than three 

forms of mercury in coals that include clays, organic matter and sulfides. There are also many 

components in which mercury resides which include biogenic, sorption, terrigenic, clastics and 

diagenic or epigenic mineral fractions based on the indications of use of coal. According to 

Toole-O’Neil, Tewalt, Finkelman, & Akers, (1999), in-ground coal has higher concentration of 

mercury and the cleaned and shipped coal has a lower concentration which is due to the process 

of coal cleaning that reduces the concentration of mercury by approximately 37 percent. The 

conventional coal cleaning process reduced 47 percent of mercury from the coal whereas 

advanced cleaning by the use of advanced floatation or specific gravity separation reduced about 

84 percent of mercury (Pavlish et al., 2003). The remaining mercury is liberated during coal 

combustion during the production of energy. The mercury that is present after coal cleaning is 

called as authigenic mercury and it includes organic matter and sulfides which determines the 

amount of mercury distributed in coal (Yudovich & Ketris, 2005). As the concentration of 

mercury is reduced, the coal will become less efficient for thermal productivity (Pavlish et al., 

2003). 

 The amount of mercury present in pyritic forms of coal that was studied indirectly by 

correlation between sulfur and mercury concentrations, or directly by the sulfide analyses 

concluded that there is strong association of mercury content with the pyritic coal (Huggins & 

Huffman, 1996). In the coals with higher concentrations of mercury, there is an increase in the 

amounts of mercuric sulfides and mercury bearing zinc and lead sulfides (Yudovich & Ketris, 

2005). Mercury can occur in pyritic coals due to a number of processes such as, the presence of 

small inclusions of cinnabar in pyrites. During the formation of pyrite in hydrothermal solutions, 

mercury can be introduced into it as isomorphs (Yudovich & Ketris, 2005). The concentration of 

organic mercury is less than the sulfuric mercury in coals. However, the coals with lower sulfur 

contents has an increased concentration of organic mercury than the sulfuric mercury (Yudovich 

& Ketris, 2005).  

 According to Yudovich & Ketris, (2005), the distribution of mercury in coal is based on 

the ash yield and also the content of pyritic sulfur. However, increase in the ash values for low 

ash coals is due to increase in the pyritic sulfur contents masking the determination of the 

importance of the individual properties. The relationship between the ash yield and the mercury 

content is based on the genetic form of mercury present in coal. The relationship between the ash 

yield and terrigenic mercury is linear, but the relation is weak in authigenic coal. There is a 

strong positive correlation between the contents of mercury and the contents of sulfur in coal 

concluding that the major form of mercury in coal is pyritic mercury (Cecil et.al., 1979). More 

than 50 percent of the coals in the United States with increased concentrations of mercury have 

increased contents of sulfur (Finkelman & Gross, 1999). About 50 percent of the mercury is 

bound to pyritic sulfur whereas the remaining is bound to the organic matter in coal (Yudovich & 

Ketris, 2005).   
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3. CHEMICAL FORM OF MERCURY 

  Mercury is one of the highly volatile metals that can be can be volatilized even at very 

low temperatures of 150 0C. This property attributes to its occurrence in vapor form in the 

emissions (Galbreath & Zygarlicke, 1996). Less than 2 percent of mercury remains at the bottom 

ashes after the coal combustion (Meij, 1991).  

Mercury is measured as three forms that include elemental/metallic mercury, inorganic 

mercury and organic mercury. The valence states of mercury emitted from coal fired power 

plants are elemental, monovalent and divalent mercury. Elemental mercury is highly volatile and 

evaporates as mercury vapors. According to Selin (2013), elemental mercury gets converted into 

monovalent and divalent mercury by undergoing series of oxidation reactions and losing 

electrons. Monovalent and divalent mercury are the oxidative states of inorganic mercury that 

has the ability to combine with other elements such as chlorine, oxygen or sulfur to form 

inorganic compounds of mercury that include mercuric sulphide, mercuric oxide, mercuric 

chloride, etc. (Rischer, 2003). When mercury reacts with carbon, organic mercury compounds 

such as methylmercury, ethyl mercury, dimethyl mercury, etc. are formed which are the utmost 

toxic species of mercury that bio-accumulate by a factor up to 105 in the food chain (Gilmour & 

Henry, 1991). 

Elemental mercury is the most stable form that is less likely to be soluble in water leading 

to a long distance transport (Clarkson, 2002). Among the monovalent and divalent mercury, 

divalent form is more stable and is more likely to occur in the environment as inorganic forms by 

the association with chlorine, sulfur and hydroxyl ions (Carpi, 1997). The inorganic compounds 

also get converted into elemental mercury at temperatures greater than 700 to 800 0C, because 

they are thermally unstable at the higher temperatures (Otani, Emi, Kanaoka & Matsui, 1984). 

But when the emissions reach the stack where the temperatures are lower, elemental mercury 

reacts with other constituents such as oxygen or chlorine present in the emissions to form 

inorganic compounds (Hall, Lindqvist, & Ljungstroem, 1990).  

The type is mercury emitted from the power plants depends upon the total amount of 

mercury present in the coal used and also the type of control devices such as activated carbon 

injection or wet lime/limestone flue gas desulfurization equipment used in the plant, the species 

and the form of mercury that is present in the flue gases (Carpi, 1997). According to Cohen, 

Artz, & Draxler, (2007), mercury is emitted into the air from coal-fired power plants in three 

different forms that include elemental mercury (53%), reactive mercury (42%) and particulate 

mercury (5%). Reactive mercury is the monovalent and divalent mercury that combines with 

other elements to form inorganic compounds. Particulate mercury is the mercury that is adsorbed 

on the carbon particles in the flue gas emissions. Less than 5 percent of the mercury emissions 

contain particulate mercury because most of it is removed by the air pollution control equipment 

such as fabric filters and electrostatic precipitators (Pacyna & Münch, 1991). It is extremely 

difficult to control elemental mercury, mercuric chloride and other forms of divalent mercury 

because they exist in vapor phase and their partial pressures are below the levels required for 

condensation in combustion flue gas (Prestbo & Bloom, 1995). The percentage of mercury 

captured in the power plant facilities that do not contain specific mercury control equipment 

ranges from 0 to 99 percent and the capture rate increases with the increase in carbon content in 

the exhaust stream (Nebel, 1993).  
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4. FATE AND TRANSPORT OF MERCURY 

According to Stamper, Copeland, Williams, & Spencer (2012), it was estimated that 

58,000 pounds of mercury is released in 2010 from coal-fired power plants and the exposure is 

seen within 300 miles of the power plant. The exposure is greatest at the power plant facility and 

about 80% of the reactive mercury that travels in the air gets deposited on the land within 1500 

miles of the power plant.  

The elemental mercury circulates for 1 year in the atmosphere pertaining to its global 

distribution (Clarkson, 2002). Mercury may also undergo other oxidation and reduction reactions 

in the atmosphere that leads to the precipitation of mercury (Schroeder, Yarwood, & Niki, 1991). 

In the stratosphere, the vapor is oxidized to ionic mercury and returns to the earth’s surface 

through rain leading to the distribution of mercury to most of the remote areas in the world 

(Tchounwou, Ayensu, Ninashvili, & Sutton, 2003). All the forms of mercury eventually gets 

deposited in water or on land. In the soil, the divalent mercury reacts with the chlorides and 

hydroxide ions and form inorganic complexes. Increase in the concentration of chlorine 

decreases the formation of organic mercury in the soil (Olson, Cayless, Ford, & Lester, 1991).  

The mercury in the atmosphere and in the soils are washed away into the surface waters 

through the rainfall. 19 percent of the U.S lakes and rivers were contaminated with mercury 

during the year 1970 and the low median value was less than 0.5 ppb (Nriagu & Pacyna, 1988). 

In the water all forms of mercury is converted into more toxic form, methyl mercury by the 

microorganisms (Stamper, et.al, 2012). Yeasts present in the waters have the capability of the 

methylation of mercury and also the conversion of ionic form of mercury into elemental form 

(Yannai, Berdicevsky, & Duek, 1991). Methylation of mercury is also increased by the presence 

of methyl cobalamin compounds that are synthesized by bacteria (Regnell & Tunlid, 1991). 

Increase in the concentration of dissolved organic carbon levels decreases the methylation of 

mercury (Gilmour & Henry, 1991) which is due to the binding of mercury ions to the organic 

carbon and the decline in the bioavailability of mercury ions for methylation (Miskimmin, Rudd, 

& Kelly, 1992). According to Bjrnberg, Lars, & Lundberg, (1988), an increase in the pH of 

surface waters increases the formation of mercuric sulfide and decrease in the pH increases the 

formation of methyl mercury. It is due to the fact that acid deposition reduces the activity of 

sulfide ions.  

5. HEALTH EFFECTS OF MERCURY AND ITS COMPOUNDS 

All the forms of mercury differ in their degree of toxicity and in their effects on the 

nervous, digestive and immune systems, and on lungs, kidneys, skin and eyes. The fundamental 

organs affected by both the acute and chronic effects are the kidneys and the central nervous 

system (Broussard et.al, 2002). The toxic effects of mercury and its compounds occur by 

disrupting the tertiary and quaternary structures of cellular proteins. Thus, the effects of mercury 

are not only seen at organ-system level, but also at the subcellular level (Jaishankar et.al, 2014). 

According to EPA, elemental mercury is not classifiable as to human carcinogenicity (Group 

D), inorganic mercury and methylmercury are possible human carcinogens (Group C) (Mercury 

compounds, 1992). According to IARC, elemental and inorganic mercury are not classifiable as 
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to carcinogenicity to humans (Group 3) and methylmercury is considered to be possibly 

carcinogenic to humans (Group 2B) (Mercury and Mercury Compounds, 1987).  

 

5.1.Acute health effects 

 

Elemental mercury: Acute inhalation of mercury vapor at larger doses causes erosive 

bronchitis and bronchiolitis that leads to the respiratory system failure and it may also be fatal 

when acute respiratory distress syndrome develops (Broussard et.al, 2002). It can also cause 

tremors or erethism by affecting the central nervous system (Garnier et al., 1981). Other central 

nervous system symptoms are tremors, irritability, insomnia, memory loss, neuromuscular 

changes, headaches, slowed sensory and motor nerve function and decreased cognitive function 

(ATSDR, 1999). In the kidneys, the effects range from mild proteinuria to acute renal failure 

(ATSDR, 1999).  

 

Inorganic mercury: Acute effects are usually seen with ingestion of inorganic mercury. The 

effects are usually due to the corrosive nature of mercuric salts (Broussard et.al, 2002). 

According to Barnes et.al, (1980), acute exposure to mercuric salts affects the mucosa of the 

gastrointestinal system and the kidneys. It causes necrosis of the gastrointestinal mucosa and the 

symptoms include abdominal pain, vomiting and bloody diarrhea. This can lead to death from 

septic or hypovolemic shock. The patients who survived develop renal tubular necrosis and the 

symptoms include anuria. Metallic taste in the mouth, nausea, vomiting and severe abdominal 

pain are the symptoms associated with acute exposures (ATSDR, 1999).  

 

Organic mercury: Acute inhalation of methyl mercury is very rare and it causes severe CNS 

effects such as tremors, visual and hearing impairment, paralysis, insomnia and fetal 

developmental defects (Renzoni, Zino, & Franchi, 1998). It leads to blindness, deafness, speech 

defects, cerebral palsy and mental retardation in infants (Davis, 2002).  

 

5.2.Chronic health effects 
 

Elemental mercury: The triad of symptoms for chronic elemental mercury exposure are 

tremors, gingivitis and erethism (Broussard et.al, 2002). Chronic exposure to mercury vapor 

affects the nervous system and causes weakness and gastrointestinal problems initially and then 

cause tremors, erethism, behavioral changes, emotional excitability, and loss of memory, 

insomnia, depression, fatigue, delirium and hallucination (Berglund, Pohl, Olsson, & Bergman, 

1988). Oral symptoms such as gingivitis and increased salivary flow can also be present 

(Nordberg, 2015). Proteinuria occurs when the kidneys are affected (ATSDR, 1999). In children, 

a syndrome called acrodynia may develop and symptoms include severe leg cramps, irritability, 

paresthesia, pruritus, diaphoresis, tachycardia, hypertension, photophobia, anorexia, insomnia, 

poor muscle tone, constipation, diarrhea, painful pink fingers, and peeling of hands, feet and 

nose (Broussard et.al, 2002). 

 

Inorganic mercury: Chronic exposure to mercuric salts occurs through occupational exposure 

and the major effect of this exposure is kidney damage (ATSDR, 1999). Effects on the kidneys 

include renal tubular necrosis and autoimmune glomerulonephritis (Barnes, et.al, 1980). It can 

also affect the immune system and causes asthma, dermatitis and other hypersensitivity reactions 
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(de Vos, Abotaga, Liao, Jerschow, & Rosenstreich, 2007). Improper functioning of the thyroid 

gland may also be seen (Ellingsen et al., 2000). Inhibition of the production of sperms may also 

occur when the testis are affected (Rao & Sharma, 2001). 

Organic mercury: Chronic exposure to methyl mercury damages the CNS. In the central 

nervous system, the cerebellum, calcarine fissure and the precentral gyrus are usually affected 

(RAIS, 1998). The early symptoms that are caused by chronic exposure are paresthesia, blurred 

vision and malaise. Later, it leads to deafness, speech difficulties and constriction of the visual 

field (ATDSR, 1999). It can also lead to cardiovascular diseases and cancer (Risher, Murray, & 

Prince, 2002). Exposure of pregnant women to methylmercury gives birth to the infants with 

CNS effects that range from minor symptoms such as developmental delays and abnormal 

reflexes to major symptoms such as mental retardation, ataxia, deafness, constriction of the 

visual field, blindness and cerebral palsy (ATSDR, 1999).  

6. TOXICOLOGY  

Exposure to elemental mercury: According to Ashe et al., (1953) when rabbits are 

exposed to 28.8 mg/m3 of metallic mercury, no death is seen on exposure for 20 hours or less but 

one in two rabbits died on exposure for 30 hours. Mild to moderate pathologic changes are seen 

on exposure for 1 to 20 hours and cellular degeneration and necrosis of the lungs is seen after 

exposure for 30 hours. Exposure of rabbits to 28.8 mg/m3 mercury vapor for 4 to 30 hours 

showed marked cellular degeneration and necrosis of the colon and the exposure for 6 to 30 

hours showed necrosis of the liver. Exposure of rats to 1 mg/m3 of metallic mercury vapors for 

100 hours per week for 6 weeks, showed congestion in the lungs (Gage, 1961). When the rats are 

exposed to 3 mg/m3 of mercury vapor for 3 hours a day, 5 days in a week and for 12 to 42 weeks, 

there are no significant pathologic changes in the liver and lungs (Kishi, 1978). Autoimmune 

response in genetically susceptible mice when exposed to mercury vapors for a period of 10 

weeks showed the response by general stimulation of the immune system (Warfvinge et al., 

1995).  

Exposure to inorganic mercury: The range of oral LD50 value in mice is from 25.9 to 

77.7 mg/Kg (Kostial et al., 1978). Oral exposure of Long-Evans rats to 2.2 mg/kg/day for a 

period of three months showed labored breathing, bleeding from nose and difficulty in 

respiration (Goldman & Blackburn, 1979). Exposure of rats to 28 mg/kg/day for a period of 180 

days through drinking water demonstrated an increase in blood pressure and a decrease in 

cardiac contractility (Carmignani et al., 1992). Dietary exposure to 0.69 mg/kg/day for two years 

in mice resulted in the ulcers of stomach (Mitsumori et al., 1990). Dietary exposure to 1.1 

mg/kg/day for 4 weeks resulted in increased kidney weights in female Wistar rats (Jonker, et.al, 

1993).  

Exposure to organic mercury: Animal studies on the exposure to methyl mercury are 

limited. Exposure of monkeys to methyl mercury from birth to seven years of age showed 

delayed neurotoxicity and at the age of thirteen they displayed abnormal behavior to touch even 

though their clinical examination showed normal results (Rice, 1996). 

 

7. EXPOSURE TO MERCURY EMISSIONS 
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7.1.Route of exposure and the amount of absorption 

Exposure through inhalation: 97.4 percent of the total elemental mercury absorption 

occurs through inhalation of the contaminated air near the coal fired power plants (Hursh, 

Clarkson, Miles, & Goldsmith, 1989). Absorption of inorganic mercury through inhalation route 

is very low because of the ease of elimination of the particles by the muco-ciliary system of the 

airway (Friberg & Norberg, 1971). The data is limited for humans but it was estimated that about 

40 percent of the absorption of inorganic mercury occurs through inhalation in dogs (Keating, 

1997).  

Exposure through ingestion: Less than 0.01 percent of the ingested elemental mercury is 

absorbed from the gastrointestinal tract (Clarkson, 2002). Exposure to the inorganic mercury 

occurs through the ingestion of contaminated soil or water (ATSDR, 1999). 7 to 15 % of the 

inorganic mercury is absorbed through intestine after ingestion (Friberg & Norberg, 1971; 

Keating, 1997). Ingestion of fish and other foods that contain methyl mercury leads to the 

absorption of about 95 percent of methyl mercury from the gastrointestinal tract (ATSDR, 1999). 

Dermal exposure: Exposure of mercury vapors through dermal route is minimal and it 

accounts for only 2.6 percent of the total elemental mercury absorption  (Hursh, Clarkson, Miles, 

& Goldsmith, 1989). Exposure to the inorganic compounds of mercury occurs through the 

dermal route while handling contaminated soil and water and only 2-3 percent of the total is 

absorbed (ATSDR, 1999; Keating, 1997). 

 

7.2.Distribution and excretion of mercury  

 Elemental mercury: When mercury vapors are inhaled, about 80 percent of the mercury 

enters the kidneys and brain via blood stream and remains in the body for weeks to months 

causing acute and chronic health effects (ATSDR, 1999). In the brain, it is converted into 

inorganic mercury and gets trapped. It can pass through the placenta and affect the developing 

fetus (Grandjean et al., 1992). The average elimination half-life of elemental mercury is 58 days; 

about 7 to 14 percent is eliminated within a week of exposure through exhalation and 

approximately 80 percent is eliminated through urine and feces by conversion into inorganic 

mercury (Keating, 1997).    

 Inorganic mercury: 10 to 40 percent of the ingested inorganic mercury accumulates in the 

kidneys (ATSDR, 1999). It is highly difficult for the inorganic mercury to pass the blood brain 

barrier and blood placental barrier, but it may reach an infant through the breast milk (ATSDR, 

1999). The elimination half-life of inorganic mercury is from 49 to 96 days; about 85 percent of 

the ingested inorganic mercury is eliminated in the feces within 2 days and the absorbed 

inorganic mercury is eliminated in weeks to months through urine (Keating, 1997).   

 Organic mercury: 1 to 10 percent of the absorbed methyl mercury is distributed in the 

blood. Methyl mercury rapidly crosses the brain and placental barrier. In the brain, it is converted 

to inorganic mercury and gets trapped leading to the acute and chronic health effects (ATSDR, 

1999). The elimination half-life of methyl mercury is 45 to 90 days; about 90 percent is excreted 

through feces in the form of inorganic mercury (Keating, 1997).  
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7.3.Biomarkers of exposure 

Chronic and low dose exposures to any form of mercury can be determined by collecting 

the urine samples. Acute and high dose exposures can be measured by collecting the blood 

samples (Cherian, Hursh, Clarkson, & Allen, 1978).  Recent exposures can be detected in both 

blood and in urine (Naleway et al., 1991). The half-life of mercury in blood is only 3 days that 

gives an indication for the detection of recent exposures only. In contrast, the excretion in urine 

lasts from days to months which is a reliable biomarker for the identification of increased levels 

of mercury (Naleway et al., 1991).  

When individual species of mercury are taken into consideration, urinary samples shows 

the appropriate levels of inorganic and elemental mercury exposure because only a small fraction 

of organic mercury is excreted through urine (Yoshida, 1985). The average concentration of 

mercury in blood for general population is 0.002 mg/liter (Nordberg et al., 1992). Exposure to 

the airborne mercury to a concentration of 1 mg/m3 continuously for a period of 8 hour/day 

results in the average concentration of 1.4 mg/liter in urine and 0.48 mg/liter in blood 

(Substances, 2002). 

8. MEASURES TO REDUCE THE MERCURY EMISSIONS FROM COAL-FIRED 

POWERPLANTS 

 

8.1.Activated carbon injection 
  Injection of dry powdered or wet slurred carbon into the flue gas before the entry of flue 

gas into the air pollution control equipment increases the particulate carbon in flue gas thereby 

increasing the adsorption of mercury and its removal by the air pollution control equipment 

(Carpi, 1997). Mercury adsorption to carbon is also dependent of the exhaust stream temperature 

(USEPA, 1993). Increase in the temperature of the exhaust stream increases the adsorption of 

mercury to carbon. But an inverse relationship exists between the bag house temperature which 

is approximately 120 to 200 0 C and the reduction of mercury emissions by the activated carbon 

injection (Miller et al, 1994). More than 90 percent of the mercury is removed when the activated 

carbon injection rate is 100 mg/ m3 (Carpi, 1997). The carbon injected power plants showed a 

reduction of 70 to 90 percent of mercury emissions when compared to the other plants that 

showed only a reduction of 30 to 65 percent of emissions (Plasynski, Litynski, McIlvried, & 

Srivastava, 2009). There is a positive correlation between the removal of divalent mercury and 

the content of carbon in the flue gas (USEPA, 1993). Only a partial amount of elemental mercury 

is captured by the carbon particles (Miller et al., 1994). According to Felsvang et.al. (1993), the 

activated carbon particles catalyze the formation of divalent mercury from elemental mercury 

thereby eliminates the amount of elemental mercury.  

 

8.2.Wet lime/limestone flue gas desulfurization:  

This procedure removes about 52 percent of the mercury (Meij, 1991). Injection of 

limestone for the power plants that do not have wet scrubbers removed up to 56 percent of the 

mercury emission whereas those that were not injected removed only 18 percent proving that 

limestone injection is cost-alternative to activated carbon injection (Madden & Holmes, 1998). 

Due to its high water solubility, divalent mercury can be easily removed from this wet system 

compared to that of the elemental mercury. According to Vogg, Braun, Metzger, & Schneider, 

(1986), when the pH is greater than three and the chloride ion concentration is less than 0.1 
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Moles, the sulfur dioxide present in the flue gas disrupts the reduction and removal of divalent 

mercury leading to the formation of elemental mercury vapors that escape in the exhaust stream. 

Thus the capture ability depends upon the pH and chloride ion concentrations.   

 

9. CONCLUSION 

The mercury emissions from coal-fired powerplants are increasing in the United States 

due to the increase in the production of energy. In order to reduce the negative effects by the 

coal-fired power plants, alternative sources of energy such as renewable sources of energy 

should be used.  According to USEIA (2015), the total number of coal power plants reduced 

from 629 to 518 whereas the number of renewable sources of energy increased from 741 to 

2,299 from 2003 to 2013. The use of renewable sources such as solar, wind, hydrothermal and 

geothermal energies can replace the total number of coal fired power plants and thus can reduce 

the estimated 50 percent of the anthropogenic mercury emissions from coal fired powerplants. 

By using the controlled technology and alternative sources of energy, the risk of this neurotoxic 

heavy metal can be minimized.  
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