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A Construction of Compactly-Supported
Biorthogonal Scaling Vectors and Multiwavelets on R?

Bruce Kessler
Western Kentucky University
Bowling Green, KY 42101
U. S, A,

Abstract

In [15], a construction was given for a class of orthogonal compactly-supported scaling vectors
on R?, called short scaling vectors, and their associated multiwavelets. The span of the translates
of the scaling functions along a triangular lattice includes continuous piecewise linear functions on
the lattice, although the scaling functions are fractal interpolation functions and possibly nondif-
ferentiable. In this paper, a similar construction will be used to create biorthogonal scaling vectors
and their associated multiwavelets. The additional freedom will allow for one of the dual spaces to
consist entirely of the continuous piecewise linear functions on a uniform subdivision of the original
triangular lattice.



1 Introduction

Much research has been done in the construction of orthogonal multiresolution analyses of L*(R)
(see [5], [10], and [11]) and the associated multiwavelets (see [5], [8], and [18].) All of the mul-
tiwavelet constructions have involved the completion of a matrix satisfying certain conditions. A
class of nonseparable, orthogonal dilation-3 scaling functions defined on uniform triangulations of
R? were constructed in [6] and [9]. Multiwavelets for this specific example were found in [7]. In
[15], the author generalized the construction of the orthogonal scaling vectors and provided a con-
struction of the associated multiwavelets. This paper generalizes those results to construct a class
of biorthogonal scaling vectors and the associated multiwavelets. The construction of the multi-
wavelets is analogous to the construction of multiwavelets for short scaling vectors introduced in

[15].

1.1 Orthogonal Scaling Vectors and Multiwavelets

Let ¢; and €3 be linearly independent vectors in R* and let ¢ := (0,0). For each € R?, there
exist constants @ and b such that @ = a¢; + bey. Then define the metric |x|, by

2], = { la + b] if both a, b have the same sign

max{|a|, |b|} otherwise.

Let 7 be the 3-directional mesh with directions ¢, €3, and ¢, — ¢;. Define g € T to be the
triangular region with vertices €y, €1, and €z, and 7o € 7 to be the triangular region with vertices
€1, €2, and €1 + €. Define the translation function ¢, ;(x) := @ — i€; — jey and the dilation function
d;j(x) :== Na —1€; — jeq for some fixed integer dilation N > 1. Define the affine reflection function
r: Vo — Qg that maps the vertices ¢, €3, and ¢; + ¢ to vertices €3, ¢g, and ¢;, respectively. The
notation f := for is used for any f supported in Ao.

Definition: A multiresolution analysis (MRA) of L?(R?) of multiplicity r is a set of closed linear
subspaces such that

1....cVayacVicWwcwvicWcC...

2. V. = {0}

neZ

3. U V.= L*RY
neZ

4. feV, & f(NT™) eV, neZ

5. There exists a set of functions {¢*, ¢%,...,¢"} such that {¢*ot;: k=1,...,r, i € Z*} forms
a Riesz basis of V4.

The r-vector @ := (¢!, 2, ..., ¢")1 is referred to as a scaling vector and the individual ¢* as scaling
functions.

Conditions 1, 4, and 5 imply that a scaling vector ® with compactly-supported ¢* satisfies the
dilation equation

G(z)=N Z g, o d; (1.1)

1€Z2
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for a finite number of r x r scalar matrices g;.

Definition: A vector ® of r linearly independent functions on R? is refinable at dilation N if it
satisfies (1.1) for some sequence of r x r scalar matrices ¢;.

A simple example of a MRA of L?*(R?) over the mesh T is constructed by defining the “hat”
function A by

h(z) ::{ 1 — x|, for|z|. <1 (1.2)

0, otherwise,

and letting @ = {h}. Using the notation
S(H) := closy> span {fot;:1 € Z*, f € H} for H C L*(R?),

then define V5 := S(®). It is easily verified that the scaling vector is refinable for any integer
dilation N > 1, and that (V,) is a MRA, where V, := S(®(N?+)).

For function vectors I' and A with elements in L*(R?), define
(I, A) = / () A()! da.
R2

Definition: If (®,® o ;) = ;00 ;1, then we say that ® is an orthogonal scaling vector. If the ¢*
are compactly-supported, then the multiresolution analysis generated by ® is said to be orthogonal.

Define W, to be the orthogonal complement of V,, in V,, 1, so that
Vier =V, W, for n € Z.

The W, referred to as wavelet spaces, are necessarily pairwise orthogonal and are spanned by the
orthogonal dilations and translations of a set of functions {¢/!, %, ..., '}, referred to as wavelets,
that satisfy the equation

1€Z?
for some h;, where W is the t-vector (1,92, ..., ¥")7T.

Definition: A pair of n-dimensional function vectors ® and ® are said to be biorthogonal if

<(I), (i) ¢] tm‘> = 50,2'50,]'[7 ivj €Z

A necessary and sufficient condition for the construction of biorthogonal vectors was given in
[12], and will be stated here without proof.

Lemma 1.1 Suppose U and W are m-dimensional subspaces of R". There exist dual (biorthogonal)
bases for U and W if and only if U N W+ = {0}.

If the criteria of Lemma 1.1 are met, then the Gram-Schmidt orthogonalization process can be
modified to extract biorthogonal sets from bases for U and W.



1.2 Short Scaling Vectors

Throughout the paper, Py denotes the orthogonal projection onto a subspace K of L*(R?). If C' is
a compact set of R? and U is a space of functions on R?, then define

U(C) = {f €U+ supp(f) € C}.

Definition: Suppose ® = (¢!,...,¢*)T is refinable. If w = (wh,...,w)T is such that ® =
(w, ... w' ¢t ... ¢%)T is refinable, then w is said to extend ®.

The construction of short scaling vectors is given in [15], and is a generalization of a construction
in [6]. Recall the nonorthogonal scaling vector generated by the “hat” function h defined in (1.2).
Define h; := h(x — €;)|p,, © = 0,1, 2.

Definition: Suppose there is a subspace W of Cy(R?) with an orthogonal basis {w',... w'} such
that

1. B:={w',... w o', ... @'} extends {h},
2. supp (w') C N, 1 =1,...,1,
3. (I — Pp)hi L (I — Pw)hy,i#j,i,j € {0,1,2).

Then
® = {w',... 0w w0 (] — PS(B))h}T

is called a short scaling vector, and generates a MRA (V},) of multiplicity ¢ := 2¢ + 1 such that Vg
still includes continuous piecewise linear functions on 7.

A dilation-3 example with W = {w} is given in [15] and is illustrated in Figure 1. The scaling

Figure 1: Approximations to scaling functions from a dilation-3 short scaling vector.

functions are fractal interpolation surfaces that are nondifferentiable and have a nonintegral box
dimension greater than 2. (A full introduction to fractal interpolation surfaces can be found in [9]

and [17].)



2 Main Results

Suppose that X and Y are spaces spanned by biorthogonal function vectors. Then define the
projection operator P¥ such that ker Py = Y+ and range PY = X. If ¥ := S(X) and Y := S(Y)

are finite shift invariant spaces, then
n 7 ot )
Pyf=73 ZMWO%
]EZ2 =1 <$ 7y >

where x; € X and y;, € Y.
Define h, hg, hy, and hy as in Section 1.3. Then we have the following result.

Theorem 2.1 Suppose there are function vectors B := {w',...,w'} and B := {&',..., &'} in

Co(R?) such that
1. B and B are biorthogonal,
2. {w', .. wh w0t and {@Y, .. 0t a0t} each extend {h},
3. supp(w'), supp(w’) C Lo, 1 =1,...,t, and
Jo (1= PYhi L (1= PW)hy, i # 4, .5 € {0,1,2}, where W = S(B) and W = S(B).

Then there exist biorthogonal scaling vectors ® and O of length q := 2t + 1 such that Vy = S(®)
and Vo := S(®) each contain continuous piecewise linear functions on the mesh T .

Proof. The main issue is finding compactly-supported functions & and ¢’ that satisfy the
biorthogonality conditions (@', ¢') = &; ;. Define the following:

¢ = wifori=1,...,1t, ¢ = W fori=1,...,1,
ST = fori=1,....t, and S = wifori=1,...,1,
b = M1- B B = I B
where «, [ are constants such that af = (I — Pl}/vv)h,([ — P%)h}. Let & := (¢',...,¢")7 and

O .= (qgl, . .,ng)T. Then set V, := S(®(N?-)) and V, := (&)(Np-)).
Condition (1) guarantees that

<¢i7€gj> = §;;fori,5=1,...,t, and
<¢i7€gj> = ¢ fore,g=1t+1,...,2t.

Condition (3) guarantees that

<qbi,qgj> = Ofore=1,...,t, j=t+1,...,2t, and
(¢, ) = O0fori=1t4+1,....2t, j=1,...,1L

Condition (4) establishes the remaining orthogonality conditions:

<¢q7§gi> = 0Oforz=1,...,2t, and
($',0) = Ofori=1,...,2L
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Condition (2) guarantees that both ® and d are refinable, and that V,, C V.11 and ‘N/n C ‘N/n_H. The
requirements that MjezV; = 0, N;ezV; = 0, UjezV; = L*R), and U,ezV; = L*(R), and that the
translates of ® and ® form Reisz bases, are trivially met by compactly-supported scaling vectors.
Therefore, both (V) and (\N/p) are MRA’s. O

While the restrictions on the spaces B and B are extensive, such spaces do exist. An example
is provided in Section 3. It is important to note that, as with the short scaling vectors, the

scaling functions and associated multiwavelets in these constructions may be nondifferentiable FIS.
However, by relaxing the need for orthogonality, it is possible to construct a “smoother” basis that
can be used in the reconstruction phase of applications.

Section 4 will give a detailed definition of the wavelet spaces W, Wf, Wy, Wg, Wy, and W),. W
and Wf will have generators supported on triangles, W, and W will have generators supported on
parallelograms, and W), and W, will have generators supported on hexagons. The main theorem
on the construction of the g(N? — 1) wavelets will be stated and proven in that section.

3 A Construction of Biorthogonal Scaling Vectors

Set vectors ¢; := (1,0) and €, := (1/2,4/3/2), so that T is a 3-directional mesh of equilateral
triangles. Let h be the generalized hat function defined in (1.2) and fix N = 3. In order to
construct a scaling vector ® that satisfies Theorem 2.1, let w and u be continuous functions with
(nonempty) support in Ag and let @ :=wor and @ :=wor. Let G = {(0,0), (1,0), (2,0), (0,1),
(1,1), (0,2)} and let G = {(0,0), (1,0), (0,1)}. With condition 2 of Theorem 2.1 in mind, we

require that w and u satisy the following dilation equations for some o, 3, s;, $;, ¢, G

wo o= ozhodm—l—ZSiwodi—l—Zéiwodi. (3.1)
1€G ied

u = ﬁhodm—l—Zqiuodi—l—Zq}ﬁodi. (3.2)
1€G el

The functions w and w are FIS, with interpolation points located uniformly over /g as illustrated
in Figure 2, provided |s;] < 1 and |¢;| < 1 for all i € Z* (this is necessary if w and u are to be
continuous).

In order to construct w, w, u, and @ with rotational symmetry about the centroid of their
support triangle, let

50,0 = S2,0 = S0,2 = S1, do,0 = 42,0 = 40,2 ‘= 41,
$1,0 = So0,1 = S1,1 += S2, and d10= 40,1 = q11 ‘= 42,
S3, go,0 = q1,0 = qo,1 ‘= (3,

50,0 = 51,0 = 50,1 :
where |s;], |¢;] < 1 for ¢ = 1,2,3. Then the only free parameters will be the scaling variables s;, ¢;,
and « and [, the values of the functions w and w at the centroid of Ag, respectively. Set o, 3 := 1
for this construction.

Recall that h; = h(- — €)|a,, where ¢ = 0,1,2. Due to the rotational invariance of both w and
the set of h;’s, the six orthogonality conditions needed to satisfy condition 4 of Theorem 2.1 reduce
to just i

(I — PW)ho L (I — PY)hi, (3.3)



S9 = S9 42 e 92
83 83 43 43

S1 S2 S1 1 92 1

Figure 2: The domain points and scalings used in the example.

where W = S(w) and W = S(u). Since

<h07 u>
(w, )

h
w and P;/vvhl = < 17w>u

(w,u)

P%;Vhoz 9

then (3.3) reduces to
<h07 u><h17 w>
(w,u)

Since (hg,w) = (hy,w) = (hg,w) and hg + hy + hy = 1 on L\g, we calculate (w, 1) using (3.1):
(w,1) = (hody, 1)+ Z si{fwod;, 1)+ Z Si(wod;,1)

el icG
(h,1)
3 .
3 (3 - Z Si)
=1
h,1

(u,1) = —< : 3> :
3 (3 — Z_: qi)
Since (h,1) = @, (ho,w) = +(w, 1), and (hy,u) = L(u, 1), then

(ho, w) = V3 .and (hy,u) = V3 (3.5)

s (3- 34 18(3_2%)'

Again, using both (3.1) and (3.2),

(ho, hy) = (3.4)

Likewise, from (3.2),

(h,h) 4 3(s2 + s3)(ho, w) + 3(g2 + g3)(ho, u>'

3
3 (3 - Z Si%’)
=1

<w7u> =

6



Since (h,h) = \/_ , then using (3.5),

\/§[3 (3—;;52») (3—233%) + 2(s2 + s3) (3—233%) + 2(qa + q3) (3—;;52»)]

Substituting (3.5), (3.6), and (hg, h1) = % into (3. 4) and requiring that (3.6) is nonzero provides

the following necessary conditions on the s;’s and ¢;’s:

. (3.6)

2751 + 952 4+ 953 +27q1 + 92 + 995 — 25511 — 3512 — 351G3 — 3s52q1
—1382g2 + 382qg3 — 383¢q1 + 383g2 — 1383g5 — 33 = 0, and (3.7)
27 = 9q1 — 3q2 — 3q3 =951 + 3q151 + @251 + 351 — 352 + @152
— (289 — G389 — 383 + 183 — 253 — q353 # 0. (3.8)
By letting s, := 0 for i = 1,2, 3, w becomes piecewise linear and (3.7) and (3.8) reduce to
391 +3¢2 +3gs — 11) = 0 and 3(9 — 3¢1 — ¢2 — ¢3) # 0. (3.9)

Furthermore, by letting ¢ =: ¢; for : = 1,2,3, (3.9) reduces to 45¢ — 33 = 0 and 27 — 15¢g # 0, with
the solution ¢ = 11/15.
Define the scaling functions

¢ = w,
o =

w,
Qb?) — h— <h7uoti>woti_z<h7uoti>wot“
e (wu) iell (w,u)
~1 L u
Qb T <w7u>7
o &
Qb T <w7u>7
o= Loy lhwety o s ndolly 0
o ien (w,u) ieH (w,u

where H = {(0,0),(0,—1),(=1,0)} and 1 = {(0,—1),(=1,0),(=1,—1)} and
<h0,w><h0,u>)‘

a:=06 (<h0,h0> — )
Then ® := (¢*, ¢*, ¢*)T and $ = (N ) qg )T are biorthogonal scaling vectors that generate the
MRA’s V, = S(®(3?(x,y))) and V = S( (37(x,y))). Note that both V4 and Vi contain piecewise
linears on the triangulation 7 and with s; = 0 for 1 = 1,2,3, Vg is the set of piecewise linears on
a uniform subdivision of 7. This set of scaling functions and their biorthogonal counterparts with
g; = 11/15 for i = 1,2,3 are illustrated in Figure 3 and Figure 4.

Notice that for any nonsingular linear map A, we may define the same set of scaling functions

on the lattice generated by Ae; and Ae,, and the functions will maintain their biorthogonality.
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Figure 3: Scaling functions ¢' and ¢ with s; = 0.

Figure 4: Approximations to scaling functions #' and ¢® with ¢; = 11/15.

4 Construction of Associated Multiwavelets

Let ® and ® be the scaling vectors constructed in Theorem 2.1 and let (V,) and (V,) be the
corresponding MRA’s. Recall that supp ¢, supp ¢' C Ao = A(eg,€1,62) € T for o = 1,....¢
and that supp ¢', supp &' C 7o = A€y, €q,61 + €2) € T for i = ¢t 4+ 1,...,2t. First consider
wavelets supported in A € T. Consider the (tN2 + M%(N_Q))—dimensional spaces V1(£\g) and

\N/l(Ao), with the bases consisting of ¢ dilated scaling functions on each of the N? subtriangles and
N=IIN=2) difated ¢ and 7.

Define the functions
gi = PUAN@( — @) and g o= PEEN@( — @) (4.1)
for i = 0,1,2. Then define the subspaces X of Vi(Ao) and X of Vi(Ag) by

X = span({gi:izO,l,Z}U{qbi:i:1,...,t}) and

X = span({gi:i:O,l,Z}U{qgi:i:1,...,t}).



Let B be a basis for the space (I — Pg)Vi(/o) and let B be a basis for the space ([ — P))Z()\N/l(Ao).
Note that the elements of B are orthogonal to Vj and the elements of B are orthogonal to Vj by
definition. Also notice that due to their support, the elements of both B and B are orthogonal to
their own translates.

A small lemma is needed before we proceed.

Lemma 4.1 BN B+ = {0}

Proof. Let W :={¢' :i=1,...,t} and W := {&' : i = 1,...,t} and notice that, from the
construction of the scaling functions, W and W are biorthogonal sets. Consider ¢» € BN B, Then
supp(v) C Lp and ¢ € P)){Vl(Ao). Then ¢ is a linear combination of elements in X orthogonal to
X.

Consider (1, ¢'), i =1,...,¢. Since {g; : 7 =0,1,2} L W, ¢ is a linear combination of elements
in W. But, by Lemma 1.1, WN W+ =0, so ¢ = 0. O

Then from Lemma 4.1 and Lemma 1.1, there exist dual biorthogonal bases for B and B, denoted
\Il? and \Tl?, respectively. Recall the notation f = f o r, where r is the affine transformation from

Vo to Ao for f € L*(5/o). Define \IIJY = {0y € \I/?} and \TIJY = {;Z N \i/?} Define
W; = S(\I/? U \I/JY) C Wy and Wf = S(\i/? U \iIJY) C Wy. The spaces Wy and Wf each have

(N —=1)(N —=2)
2

2(tN2+ —(t—|—3)):q(N2—1)—3N—3

generators.
Before proceding, the following lemmas are needed.

Lemma 4.2 For ¢g; and ¢;, 1 = 0,1,2, as defined in ({.1), {9;,9;) < —K, i # j, where K is a
positive constant.

Proof. Define z; := ¢%(- — ¢)|a, and Z; := ng( —€)|a, for © = 0,1,2. Recall that ¢? is the
only scaling function with support larger that one A € T. Notice that the z; are still linear and

nonnegative on all edges of /. )
Consider (go,g1). Let o := ¢9(0,0) = ¢%(0,0) and express both zy and Z; in terms of basis
functions for Vi|a, and the g;:

N-1

zo = ¢odoola, + % D (N =)@ o dola,
=1
1 N-1
Ty Y (N —i)¢?odiola, + 9o
=1
N 1 N-1 N 1 N-1 N
Z = ¢Todnola, + ¥ > ¢ odigla, + ¥ > it odin—i|a, + Gi-

Recall that ¢ is orthogonal to the translates of &7, even when restricted to bounded domains, so
the same will be true for ¢? o dyg and ¢? 0 dyo. Therefore, many of the terms of (go, g1) will vanish:
1 N-1

NZ £

=1

i(N — i){¢7 0 dio|ng, " 0 dio|ng) + (g0, G1)-

(20, 21) =



Since

N 1 N
<¢q © dz’,0|Aoa¢q © di,0|Ao> = §<¢q © di,Ov @lo di,0>

1 ~ 1
_ g Jay —
then
N R . N
(r0,22) = s AN =) + (g, ).

=1

Using the identities

n

2 = b
; 6

K3

- n(n2—|— 1) nd ZZ,Q n(n+1)2n + 1)
1 =1

then N2
. —1 N
(20,21) = T T (90, 01)- (4.2)
Let K := K(N) be the scalar dependent on N on the right side of (4.2). Note that K(N) > 0
for N > 1, so that

<907§1> = —[((N) = —I( < 0

since zg L Z;. It is easily verified that the same result holds for the remaining (g;, g;), ¢ # J. a

Lemma 4.3 For g; and g;, i = 0,1,2, as defined in (4.1), the sets {go, 1,92} and {Go, g1, G2} are
each linearly independent.

Proof. This proof hinges on the linear algebra result that for an n-dimensional space A and a space
B where AN B = {0}, then ({ — Pg)A is an n-dimensional space. Recall the linear polynomials
hi, 1 = 0,1,2, supported on Ay and define the 3-dimensional space H := span{hg, hy,ha}. Let
H* := Py, (ap)H. Since H N (H — H*) = {0}, then H* = (I — (I — Py,(a,)))H is a 3-dimensional
space.

Recall the space W used in the construction of ¢?. Since H* N W = {0}, then

G = span{go, 1,92} = (I — Pw)H"
is a 3-dimensional space. An analogous proof holds for {go, g1, g2 }- a

Lemma 4.4 For g; and §;, i = 0,1,2, as defined in (4.1), there exist o; and &;, i = 0,1,2, such
that

1. span{og, 01,09} = span{go, 1,92 }
span{o, &1, 02} = spanf{go, i1, g2}

{00,01,02} and {69, 61,02} are biorthogonal sets, and

>

o; L g and 6; L g; fori=0,1,2.

10



Proof. Note that, from Lemma 4.2 and Lemma 4.3, the sets G := span{go, g1, 92} and G =
span{do, g1, g2} are each 3-dimensional, but not biorthogonal. Define the following biorthogonal

bases for G and G-

vy = (o, R U2 = 9o, .
L 91,U2> ~ . <917U2>~
Vo = g1 — vy 1N)2 VU2, (%] — 1 — vy 132 29
2 2

2927 ﬁ2§ (92,0 ~ ~ 2@27 Uzg N (G2, v0) .
v o= gy — g — vg, and v; = gy — —— 1y —Up.

(va, D) (vo, Do) (v2, 2) (vo, o)

i/

T : G — R? defined by
T(f) = (<f7 ﬁ0>, <f7 ﬁ1>7 <f7 ﬁ2>)T and T(f) = (<f7 u0>7 <f7 u1>7 <f7 u2>)T

are isometries and

T(go) = (0 07<907u2>)T7 j?( 0) = (0 07<~07u2>)T7
(<gl > <glvﬂ2>)T7 T u0>707<§17u2>)T7
T(g2) = ({92, %0), (g2, 1), (g2, U2))", and T(gz) o) (G2, ur)s (Goy )"

Define wy € G and &y € G by T(wo) := (cos@,sin@,O)T and T'(&g) := (cos 0, siné,O)T, re-
spectively, so that wg L §o for all § and &y L ¢o for all . Then define w; € G and & € G
by

1
2

T(wy) = T(@g) x T(g~1) N N
= ((G1,uz)sin @, —(g1,uz) cos §, —(g, up) sin (9)T and
T(@) = T(wo) xT(gn)

= ({g1,u2)sin 0, —(g1, Uz) cos 8, —(g1, Ug) sin (9)T

so that wy L &g, wy L g1, @1 L wg, and &; L ¢;. Also, define wy € G and &y € G by

T(wy) = T(@g) % T(L(}NQ) ) ) )
= ({G2,u2)sin 0, — (g2, uz) cos 0, (g2, u1) cos § — (ga, ug) sin H)T and
T(@2) = T(wo) x T(g2)

= ({g2,U9)sin 0, —(ga, Uz) cos 0, (ga, Uy ) cos 6 — (g2, Ug) sin (9)T

so that w, L @y, wy L g, wy L wo, and @y L ¢go. Then w; L &y and @; L wy provided that there
exist § and 6 such that (T(wy), T(@2)) = 0 and (T (&), T(ws)) = 0; that is,

((g1, uo)(g2, Uo) + (g1, u2){ga, Us)) sin § sin 0 + (g1, uz) (g2, Uz) cos 0 cos 0

— (g1, u0){g2, U1) sin ) cos 0 = 0. (4.3)
(<917 ﬁ0><g2, u0> + <917 ﬁ2><§2, u2>) sin ¢ Sing + <917 ﬁ2><g2, u2> cos § cos é
—{g1,U0){g2, u1) sin @ cos § = 0. (4.4)

respectively.
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Since (g;,g;) = —K for i # j from Lemma 4.2, many of these inner products can be simplified.
Let M, := (g;,g;) for 1 = 0,1,2. Note that

. . MoM, — K?
<glvu0> = 1, p <gl7u0> - #7
N A . .
(g1,12) = A (G1,u2) = —K,
0
. 3 K(K + M)
= 1 = —
(92 to) ) (g2 uo) ](2,3_ Mqéwla
(i) = 1 (o) = 2K° + K*(My + My + My) — Mo M, M,
927 1 - 9 [7 927 1 - [X,fz _ MOMl Y
A\
JUg) = ———, and (gy,uz) = —K.
<92 2> M, <92 2>
Then equations (4.3) and (4.4) reduce to
1 ~ " .
A (—KMO sin@sin § 4+ K* cos 0 cos ) + (K* — MM ) sin 6 cos (9) =0, and (4.5)
0
K sin 0sin 0 N K2 cosfcos (2K® + K*(Mo + M, + Ms) — MoM, M;)sin 6 cos 0 _0, (46)
K% — MoM, Mo K% — MoM, o
respectively.

If My > 0, then let = 0. Equations (4.5) and (4.6) reduce to

Li(0) = 5o (K (K — Mo) + K (K + My) cos(20) + (K* — MoM,) sin(20)) = 0, and
0
K(K —My)  K(K + M) 2K + K2(My + My + M) — MoMy M,
0) = 20) — 20) = 0.
12(0) TV 2(K2 — Myh) sin(20)

Since f1 and fy are continous, f1(0) = f3(0) = % > 0, and fi(7/2) = fo(w/2) = —K < 0, then
fi1 and f; each have a zero in the interval (0,7/2) by the Intermediate Value Theorem. If My < 0,
then let § = —6. Equations (4.5) and (4.6) reduce to

f1(0) = 2;4 (K (K + Mo) + K (K — My)cos(20) — (K — MoMy)sin(20)) = 0, and
0

K(K+ M)  K(K — M, 2K3 + K*(Mo + My + My) — Mo M, M.
() = 1 o) , K ) cos(26) — (Mo + M, + My) — MoM,; M,

2 Mo 2 Mo (K2 — MoMy)
Since f; and fy are continous, f1(0) = f2(0) = % < 0, and fi(7/2) = fo(n/2) = K > 0, then f;

and f; each have a zero in the interval (0,7/2) by the Intermediate Value Theorem.
Once § and 6 are found that satisfy (4.5) and (4.6), find the w; and @;, 7 = 0,1, 2, by the inverse
transformations 7! : R® — GG and 771 : R® — & defined by

sin(260) = 0.

-1 =1 ~ ~ ~
T7 (co, €1, ¢2) = cotg + crur + cauz and T7 (co, €1, ¢2) = Colig + €1y + Cols.

As a final step, define 0; := w; and &; := @; /{w;,&;) for i = 0,1, 2. a

12



This lemma shows that each g; is a linear combination of the two o; where 7 # ¢, and likewise
for the g;.
Consider the spaces

Yo := span {00,51,¢ 0ody_;i:i=1,...,N—1} and
Yo := span {&0,51,&10(&\7472’:izl,...,N—l}.

Functions in Y5 will be orthogonal to Wf and all translates of qgi, 1 =1,...,¢g—1 and ng except
¢? ot g and ¢?otg,. Likewise, functions in Yy will be orthogonal to W; and all translates of ¢,

t=1,...,g—1 and ¢? except ¢? 0 {19 and ¢? 0 tg;. Define X, := P}ZO% and X := P%/OO‘N/O to be
two-dimensional subspaces of Y and Y, respectively. Let Wy and Ty be biorthogonal bases for the

(N — 1)-dimensional complements (I — PX )Yo and (1 — P))éo)%. The elements of Wq satisfy all

existing orthogonality conditions necessary to belong to the wavelet space Wy, and likewise for T,
The same construction can be used across the other two edges of A\ using the spaces

Y1 = span {02,620t5_1,070d;g:i=1,...,N—1},
Vi := span {&2,5201‘07_1,&10(&70:izl,...,N—l},
Y, = span {01,600t 10,¢070dp;:i=1,...,N—1}, and
Y, = span {&y, 500 t_LO,ggq ody;:1=1,...,N—1}

and analogous subspaces Xy, Xl, X5, and X2 to build blorthogonal pairs ¥y and \Ill and also W,
and \112 Define ¥, := oUW, UV, and \I/ = \Ilo U \Ill U \112 The wavelets in W, and their translates
will be orthogonal to the wavelets in \I/ and their translates due to the blorthogonahty of the o;
and &;. Define W, := S(¥,) C W, and W S( g) C W,. The spaces W, and W each have
3(N—1) generators.

Let Do, ..., Ds be the parallelogram-shaped regions of R? defined in Figure 5. Define

Vi(D; ~ Vi(D)) 7y
v 1= Vll((Di))qbq and 7; 1= Pf/ll((Di))qbq
for : = 0,...,5 and consider for the moment 1. Notice that vy meets several orthogonality condi-

tions required of wavelets in Wy: 19 L ¢/ for j =1,..., %, vo L (gg] ot_yp) for j = q-l-l, v, q—1,

1 (ggq oto1), and vy is perpendicular to Wf. Also, vy is perpendicular to generators of Wg that are

built across the edges (e, €2), (€1, €2), and (€g, €3 — €1). Similar results can be found for the other v;
and ;. The goal is to alter the v; and 7; in such a way that these orthogonalities are maintained,
while achieving the other necessary orthogonalities.

Define

i = (I — P&g((gii)))l/i + ¢ odog and fi; := (I — PWg(( )))1/2 + clqb odyp,

for « = 0,...,5, where nonzero ¢; and ¢; satisfy </,Li,ng> = 0 and (ji;,¢?) = 0, respectively. From
Lemma 4.4, there exist biorthogonal sets X = {09, 01,02} and X = {59, 51,52} such that span(X) =
span{go, g1, 92}, span(X) = span{do, g1, g2}, and o; L g; and &; L g; for j = 0,1,2. Then

po = vo— (Vo,02)02 — (10,01 0t_10)F1 0t 10+ cop? 0 dp

13



Figure 5: Domains used in the construction of ¥, and \i/h.

N R 1 N-1 .
= ¢! odoo+ (90,01)01 + (g2, 0)50 + N Z (N —j)¢?ody;, and (4.7)
=1
fin = i — (i,00)6 — (P1,000t0_1)G1 0 to_1 + 51€gq o doo
Lo . . . . 1 N2t .
= &¢? odoo+ (Go,02)02 + (Jo, 02)02 0 Lo —1 + N Z (N —7)¢" odjp. (4.8)
=1

Notice that the y; and fi; maintain the orthogonalities of the v; and 7. Also, by definition, y; L P,
f; Lot p, LW, and fi; L Wy. Finally, note from (4.7) and (4.8),

(1o 0 t1—1s 1) = (g2, 50){Go, 92)(60, 72) = 0 and

(Ho; 1) = coé1 + (9o, 01)(Go, 02)(01,02) = coc1 # 0.

Also, it is trivially established that (po ot10) L fir and (po 0to1) L fix. Similarly, it is established
that the p; and fi; satisfy the condition p; L (& o ty,) for myn # 0, 4,5 = 0,...,5, 1 # 7,
and that the sets {;;} and {fi;} satisfy Lemma 1.1. Let ¥, and ¥, be biorthogonal bases for
span{yu; : 1 = 0,...,5} and span{f; : © = 0,...,5}, respectively. Define W, := S(¥;,) C W, and
Wh = S(q/h) C WO.

Before establishing that all the wavelets necessary to “build” V; and Vi have been found, a
lemma is needed.

Lemma 4.5 Forg; and g;,1 =0,1,2, as defined in (4.1), gi € VoW, E&W), and g; € %@Wg@Wh
fori1=0,1,2.

Proof. By Lemma 4.4, it suffices to show that o; € Vo & W, & W), and 7, € \N/o @ Wg @ Wh for
1 = 0,1,2. Recall the space Y; is spanned by oy, got_; g, and the functions ¢?ody;, 1 =1,..., N—1,
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and, likewise, Yj is spanned by &1, &9 ot_1,0, and the functions 0 doj,t =1,...,N—1. Recall that
Xo is the span of P};O ¢? and P};O (¢? 0 tp1) and likewise, X is the span of P%,;O &7 and Pgo (ggq 0t0,1)-

By definition, oy € Y; and ([ — P)éo)% C W,. It suffices to show that X, C Vo & Wj,.
It is tediously verified that

Co(ﬁbq—/h—Mz—M3—M4—M5)—(1—Cl—02—03—04—05)M0:

N-1
N P C .
co(go, 01)01 + co(g2, F0)Fo 0 t_10 + ﬁo Z (N —1)¢? o dyy,
=1
+(er+ca+es+ea+es —1){(go,01)01

)
o1 +eatestestos—1)

(g2,00)00 0t 19

-1 N-1
_|_<C1-|-02+C3—|-C4—|-C5 )Z(N—i)qbq@do,i
N =1
= (cot+ca+testeztestes—1D[{go,d1)0
N 1= .
+{(g2,60)F0 0t_10+ N Z (N —i)p? o dy,]

=1

= (cot+ta+ecat+esteatos— 1)Pyi°¢q-

Likewise,

C3(¢q—/~bo—/l1—Mz—M4—M5)—(1—Co—C1—02—04—05)M30t0,1:
(coterdeatestestes—1)PR(¢"0tos).

Thus, Xo C Vob W, ENLHd o1 € Vo W, & W,,. Analogous arguments establish 0,00 € Vo W, D W),
and&ie%@Wg@Wh. O

Theorem 4.6 Let (V,) and (V) be biorthogonal MRA of mulliplicity r in R? constructed Jrom
Theorem 2.1. Define Wy, Wf, Wy, Wg, Wh, and Wy, as above. Then Vi = Vo@® Wy and Vy = Vo Wo
where Wo =W, W, & W), W, = Wf &) W ®Wh, and Wy and Wy each have q(N* —1) generators.

Proof. Define W := W; & W, & W), W = Wf &) Wg &) Wh, V = Vi(4y), and Vo= ‘N/l(AO).
Certainly Vi D Vo & W by nature of the wavelet constructions. At issue is whether Vi C Vo @ W.
For N > 2, generators ¢' odgg, 7 =1,...,q— 1 of V; can be found in the space V. Notice that

(N = (N —2)

dimV = tN? 4+ > :

where t = % The scaling functions and the definitions of Wy, Wf, W, and Wg, along with

Lemma 4.5, provide biorthogonal bases

{lea e 7¢t} U WU {0, 01,02} and {lea . -aﬁgt} U q’f U {0, 01,02}
of V and V, each with cardinality

(N =1)(N—-2) (N —=1)(N-2)

2

t+ (tN? + —t—3)+3=tN*+

15



Since the linear systems have full rank, each f € V' is a linear combination of elements of Vo & W
and each f € V is a linear combmatlon of elements of Vi @& W. Thus, ¢' o doo € Vo @ W and
gbodooGVo@Wforz—l co,q—1.

Also notice that

o7 — Z/M = (1 - Zci)ﬁbq o dg .

Thus, Vi CVo & Wy W, & W), and W = W;. The analogous results hold for W. The number of
generators is the sum of the generators for Wy, W,, and W,:

(q(N* —1)=3N —=3)+ (3(N = 1)) +6 = g(N* - 1).
O

Corollary 4.7 Let (V,) and (\N/) be biorthogonal MRA of multiplicity q in R* constructed from
Theorem 2.1. Define Wy, Wf, W,, and W as above. Let D be the hexagonal support of ¢, and
let X := (Vo Wy W,)(D) and X : (VO @ Wf oW, (D). Then Wy and W, are generated by
biorthogonal bases for P{Vi(D) and P)){Vl(D).

While the definitions of W, and W} provide an explicit construction, Corollary 4.7 says that
after finding the generators of Wy, Wy, W, and W,, the generators of W), are whatever is left in V}
with the support of ¢?, and likewise for W,.

5 Wavelets for Scaling Functions in Section 3

By Theorem 4.6, W, and W, will each have 3(3%* — 1) = 24 generators. Let Dy be the overlap
domain with vertices at (0,0), €1, €2, and €3 — ¢ and let D; be clockwise rotation of Dy about the
origin by Z7 for i = 1,...,5, as in Figure 5.

5.1 Wavelets in W; and Wf

By definition, Wy and Wf each have 12 generators, 6 supported on Ag and 6 supported on v/o.
Define the 10-dimensional spaces V := Vi(Ag) and V := Vi(4), and the 4-dimensional spaces

X y(span{qb ¢°, ¢ ot10,0 0oy }) and X = Py (Spaﬂ{qgl, &, ¢ o ty 0, ¢ o toa})-

The o', ¢ = 1,...,6, illustrated in Figure 6, were chosen as a spanning set for (I — P))(Z)V that
met some symmetry conditions. The associated °, illustrated in Figure 7, were chosen so that

= ker(span{t’ : j # 1} U X) and (¢, @ZNJZ> >0 fore=1,...,6. Each of the above is “normalized”
by the factor 1/(¢7, @/~ﬂ>
These wavelets reflected onto 7o will span We|yg, and Wf|XV0' Define

P =lorot 10and¢2+6 ;/)orot 1,0

fore=1,....6.
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Figure 6: Wavelets ¢! through 1°.

5.2 Wavelets in W, and Wg

By definition, W, and Wg each have 6 generators. Following the construction in Lemma 4.4,
biorthogonal sets {oq, 01,02} and {G¢, 51,52} can be found such that o; L §; and &; L ¢;,1 =0,1,2.
Then, following the construction in Section 3, functions in W, with support on the parallelogram
(€0, €1, €2, €2 — €1) will be linear combinations of o1, 5g0t_y g, ¢* 0dp1, and ¢* 0 dy . These functions
are orthogonal to all translates of ¢!, ¢?, and ¢‘ for 1 = 1,...,12. Also, o 1 ¢* 0t and
Foot_19 L ¢*ot_1;1. Only two other orthogonality conditions must be met.

It is possible to construct symmetric-antisymmetric pairs of wavelets. Define

. 3 3
v =01+ 090t g9+ c1¢° 0dps + c2¢” 0dy

and solve the system of equations

{<V17$3> =0
<V17¢30t0,1> = 0

for ¢; and ¢y. Likewise, define
~ - < ~ 73 ~ 73
=01+ 000t 19+ ¢1¢” 0dy1 + 20”0 dp o

and solve the system of equations

{<I>17¢3> =0
(i1,¢° otor) = 0

17



Figure 7: Wavelets ¢/! through ¢°.

for ¢ and é. If (11,74) < 0, then change 74 to its additive inverse. Also, define v, and o, by
Uy i= 01 — 5’0 0 t—l,O and I;Q = 5'1 — 5’0 0 t—l,O-

Then vy L 7y and 74 L vy by nature of their symmetry properties.
The remaining wavelets generating W, are merely 27/3 rotations of 14 and v about ¢, denoted

7. Define

13

w v, w = I;l

W =y, o = iy,

wh = o7, o = o7
wl = o7, wl% = o7,
W == poToT, Ol == oToT
w's rporor and o' Dy 0T OT.

Normalize by defining ¢° := w'//{w’, &) and D= w HyJ{wi &) for i = 13,...,18. Wavelets '3,

WM B3 and ' are illustrated in Figure 8.

5.3 Wavelets in W), and W,

By definition, W, has 6 generators. Following the construction in Section 3, construct p; and fi;,
1 =20,...,5 that span W}, and W}, respectively. It can be verified that ¢co = ¢3 = ¢4, ¢4 = ¢35 = ¢5,

18



Figure 8: Wavelets 112, /14, D13 and ',

Co = Gy = ¢4, and ¢ = ¢3 = ¢ due to the rotational invariance of both the ¢; and §;. To construct

biorthogonal sets with some symmetric properties, first define the following

e
V2
73
V4
Vs
Ve

Z?:O /’LZ

Ho — 2
M1 — U3
to + 2
f1 + ps

Then construct the biorthogonal sets {wy,

cooywe ) and {@q, ..
Schmidt process so that (w;,w;) > 0,7 = 1,...,6. Define p**'8 :=

gl
Y2
¥s
Ya
¥s
Yo

Z?:O /’NLZ

flo — fi2
fln — i3
fto + fi2
f + i3

.,we} using the biorthogonal Gram-

and 18 = &

(wiswi)

for: = 1,...,6. These wavelets are illustrated in Figure 9 and Figure 10, respectively. The sets

St :i=1,...,24}) and S({;/N)Z i =1,...,24}) form biorthogonal bases for Wy and Wy,
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Figure 9: Wavelets ¢'? through .

Figure 10: Wavelets ¢! through 4.
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