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Abstract: A standard planar Kernel Density Estimation (KDE) aims to produce a smooth 

density surface of spatial point events over a 2-D geographic space. However the planar 

KDE may not be suited for characterizing certain point events, such as traffic accidents, 

which usually occur inside a 1-D linear space, the roadway network. This paper presents 

a novel network KDE approach to estimating the density of such spatial point events. 

One key feature of the new approach is that the network space is represented with basic 

linear units of equal network length, termed lixel (linear pixel), and related network 

topology. The use of lixel not only facilitates the systematic selection of a set of regularly 

spaced locations along a network for density estimation, but also makes the practical 

application of the network KDE feasible by significantly improving the computation 

efficiency. The approach is implemented in the ESRI ArcGIS environment and tested 

with the year 2005 traffic accident data and a road network in the Bowling Green, 

Kentucky area. The test results indicate that the new network KDE is more appropriate 

than standard planar KDE for density estimation of traffic accidents, since the latter 

covers space beyond the event context (network space) and is likely to overestimate the 

density values. The study also investigates the impacts on density calculation from two 

kernel functions, lixel lengths, and search bandwidths. It is found that the kernel function 

is least important in structuring the density pattern over network space, whereas the lixel 

length critically impacts the local variation details of the spatial density pattern. The 

search bandwidth imposes the highest influence by controlling the smoothness of the 

spatial pattern, showing local effects at a narrow bandwidth and revealing “hot spots” at 

larger or global scales with a wider bandwidth. More significantly, the idea of 

representing a linear network by a network system of equal-length lixels may potentially 
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lead the way to developing a suite of other network related spatial analysis and modeling 

methods. 

Keywords: Network Space, Lixel, Kernel Density Estimation, Traffic Accidents, Hot 

Spots 
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1. Introduction 

To reduce traffic accidents and improve road safety, it is crucial to understand 

how, where and when traffic accidents occurred. An improved understanding of spatial 

patterns of traffic accidents can make accident reduction efforts more effective. For 

instance, by knowing where and when traffic accidents usually occur, law enforcement 

can conduct more efficient patrols and highway departments can disseminate more 

effectively to drivers the critical information about roadway conditions. In reality, the 

occurrences of traffic accidents are seldom random in space and time. In most cases, 

traffic accidents form clusters (known as “hot spots”) in geographic space. This is 

because the occurrence of traffic accidents along a certain roadway segment is largely 

determined by its traffic volume, which is well-known to exhibit distinct spatial and 

temporal patterns (Black, 1991). There are some other important factors that may impact 

the distribution of traffic accidents, including natural and environmental characteristics 

such as physical environment (steep slope, sharp turn), weather (rain, snow, wind, and 

fog), configuration of highway networks such as locations of access and egress points, 

deficient design and maintenance of highways, etc.  All of these factors more or less are 

associated with distinct spatial patterns as well.  

Spatial analysis of point events, known as point pattern analysis (PPA), has been 

widely examined by spatial scientists and a variety of methods have been developed for 

detecting “hot spots” of point events. The PPA methods can be classified into two broad 

categories (Bailey & Gatrell, 1995; O’Sullivan & Unwin, 2002): (1) Methods examining 

the first-order effects of a spatial process, (2) Methods examining the second-order 

effects of a spatial process. The first group focuses on the underlying properties of point 
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events and measures the variation in the mean value of the process. It includes methods 

such as quadrat count analysis, kernel density estimation and etc. The second group 

mainly examines the spatial interaction (dependency) structure of point events for spatial 

patterns, and includes methods such as nearest neighbor statistics, G function, F function, 

K function and etc. Out of these two categories of methods, Kernel Density Estimation 

(KDE) is one of the most popular methods for analyzing the first order properties of a 

point event distribution (Silverman, 1986; Bailey & Gatrell, 1995) partially because it is 

easy to understand and implement. Some KDE tools are already made available in some 

leading commercial GIS software, e.g. the Spatial Analyst Extension of ESRI’s ArcGIS, 

as well as some popular spatial statistical analysis software, such as CrimeStat (Levine, 

2004). The planar KDE has been used widely for traffic accidents “hot spots” analysis 

and detection. The recent examples include study of urban cyclists traffic hazard intensity 

(Delmelle & Thill, in press), pedestrian crash zones detection (Pulugurtha, Krishnakumar, 

& Nambisan, 2007), wildlife---vehicle accident analysis (Krisp & Durot, 2007), highway 

accident “hot spot” analysis (Erdogan et al., 2008) and etc. The purpose of KDE is to 

produce a smooth density surface of point events over space by computing event intensity 

as density estimation. In planar KDE, the space is characterized as a 2-D homogeneous 

Euclidian space and density is usually estimated at a large number of locations that are 

regularly spaced (a grid).  However, in analyzing the spatial pattern of traffic accidents, 

which usually occur on roadways and inside a network, the assumption of homogeneity 

of 2-D space does not hold and the relevant KDE methods are not readily applicable. 

Many other types of human-induced point events also exhibit similar property in that 

their distributions are constrained to only the network portion (network space) of the 2-D 



6 

 

Euclidean space, such as residential houses, commercial sites, street lights, moving 

vehicles, and etc. In short, the uniformity of 2-D space is basically too strong an 

assumption for the analysis of point events occurring in 1-D infinite space (Miller, 1999a). 

Special considerations are thus needed for measuring such point events occurring in 

network spaces
1
. 

In the early 1990s, spatial scientists started to realize the limitations of spatial 

methods originated in the 2-D Euclidean space when applying them directly to network-

constrained phenomena. A large number of studies have been conducted since then in a 

variety of application domains, attempting to extend the conventional 2-D spatial 

methods to network spaces, including network autocorrelation (Black, 1992; Black & 

Thomas, 1998), network Huff model of market area analysis (Miller, 1994; Okabe & 

Kitamura, 1996; Okabe & Okunuki, 2001), network distance-decay (Kent et al., 2005), 

space-time accessibility measures (Kwan, 1998; Miller, 1999b), space-time clustering 

(Black, 1991) and etc.  In particular, increased attentions are recently paid to the 

applications of standard spatial statistical methods in analyzing spatial point events in a 

network space (Okabe et al., 1995; Okunuki & Okabe, 1998; Okabe & Yamada, 2001; 

Yamada & Thill, 2004; Lu & Chen, 2007; Yamada & Thill, 2007). For instance, the K-

function (another popular PPA method), has been extended to network spaces. A network 

version of K-function and its computational implementation are described in Okabe and 

Yamada (2001). To examine the advantages of network K-function, Yamada & Thill 

(2004) compared three versions of K-functions in their ability of analyzing traffic 

                                                 
1
 In this paper, a network space is defined as a simplified and abstracted representation of the real world 

road network, which occupies a portion of the actual 2-D geographic space. It is represented as 1-D lines 

and line-intersections. The roadway width, traffic direction, and multi-lane properties are not considered for 

simplicity of concept demonstration. 
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accident patterns, namely planar K-function, network-constrained K-function and 

network K-function. Their findings indicate that standard planar K-function tends to 

over-detect clusters as it searches for the clustered patterns by comparing with the 

random patterns over the entire 2-D space instead of the network space, which itself often 

exhibits clustering tendency (e.g. the streets in the central city are often denser than those 

at the outskirts). In another study, Lu & Chen (2007) reach a similar conclusion that 

planar K-function is likely to produce false alarms of clusters when being applied to 

detect hot-spots of vehicle thefts in the San Antonio, Texas area. Due to the increasing 

popularity of the network K-function, an ArcGIS-based software tool, known as Spatial 

Analysis on a NETwork (SANET)
2
, was recently developed by a group of researchers at 

the University of Tokyo, Japan (Okabe et al., 2006). SANET offers network version of 

both global and local K-functions as well as some additional utility tools for data 

processing.  

In contrast to the new developments of the network K-function, few studies have 

attempted to extend the KDE methods to a network space. Recently, Borruso (2005) 

analyzed patterns of point events distributed on a network with a modified KDE, termed 

as Network Density Estimation (NDE) in his paper, which considers the kernel as a 

density function based on network distances. Borruso (2005) pointed out the possibility 

of extending the standard 2-D KDE to network spaces for identifying potential “linear” 

clusters along roadways, however in his study, the kernel is still area based (using 

network service area) and the outcome (point density) is still mapped onto a 2-D 

Euclidian space. In essence, it is still a KDE in a planar pace instead of a network space. 

                                                 
2
 SANET software tools can be obtained free of charge upon written request. 



8 

 

See Yamada & Thill (2007) for a typology of situations involving planar and network 

spaces in spatial analysis. In addition, the spatial pattern of such kind of point events is 

better measured with density values per linear unit over a network instead of per area unit 

over a 2-D space. Indeed, in real-world applications, the density of traffic accidents is 

often reported as the number of accidents over a defined linear unit (e.g. per mile) rather 

than per area unit (e.g. per square mile).  

This paper presents a novel network KDE approach to estimating the density of 

traffic accidents strictly over a network space. As secondary objectives, the study also 

investigates the impacts on density calculation from two different kernel functions, lixel 

lengths, and search bandwidths. Although developed initially for traffic accidents, this 

new approach could be used to examine the spatial pattern of any point events, as far as 

their distribution is limited within network spaces. The remainder of the paper is 

organized as follows. The basic concepts of network KDE are discussed in Section 2. The 

computational algorithm is detailed in Section 3 along with discussions of some 

implementation issues. In Section 4, we present a case study with a real road network and 

traffic accident data. Discussions are made and some conclusions are drawn in Section 5. 

 

2. Kernel Density Estimation in a Network Space 

2.1. Planar Kernel Density Estimation 

Network KDE is an extension of the standard 2-D KDE and a brief summary of 

key aspects of the standard 2-D KDE is necessary.  The general form of a kernel density 

estimator in a 2-D space, termed as planar KDE in the rest of this paper, is given by: 
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where )(sλ  is the density at location s, r is the search radius (bandwidth) of the 

KDE  (only points within r are used to estimate )(sλ ), k is the weight of a point i at 

distance dis to location s. k is usually modeled as a function (called kernel function) of the 

ratio between dis and r. As a result, rather than choosing a uniform function that gives 

equal weight to all points within the bandwidth r, the KDE uses a model function through 

which “distance decay effect” can be taken into account – basically the longer the 

distance between a point and location s, the less that point is weighted for calculating the 

overall density. In the end, all the points within the bandwidth r of location s, weighted 

more or less depending on its distance to s, are summed for calculating the density at s.  

A number of forms of model functions, known as kernel functions, can be used to 

measure the “distance decay effect” in the spatial weights k, such as Gaussian, Quartic, 

Conic, negative exponential, and epanichnekov (Levine, 2004; Gibin et al., 2007). Three 

forms of kernel functions are most commonly used (Schabenberger & Gotway, 2005, p. 

111) and are discussed below, including:  
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(2) Quartic function (which approximates Gaussian function): 
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A wealth of literature has examined the effects of the two key parameters of 

planar KDE, i.e. kernel function k and search bandwidth r, on the resultant density pattern. 

There exists a consensus that the choice of the kernel function k is less important than the 

choice of search bandwidth r (Silverman, 1986; Bailey & Gatrell, 1995; O’Sullivan & 

Unwin, 2002; Schabenberger & Gotway, 2005; O' Sullivan & Wang, 2007). It is also 

agreed that the value of search bandwidth r usually determines the smoothness of the 

estimated density -- the larger the r the smoother is the estimation. 

 

2.2. Network Kernel Density Estimation 
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With the linear nature of network spaces in mind, this paper proposes to use the 

following form of kernel density estimator for the density estimation of network-

constrained point events, such as traffic accidents, in a network space: 
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Instead of calculating the density over an area unit, the equation estimates the 

density over a linear unit. Any of the three forms of kernel functions discussed previously 

may be used. As shown in previous sub-sections, many earlier studies in planar KDE 

have concluded that the choice of kernel function is not as important as the choice of 

bandwidth r. We conjecture that the relative significance of the two parameters on 

density estimation might not change much in the new network KDE, since there is no 

particular reason for them to perform differently. To confirm our conjecture, we do 

implement two kernel functions, Gaussian and Quartic functions, and compare their 

impacts on the resultant density pattern in our case study. To verify the role of search 

bandwidth in network KDE, we also examine how the density pattern will be impacted 

when different search bandwidth are chosen.   

It is necessary to emphasize that the network KDE differs from the planar KDE in 

several aspects: (1) the network space is used as the point event context, (2) both search 

bandwidth and kernel function are based on network distance (calculated as the shortest-

path distance in a network) instead of straight-line Euclidean distance, and (3) density is 

measured per linear unit. These differences are illustrated in a graphic form in Figure 1. It 

can be noticed that network KDE is a 1-D measurement while planar KDE is a 2-D one. 

As a result, the actual density values estimated by them would be very different for the 
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same point events dataset. This illustrative example also suggests that a Planar KDE 

could possibly over-detect clustered pattern , with four traffic accidents falling within the 

search bandwidth and hence included in density estimation for the focal point (x) in the 

case of Planar KDE, while only two in the case of Network KDE. 

 

3. Algorithm and Its Implementation 

3.1. Computational Algorithm 

The basic algorithm for network KDE is presented as follows. The basic terms are 

defined and highlighted when they appear the first time, and some are illustrated in 

Figure 2. The key implementation issues are described further in the next sub-section. 

(1) Create a segment-based linear reference system out of the original road network, 

with each segment being a line segment between two neighboring road 

intersections. A dangling line segment between a road intersection and a 

neighboring road end point is also a segment. If there are multiple links between 

two intersections, each link is treated as a separate segment. 

(2) Divide each segment into basic linear units of a defined network length l. A basic 

linear unit is equivalent to a cell in a 2-D raster grid. For description simplicity, 

we call it lixel (a contraction of the words linear and pixel) in the paper. The use 

of lixel not only facilitates the systematic selection of a set of regularly spaced 

locations along a network for density estimation, but also makes the practical 

application of the network KDE feasible by significantly improving the 

computation efficiency. The residual of the division (if there is one), i.e. the last 
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lixel with length shorter than l, is a partial lixel, the processing of which will be 

detailed later. The intersection point of two lixels is called lxnode.  

(3) Create a network of lixels by establishing the network topology between lixels, as 

well as between lixels and lxnodes. 

(4) Create the center points of all the lixels. They are termed lxcenters. 

(5) Select a point process (traffic accidents in this study), which has to be a type of 

point events occurring within the network space. 

(6) For each point event, find its nearest lixel. The total number of events nearest to a 

lixel is counted and assigned to the lixel as a property. Those lixels with one or 

more accidents assigned to them are used as source lixels. Aggregating events to 

lixels is one important step for improving the computational efficiency of the 

algorithm. The possible impacts and future research plans are further described in 

the conclusions and discussions section. 

(7) Define a search bandwidth r, measured with the shortest-path network distance.  

(8) Calculate the shortest-path network distance from the lxcenter of each source lixel 

to lxcenters of all its neighboring lixels within the search bandwidth r. It should 

be noted not only the first order nearest neighbor lixels, but all the neighbor lixels 

with network distance not farther than r are taken into consideration. 

(9) At the lxcenter of each source lixel and all its neighboring lixels, calculate a 

density value based on a selected kernel function, the network distance, and the 

number of events on the source lixel.  
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(10) At the lxcenter of each lixel within the search bandwidth of any source lixels, sum 

the density values from different source lixels and assign the total density to the 

lixel; for all other lixels, the density value is zero by default. 

 

3.2. Key Implementation Issues  

As shown in the basic algorithm, there are some key implementation issues to be 

carefully considered in density estimation in a network space, including dividing 

segments into lixels, selecting kernel functions, defining search bandwidth, and 

computing lixel-based density. In a 2-D space, a lattice of grid cells can be placed to 

exhaustively cover the space for a systematic selection of a set of locations for density 

estimation. But in a network space, this may not be suitable and special treatments are 

needed since the real-world networks are usually represented as linear features and are 

often irregularly configured. Therefore, we have proposed a simple but effective 

segmentation solution in this study: (1) first break the network into a series of 

independent segments with each segment being a line segment between two neighboring 

road intersections; (2) then divide each segment into equal-length lixels. Both steps are 

done in a linear reference system (LRS). The center of a lixel is used as the density 

estimation location and the estimated density at the center is used to represent the entire 

lixel. In essence, like a cell in a 2-D raster representation, a lixel is treated as a 

homogeneous unit and the internal variation is not considered. After segmentation, the 

topological relationship is established between lixels, and between lixels and lxnodes. The 

resultant network system of lixels is the basis for assigning accident points, measuring 

network distance, and ultimately calculating the accident densities for lixels.  
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One issue to notice in the segmentation process is that the length of a segment (e.g. 

51 meters) may not be exactly an integer number times of a defined lixel length (e.g. 10 

meters). Hence, a residual lixel with length, here 1 m, shorter than the defined lixel length 

often results for this kind of segment. These residual lixels do not actually present any 

issues in implementation. The density values at the lxcenters of these residual lixels is 

calculated in the same way as for regular lixels, based on the same kernel functions and 

the actual network distance from their lxcenters to the centers of  the source lixels, 

although the network distance will not be integer number times of the  defined lixel 

length. A minor caveat is that the resolutions (length) are different between the regular 

and residual lixels, however, the overall density pattern should not be affected because 

residual lixels generally only amounts to a very small proportion of the entire inventory 

of lixels. Further, as far as the lixel length is sufficiently short (e.g. 10 m), including or 

excluding a single residual lixel in a hot spot may have trivial effects on the “hot spots” 

detection even at local scales. 

Another related issue is how to determine whether a lixel lies within the search 

bandwidth from a source lixel.  There are at least two different options when a lixel could 

be labeled within a search bandwidth: (1) if the network distance from the lxcenter of a 

source lixel to the farthest end point of the lixel is shorter than or equal to the search 

bandwidth; or (2) if the network distance from the lxcenter of a source lixel to the 

lxcenter of the lixel is shorter than or equal to the search bandwidth. The two options may 

perform a little differently for the marginal neighbor lixels, but the impacts should be 

trivial. In this paper, we adopted the second option.  
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As described in Steps (8)-(10) in the algorithm, the density computation is an 

iterative process starting from a source lixel to all its neighbor lixels within the search 

bandwidth. The number of accidents associated with a source lixel is used as a multiplier 

of the density values for all the lixels within the search bandwidth. After computing the 

density for one source lixel and all its neighbors, the algorithm repeats the same process 

for another source lixel till all the source lixels are processed. For a lixel within the search 

bandwidth of multiple source lixels, its density is the cumulative value of the density 

derived from all the sources. Since the number of source lixels is generally much smaller 

than the total number of lixels in a network space, this density computation process is 

obviously much more efficient than computing density for all lixels, most of which may 

never fall within the search bandwidth of a source lixel. 

 

4. Case Study – The Analysis of Traffic Accident Patterns in Bowling Green, 

Kentucky 

The proposed algorithm is implemented in the ESRI ArcGIS environment, using 

Microsoft Visual C# 2005.  The test dataset includes a real transportation network system 

in the Bowling Green, Kentucky area, and the traffic accident data for year 2005 (Figure 

3). The traffic accident data is provided by the Kentucky State Police Department. The 

point location of each accident is recorded as a pair of longitude and latitude via the 

carry-on GPS unit within a reporting police car. A total of 3226 traffic accidents are 

analyzed in the case study. A series of tests are conducted to demonstrate the 

applicability of the algorithm, to compare the difference between the new algorithm and a 

standard planar KDE, and to examine the impacts of different parameters on density 
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calculation, including kernel functions, lixel length, and search bandwidth.  Two kernel 

functions, Gaussian and Quartic, are compared at a fixed search bandwidth of 100 m for 

local details and a search bandwidth of 1000 m for the overall pattern, both with a lixel 

length of 10 m. Four versions of segmentation scenarios, with the lixel length at 5 m, 10 

m, 50 m, and 100 m respectively, are tested at a fixed search bandwidth of 100 m and 

with a Gaussian kernel function. We also examine the impacts of search bandwidth at 

local and larger spatial extents. Total six search bandwidths are used, including 20 m, 100 

m, 250 m, 500 m, 1000 m, and 2000 m, all with the same lixel length (10 m) and a 

Gaussian kernel function. 

 

4.1. Comparison of Planar KDE and Network KDE 

An intuitive approach to present the spatial pattern of accidents is to map the 

accident locations or the simple accident count per lixel after each accident is assigned to 

its closest lixel. Figures 4-a and 4-b illustrate the spatial pattern of traffic accidents for a 

small part of the study area with these two intuitive approaches respectively. Figures 4-c 

and 4-d show the density values calculated for the same area using a standard planar 

KDE (10-m raster cell) and the new network KDE (10-m lixel) respectively, both with a 

Gaussian kernel and a 100-m search bandwidth. Figures 5-a and 5-b present the overall 

spatial pattern of density values computed with the network KDE (10-m lixel) and the 

planar KDE (10-m raster cell) respectively, both with a Gaussian kernel but a wider 

search bandwidth of 1000 m. A wider bandwidth is used to better reveal the differences 

of the two KDE approaches and the role of search bandwidth will be discussed further in 

section 4.4. By a simple visual comparison, both KDE based density values present a 
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much informative pattern of accident likelihood. However the density maps of the planar 

KDE and network KDE are rather different, although some common hot (high value) 

regions can be identified in both maps. The density surface by the planar KDE 

exhaustively fills out the entire study area (although some areas with value of zero) while 

that by the network KDE only covers the space occupied by the street network. In 

addition, the maps indicate that the planar KDE is likely to overestimate the density 

values in comparison to the network KDE. In Figures 4-c and 4-d, the density value for 

the planar KDE can reach as high as over 2000 (per km
2
) (Figure 4-c), in comparison, the 

highest value for the network KDE is only about 140 (per km) (Figure 4-d).  

 

4.2. The Impacts of Kernel Functions 

Figures 6-a and 6-b illustrate the spatial patterns of density values computed in a 

small part of the study area with the proposed network KDE algorithm based on kernel 

functions of Gaussian and Quartic respectively, both at a 10-m lixel length and with 

a100-m search bandwidth. It is obvious that the two kernel functions result in very 

similar local density variations. Figures 7-a and 7-b show the overall density pattern for 

the study area using a Gaussian and a Quartic function respectively, at the same lixel 

length (10 m) and with the same search bandwidth (100 m). It appears that the choice of 

kernel functions also make little difference in the overall density pattern. Only that the 

density values estimated with Quartic kernel are higher than those with Gaussian kernel. 

These observations corroborate our conjecture that kernel functions are least important in 

structuring the density pattern in network KDE, similar to the case in planar KDE.  
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4.3. The Impacts of Lixel Length 

Lixel length, like raster cell size in a planar KDE, significantly affects the local 

variation details of the network density value pattern. Figure 8(a)-(d) show the network 

KDE estimated density values, with the lixel length at 5 m, 10 m, 50 m, and 100 m 

respectively. Although the kernel function is the same (Gaussian), and with the same 

search bandwidth (100 m), the density values along roads lose local variation details as 

lixel length increases. The larger lixel lengths effectively hide the detailed structures 

shown at finer resolutions. For example, for the same network segment from A to B in 

Figures 8(a)-(d), we can notice Figure 8-a shows much more local details of variation in 

the density values than Figure 8-d. As a trivial point, the density values remain in almost 

the same range between 0 to about 200 per kilometer even when different lixel lengths 

are used.  

 

4.4. The Impacts of Search Bandwidth 

Search bandwidth plays the most significant role in structuring the network 

density pattern. As shown in a local part of the study area (Figure 9(a)-(d)), the density 

pattern gets smoother with increasing search bandwidth (20 m, 100 m, 250 m, and 500 m 

respectively), even when the kernel function is the same (Gaussian) and at the same lixel 

length (10 m),. The density values are almost invariant with a 500-m search bandwidth 

(Figure 9-d), whereas the density variation pattern is quite bumpy with a 20-m bandwidth 

(Figure 9-a).  

 The Figure 9 only shows the response of density value to the search bandwidth at 

a small part of the study area with relatively narrower bandwidths. Figures 10(a)-(f) 
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present the impacts of the search bandwidth (20 m, 100 m, 250m, 500 m, 1000 m, and 

2000 m respectively) on the overall density pattern for the whole study area. It appears 

that the narrow bandwidths (20 m, 100 m, and 250 m) may produce patterns suitable for 

presenting local effects or “hot spots” at smaller scales. As the search bandwidth 

increases from 20 m to 2000 m, the local “hot spots” are gradually combined with their 

neighbors, and larger clusters appear. The maps at wider search bandwidths (500 m, 1000 

m, 2000 m) seemingly give better sense of locations of the “hot spots” at larger spatial 

scales.  

 

4.5. Density Visualization 

In a 2-D space represented by regularly spaced grid cells or points, a density 

surface can be easily displayed in a raster GIS. The visualization of density values across 

a network needs to adopt different strategies to reflect the linear nature of the network 

space. Usually three visual variables are associated with drawing line features, including 

color, width, and height.  The visualization can be implemented with one of the three 

variables or in the combination of two and even all three of them. We already show 

density patterns with the width variable in Figures 4, 6, 7, 8, 9, and 10. Figure 5-a uses 

color (gray tone) to show the overall density pattern estimated by the network KDE. 

Figure 11 presents the spatial pattern of density using 3-D symbols (gray tone and height) 

in ESRI ArcScene. The visualization methods presented in these figures appear to be 

effective in presenting the network constrained accident density pattern. As a quick and 

general observation, it appears that major corridors in the study area tend to have 
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relatively higher estimated density values of traffic accidents. And several major 

intersections can be visually identified as “hot spots” of traffic accidents.  

 

5. Conclusions and Discussions 

 Recognizing the limitations of applying standard 2-D planar KDE methods in a 

network space, this paper develops a network KDE approach to characterizing the spatial 

patterns of traffic accidents on roadways. The basic operation unit of the new KDE 

algorithm is a lixel of a defined network length along linear road segments. All the 

accidents are assigned to their nearest source lixels. The density value at the center point 

of a lixel is computed as the sum of kernel-function derived densities from all the source 

lixels within a specified search bandwidth measured by the shortest-path network 

distance. As a case study, the new KDE algorithm is successfully applied in a real world 

road network system and traffic accidents dataset. The operational success of the 

application demonstrates the applicability of the algorithm. Visual comparison of the 

resultant density patterns of a standard planar KDE and the network KDE shows that the 

planar KDE covers space beyond the network context and over-estimates the density 

values. The case study also examines the impacts on network KDE density calculation 

from different kernel functions, lixel lengths, and search bandwidths. Although we only 

implement two kernel functions and cannot make sound conclusions, it does appear that 

the kernel functions have less important role in structuring the density patterns over 

network space. The lixel length, like the cell resolution in raster representation, impacts 

the local variation details of the spatial pattern of density. It is also found that the search 

bandwidth imposes the highest influence by controlling the smoothness of the spatial 
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pattern. A narrower search bandwidth could reveal local effects, whereas a wider 

bandwidth makes “hot spots” much more obvious at large spatial scales.  

It should be pointed out that the proposed algorithm only calculates the density 

value at the center point of each lixel and uses that value to represent the whole lixel. 

Although we can certainly compute density values for as many points along a linear 

segment as possible, we argue that it is appropriate to use the center point density value 

to approximate the density value over the lixel of a reasonable length, mainly because 

there are infinite points on a lixel of any length and a certain degree of simplification and 

abstraction is always needed for a practical application. Similar simplification and 

abstraction are not uncommon. For example, in the 2-D space raster representation, the 

center value of a grid cell has often been used to approximate the value of the whole cell. 

In addition, an equal-length segmentation approach is used in the current algorithm. In 

the future study, it may be interesting to examine other segmentation scenarios with a set 

of varied lixel lengths, e.g. shorter length for central urban, longer for rural areas, and so 

on. 

It is very tempting to recommend an optimal lixel length. However, we avoid 

doing so since a universally applicable lixel length may not exist, like the cell resolution 

in a 2-D raster representation. In remote sensing, imagery of a particular resolution is 

chosen to suit specific application context, and it should be so in the network KDE. The 

length of lixels must be carefully chosen based on application context. The inherent data 

quality of the road network and accident locations is also an important factor to take into 

consideration. In traffic accident, a 10-m lixel length should be sufficiently short if not 

optimal given the length of a vehicle, the direct impact area of an accident, and the 
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location accuracy in measurement process. This lixel length may not suit other point 

events. We also refrain from recommending an optimal search bandwidth for similar 

reasons and believe search bandwidth selection should also be application dependent. It 

may be wise to use a set of search bandwidths to reveal “hot spots” from very local 

effects to global scale. In essence, this would lead to a multi-scale exploration, which is 

actually needed for many systems with hierarchical structure.  

In the implementation, we aggregate all the accident points associated with a focal 

source lixel into an accident count of the focal lixel, and their locations on the focal lixel 

are not further distinguished. It is from the center point of focal source lixel that the 

network distance to each neighboring lixel center is calculated. The aggregation has the 

advantage of computational efficiency and more importantly it is closer to the reality in 

the sense that a real accident seldom occurs precisely at a dimensionless point location 

but occupying a certain length along a roadway. The location accuracy is also affected by 

measurement process and contributes uncertainties to the event position. Regardless, the 

impacts of aggregation on the measured distance and subsequently the density value 

should be minor. For comparison purpose, we will implement the network KDE with un-

aggregated events in the future study. 

 In the current algorithm, road segments as well as lixels are also not further 

distinguished and are treated equally. In reality, road segments are different in their 

traffic flow capacity (e.g. the number of lanes and speed limit), directionality (one way or 

two ways, left turn or right turn) and etc. The same accidents will have different 

implications depending on the type of road segments they are on, and may have different 

impacts on the traffics ahead of or behind the accident vehicles. Such information are not 
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accessible for the study area, however in areas where they are available, it may be 

beneficial to incorporate them into the density estimation. The network KDE also has one 

of the same fundamental drawbacks as the planar KDE for “hot spots” detection. Because 

no statistical significance is employed in the process, it is ad hoc and there is no 

indication of a density threshold above which “hot spots” can be confidently declared. 

Experiments with different density thresholds may be needed in real applications. 

Nevertheless, we believe the network KDE method presented in this paper could be 

useful and are readily applicable in real world setting for traffic accident decision making 

by different agencies. More significantly, although designed for KDE estimation, the idea 

of segmenting a linear road network into a network system of equal-length lixels may 

potentially lead the way to developing a suite of other network related spatial analysis 

and modeling methods and have a larger impact than what is shown in this initial 

application.  

 

Acknowledgement 

The authors greatly appreciate the helpful comments of three anonymous 

reviewers and the detailed comments by the Editor, Dr. Jean-Claude Thill. 

 



25 

 

References 

Bailey, T. C., & Gatrell, A. C. (1995). Interactive Spatial Data Analysis. Essex: Longman. 

Black, W. R. (1991). Highway Accidents: A Spatial and Temporal Analysis. 

Transportation Research Record, 1318, 75–82.  

Black, W. R. (1992). Network Autocorrelation in Transport Network and Flow Systems. 

Geographical Analysis, 24, 207–222. 

Borruso, G. (2005). Network Density Estimation: Analysis of Point Patterns over a 

Network. Lecture Notes in Computer Science: Computational Science and Its 

Applications, 3482, 126–132. Erdogan, S., Yilmaz, I., Baybura, T., & Gullu, M. 

(2008). Geographical information systems aided traffic accident analysis system case 

study: city of Afyonkarahisar. Accident Analysis and Prevention, 40(1), 174–181. 

Delmelle, E. C., & Thill, J.-C. (2008). Urban Bicyclists – A Spatial Analysis of Adult and 

Youth Traffic Hazard Intensity. Transportation Research Record, in press. 

Gibin, M., Longley, P., & Atkinson, P. (2007). Kernel Density Estimation and Percent 

Volume Contours in General Practice Catchment Area Analysis in Urban Areas. In 

the Proceedings of the GIScience Research UK Conference (GISRUK) 2007. 

Maynooth - Ireland.  

Kent, J., Leitner, M., & Curtis, A. (2006). Evaluating the Usefulness of Functional 

Distance Measures When Calibrating Journey-to-Crime Distance Decay Algorithms. 

Computers, Environment and Urban Systems, 30(2), 181–200. 

Krisp, J.M., & Durot, S.
 
 (2007).  Segmentation of lines based on point densities —An 

optimisation of wildlife warning sign placement in southern Finland. Accident 

Analysis and Prevention, 39(1), 38–46. 



26 

 

Kwan, M-P., (1998). Space–Time and Integral Measures of Individual Accessibility: A 

Comparative Analysis Using A Point-Based framework. Geographical Analysis, 

30(3), 191–216. 

Levine, N. (2004). CrimeStat III: A Spatial Statistics Program for the Analysis of Crime 

Incident Locations. Ned Levine & Associates, Houston, TX, and the National 

Institute of Justice, Washington, DC. 

Lu, Y., & Chen, X. (2007). False Alarm of Planar K-Function when Analyzing Urban 

Crime Distributed along Streets. Social Science Research, 36(2), 611–632. 

Miller, H. J. (1994). Market Area Delineation within Networks Using Geographic 

Information Systems. Geographical Systems, 1(2), 157–173. 

Miller, H. J. (1999a). Potential Contribution of Spatial Analysis to Geographic 

Information Systems for Transportation (GIS-T). Geographical Analysis, 31(4), 

373–399. 

Miller, H.J. (1999b). Measuring Space–Time Accessibility Benefits within 

Transportation Networks. Geographical Analysis, 31(2), 187–212. 

Okabe, A., Yomono, H., & Kitamura, M. (1995). Statistical Analysis of the Distribution 

of Points on a Network. Geographical Analysis, 27(2), 152–75. 

Okabe, A., & Kitamura, M. (1996). A Computational Method for Market Area Analysis 

on a Network. Geographical Analysis, 28(4), 330–349. 

Okunuki, K., & Okabe, A. (1998). A Computational Method for Optimizing the Location 

of a Store on a Continuum of a Network When Users' Choice Behavior Follows the 

Hu_ Model. Discussion Paper, Center for Spatial Information Science at the 

University of Tokyo, No.19.  



27 

 

Okabe, A., & Okunuki, K. (2001). A Computational Method for Estimating the Demand 

of Retail Stores on a Street Network Using GIS. Transactions in GIS, 5(3), 209–220. 

Okabe, A., & Yamada, I. (2001). The K-Function Method on a Network and its 

Computational Implementation. Geographical Analysis, 33, 271–290. 

Okabe, A., Okunuki, K., & Shiode, S. (2006). SANET: A Toolbox for Spatial Analysis 

on a Network. Geographical Analysis, 38, 57–66. 

O’Sullivan, D., & Unwin, D. J. (2002). Geographic Information Analysis. John Wiley, 

Hoboken, New Jersey. 

O' Sullivan, D., & Wong, D. W. S. (2007). A Surface-Based Approach to Measuring 

Spatial Segregation. Geographic Analysis, 39(2), 147–168. 

Pulugurtha, S.S., Krishnakumar, V. K., & Nambisan, S. S. (2007). New methods to 

identify and rank high pedestrian crash zones: An illustration. Accident Analysis and 

Prevention, 39(4,) 800–811.Schabenberger, O., & Gotway, C. A. (2005). Statistical 

Methods for Spatial Data Analysis. Chapman & Hall/CRC, Boca Raton, Florida.  

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman 

Hall, London. 

Yamada, I., & Thill, J.-C. (2004). Comparison of Planar and Network K-Functions in 

Traffic Accident Analysis. Journal of Transport Geography, 12, 149–158.  

Yamada, I., & Thill, J.-C. (2007). Local Indicators of Network-Constrained Clusters in 

Spatial Point Patterns. Geographical Analysis, 39(3), 268–292. 



28 

 

List of Figures 

 

Figure 1. Illustration of the basic differences between the Planar KDE and Network KDE 

for the same point event dataset. To estimate the density value at a focal point x, the 

planar KDE treats the whole 2-D space as the context and finds 4 accident points (solid 

dots) within a search bandwidth r, whereas the Network KDE only finds 2 accidents 

within the same bandwidth in the network space based on network 
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distance.

 

Figure 2. Illustration of the basic terms used in the proposed network KDE algorithm. 

The line segment between the two road intersections A and B is called a segment, so is 

the dangling line segment AC between a road intersection A and a road end point C. Each 

segment is divided into lixels of a defined network length l. Here, five lixels are created 

for segment AB, with lixels 1, 2, 3 and 4 being regular lixels with length l, and lixel 5 

being the residual lixel with length less than l. The dark dots are the lxnodes, the 

intersection points of lixels. Note the original road intersections (A, B) and end points (C) 

are always lxnodes. 
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Figure 3. The study area, Bowling Green, Kentucky. Test dataset include a road 

transportation network system and traffic accident data for year 2005. 
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Figure 4. Illustration of different ways of presenting accident spatial patterns in a local 

part of the study area: (a) accident point locations, (b) number of accidents per 10-m lixel, 

(c) a standard planar KDE (10-m raster cell), (d) the proposed network KDE (10-m lixel). 

For both (c) and (d), a Gaussian kernel and a 100-m search bandwidth are used. Both 

KDE are more informative in presenting the density pattern, but only the network KDE 

estimates density in the event context, the network space.  
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Figure 5. Illustration of different overall patterns produced by the network KDE and 

planar KDE in the study area: (a) the proposed network KDE (10-m lixel), and (b) a 
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standard planar KDE (10-m raster cell). A Gaussian kernel and a 1000-m search 

bandwidth are used. 

 

Figure 6. Illustration of the local impacts of kernel functions in the network KDE: (a) a 

Gaussian kernel based network density (per km), and (b) a Quartic kernel based network 

density (per km).  For both (a) and (b), a 100-m search bandwidth and a 10-m lixel length 

are used. Both kernel functions result in similar local details. 
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Figure 7. Illustration of the impacts of kernel functions on the overall density pattern in 

the network KDE: (a) a Gaussian kernel based network density (per km), and (b) a 
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Quartic kernel based network density (per km). It appears that the kernel functions make 

less difference in the overall pattern. 

 

Figure 8. Illustration of the impacts of t lixel length on the calculated density values for 

the network KDE. (a)-(d) are the results for the lixel length of 5 m,10 m, 50 m and 100 m 

respectively, with a Gaussian kernel and a 100-m search bandwidth. The shorter the lixel 

length, the more detailed location variation can be revealed, as shown in the segment 

from A to B. 
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Figure 9. Illustration of the impacts of narrower search bandwidths on the calculated 

density values (per km) at local scales. (a)-(d) are the results for the search bandwidth of 

20 m, 100 m, 250 m, and 500 m respectively, with a Gaussian kernel and a 10-m lixel 

length. The local variations of density gradually get lost with increased search 

bandwidths. 
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Figure 10. Illustration of the impacts of different search bandwidths on the overall 

density pattern. (a)-(f) are the results for the search bandwidth of 20 m, 100 m, 250 m, 

500 m, 1000 m, and 2000 m respectively, with a Gaussian kernel and a 10-m lixel length. 
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As the search bandwidth increases from 20 m to 2000 m, the local “hot spots” are 

gradually combined with their neighbors and larger clusters appear.  

 

Figure 11. Three-Dimensional visualization of the spatial pattern of density estimated by 

the proposed network KDE (10-m lixel length, Gaussian kernel, 100-m search 

bandwidth), with ESRI ArcScene.  


	Western Kentucky University
	TopSCHOLAR®
	9-2008

	Kernel Density Estimation of Traffic Accidents in a Network Space
	Zhixiao Xie
	Jun Yan
	Recommended Repository Citation


	Microsoft Word - 152675-text.native.1233609830.doc

