
Western Kentucky University Western Kentucky University

TopSCHOLAR® TopSCHOLAR®

Computer Science Faculty Publications Computer Science

8-2011

Measuring Robustness of Feature Selection Techniques on Measuring Robustness of Feature Selection Techniques on

Software Engineering Datasets Software Engineering Datasets

Huanjing Wang

Taghi Khoshgoftaar

Randall Wald

Follow this and additional works at: https://digitalcommons.wku.edu/comp_sci

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of TopSCHOLAR®. For more information,
please contact topscholar@wku.edu.

https://digitalcommons.wku.edu/
https://digitalcommons.wku.edu/comp_sci
https://digitalcommons.wku.edu/computer_science
https://digitalcommons.wku.edu/comp_sci?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

Western Kentucky University

From the SelectedWorks of Dr. Huanjing Wang

August, 2011

Measuring Robustness of Feature Selection
Techniques on Software Engineering Datasets
Huanjing Wang, Western Kentucky University
Taghi M Khoshgoftaar, Florida Atlantic University
Randall Wald

Available at: https://works.bepress.com/huanjing_wang/16/

http://www.wku.edu
https://works.bepress.com/huanjing_wang/
https://works.bepress.com/huanjing_wang/16/

Measuring Robustness of Feature Selection
Techniques on Software Engineering Datasets

Huanjing Wang
Western Kentucky University

Bowling Green, Kentucky 42101
huanjing.wang@wku.edu

Taghi M. Khoshgoftaar
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu

Randall Wald
Florida Atlantic University
Boca Raton, Florida 33431

rdwald@gmail.com

Abstract—Feature Selection is a process which identifies irrel-
evant and redundant features from a high-dimensional dataset
(that is, a dataset with many features), and removes these before
further analysis is performed. Recently, the robustness (e.g.,
stability) of feature selection techniques has been studied, to
examine the sensitivity of these techniques to changes in their
input data. In this study, we investigate the robustness of six
commonly used feature selection techniques as the magnitude
of change to the datasets and the size of the selected feature
subsets are varied. All experiments were conducted on 16 datasets
from three real-world software projects. The experimental results
demonstrate that Gain Ratio shows the least stability on average
while two different versions of ReliefF show the most stability.
Results also show that making smaller changes to the datasets
has less impact on the stability of feature ranking techniques
applied to those datasets.

Index Terms—Robustness of feature selection, software met-
rics, software quality classification, fault-prone program module.

I. INTRODUCTION

Software quality modeling is the process of using software
metrics from previous iterations of development to locate
potentially faulty modules in under-development code. This
has become an important part of the software development
process, allowing practitioners to focus development efforts
where they are most needed, and avoid wasting time checking
already-good code. Much research in recent years has exam-
ined this problem, using data mining and machine learning
tools to build models to predict whether a given software
module is fault-prone or not fault-prone [12], [24].

One difficulty encountered in software quality modeling
is the problem of high dimensionality, where the number of
available software metrics is too large for classifiers to work
well. In these cases, many of the features may be redundant or
irrelevant to defect prediction results. Relatively little research
has focused on improving software quality models by using
metric (feature) selection techniques for constructing defect
prediction models. In those papers which do examine feature
selection in the context of software quality modeling, feature
selection techniques are evaluated according to their model
performance; that is, models are built using only the selected
features, and their performance is compared to that of models
built using the full feature set [4], [8], [21], [23].

Although previous work has focused on the performance
of models built using the selected features, another way to
evaluate a feature selection technique is robustness (stability),
which has received less attention during the past. Few studies
exist on the stability of feature selection algorithms. The
purpose of investigating the robustness of feature selection
techniques is to find which feature selection techniques are
best at providing software practitioners a subset of software
metrics which are relatively robust to variations of input data.

The stability of a feature selection method is normally
defined as the degree of agreement between its outputs to
randomly selected subsets of the same input data [16], [19].
Recent work in this area mainly focuses on consistency of
the outputs by measuring the variations between subsets of
features obtained from different subsamples of the original
training dataset. Saeys et al. [22] assessed the robustness of
feature selection techniques using the Spearman rank correla-
tion coefficient and Jaccard index. Dunne et al. [5] addressed
the instability of the wrapper approach to feature selection.
They suggested a measure based on the Hamming distance to
assess the stability of a feature selection technique. Loscalzo
et al. [19] demonstrated a strong dependency between the
sample size (in terms of number of instances in a dataset)
and the stability of a feature selection method. Abeel et al. [1]
studied the process for selecting biomarkers from microarray
data and presented a general framework for stability analysis
of such feature selection techniques. They showed that stability
could be improved through ensemble feature selection, where
the training data is bootstrapped, recursive feature elimination
(RFE) is applied to each subset, and either a complete linear
or complete weighted linear aggregation method is used to get
a consensus output.

The main contribution of the present work is that we con-
sider stability of feature selection techniques by comparing the
selected features before and after some instances are deleted
from a dataset (or equivalently, before and after some instances
are added), rather than directly comparing separate subsamples
of the original dataset. This is an important distinction because
in many real-world situations, software practitioners want to
know whether adding additional instances to their dataset
will change the results of feature selection. The experiments
discussed in this study contain the answer.

In this study, we assess the stability performance of six
commonly used feature selection techniques, including chi-
squared (CS), information gain (IG), gain ratio (GR), two
types of ReliefF (RF and RFW), and symmetrical uncertainty
(SU). The assessment is based on the degree of agreement
between a filter’s output on both the original datasets and on
modified datasets which have had some instances removed.
The experimental results showed that GR and SU performed
significantly worst among the six rankers and RF and RFW
performed best. Also, the fewer instances that are deleted
from (or equivalently, added to) a dataset, the more stable
that feature ranking will be on that data.

The reminder of the paper is organized as follows: Section II
presents six commonly used feature selection techniques.
Section III describes the datasets and experimental design.
Section IV presents the experimental results and analysis.
Finally, we conclude the paper in Section V and provide
suggestions for future work.

II. FILTER-BASED FEATURE RANKING TECHNIQUES

The main goal of feature selection is to select a subset of
features that excludes features which are irrelevant (not useful
for predicting the class) or redundant (contain information
already found in other features). Feature selection techniques
can be broadly classified as feature ranking and feature subset
selection. Feature ranking sorts the attributes according to
their individual predictive power, while feature subset selection
finds subsets of attributes that collectively have good predictive
power. Feature selection techniques can also be categorized as
filters, wrappers, or embedded methods. Filters are algorithms
in which a feature subset is selected without involving any
learning algorithm. Wrappers are algorithms that use feedback
from a learning algorithm to determine which feature(s) to
include in building a classification model. Embedded meth-
ods do not perform explicit feature selection like filters and
wrappers; instead, feature selection is incorporated within a
learning algorithm.

Guyon and Elisseeff [9] outlined key approaches used for
attribute selection, including feature construction, feature rank-
ing, multivariate feature selection, efficient search methods,
and feature validity assessment methods. Liu and Yu [18] pro-
vided a comprehensive survey of feature selection algorithms
and presented an integrated approach to intelligent feature
selection. Although feature selection has been widely applied
in many application domains for many years, its application
in the software quality and reliability engineering domain
are limited. Chen et al. [4] have studied the applications of
wrapper-based feature selection in the context of software
cost/effort estimation. They conclude that the reduced dataset
improved the estimation.

In this study, we focus on filter-based feature ranking
techniques and applied these feature ranking techniques to
software engineering datasets. Filter-based feature ranking
techniques rank features independently without involving any
learning algorithm. Feature ranking consists of scoring each

feature according to a particular method, then selecting fea-
tures based on their scores. This paper uses six commonly
used filter-based feature ranking techniques including chi-
squared [26], information gain [10], [26], gain ratio [26], two
types of ReliefF [14], and symmetrical uncertainty [10], [26].
All of these feature selection methods are available within
the WEKA machine learning software suite [26]. Since these
methods are widely known, we provide only a brief summary;
the interested reader should consult with the included refer-
ences for further details.

The chi-square (CS) [3] test is used to examine if there
is ‘no association’ between two attributes, i.e., whether the
two variables are independent. CS is more likely to find
significance to the extent that (1) the relationship is strong,
(2) the sample size is large, and/or (3) the number of values
of the two associated features is large.

Information gain, gain ratio, and symmetrical uncertainty
are measures based on the concept of entropy, which is
based on information theory. Information gain (IG) [20] is
the information provided about the target class attribute Y,
given the value of independent attribute X. Information gain
measures the decrease of the weighted average impurity of the
partitions based on attribute X, compared with the impurity of
the complete set of data. A drawback of IG is that it tends to
prefer attributes with a larger number of possible values; that
is, if one attribute has a larger number of values, it will appear
to gain more information than those with fewer values, even
if it is actually no more informative. One strategy to counter
this problem is to use the gain ratio (GR), which penalizes
multiple-valued attributes. Symmetrical uncertainty (SU) [10]
is another way to overcome the problem of IG’s bias toward
attributes with more values, doing so by dividing IG by the
sum of the entropies of X and Y. These techniques utilize
the method of Fayyad and Irani [6] to discretize continuous
attributes, and all four methods are bivariate, considering the
relationship between each attribute and the class, excluding
the other independent variables.

Relief is an instance-based feature ranking technique which
measures how much the feature’s value changes when com-
paring an instance to its nearest same-class and different-
class neighbors [13]. ReliefF is an extension of the Relief
algorithm that can handle noise and multi-class datasets. When
the ‘weightByDistance’ (weight nearest neighbors by their
distance) parameter is set as default (false), the algorithm
is referred to as RF; when the parameter is set to true, the
algorithm is referred to as RFW.

III. EXPERIMENTAL DESIGN

To test the stability of different feature selection techniques
under different circumstances, we performed a case study on
16 different software metric datasets, using six feature selec-
tion techniques, four different levels of change to the datasets,
and nine different numbers of chosen features. Discussion and
results from this case study are presented below.

A. Datasets

Experiments conducted in this study used software metrics
and fault data collected from real-world software projects,
including a very large telecommunications software system
(denoted as LLTS) [7], the Eclipse project [27], and NASA
software project KC1 [15]. These are all binary class datasets.
That is, each instance is assigned one of two class labels:
fault-prone (fp) and not fault-prone (nfp).

The software measurement data set of LLTS contains data
from four consecutive releases, which are labeled as SP1,
SP2, SP3, and SP4. This dataset includes 42 software metrics,
including 24 product metrics, 14 process metrics, and four
execution metrics [7]. The dependent variable is the class of
the program module: fault-prone (fp) or not fault-prone (nfp).
A program module with one or more faults is considered fp,
and nfp otherwise.

From the PROMISE data repository [27], we also obtained
the Eclipse defect counts and complexity metrics dataset. In
particular, we use the metrics and defects data at the software
package level. The original data for the Eclipse packages con-
sists of three releases denoted 2.0, 2.1, and 3.0 respectively. We
transform the original data by: (1) removing all non-numeric
attributes, including the package names, and (2) converting
the post-release defects attribute to a binary class attribute:
fault-prone (fp) and not fault-prone (nfp). Membership in each
class is determined by a post-release defects threshold t, which
separates fp from nfp packages by classifying packages with
t or more post-release defects as fp and the remaining as nfp.
In our study, we use t ϵ {10, 5, 3} for release 2.0 and 3.0,
while we use t ϵ {5, 4, 2} for release 2.1. These values are
selected in order to have datasets with different levels of class
imbalance. All nine derived datasets contain 208 independent
attributes. Releases 2.0, 2.1, and 3.0 contain 377, 434, and 661
instances respectively.

The original NASA project, KC1 [15], includes 145 in-
stances containing 94 independent attributes each. After re-
moving 32 Halstead derived measures, we have 62 attributes
left. We used three different thresholds to define defective in-
stances, thereby obtaining three structures of the preprocessed
KC1 dataset. The thresholds are 20, 10, and 5, indicating that
instances with numbers of defects greater than or equal to 20,
10, or 5 belong to the fp class. The three datasets are named
KC1-20, KC1-10, and KC1-5.

The sixteen original datasets used in the work reflect soft-
ware projects of different sizes with different proportions of
fp and nfp modules. Table I lists the characteristics of the 16
datasets utilized in this work.

B. Dataset Perturbation (Changing)

For this study, we consider stability on changes to the
datasets (perturbations) at the instance level. Consider a dataset
with m instances: a smaller dataset can be generated by
randomly removing c fraction of instances from the original
data, where c is greater than 0 and less than 1. For a given c,
this process can be performed x times. This will create x new
datasets, each having (1 − c) × m instances, where each of

TABLE I
SOFTWARE DATASETS CHARACTERISTICS

Data #Metrics #Modules %fp %nfp
SP1 42 3649 6.28% 93.72%

LLTS SP2 42 3981 4.75% 95.25%
SP3 42 3541 1.33% 98.67%
SP4 42 3978 2.31% 97.69%

Eclipse2.0-10 208 377 6.1% 93.9%
Eclipse2.0-5 208 377 13.79% 86.21%
Eclipse2.0-3 208 377 26.79% 73.21%
Eclipse2.1-5 208 434 7.83% 92.17%

Eclipse Eclipse2.1-4 208 434 11.52% 88.48%
Eclipse2.1-2 208 434 28.8% 71.2%
Eclipse3.0-10 208 661 6.2% 93.8%
Eclipse3.0-5 208 661 14.83% 85.17%
Eclipse3.0-3 208 661 23.75% 76.25%

KC1-20 62 145 6.90% 93.10%
KC1 KC1-10 62 145 14.48% 85.52%

KC1-5 62 145 24.83% 75.17%

these new datasets is unique (since each was built by randomly
removing c × m instances from the original dataset). In this
study, x was set to 30 and c was set to 0.05, 0.1, 0.2, or
1/3 (giving new datasets with 0.95×m, 0.9×m, 0.8×m, or
2/3×m instances, respectively), thereby obtaining 30 datasets
for each original dataset and choice of c.

C. Feature Selection

Once the features are ranked according to their relevance
to the class, the next step is to select a subset consisting of
the most relevant ones. In this study, nine subsets are chosen
for each dataset. The number of features that is retained in
each subset for each dataset are 2, 3, 4, 5, 6, 7, 8, 9, and 10.
These numbers are deemed reasonable after some preliminary
experimentation conducted on the corresponding datasets [25].

D. Stability Measure

To assess robustness of feature selection techniques, past
works have used different similarity measures, such as Ham-
ming distance [5], correlation coefficient [11], consistency
index [16], and entropy [17]. Among these four similarity
measures, consistency index is the only one which takes into
consideration bias due to chance. Because of this, in our
work the consistency index was used. Our stability metric is
defined as follows: First, we assume the original dataset has m
instances and n features. Let Ti and Tj be subsets of features,
where |Ti| = |Tj | = k. The consistency index [16] is obtained
as follows:

IC (Ti, Tj) =
dn− k2

k (n− k)
, (1)

where d is the cardinality of the intersection between subsets
Ti and Tj , and −1 < IC (Ti, Tj) ≤ +1. The greater the
consistency index, the more similar the subsets are.

For each original dataset and choice of c (the percentage of
instances to remove), let T0 represent the set containing the
top k ranked features obtained by a particular feature ranking
technique on that particular original dataset. Then x datasets
of same size are generated by deleting data instances from
that original dataset. Accordingly, let {T1, T2, ..., Tx} be the

sets of features selected from the datasets generated. A single
stability index (KI) is obtained as follows:

KI =
1

x

x∑
i=1

IC (T0, Ti). (2)

This is the average of the consistency index for each pairing
of the original dataset and one of the x new datasets. Note
that although this use is not identical to more traditional KI
consistency measures, since the consistency index IC is still
a core component of the measure, we retain the name. Thus,
given a dataset, 36 KI values are obtained, since each of the
four choices of c and nine choices of feature subset size gives
one KI value (and 4× 9 = 36).

IV. RESULTS AND ANALYSIS

Experiments are conducted with six filter-based feature
ranking techniques (CS, GR, IG, RF, RFW, and SU) on
16 software engineering metrics datasets. Aggregated and
selected results are presented below. To briefly summarize,
Figure 1 shows combining all 16 datasets to highlight varia-
tions caused by degree of perturbation to the dataset, size of
feature subset, and choice of filter. Figure 2 further aggregates
across size of feature subset and choice of filter. Table II
shows each dataset separately, but only presents results for
one chosen degree of permutation and size of feature subset.
Further analysis of the results across all the parameters was
not possible due to space limitations.

A. Average Stability Performance

Figure 1 shows how the average stability performance (KI
values on y axis) of each ranker is affected by the nine
different feature subset sizes (x axis), averaged across all
sixteen datasets and with the four different perturbation levels
shown in separate graphs. These graphs show the following
observations:

• Among the six filters, GR shows the least stability on
average while RF and RFW show the most stability.

• The size of the feature subset can influence the stability
of a feature ranking technique. For most rankers, stability
is improved by an increased number of features in the
selected subset.

B. Degree of Perturbation Impact on Stability

Figure 2 shows the effect of the degree of dataset pertur-
bation on the stability of feature ranking techniques across all
sixteen datasets and nine feature subsets. The figure demon-
strates that the more instances retained in a dataset (e.g., the
fewer instances deleted from the original dataset), the more
stable the feature ranking on that dataset will be.

C. Most and Least Stable Filters

Although our previous study showed that three features
(software metrics) are sufficient for building software quality
classification models [25], we found there is no significant
difference between the models built with three, four, and
five features. Thus, to simplify things, in this section we

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10

CS

GR

IG

RF

RFW

SU

(a) Datasets with 2/3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10

CS

GR

IG

RF

RFW

SU

(b) Datasets with 80%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

CS

GR

IG

RF

RFW

SU

(c) Datasets with 90%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

CS

GR

IG

RF

RFW

SU

(d) Datasets with 95%

Fig. 1. KI Values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

67% 80% 90% 95%

Fig. 2. Degree of Perturbation Impact on Stability

TABLE II
KI VALUES

(a) LLTS
SP1 SP2 SP3 SP4 Average

CS 0.1588 0.7789 0.6259 0.6941 0.5644
GR 0.4477 0.7421 0.7417 0.4137 0.5863
IG 0.2523 0.9447 0.6615 0.4647 0.5808
RF 0.3458 0.6516 0.5118 0.6771 0.5466

RFW 0.6686 0.7026 0.4382 0.7239 0.6333
SU 0.1163 0.6941 0.2447 0.5101 0.3913

(b) Eclipse 2.0
Eclipse2.0-10 Eclipse2.0-5 Eclipse2.0-3 Average

CS 0.2438 0.8526 0.7506 0.6157
GR 0.4392 0.8158 0.8397 0.6982
IG 0.3458 1.0000 0.7773 0.7077
RF 0.4647 0.7451 0.5947 0.6015

RFW 0.6771 0.7876 0.5395 0.6681
SU 0.3373 0.7876 0.4197 0.5149

(c) Eclipse 2.1
Eclipse2.1-5 Eclipse2.1-4 Eclipse2.1-2 Average

CS 0.7621 0.4817 0.9171 0.7203
GR 0.5497 0.6176 0.8066 0.6580
IG 0.5667 0.4817 1.0000 0.6828
RF 0.7536 0.6516 0.8895 0.7649

RFW 0.7951 0.7621 0.8895 0.8156
SU 0.5813 0.4647 0.9065 0.6509

(d) Eclipse 3.0
Eclipse3.0-10 Eclipse3.0-5 Eclipse3.0-3 Average

CS 0.8664 0.9065 0.5327 0.7685
GR 0.9466 0.6261 0.8131 0.7953
IG 0.8753 0.8131 0.6176 0.7687
RF 0.8158 0.7536 0.7961 0.7885

RFW 0.6316 0.8753 0.8386 0.7818
SU 0.5395 0.6704 0.6516 0.6205

(e) KC1
KC1-5 KC1-10 KC1-20 Average

CS 0.9632 0.8842 0.9745 0.9406
GR 0.9171 1.0000 0.7451 0.8874
IG 1.0000 0.8931 0.8725 0.9219
RF 0.9660 0.9171 0.7706 0.8846

RFW 0.9575 0.8526 0.9198 0.9100
SU 0.9660 0.6224 0.7328 0.7737

TABLE III
ANALYSIS OF VARIANCE

Source Sum Sq. d.f. Mean Sq. F p-value
A 5.6412 5 1.12824 75.06 0
B 3.7092 3 1.23639 82.26 0
Error 5.6363 375 0.01503
Total 14.9867 383

present stability results only for size four feature subsets.
Table II summarizes the results of robustness analysis across
the different datasets, using modified datasets which contain
95% of the instances from their original dataset. In general,
it can be observed that SU shows the least stability for 7 out
of 16 and RFW shows the most stability for 6 out of 16.
The inconsistent performance of GR appears to stem from its
greater sensitivity to the specific choice of dataset.

D. ANOVA Analysis

We performed an ANalysis Of VAriance (ANOVA) F
test [2] to statistically examine the robustness (e.g., stability)
of feature selection techniques. An n-way ANOVA can be used

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

SU

RFW

RF

IG

GR

CS

(a) Factor A

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

95%

90%

80%

67%

(b) Factor B

Fig. 3. Multiple comparisons

to determine if the means in a set of data differ when grouped
by multiple factors. If they do differ, one can determine which
factors or combinations of factors are associated with the
difference. The ANOVA model we built includes two factors:
Factor A, in which six rankers were considered, and Factor
B, in which four different levels of deletion (c values) were
included. In this ANOVA test, the results from all sixteen
datasets were taken into account together. The ANOVA results
are presented in Table III. The p values of Factor A and Factor
B are 0, which indicates there was a significant difference
between the average KI values of the six rankers and four
different levels of deletion (c values). Additional multiple
comparisons for the main factors were performed to investigate
the differences among the respective groups (levels). All
tests of statistical significance utilize a significance level α
of 5%. Both ANOVA and multiple comparison tests were
implemented in MATLAB.

The multiple comparison results are presented in Figure
3, displaying graphs with each group mean represented by
a symbol (◦) and the 95% confidence interval as a line around
the symbol. Two means are significantly different if their
intervals are disjoint, and are not significantly different if their
intervals overlap. The results show the following facts:

• For factor A, GR and SU performed significantly worst
among the six rankers and RF and RFW performed best.
CS and IG performed moderately.

• For Factor B, datasets with 95% of the instances from
their original dataset performed significantly best, fol-
lowed by 90%, 80%, and two thirds.

V. CONCLUSIONS AND FUTURE WORK

Feature selection is an important preprocessing step in data
mining, and its output is used for further study. Typically, the

robustness or stability of a feature selection algorithm is found
by creating many reduced datasets (by deleting instances from
the original dataset) and comparing these reduced datasets
to each other. In this study, rather than comparing these
reduced datasets to each other, each is compared solely to the
original dataset which it came from. Those techniques whose
outputs are insensitive to different perturbations in the input
data are said to be robust, and they are preferred over those
that produce inconsistent outputs. In this study we conducted
robustness (or stability) analysis on six commonly used feature
selection techniques. Sixteen datasets from three real-world
software projects were used, with different levels of class
imbalance. Experimental results demonstrate that GR and SU
performed significantly worst among the six rankers and RF
and RFW performed best. Results also showed that the number
of instances deleted from the dataset affects stability of the
feature ranking techniques. The fewer instances removed from
(or equivalently, added to) a given dataset, the less the selected
features will change when compared to the original dataset (or
the smaller dataset), and thus the feature ranking performed
on this dataset will be more stable.

Future work will involve conducting additional studies with
data from other software projects. Additional experiments with
other feature selection techniques can also be conducted.

REFERENCES

[1] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys,
“Robust biomarker identification for cancer diagnosis with ensemble
feature selection methods,” Bioinformatics, vol. 26, no. 3, pp. 392–398,
February 2010.

[2] M. L. Berenson, M. Goldstein, and D. Levine, Intermediate Statistical
Methods and Applications: A Computer Package Approach, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

[3] A. C. Cameron and P. K. Trivedi, Regression Analysis of Count Data.
Cambridge University Press, 1998.

[4] Z. Chen, T. Menzies, D. Port, and D. Boehm, “Finding the right data
for software cost modeling,” Software, IEEE, vol. 22, no. 6, pp. 38–46,
Nov.-Dec. 2005.

[5] K. Dunne, P. Cunningham, and F. Azuaje, “Solutions to Instability Prob-
lems with Sequential Wrapper-Based Approaches To Feature Selection,”
Department of Computer Science, Trinity College, Dublin, Ireland, Tech.
Rep. TCD-CD-2002-28, 2002.

[6] U. M. Fayyad and K. B. Irani, “On the handling of continuous-valued
attributes in decision tree generation,” Machine Learning, vol. 8, pp.
87–102, 1992.

[7] K. Gao, T. M. Khoshgoftaar, and H. Wang, “An empirical investigation
of filter attribute selection techniques for software quality classification,”
in Proceedings of the 10th IEEE International Conference on Informa-
tion Reuse and Integration, Las Vegas, Nevada, August 10-12 2009, pp.
272–277.

[8] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: an investigation on feature selection
techniques,” Software: Practice and Experience, vol. 41, no. 5, pp. 579–
606, 2011.

[9] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, March 2003.

[10] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 6, pp. 1437 – 1447, Nov/Dec 2003.

[11] A. Kalousis, J. Prados, and M. Hilario, “Stability of feature selection
algorithms: a study on high-dimensional spaces,” Knowledge and Infor-
mation Systems, vol. 12, no. 1, pp. 95–116, Dec. 2006.

[12] T. M. Khoshgoftaar and K. Gao, “A novel software metric selection
technique using the area under roc curves,” in Proceedings of the
22nd International Conference on Software Engineering and Knowledge
Engineering, 2010, pp. 203–208.

[13] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in
Proceedings of 9th International Workshop on Machine Learning, 1992,
pp. 249–256.

[14] I. Kononenko, “Estimating attributes: Analysis and extensions of RE-
LIEF,” in European Conference on Machine Learning. Springer Verlag,
1994, pp. 171–182.

[15] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Trans. Software Eng., vol. 35, no. 2, pp. 293–304, 2009.

[16] L. I. Kuncheva, “A stability index for feature selection,” in Proceedings
of the 25th conference on Proceedings of the 25th IASTED International
Multi-Conference: artificial intelligence and applications. Anaheim,
CA, USA: ACTA Press, 2007, pp. 390–395.

[17] P. Křı́žek, J. Kittler, and V. Hlaváč, “Improving stability of feature
selection methods,” in Proceedings of the 12th international conference
on Computer analysis of images and patterns, ser. CAIP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 929–936.

[18] H. Liu and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[19] S. Loscalzo, L. Yu, and C. Ding, “Consensus group stable feature selec-
tion,” in KDD ’09: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, New York, NY,
USA, 2009, pp. 567–576.

[20] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[21] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Detecting fault modules applying feature selection to classifiers,” in
Proceedings of 8th IEEE International Conference on Information Reuse
and Integration, Las Vegas, Nevada, August 13-15 2007, pp. 667–672.

[22] Y. Saeys, T. Abeel, and Y. Peer, “Robust feature selection using ensemble
feature selection techniques,” in ECML PKDD ’08: Proceedings of the
European conference on Machine Learning and Knowledge Discovery
in Databases - Part II. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
313–325.

[23] S. Shivaji, E. J. W. Jr., R. Akella, and S. Kim, “Reducing features to
improve bug prediction,” in ASE. IEEE Computer Society, 2009, pp.
600–604.

[24] H. Wang, T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Mining data
from multiple software development projects,” in Proceedings of 9th
IEEE International Conference on Data Mining - Workshops, Miami,
FL, USA, December 6-9 2009, pp. 551–557.

[25] H. Wang, T. M. Khoshgoftaar, and N. Seliya, “How many software
metrics should be selected for defect prediction?” in Proceedings of
the Twenty-Fourth International Florida Artificial Intelligence Research
Society Conference, May 2011, pp. 69–74.

[26] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[27] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in ICSEW ’07: Proceedings of the 29th International Con-
ference on Software Engineering Workshops. Washington, DC, USA:
IEEE Computer Society, 2007, p. 76.

	Measuring Robustness of Feature Selection Techniques on Software Engineering Datasets
	Western Kentucky University
	From the SelectedWorks of Dr. Huanjing Wang
	August, 2011

	Measuring Robustness of Feature Selection Techniques on Software Engineering Datasets
	tmpZTKJEp.pdf

