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Empirical Methods for Predicting Student Retention- A Summary from the Literature 

The vast majority of the literature related to the empirical estimation of retention models includes a 

discussion of the theoretical retention framework established by Bean, Braxton, Tinto, Pascarella, 

Terenzini and others (see Bean, 1980; Bean, 2000; Braxton, 2000; Braxton et al, 2004; Chapman and 

Pascarella, 1983; Pascarell and Ternzini, 1978; St. John and Cabrera, 2000; Tinto, 1975) This body of 

research provides a starting point for the consideration of which explanatory variables to include in any 

model specification, as well as identifying possible data sources. The literature separates itself into two 

major camps including research related to the hypothesis testing and the confirmation or empirical 

validation of theoretical retention models (Herzog, 2005; Ronco and Cahill, 2006; Stratton et al 2008) vs. 

research specifically focused on the development of applied predictive models (Miller, 2007; Miller & 

Herreid, 2008; Herzog, 2006; Dey & Astin, 1993; Delen 2010; Yu et al, 2010). Other areas of research 

seem to stand apart. While not particularly concerned with making accurate predictions or confirming or 

challenging the established literature, these researchers seek novel ways to measure student 

characteristics that may be theoretically important to retention, or provide predictive value.  For 

instance, De Witz, Woosley, and Walsh (2009) investigate the relationship between Frankl’s construct of 

purpose in life and Bandura’s theory of self efficacy and the possible impact of these measures on 

student retention. They claim: 

Many of the reasons that students leave college are outside Tinto’s model: finances, poor academic 

performance, lack of family or social/ emotional encouragement, difficult personal adjustment. (De Witz, 

Woosley, and Walsh,2009) 

Their idea was that measures of self efficacy and purpose may be one way to capture this information.  

Others look at opportunities presented by social network analysis (SNA) (Thomas, 2000; Skahill, 2002; 

Brewe et al, 2009) According to the International Network for Social Network Analysis,"social network 

analysis is focused on uncovering the patterning of people's interaction" 

(http://www.insna.org/sna/what.html). Thomas integrates network measures of connectedness and 

centrality into a path analytic model of student retention (Thomas,2000).  Skahil found that network 

metrics related to connectedness could explain differences in retention rates between commuter and 

residential students (Skahil, 2002). Brewe et al used SNA to characterize community interactions in 

terms of network density and connectivity and the assessed the impact of those metrics on retention 

and persistence for physics majors (Brewe, et al, 2009).  

Within the context of work that related to theoretical validation and empirical modeling, some 

interesting findings merit discussion. Herzog found that the driving factors related to the propensity to 

retain involved institutional support and financial aid. Particularly, middle-income students were 

disproportionately impacted by the magnitude of unmet financial need (Herzog, 2005). Ronco and Cahil 

looked at instructor types (full time faculty vs. graduate assistant vs. adjunct part time faculty) and 

found that the impact of instructor type on retention was not statistically significant (Ronco and Cahill, 

2006). Stratton et al find that the type of financial aid received has a differential impact on dropout vs. 

stopout behavior, and caution that failure to distinguish between the risks of stopout and dropout 

students in predictive modeling could lead to misguided targeted interventions (Stratton, et al, 2008).   



As a consequence of the fact that the vast majority of researchers based initial model specifications and 

variable selection on the common body of research previously mentioned, most included variables 

related to pre-enrollment characteristics, demographics, socioeconomic status, and enrollment 

characteristics. The number of variables included in the models typically ranged from 10-30 or more. 

While the studies were redundant in what effects they were attempting to capture, some researchers 

presented novel ways of measuring these effects.  Herzog (2005) presents two such interesting 

constructs. He utilizes a ‘high school preparation index’   influenced by Adelman’s (1999) ‘Academic 

Resources’ composite variable as well as well as a ‘peer challenge’ variable that “groups students into 

three approximately equal-size categories based on the difference between their first-semester GPA and 

the average grade awarded in classes attended. A weak challenge indicates a student on average 

received higher grades than his/her classmates, the opposite being the case for a strong challenge.”   

While the variables chosen for empirical modeling of retention outcomes were common among most of 

the researchers, with the exception of the few novel innovations previously mentioned, there were 

some distinguishing characteristics in relation to functional form. Many of the researchers utilized some 

form of logistic regression to estimate their models (Herzog, 2005; Miller, 2007; Miller and 

Herried,2008; Ronco and Cahill, 2006; Stratton et al 2008).  Within the context of logistic regression, 

Stratton included the specification of a random utility model (Stratton et al, 2008). Astin and Dey (1995) 

examined discriminant analysis, linear, logistic, and probit models. Admitting violations of classical 

regression assumptions (particularly randomly distributed error terms and homoskedasticity of error 

terms) they found little practical difference between these methods in terms of co-efficient estimates, 

standard errors, and predicted probabilities (Astin and Dey, 1995). This has also been corroborated by 

Angrist and Pischke in their work comparing probit models with ordinary least squares: 

While a nonlinear model may fit the CEF (population conditional expectation function) for LDVs (limited 

dependent variables) more closely than a linear model, when it comes to marginal effects, this probably 

matters little (Angrist and Pischke, 2008). 

When looking outside of the literature published in journals primarily focused on education (such as 

College and Univeristy, Economics of Education Review, Research in Higher Education) you will find a 

sharp contrast in methodology.  These differences are palpably described by Leo Breiman: 

There are two cultures in the use of statistical modeling to reach conclusions from data. One assumes 

that the data are generated by a given stochastic data model. The other uses algorithmic models and 

treats the data mechanism as unknown.(Breiman, 2001) 

Breiman goes on to distinguish between these methods.  Classical stochastic methods, or the ‘data 

modeling’ paradigm includes techniques such as linear regression, logistic regression, and analysis of 

variance.  The ‘algorithmic’ or ‘data mining’ paradigm includes methods such as neural networks and 

decision trees.  Another distinguishing characteristic between the two ‘cultures’ includes the concern 

with predictive accuracy. The ability to make accurate predictions across multiple data sets is described 

as the generalization performance of a model (Hastie, et al, 2009). Researchers engaged in algorithmic 

approaches look beyond the sample at hand to validate model results (Yu, et al 2010).   Generalization 

error is a function of the bias variance tradeoff related to model complexity and generalization 



performance across multiple data sets (Hastie, et al, 2009).  None of the previously mentioned authors 

that utilized of logistic regression models addressed these issues. As suggested by Hastie et al, model 

selection techniques and partitioning the data into training, validation, and test subsets are possible 

strategies for addressing generalization error (Hastie, et al, 2009).   Other approaches include the use of 

ensemble models. The generalization performance of an ensemble of models (which is a collection or 

combination of predictive models) is typically improved over that of a single predictor (Krogh et al, 

1997).  

As a result of this difference in cultures or modeling paradigms, research in higher education, in terms of 

predicting attrition, may be improved if algorithmic approaches are considered. As Breiman notes: 

Approaching problems by looking for a data model imposes an apriori straight jacket that restricts the 

ability of statisticians to deal with a wide range of statistical problems (Breiman, 2001). 

Literature indicates that data mining or algorithmic approaches to prediction can provide superior 

results vis-à-vis traditional statistical modeling approaches (Delen et al, 2004; Sharda and Delen, 2006; 

Delen et al, 2007; Kiang 2007; Li et al 2009).   However, little research in higher education has focused 

on the employment of data mining methods for predicting retention (Herzog, 2006). In a comparison of 

logistic regression, decision trees, and neural networks, Herzog finds that data mining algorithms 

worked better when dealing with larger sets of variables associated with degree completion 

(Herzog,2006). When oversampling the population of non-retaining students to create a balanced data 

set, Delen found that machine learning algorithms outperformed logistic regression and ensemble 

models outperformed individual models in predicting retention outcomes. Specifically the order, from 

most predictive to least predictive specification, was 1-support vector machines 2- decision trees, 3-

neural networks 4-logistic regression (Delen,2010). Yu provides additional examples of the 

implementation of decision trees, neural networks, and multivariate-adaptive-regression-splines (MARS) 

in predicting retention (Yu et al, 2010).  

References: 

Adelman, C. (1999). Answers in the Tool Box, US Department of Education, Washington, DC. 

Angrist, Joshua D. & Jörn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricist's Companion. 

Princeton University Press. NJ. 2008. 

Anselin , Luc.  Spatial Econometrics. (CSISS) Center for Spatially Integrated Social Science Presentation: 

Bruton Center School of Social Sciences University of Texas at Dallas Richardson, TX 75083-0688 

http://www.csiss.org/learning_resources/content/papers/baltchap.pdf 

Bean, J. P. (1980). Dropouts and turnover. The synthesis and test of a causal model of student attrition. 

Research in Higher Education, 12(2), 155–187. 

Bean, J. P., & Eaton, S. B. (2000). A psychological model of student retention. In J. M. Braxton (Ed.), 

Reworking the student departure puzzle (pp.48-61). Nashville, TN: Vanderbilt University Press. 



Braxton, J. M., Sullivan, A. S., & Johnson, R. M. (1997). Appraising Tinto’s theory of college student 

departure. In J. C. Smart (Ed.), Higher education: A handbook of theory and research, Vol. 12 (pp. 107–

164). New York City: Agathon Press. 

Braxton, J. M. (2000). Reworking the student departure puzzle. Nashville, TN: Vanderbilt University 

Press. 

Braxton, J. M., Hirschy, A.S, & McClendon, S. A. (2004). Understanding and reducing college student 

departure. San Francisco: Jossey-Bass. (ASHE-ERIC Higher Education Report No. 30.3). 

Brewe, Eric, Kramer, Laird, and  George O’Brien. Investigating Student Communities with Network 

Analysis of. Interactions in a Physics Learning Center. Physics Education Research Conference 2009. Part 

of the PER Conference series Ann Arbor, Michigan: July 29-30, 2009. Volume 1179, Pages 105-108.  

Caison , Amy L. Analysis of Institutionally Specific Retention Research: A Comparison Between Survey 

and Institutional Database Methods.  Research in Higher Education, Vol. 48, No. 4 (June 2007), pp. 435-

451. 

Chapman, D. and Pascarella, E. "Predictors of academic and social integration of college students." 

Research in Higher Education, 1983, (19), pp. 295-322. 

Dey ,Eric L. and Alexander W. Astin. Statistical Alternatives For Studying College Student Retention: A 

Comparative Analysis of Logit, Probit, and Linear Regression. Research in Higher Education, Vol. 34, No. 

5. 1993.  

DeWitz , S. , Lynn ,Joseph M. Bruce, Woolsey W. Walsh College Student Retention: An Exploration of the 

Relationship Between Self-Efficacy Beliefs and Purpose in Life Among College Students. Journal of 

College Student Development. January/February 2009  vol 50 no 1 

D. Delen, G. Walker, A. Kadam, Predicting breast cancer survivability: a comparison of three data mining 

methods, Artificial Intelligence in Medicine 34 (2) (2004) 113–127. 

D. Delen, R. Sharda, P. Kumar, Movie forecast guru: a web-based DSS for Hollywood managers, Decision 

Support Systems 43 (4) (2007) 1151–1170. 

Delen, Dursun.  Decision A comparative analysis of machine learning techniques for student retention 

management. Support Systems 49 (2010) 498–506 

Herzog , Serge. Measuring Determinants of Student Return vs. Dropout/Stopout vs. transfer: A First to 

Second Year Analysis of New Freshmen. Research in Higher Education. Vol 46 No 8 Dec 2005.  

Herzog , Serge. Estimating Student Retention and Degree-Completion Time: Decision Trees and Neural 

Networks Vis-à-Vis Regression. NEW DIRECTIONS FOR INSTITUTIONAL RESEARCH, no. 131, Fall 2006 

Hasti, Tibshirani and Friedman.  Elements of Statistical Learning: Data Mining, Inference, and Prediction. 

Second Edition. Springer-Verlag. 2009. 



Krogh, Anders and Peter Sollich. Statistical Mechanics of Ensemble Learning Physical Review E (Statistical 

Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), Volume 55, Issue 1, January 1997, pp.811-

825  

Kiang ,  M.Y. A comparative assessment of classification algorithms, Decision Support Systems 35 (2003) 

441–454. 

X. Li, G.C. Nsofor, L. Song.  A comparative analysis of predictive data mining techniques, International 

Journal of Rapid Manufacturing 1 (2) (2009) 150–172. 

Miller, Thomas E. Will They Stay or Will They Go?: Predicting the Risk of Attrition at a Large Public 

University. College & University, v83 n2 p2-4, 6-7 2007.  

Miller, T.E.  and C.H. Herreid. Analysis of Variables to Predict First year Persistence Using Logistic 

Regression Analysis at the University of South Florida. College & University. Vol 83 No 3 2008. 

Pascarella, E.T., and P.T. Terenzini (1978). The relation of students’ precollege characteristics and 

freshman year experience to voluntary attrition. Research in Higher Education, 9, 347-366. 

Ronco, Sharron and John Cahill.  Does it Matter Who’s in the Classroom? Effect of Instructor Type on 

Student Retention, Achievement and Satisfaction. AIR PRofessional File. Number 100, Summer, 2006 

Stratton , Leslie S. O’Toole, Dennis M.  and James N. Wetzel. Economics of Education Review 27 (2008) 

319–331. A multinomial logit model of college stopout and dropout behavior.  

Skahill, M.P. (2002). The role of social support network in college persistence among 

freshmen students. Journal of College Student Retention, 4(1), 39-52. 

Sharda, R and  D. Delen, Predicting box-office success of motion pictures with neural networks, Expert 

Systems with Applications 30 (2) (2006) 243–254. 

St. John, E. P., Cabrera, A. F., Nora, A., and  E. H. Asker. (2000). Economic influences on persistence 

reconsidered. In J. M. Braxton (Ed.), Reworking the student departure puzzle (pp. 29–47). Nashville: 

Vanderbilt University Press. 

Thomas, Scott L. Ties that Bind: A Social Network Approach to Understanding Student Integration and 

Persistence. The Journal of Higher . Education. Vol. 71. No 5. 2000. 

Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. Review of 

Educational Research, 45(1), 89–125. 

Yu, Chong Ho. DiGangi, Samuel. Jannasch-Pennell, Angel and Charles Kaprolet A Data Mining Approach 

for Identifying Predictors of Student Retention from Sophomore to Junior Year. Journal of Data Science 

8(2010), 307-325.   

 



 

 

 


	Western Kentucky University
	TopSCHOLAR®
	May 2011

	Empirical Methods for Predicting Student Retention- A Summary from the Literature
	Matt Bogard
	Recommended Repository Citation


	Microsoft Word - 252857-text.native.1306849541.docx

