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Abstract—Attribute selection is an important activity in data prepro-
cessing for software quality modeling and other data mining problems.
The software quality models have been used to improve the fault detection
process. Finding faulty components in a software system during early
stages of software development process can lead to a more reliable
final product and can reduce development and maintenance costs. It
has been shown in some studies that prediction accuracy of the models
improves when irrelevant and redundant features are removed from
the original data set. In this study, we investigated four filter attribute
selection techniques, Automatic Hybrid Search (AHS), Rough Sets (RS),
Kolmogorov-Smirnov (KS) and Probabilistic Search (PS) and conducted
the experiments by using them on a very large telecommunications
software system. In order to evaluate their classification performance
on the smaller subsets of attributes selected using different approaches,
we built several classification models using five different classifiers. The
empirical results demonstrated that by applying an attribution selection
approach we can build classification models with an accuracy comparable
to that built with a complete set of attributes. Moreover, the smaller subset
of attributes has less than 15 percent of the complete set of attributes.
Therefore, the metrics collection, model calibration, model validation, and
model evaluation times of future software development efforts of similar
systems can be significantly reduced. In addition, we demonstrated that
our recently proposed attribute selection technique, KS, outperformed
the other three attribute selection techniques.

I. INTRODUCTION

Software quality is an important attribute of software product
especially for high-assurance and mission-critical systems. Predicting
the quality of software modules in the early stages of software de-
velopment process is very critical, so that software quality assurance
efforts can be prioritized for targeting those modules that are either
high-risk, or likely to have a high number of faults. Software quality
models are the tools to implement such predictions. A software
quality model can use software metrics that are collected prior to
software testing and operations to estimate the quality factor of
software modules such as number of faults or quality based classes,
fault-prone and not fault-prone [1].

Over the last two decades, significant research has been dedicated
towards developing methods for improving the predictive accuracy
of software quality models [2], [3], [4]. It has been shown in
some studies that the performance of these models improves when
irrelevant and redundant features are eliminated from the original data
set [2], [5], [4]. In addition, attribute selection can reduce the time
for the metrics collection, model calibration, model validation, and
model evaluation of future software development efforts of similar
systems.

In this paper, we investigated four different attribute selection tech-
niques, AHS, PS, KS and RS and applied them to a data set for a very
large telecommunications software system. In order to evaluate their
classification performance on the smaller subsets of attributes selected
using various approaches, we built several classification models using
five different classifiers. They are Instance-based learning (IBK),

Multilayer perceptron (MLP), Support vector machine (SVM), Naı̈ve
Bayes (NB), and Logistic Regression (LR). The experimental results
demonstrate that the classification accuracy of the models built with
some smaller subsets of attributes is comparable to that built with the
complete set of attributes. Moreover, the smaller subsets of attributes
include less than 15 percent of the complete set of attributes. In
addition, among the four attribute selection approaches, our recently
proposed KS method performed better than the other three techniques
in terms of two performance metrics (AUC and BGM) for four out
of five learners.

The rest of the paper is organized as follows. Section II provides
more detail information about the attribute selection techniques, five
classifiers used in the paper and performance metrics. The data set
used in the experiment is described in Section III. Section IV presents
the experimental results. Finally, the conclusion is drawn in Section
V.

II. METHODOLOGY

A. Attribute Selection Techniques

Attribute selection is a process of reducing data dimension. It is
one of the frequently used techniques in data preprocessing for data
mining. Attribute selection process consists of four basic steps [6]:

1) Subset generation. It produces candidate attribute subset based
on a certain search strategy. In this step, two problems need to
be solved. First, where to start. According to the different strate-
gies, we can divide them into two categories, forward (search
starts with an empty set and inserts attributes subsequently) and
backward (search starts with a full set and deletes attributes
subsequently). Second, how to produce next candidate subsets.
Based on different strategies that would be used, we divide
search into complete search also called exhaustive search and
sequential search. A complete search examines all the attribute
subsets of a given data set. It is able to find the optimal result at
the expense of O(2N ) computational complexity, where N is
the number of attributes in the data set. In contrast, a sequential
search gives up completeness and thus it cannot guarantee
to find the optimal subsets. There are many variations to
the greedy hill-climbing approach, such as sequential forward
selection and sequential backward elimination [7].

2) Subset evaluation. During the search process, each generated
subset need to be assessed by an evaluation criterion. If the new
subset turn out to be better, it substitutes the previous subset.
The process of subset generation and evaluation is an iterative
activity until a stoping criterion is met. Subset evaluation can
be divided into two categories, filter and wrapper based on
their dependency on a data mining algorithm. The filter model
evaluates the subset of attributes by examining the intrinsic
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characteristic of the data without involving any data mining
algorithm. In contrast, the wrapper model evaluates the good-
ness of the subset of attributes by applying a predetermined
data mining algorithm on the selected subset of attributes. It
tends to be computationally expensive.

3) Stopping criterion. It determines when to stop search algo-
rithm. Various stoping criteria are frequently used.

4) Result validation. It is used to assess the effectiveness of an
attribution selection method. Various performance metrics can
be used to evaluate the prediction models before and after the
attribution selection was made.

For both AHS and PS methods, we used a modified version of
consistency rate as the evaluation criterion [8]. Consistency rate (CR)
has monotonic property. The property has the following facts:

• The complete attribute set has the highest consistency rate δ. In
other words, the consistency rate of any attribute subset is less
than or equal to δ;

• The superset of a consistent attribute subset is also consistent;
• If CR(Si, D) ≤ CR(Sj , D), then CR(Si ∩ f, D) ≤ CR(Sj ∩

f, D), where f is an attribute not in Si and Sj .
The Probabilistic Search (PS) algorithm makes probabilistic choices
of subsets in searching. PS employs two possible stopping criteria,
generation time and when the best subset is found. The probabilistic
search [8] implemented in this study using generation time as the
stopping criterion proceeds as follows: attribute subsets are randomly
generated with equal probability and evaluated; the algorithm will
not stop until reaching the specified generation time. The smallest
consistent attribute subset is selected. If an algorithm’s purpose is
to find a result with a certain amount of tolerance, setting the
running time as the main stopping criterion is the most reasonable
method. LVF is a probabilistic search algorithm [8]. A modified LVF
implemented in this study is illustrated in Figure 1.
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(1) L = S 
(2) '  = conCal(S, D) 
(3) for j=1 to Max  
(4)     randomly choose a feature subset Sj
(5)     tempCon = conCal(Sj ,D) 
(6)     if |Sj| < |L| and tempCon ≥ '
(7)           L = S 
(8) return L 

Fig. 1. PS Algorithm

The Automatic Hybrid Search (AHS), an attribute subset selection
method recently proposed by us [9], also uses the consistency rate
properties. It works as follows: the consistency rate of complete
attribute set is computed first and is used as the stopping criterion.
Starting with size 1 of any attribute, attribute subsets that have the
locally highest consistency rate are selected. These selected attribute
subsets will be used to generate superset. Repeat the process until
finding the attribute subsets that have the same consistency rate or the

complete attribute set is reached. If more than one attribute subsets
are generated, a classifier called C4.5 [10] will be used to decide
which attribute subset is selected based on an error rate. C4.5 is an
algorithm for inducing classification rules in the form of a decision
tree from a given data set. For this case study, one attribute subset
(with six attributes) was produced without using C4.5. The AHS
algorithm is illustrated in Figure 2.
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L @ 4 : 5 > D
(1) L = S 
(2) M  = conCal(S, D) 
(3) T = all feature subset S' in S where |S'| = 1 
(4) max = - N
(5) while the size of any set in T < |S|  
(6)        tempSet = φ
(7)        for each set T' in T  
(8)               tempCon = conCal(T', D) 
(9)               if max < tempCon  
(10)                      max = tempCon 
(11)                      tempSet = φ
(12)                      tempSet = append(tempSet, T') 
(13)               else if max = tempCon 
(14)                      tempSet = append(tempSet, T') 
(15)        if max O M
(16)               L = tempSet 
(17)               return L 
(18)        else if |tempSet| = |T| 
(19)               T = combinationSet(T, size + 1) 
(20)        else  
(21)               for any set tempSet' in tempSet 
(22)                    append tempSet' with f where f is any feature in S  

not in tempSet' 
(23)               T = tempSet 
(24) return L P . Q R S 1

A B C 3 4 D
K F 9 5 B ? 8 ? 4 @ B 4 H @ 7 4 3 = @ ? 3 < ? @ 4 ? H = 5 6 ? 4 @ C T

J 3 4 C 3 4 D
U F ? @ I @ 9 4 @ > H @ 7 4 3 = @ ? 3 < ? @ 4

L @ 4 : 5 > D
(1) min = N
(2) T = φ
(3) for each set L' in L  
(4)        calculate error rate r using C4.5 with L' 
(5)        if r < min 
(6)               min = r 
(7)               T = L' 
(8) return T 

Fig. 2. AHS Algorithm

The K-S Method is an attribute selection method recently proposed
by our research group [11]. It utilizes the Kolmogorov-Smirnov (KS)
statistic to measure the maximum differences between the empirical
distribution function of the posterior probabilities of instances in each
class. The larger the distance between the distribution functions, the
better the attribute is able to distinguish between the two classes. The
attributes can be ranked based on their K-S scores and be selected
according to their K-S scores and the number of attributes needed.
The more detail information about the calculation of K-S score is
described below.

For the jth independent variable, the data is composed of two inde-
pendent samples, fault-prone (fp) and not fault-prone (nfp) samples.
The fp sample has a size of nfp, and its components are referenced
as x

(k)
j , k = 1, . . . , nfp. The nfp sample contains nnfp software

modules, and it is composed of x
(l)
j , l = 1, . . . , nnfp.

273



Let F
X
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j

(xj) and F
X

nfp

j

(xj) represent the cumulative distri-

bution functions of fp and nfp samples, respectively, for the jth

independent variable. S
X

fp

j

(xj) is an empirical cumulative distri-

bution function of fp sample for the jth independent variable, that is
defined as the percentage of X

fp
j which are less than or equal to xj .

S
X

fp

j

(xj) is calculated by:

S
X

fp

j

(xj) =
Nfp(xj)

nfp

(1)

where Nfp(xj) is the number of elements that are less than or equal
to xj , which correspond to the set of {x

(k)
j | x

(k)
j ≤ xj , k =

1, . . . , nfp}.
Similarly, S

X
nfp

j

(xj) is defined as the empirical cumulative dis-

tribution function of the nfp sample for the jth independent variable.
S

X
nfp

j

(xj) is computed by the following formula:

S
X

nfp

j

(xj) =
Nnfp(xj)

nnfp

(2)

where Nnfp(xj) is the number of elements of X
nfp
j that are less

than or equal to xj . In other words, it consists of the set {x
(l)
j |

x
(l)
j ≤ xj , l = 1, . . . , nnfp}.
The greatest vertical distance, Tks, for the jth independent variable

is computed using the formula below.

Tks = max
xj

|S
X

fp

j

(xj) − S
X

nfp

j

(xj)| (3)

Tks is K-S score for attribute j.

The Rough Sets (RS) theory is based on classical set theory [12]. In
this study, we are interested in the partitions that are constructed from
groups of attributes, called equivalence classes. Using the concept of
equivalence from classical set theory, we can eliminate redundant data
and insignificant attributes. A reduct is a minimal set of attributes
that preserves the discrimination power and the ability to perform
classifications as if we are using the whole attribute set. There exist
a number of genetic algorithms [13] that can compute a sufficient
number of reducts for a given attribute set. Genetic algorithms use
heuristic techniques to search the attibute subset space. For this
case study, we used RSES tools to generate reducts. RSES is an
abbreviation for the Rough Set Exploration System, which is a set
of software tools that are used for rough set computations in data
mining [14], [2].

The AHS, PS and RS methods need the input data to be discretized
before using them. We used the WEKA tool to discretize the data for
both AHS and PS with the equal frequency strategy [15]. The number
of bins was set to 10. The RS method was implemented by the RSES
tools which include the function of discretizing data.

B. Classifiers
The five classifiers used in this case study are instance-based

learning, multilayer perceptron, support vector machine, naı̈ve Bayes,
and logistic regression [16], [17], [18], [19], [20]. All these five
learners themselves do not have the attribute selection capability.
Every classifier was implemented in the WEKA tool [15]. Default
parameter changes were done only when classifier performance
improved significantly.

IBK [16], also called k nearest neighbors (kNN) classifier, was built
with changes to two parameters. The ‘distanceWeighting’ parameter

TABLE I
CONFUSION MATRIX FOR A BINARY CLASSIFICATION

Correct Result
+ -

Obtained + TP FP
Result - FN TN

was set to ‘Weight by 1/distance’, the ‘kNN’ parameter was set to
‘30’, and the ‘crossValidate’ parameter was turned on (set to ‘True’).
‘crossValidate’ tells the classifier to try each k between 1 and the
value of the kNN parameter, picking the one which performs best
on the training data and using that for the actual classification. By
default this process chooses the k which optimizes overall accuracy,
however we modified the code slightly so that it chooses the k which
produces the highest mean of the accuracies for each class (i.e., the
arithmetic mean between the true positive rate and true negative rate).

The support vector machine (SVM) classifier [18] called SMO in
WEKA had two changes to the default parameters: the complexity
constant c was set to 5.0 and buildLogisticModels was set to true.
By default, a linear kernel was used.

For a multilayer perceptrons (MLP) classifier [17] (a type of
neural network), the ‘hiddenLayers’ parameter was changed to ‘3’
to define a network with one hidden layer containing three nodes,
and the ‘validationSetSize’ parameter was changed to ‘10’ to cause
the classifier to leave 10% of the training data aside to be used as a
validation set to determine when to stop the iterative training process.

Naı̈ve Bayes (NB) utilizes Bayess rule of conditional probability
and is termed ‘naı̈ve’ because it assumes conditional independence
of the features [19].

Logistic regression (LR) [20] is a statistical regression model for
categorical prediction.

C. Performance Metrics
In a binary (positive and negative1) classification problem, there

can be four possible outcomes of classifier prediction: true positive
(TP), false positive (FP), true negative (TN), and false negative (FN).
A two-by-two confusion matrix is described in Table I. The four
values provided by the confusion matrix form the basis for several
other performance metrics that are well known and commonly used
within the data mining and machine learning community.

The Area Under the ROC (receiver operating characteristic) curve
(i.e., AUC) is a single-value measurement that originated from the
field of signal detection. The value of the AUC ranges from 0 to 1.
The ROC curve is used to characterize the trade-off between hit (true
positive) rate and false alarm (false positive) rate [21]. It depicts the
performance of a classifier without taking class distribution or error
costs into consideration. A classifier that provides a large area under
the curve is preferable over a classifier with a smaller area under the
curve. A perfect classifier provides an AUC that equals 1.

The Geometric Mean (GM) is a single-value performance measure
that ranges from 0 to 1, and a perfect classifier provides a value of 1.
It is a useful performance measure since it is inclined to maximize
the true positive rate and the true negative rate while keeping them
relatively balanced. Such error rates are often preferred, depending on
the misclassification costs and the application domain. The threshold
t = 0.5 is used for the Default Geometric Mean (DGM). The Best
Geometric Mean (BGM) is the maximum Geometric Mean value that

1positive and negative refer to fp and nfp modules respectively.
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is obtained for 0 < t < 1. The default decision threshold usually
causes the classifier to perform suboptimally when the given data
set has an imbalanced class distribution or when the costs for both
types of misclassification are not equal. The decision threshold can be
changed to account for class imbalance in the data set and for unequal
costs of misclassification. Lowering the decision threshold causes
the classifier to assign more instances to the positive class, and thus
increase the number of FP errors while reducing the number of FN
errors. The best geometric mean is implemented by this adjustment.

III. DATA SET DESCRIPTION

The software metrics and fault data for this case study (denoted as
LLTS) was collected from a very large legacy telecommunications
software system. The LLTS software system was developed in a
large organization by professional programmers using a proprietary
high level procedural language, PROTEL. The system was comprised
of several million lines of code. The data collection effort used
the Enhanced Measurement for Early Risk Assessment of Latent
Defect (EMERALD) system [22]. A decision support system for
software measurements and software quality modeling, EMERALD
periodically measures the static attributes of the most recent version
of the software code. We used the data set collected from the LLTS
software system to conduct our experiments. This data set contains
3649 program modules. Each set of associated source code files was
considered as a module. The LLTS data set consists of 42 software
metrics including 24 product metrics, 14 process metrics, and 4
execution metrics shown in Table II. The dependent variable is the
class of the software module, fault-prone or not fault-prone. The fault-
proneness is based on a selected threshold, i.e., modules with one or
more faults were considered as fault-prone, not fault-prone otherwise.

IV. EXPERIMENTS

A. Selected Attributes
The experiments were conducted with the four attribute selection

techniques. It is worthwhile to note that we restricted the maximum
number of selected attributes to six which is obtained from �log2 42�,
where 42 is the number of attributes of the original data set [23]. The
reason is that usually the performance of a model will be getting
better when the number of attributes involved in model construction
is increasing. Different attribute selection approaches may adopt
different stoping criteria so that they may produce different sizes
of attribute subsets. In order to remove the effect of the number of
selected attributes on the performance of classification models, we
used this criterion for selecting the number of attributes.

Table III lists the attributes selected by the four methods. For
AHS and KS, it is relatively easy to control the number of selected
attributes. For example, the KS method ranks the attributes based on
their K-S scores. The larger the score, the better the attribute is able
to distinguish between the two classes. So the top six attributes were
selected. For the AHS method, the restriction for the number of the
selected attributes can be implemented by adjusting the consistency
rate requirement.

The RS method used three different genetic filter algorithms
described in [24] to determine the most significant subsets of at-
tributes(s). The training data set was discretized by the algorithm
implemented in RSES [14] before using the filter algorithms. To
determine significant attribute subsets, we choose the subsets that
were generated by all three algorithms. Each algorithm had to
generate at least 20 subsets, for a total of 60 attribute subsets, before
there were two subsets of attributes that were common to all three
algorithms. After reviewing the reducts, we observed that of the 60

TABLE II
SOFTWARE METRICS

Symbol Description
Product Metrics
CALUNQ Number of distinct procedure calls to others.
CAL2 Number of second and following calls to others.

CAL2 = CAL - CALUNQ where CAL is the total
number of calls.

CNDNOT Number of arcs that are not conditional arcs.
IFTH Number of non-loop conditional arcs

(i.e., if-then constructs).
LOP Number of loop constructs.
CNDSPNSM Total span of branches of conditional arcs.

The unit of measure is arcs.
CNDSPNMX Maximum span of branches of conditional arcs.
CTRNSTMX Maximum control structure nesting.
KNT Number of knots. A “knot” in a control flow

graph is where arcs cross due to a violation of
structured programming principles.

NDSINT Number of internal nodes
(i.e., not an entry, exit, or pending node).

NDSENT Number of entry nodes.
NDSEXT Number of exit nodes.
NDSPND Number of pending nodes (i.e., dead code segments).
LGPATH Base 2 logarithm of the number of independent paths.
FILINCUQ Number of distinct include files.
LOC Number of lines of code.
STMCTL Number of control statements.
STMDEC Number of declarative statements.
STMEXE Number of executable statements.
VARGLBUS Number of global variables used.
VARSPNSM Total span of variables.
VARSPNMX Maximum span of variables.
VARUSDUQ Number of distinct variables used.
VARUSD2 Number of second and following uses of variables.

VARUSD2 = VARUSD - VARUSDUQ where
VARUSD is the total number of variable uses.

Process Metrics
DES PR Number of problems found by designers during

development of the current release.
BETA PR Number of problems found during beta testing of

the current release.
DES FIX Number of problems fixed that were found by

designers in the prior release.
BETA FIX Number of problems fixed that were found by

beta testing in the prior release.
CUST FIX Number of problems fixed that were found by

customers in the prior release.
REQ UPD Number of changes to the code due to new requirements.
TOT UPD Total number of changes to the code for any reason.
REQ Number of distinct requirements that caused changes

to the module.
SRC GRO Net increase in lines of code.
SRC MOD Net new and changed lines of code.
UNQ DES Number of different designers making changes.
VLO UPD Number of updates to this module by designers who

had 10 or less total updates in entire company career.
LO UPD Number of updates to this module by designers who

had between 11 and 20 total updates in entire
company career.

UPD CAR Number of updates that designers had in their
company careers.

Execution Metrics
USAGE Deployment percentage of the module.
RESCPU Execution time (microseconds) of an average transaction

on a system serving consumers.
BUSCPU Execution time (microseconds) of an average transaction

on a system serving businesses.
TANCPU Execution time (microseconds) of an average transaction

on a tandem system.
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TABLE III
SELECTED ATTRIBUTES

RS PSES
ID Metrics AHS KS 1 2 1 2 3 4
1 DES PR
2 BETA PR
3 DES FIX x x
4 BETA FIX
5 CUST FIX x
6 REQ UPD x
7 TOT UPD x
8 REQ x x
9 SRC GRO x
10 SRC MOD x x
11 UNQ DES x x
12 VLO UPD
13 LO UPD x
14 UPD CAR x x
15 USAGE x x x x x
16 CALUNQ x
17 CAL3
18 CNDSPNSM x x
19 CNDSPNMX x
20 CTRNSTMX x
21 FILINCUQ x x x x
22 KNT x x
23 LOC
24 CNDNOT
25 IFTH x
26 LOP
27 NDSENT
28 NDSEXT
29 NDSPND x
30 NDSINT x
31 LGPATH x
32 STMCTL
33 STMDEC
34 STMEXE x
35 VARGLBUS
36 VARSPNSM x
37 VARSPNMX x x x
38 VARUSDUQ x
39 VARUSD2 x
40 RESCPU
41 BUSCPU
42 TANCPU
AHS: Automatic Hybrid Search method
KS: Kolmogorov-Smirnov statistic method
RS: Rough Sets method
PSES: combination of probabilistic search and exhaustive search method

reducts generated, only 50 were unique. We choose the reducts that
had the most votes. Each algorithm was able to cast one vote for a
particular reduct. If an algorithm generated a particular reduct, then
that event would be counted as a vote for the reduct. We have two
subsets that got votes from all three algorithms.

For the PS algorithm, feature subsets are randomly generated in the
iterative process. Therefore, for a given data set, you may get different
results with different runs. In this experiment, after running the PS
algorithm with 50,000 iterations, we obtained four different attribute
subsets each with 8 attributes. Then, we employed the exhaustive
search on each of these four reduced subsets. The exhaustive search
is able to find the optimal result. However, the search space is O(2N ),
where N represents the number of the attributes in the data set. The
exhaustive search is practical when N is small. For example, for the
reduced attribute subsets (with 8 attributes), the search space is 28

which is 256. But it becomes computationally prohibitive when you
try to apply it to the original data with 42 attributes. PSES in Table
III indicates the combination of the probabilistic search method and
(followed by) the exhaustive search method. We present all the four
results for PSES in the last four columns of the table.

B. Performance Results

For this study, we assessed the classification performance by
applying five learners (IBK, MLP, SVM, NB and LR) to the attribute
subsets selected by the four attribute selection approaches. We also
applied the five learners to the original data set and made the results as
the base for comparison. For each learner, we had 10 runs each with a
10-fold cross-validation. The result for each leaner was summarized
across a total of 100 outcomes. We used the WEKA tool [15] to
build all classification models. The classification performance was
evaluated in terms of the two performance metrics AUC and BGM.
All the results are reported in Table IV. It can be seen that for both
RS and PSES methods, the results presented are the average on their
own selected attribute subsets. From the table, we can summarize the
following facts:

1) The classification accuracy in terms of both AUC and BGM for
all five learners on the complete data set (with 42 attributes)
outperforms those on the attribute subsets (with six or less
attributes) selected by any attribute selection method as it was
expected.

2) Among the four attribute selection techniques, KS performs
better than the other three techniques in terms of AUC and
BGM for four out of five learners. The four learners are MLP,
SVM, Naive Bayes, and Logistic Regression. The best perfor-
mances (excluding the complete attribute set) are highlighted
with bold in Table IV.

3) Among the four attribute selection techniques, RS performs
worse than the other three techniques in terms of AUC for
three out of five learners, and in terms of BGM for one out
of five learners. The reason is probably the smaller size of the
attribute subsets, each with three attributes, selected by the RS
method. The worst performances are highlighted with italic in
Table IV.

4) The AHS method shows the best performance in terms of AUC
and BGM among the four attribute selection techniques when
using the IBK learner but shows the worst performance when
using the SVM learner.

We also carried out a two-way Analysis of Variance (ANOVA) F

test [25] on the performance metrics, AUC and BGM, to examine if
the performance difference (better/worse) is significant or not. The
two-way ANOVA test was designed as follows. Factor A represents
the results from four different attribute selection techniques and the
result without using any selection technique. Factor B represents the
results from the five different classification models or learners. The
test results indicate that the classification performances in terms of
AUC/BGM were significantly different from each other for Factor
A and also for Factor B (all p < 0.01). We further conducted the
multiple comparison test [25] on Factor A with Tukey’s honestly
significant difference criterion, since this study mainly focuses on
the attribute selection techniques and their classification performance.
The multiple comparison test is shown in Figure 3, (a) AUC and (b)
BGM. These figures show that the three attribute selection methods,
PS, AHS and RS performed significantly worse than the complete
data set (with 42 attributes) over the five learners (p = 0.05); while
the predictive accuracy of the KS method was insignificantly lower
than that of models built on the complete data set. Also, there were
no significant differences in terms of AUC and BGM among all four
attribute selection techniques. Both ANOVA and multiple comparison
tests were implemented in MATLAB.
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TABLE IV
PERFORMANCE METRICS

AUC BGM
Learner mean stdev mean stdev
IBK 0.7658 0.0434 0.7419 0.0387
MLP 0.8128 0.0492 0.7688 0.0519

1. All SVM 0.7451 0.0592 0.7214 0.0483
NB 0.7925 0.0449 0.7569 0.0416
LR 0.8182 0.0502 0.7734 0.0476
IBK 0.7298 0.0476 0.7105 0.0426
MLP 0.7803 0.0534 0.7393 0.0482

2. RS∗ SVM 0.6724 0.1146 0.6722 0.0817
NB 0.7748 0.0532 0.7383 0.0507
LR 0.7811 0.0537 0.7398 0.0491
IBK 0.7239 0.0524 0.7068 0.0467
MLP 0.8022 0.0493 0.7588 0.0474

3. KS SVM 0.6804 0.1038 0.6772 0.0721
NB 0.7896 0.0500 0.7476 0.0454
LR 0.8033 0.0503 0.7608 0.0474
IBK 0.7427 0.0507 0.7164 0.0446
MLP 0.7826 0.0491 0.7371 0.0488

4. AHS SVM 0.6327 0.0992 0.6269 0.0678
NB 0.7840 0.0451 0.7424 0.0411
LR 0.7915 0.0480 0.7431 0.0504
IBK 0.7164 0.0527 0.6955 0.0471
MLP 0.7893 0.0495 0.7461 0.0460

5. PSES∗ SVM 0.6528 0.1096 0.6417 0.0789
NB 0.7827 0.0476 0.7456 0.0453
LR 0.7926 0.0474 0.7502 0.0450

∗ the performance metrics presented are the average for RS and PSES.

0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81

PSES*

AHS

KS

RS*

All

(a) AUC
0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77

PSES*

AHS

KS

RS*

All

(b) BGM

Fig. 3. Multiple Comparison Test

V. CONCLUSION

Attribute selection plays an important role in data preprocessing.
By removing irrelevant and redundant features from a training data
set, software quality estimation based on some classification models
may improve.

In this paper, we present four different attribute selection tech-
niques and their applications to a very large telecommunications
software system. The classification accuracy was evaluated in terms
of two performance metrics AUC and BGM. The experimental
results demonstrate that the KS method is better than the other three
techniques, PS, AHS and RS. Also, the classification model built on
the smaller subset of attributes via the KS method has a comparable
(no significant difference) performance to that built with a complete
set of attributes. Moreover, the smaller subset of attributes has less
than 15 percent of number of the attributes in original data set.
This would benefit the metrics collection, model calibration, model
validation, and model evaluation times of future software project
development efforts of similar systems. Future research may involve
conducting more experiments, including other filter attribute selection
techniques and more datasets from other software projects.
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