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Multiwavelets for Quantitative Pattern Matching

Bruce Kessler
Western Kentucky University

bruce.kessler@wku.edu

Abstract
The purpose of this paper is to provide an in-

troduction to the concepts of wavelets and multi-
wavelets, and explain how these tools can be used
by the analyst community to find patterns in quan-
titative data. Three multiwavelet bases are intro-
duced, the GHM basis from [3], a piecewise poly-
nomial basis with approximation order 4 from [2],
and a smoother approximation-order-4 basis devel-
oped by the author in previous work [6]. The tech-
nique of using multiwavelets to find patterns is il-
lustrated in a traffic-analysis example.

1. Introduction

The concept of wavelets and wavelet analysis
is a relatively new idea in the science of analysis,
which has been dominated over the last 200 years by
Fourier analysis. Even newer is the concept of mul-
tiwavelets, which have greater flexibility for han-
dling boundaries, symmetries, and anti-symmetries.
The purpose of this paper is to provide the network
security community an overview of the concept, and
some of the bases that are available for their use.

1.1 Multiresolution Analyses

A function φ that satisfies the dilation equation

φ(x) =
√

2
∑
n∈Z

cnφ(2x− n) (1)

for some sequence of coefficients cn is said to be re-
finable. A simple example of a refinable function
would be the characteristic function over [0, 1),

χ[0,1) =
{

1 for 0 ≤ x < 1,
0 otherwise, (2)

shown in Figure 1, since for φ = χ[0,1),

φ(x) =
√

2
(

1√
2
φ(2x) +

1√
2
φ(2x− 1)

)
.

A refinable function φ that has the property that
the set

{φ(x− n) : n ∈ Z}

is a linearly independent set is called a scaling func-
tion. A scaling function φ where the dilation equa-
tion (1) is satisfied by a finite sequence cn and∫

R
φ(x)φ(x− n) dx =

{
1 for n = 0,
0 for n ∈ Z, n 6= 0

is called an orthogonal scaling function. The func-
tion φ = χ[0,1) defined in (2), along with its integer
translates, is called the Haar basis, and is an orthog-
onal scaling function due to its very short support.

Figure 1: The orthogonal scaling function
φ = χ[0,1).

A multiresolution analysis (MRA) of square-
integrable functions defined on R (typically denoted
L2(R)) is a set of linear spaces (Vp) that satisfy the
following criteria:

• · · · ⊃ V−2 ⊃ V−1 ⊃ V0 ⊃ V1 ⊃ V2 · · · ,

•
⋃

p∈Z Vp = L2(R),

•
⋂

p∈Z Vp = {0},

• f ∈ V0 iff f(2−j ·) ∈ Vj for j ∈ Z, and

• there exists a function φ whose integer trans-
lates form a basis (minimal spanning set) for
the space V0.



Based on these criteria, scaling functions can clearly
be used to generate MRA’s. The orthogonal com-
plement of V0 in V−1 is typically denoted W0, and
a function ψ whose integer translates form a basis
for this space are called wavelets. The wavelet as-
sociated with the Haar basis is shown in Figure 2.

Figure 2: The wavelet associated with the Haar
basis.

If we define similar spaces Wj as the orthogonal
complement in Vj−1 in Vj for all integer j, called
wavelet spaces, then we may decompose a function
in V0 into increasingly ”smoother” approximations,
and keep the error in the wavelet spaces. An sim-
ple example of this process is shown in Figures 3
through 6 using the Haar basis.

Figure 3: A signal in the space V0 generated by
integer translates of the Haar basis.

Since ψ ∈ W−1, by necessity ψ will satisfy a
dilation equation of its own,

ψ(x) =
√

2
∑
n∈Z

dnψ(2x− n),

for some sequence of coefficients dn. For example,
the Haar wavelet ψ illustrated in Figure 2 satisfies
the equation

Figure 4: A best approximation in V1 of the
signal in Figure 3 at top, and the error in W1 at

bottom.

Figure 5: A best approximation in V2 of the
signal in Figure 4 at top, and the error in W2 at

bottom.

Figure 6: A best approximation in V3 of the
signal in Figure 5 at top, and the error in W3 at

bottom.



ψ(x) =
√

2
(

1√
2
φ(2x)− 1√

2
φ(2x− 1)

)
.

In the case where the MRA is generated by an or-
thogonal scaling vector, the coefficients cn and dn

can be used to construct perfect-reconstruction fil-
ters for decomposing and reconstructing the original
function in V0.

The approximation order of a scaling function
refers to the highest degree polynomials that, when
limited to a finite interval, are present in the space
V0 generated by the scaling function. A scaling
function of approximation order k is able to repro-
duce degree k − 1 polynomials exactly. For exam-
ple, the scaling function φ = χ[0,1) generates a space
that contains degree zero (constant) functions over
a finite interval [a, b], a, b integers, so we say that
φ has approximation order 1. The approximation
order of a scaling function will be an important de-
ciding factor when we start to consider bases for
applications.

1.2 Wavelets vs. Fourier Analysis

The fast Fourier transform (FFT) is a mar-
velous tool for isolating the frequencies in a dis-
crete, uniformly-sampled signal, but it has its lim-
itations. The FFT is a computationally efficient
method of calculating the coefficients an and bn,
n = 0, . . . , N − 1, needed to represent a sampled
signal {yk}N−1

k=0 as the sum

yk =
N−1∑
n=0

(
an cos

(
2π
N
nk

)
+ bn sin

(
2π
N
nk

))
for each k = 0, . . . , N − 1. Typically, one looks at
the moduli of the various complex numbers an+bni,
called the power spectrum, for an indication that
the signal has a component that oscillates n times
over the length of the signal. A modulus of zero
means that that frequency is not present in the sig-
nal, while a larger modulus means that more of that
frequency is present in the signal. This is particu-
larly useful when analyzing sound signals, especially
if trying to sort and denoise certain frequencies out
of the signal. The FFT provides no information
about where the frequencies occur in the signal, just
how much is present.

For example, the two data sets shown in Figure 7
will have different Fourier transforms, but with the
exact same power spectrum, shown in Figure 8. To
combat this shortcoming, a windowed Fourier trans-

form is used, but this in turn limits the frequen-
cies that can be measured. Also, if the same data
is added to a set of linear data, both the Fourier
transform and its power spectrum will be radically
different, as shown in Figure 9.

Figure 7: Two different, but similar, data sets.

Figure 8: The power spectrum for both of the
data sets in Figure 3.

With wavelet analysis, the two data sets shown
in Figure 7 will have completely different wavelet
decompositions, with larger magnitude coefficients
in the location of the “bump”. However, with the
use of the correct basis (namely, a basis with ap-
proximation order 2 or above), the top set of data
in Figure 7 and the data shown at the top of Figure 9
will have exactly the same wavelet decomposition.
This property can be useful when trying to analyze
data overlaid upon other background data.

1.3 Wavelets vs. Multiwavelets

The concept of a scaling function can be gen-
eralized to a vector of functions, called a scaling



vector. A scaling vector Φ = (φ1, . . . , φr)T satisfies
a dilation equation of its own,

Φ(x) =
√

2
∑
n∈Z

cnΦ(2x− n) (3)

for some sequence of r × r matrices, and the entire
set

{φj(x− n) : j ∈ {1, . . . , r}, n ∈ Z} (4)

is a linearly independent set. Scaling vectors are
said to be orthogonal if the sequence of matrices cn
is finite and the components of Φ satisfy∫

R
φi(x)φj(x− n) =

{
1 when i = j, n = 0,
0 otherwise.

Figure 9: The same data set with added linear
data, and its power spectrum.

Scaling vectors still establish MRA’s, with the
set given in (4) as the basis for V0. Within this
structure, there will exist a vector of functions
Ψ = (ψ1, . . . , ψr)T that span the orthogonal com-
plement of V0 in V−1, denoted W0, that will neces-
sary satisfy its own dilation equation

Ψ(x) =
√

2
∑
n∈Z

dnΨ(2x− n) (5)

for some finite sequence of r×r matrices dn. As be-
fore, when using an orthogonal scaling vector, the
matrix coefficients can be used to construct perfect-
reconstruction filters for the decomposition and re-
construction of the signal in V0.

There are several advantages to using multi-
wavelets for analysis over single wavelets. The Haar
scaling function defined in (2) and shown in Fig-
ure 1 is the only single scaling function to have
any symmetry/anti-symmetry properties. However,
as we shall see in the next section, we may build
scaling vectors such that each function in the vec-
tor has symmetry/anti-symmetry properties. Also,
each single scaling function φ must necessarily sat-
isfy the condition that∫

R
φ(x) dx 6= 0.

This is not true for all of the functions in a scaling
vector, but for only one of the functions. (The anti-
symmetric members of the scaling vector would not
satisfy this criteria, for example, so not all of the
scaling vector functions could be anti-symmetric.)
And lastly, for the class of scaling vectors that we
will illustrate in this paper, it is very easy to build
boundary functions and still maintain orthogonal-
ity. With the exception of the Haar basis, if you
truncate a single scaling function supported on [a, b]
to a shorter integer-length interval, the function will
no longer maintain its orthogonality to other trun-
cated functions. The scaling vectors shown in Sec-
tion 2, all of which are supported over an interval no
larger than [−1, 1], have the property that they are
orthogonal (or in the last basis shown, can be made
orthogonal with a simple procedure) when restricted
both to the interval [−1, 0] and [0, 1], meaning that
the functions, when truncated at x = 0 and normal-
ized, are still part of an orthogonal basis set on a
bounded region.

Multiwavelets do have one disadvantage over the
single wavelet constructions: the filters can not gen-
erally be applied directly to the raw data without
losing approximation order. (Much work has been
done in creating balanced scaling vectors that can be
applied directly to data. See [1], [7], and [8] for more
details.) In order to maintain the polynomial order
of the data, one has to first convert the raw data
to basis coefficients in the V0 space, called prefilter-
ing, and if reconstructing the data, convert the basis
coefficients back into data, called postfiltering. Ide-
ally, a prefilter will preserve the l2-norm of the data,
called an orthogonal prefilter, as well as preserve
the polynomial order of the data, but orthogonal
prefilters that preserve approximation order of the
basis are sometimes hard to find. (They also have
issues on bounded regions. See [5] for an excellent
introduction to prefiltering.) Luckily, an orthogo-
nal prefilter is more necessary in image compres-



sion applications than in pattern recognition. We
are able to use a relatively simple non-orthogonal
prefilter, called a quasi-interpolation prefilter, that
maps the data to basis coefficients in V0 so that
the combination of basis functions interpolates data
sampled from polynomials up to the approximation
order of the basis, and comes close to interpolating
non-polynomial data.

2. Useful Bases

There are a number of orthogonal multiwavelet
bases that have been developed. (See [9] and [10]
for some other examples.) As previously mentioned,
the ones presented here have the advantage of being
easily applied to bounded data, but they also have
another advantage. The following bases all generate
spaces that contain spline spaces; that is, piecewise
polynomial spaces over integer knots that meet cer-
tain match-up conditions at the integers. We use
the notation Sr

d(Z) to indicate the spline space of
polynomials of degree d that have equal rth deriva-
tives at integer knots, where the 0th derivative is
understood to be the function value. Thus, while
we will refer to the approximation order k of the
following bases, it it important to realize that the
V0 space generated by the bases will also contain
piecewise polynomials of degree k − 1 that are ei-
ther continuous at integer values, or in the case of
the last basis, have one derivative at integer values.

2.1 GHM Basis

The GHM basis first appeared in [3], and was re-
constructed from a macroelement perspective in [4],
and are illustrated in Figure 10. This scaling vector
Φ = (φ1, φ2)T has approximation order 2, but the
V0 space that it generates also includes the spline
space S0

1 (Z).

φ1 φ2

Figure 10: The GHM scaling vector.

The scaling vector Φ satisfies equation (3) with

the following matrix coefficients:

c−2 =
[
0 − 1

20
0 0

]
c−1 =

[
− 3
√

2
20

9
20

0 0

]

c0 =

[√
2

2
9
20

0 3
√

2
10

]
c1 =

[
− 3
√

2
20 − 1

20
4
5

3
√

2
10

]
.

The function values needed to interpolate data or
otherwise develop prefilters are

φ1(−1) = φ1(1) = φ2(0) = φ2(1) = 0,

φ1

(
−1

2

)
= φ1

(
1
2

)
= −3

√
3

10
, and φ2

(
1
2

)
=

4
√

6
5
.

Orthonormal basis elements for the left and right
boundaries of a data set are constructed by keep-
ing the right and left half of φ1, respectively, and
normalizing; that is,

φL
1 =
√

2φ1χ[0,1] and φR
1 =
√

2φ1χ[−1,0],

respectively. Their decomposition filters reflect this
normalization in all but the entries corresponding
to dilated versions of these functions.

The multiwavelet Ψ = (ψ1, ψ2)T associated with
the GHM scaling vector is illustrated in Figure 11,
and satisfies the equation (5) with the following ma-
trix coefficients:

d−2 =
[
0 1

20

0
√

2
20

]
d−1 =

[
3
√

2
20 − 9

20
3
10 − 9

√
2

20

]

d0 =

[√
2

2 − 9
20

0 9
√

2
20

]
d1 =

[
3
√

2
20

1
20

− 3
10 −

√
2

20

]
.

Only truncated and normalized versions of the sym-
metric ψ1 are needed at the boundaries,

ψL
1 =
√

2ψ1χ[0,1] and ψR
1 =

√
2ψ1χ[−1,0]

on the left and right, respectively.

ψ1 ψ2

Figure 11: The GHM multiwavelet.



2.2 Approximation-Order-4 Basis

The groundwork for this basis was laid in [2],
although the scaling vector was not explicitly con-
structed in that paper. The scaling vector Φ =
(φ1, φ2, φ3, φ4)T is illustrated in Figure 12, and has
approximation order 4. The V0 space that it gener-
ates also includes the spline space S0

3 (Z). In fact,
one may notice that φ2 and φ3 are quadratic and
cubic polynomials, respectively, restricted to [0, 1]
and normalized.

φ1

φ2

φ3

φ4

Figure 12: An approximation-order-4 scaling
vector.

The scaling vector Φ satisfies the dilation equa-
tion (3) just as with the previous GHM scal-
ing vector. However, the four 4 × 4 matrix
coefficients are too large to provide here, and
are available instead from the author’s website,
www.wku.edu/˜bruce.kessler, as are the function
values needed to interpolate data or otherwise de-
velop prefilters.

As before, orthonormal basis elements for the
left and right boundaries of a data set are con-
structed by keeping the right and left half of φ1,
respectively, and normalizing; that is,

φL
1 =
√

2φ1χ[0,1] and φR
1 =
√

2φ1χ[−1,0],

respectively. Their decomposition filters reflect this
normalization in all but the entries corresponding
to dilated versions of these functions.

The multiwavelet Ψ = (ψ1, ψ2, ψ3, ψ4)T associ-
ated with this scaling vector is illustrated in Fig-
ure 13, with the matrix solutions to the dilation
equation (5) also available on the author’s website.
Again, only truncated and normalized versions of
the symmetric ψ1 are needed at the boundaries,

ψL
1 =
√

2ψ1χ[0,1] and ψR
1 =

√
2ψ1χ[−1,0]

on the left and right, respectively.

ψ1

ψ2

ψ3

ψ4

Figure 13: The multiwavelet associated with the
scaling vector in Section 2.2.

2.3 Differentiable Basis with Approxima-
tion Order 4

Each of the bases shown in the previous sections
include a continuous spline space, but the V0 space
in each case also contains much more than that.
With each basis, V0 will also contain functions that
look like the left and right halves of the φ1 func-
tion in that particular scaling vector. Hence, each
approximation space, even at the lowest resolution,
will contain functions that have at least one non-
differentiable “corner”. This may not be desirable,
especially if the points of interest in the original



signal happen to fall on these corners at every res-
olution (for example, at the midpoint of the data
set). In this and many other cases, a differentiable
basis (i.e., has no corners) would be more useful.

A scaling vector was developed by the author in
[6] that has approximation order 4, and generates
a space that contains the spline space S1

3 (Z), that
is, the space of piecewise cubic polynomials that
are both continuous and differentiable at the inte-
ger knots. This scaling vector Φ = (φ1, φ2, φ3, φ4)T

is illustrated in Figure 14. As with the basis dis-
cussed in Section 2.2, the matrix coefficients that
satisfy the dilation equation (3) for Φ are available
on the author’s website, as are the function values
needed to interpolate data or otherwise develop pre-
filters. Left- and right-hand versions of both φ1 and
φ2 can be created to handle bounded data.

φ1 φ2

φ3 φ4

Figure 14: A differentiable
approximation-order-4 scaling vector.

The multiwavelet Ψ = (ψ1, ψ2, ψ3, ψ4)T associ-
ated with this scaling vector is illustrated in Fig-
ure 15, with the matrix solutions to the dilation
equation (5) also available on the author’s website.
The website also contains the matrices needed for
filter construction of the left and right boundary
wavelets.

ψ1 ψ2

ψ3 ψ4

Figure 15: The multiwavelet associated with the
scaling vector in Section 2.3.

3. Pattern Matching

The premise behind using wavelets for pattern
matching is that the wavelet decomposition for the
pattern for which you are searching and for the pat-
tern added to data sampled from a polynomial of de-
gree less than the approximation order of your scal-
ing vector will be equal. For example, the wavelet
decompositions for both data sets shown in Fig-
ure 16 will be identical when using either of the
bases discussed in Sections 2.2 and 2.3. It is neces-
sary that the pattern not be in the lowest-resolution
approximation space, so that it will not have a
wavelet decomposition with only 0 coefficients. This
problem is rare, but if it occurs, it is remedied by ei-
ther continuing the decomposition to an even lower-
resolution space, or by using a different scaling vec-
tor of lower approximation order.

In most cases, the pattern will not be overlaid
upon perfectly polynomial data, and so, the wavelet
decompositions will not match exactly. However, if
the pattern is prominent enough in the signal so
that the root mean square error (RMSE) of the
new decomposition {di} when compared to the de-
composition {d∗i } of the original pattern, as defined



by

RMSE =

√√√√√√
N∑

i=1

(di − d∗i )2

N
,

is sufficiently small, then the pattern will still be
detected.

Figure 16: Pattern data (top), and the same
data obscured by cubic polynomial data

(bottom).

When using a single scaling function and wavelet
are used in applications, each successively smoother
approximation of the data stretches the support of
the basis functions, effectively drawing more data
from outside the region where the pattern actu-
ally occurs. By using the scaling vectors and mul-
tiwavelets mentioned in Section 2, we are able to
analyze data on a bounded region, and ignore data
outside of that region.

3.1 When to Use Wavelets

Wavelet decompositions can be used to find pat-
terns in any type of data, but there are no advan-
tages to using them for exact pattern matching. For
example, if searching for the word “the” in a text
file or in packet data, we have to search for the ex-
act ASCII values 116, 104, and 101 in succession.
Changing those values, even by a constant amount,
changes the word. Also, to apply the wavelet bases
mentioned in Section 2, we need 2n + 1 data val-
ues for some integer n > 1 for the DGM and the
approximation-order-4 basis, and 2n +2 data values

for some integer n > 1 for the basis in Section 2.3,
so we would have to pad the target pattern with
spaces. This type of search can be conducted much
more efficiently using other search methods, such as
Bloom filters, etc.

However, for quantitative data like packet traffic
dependent upon time, multiwavelets have the po-
tential to spot patterns that are not immediately
noticable to the human eye, such as in the bottom
graph of Figure 16. The following section gives an
example of how multiwavelets can be used to detect
a “low and slow” pattern caused by data exfiltra-
tion.

3.2 Traffic Analysis Example

Suppose that we have a corrupted computer,
and we are aware through previous experience that
this particular piece of malevolent code tends to
“sneak” data out under the “TCP” protocol in the
following pattern:

• a single packet of size 256 bytes, followed ap-
proximately 1 second later by another packet
of size 512 bytes,

• one second later, four packets of size 256 bytes
are sent with a quarter second gap between
the packets, and

• one quarter-second later, three packets of size
512 bytes are sent, followed one-quarter sec-
ond later by one packet of size 256 bytes.

The accumulated bytes sent with respect to time in
seconds are shown in Figure 17.

Total
Bytes

Seconds
Figure 17: Accumulated bytes for the example

pattern.

The packets described above have been inserted
into a set of network traffic packet collected from
the author’s laptop over roughly 4 minutes of usage,
starting at t = 240 seconds. The total accumulated
outgoing bytes are illustrated in Figure 18. To ap-
ply the basis looking for this specific pattern, we
accumulate the bytes on quarter-second intervals,



and generate a wavelet decomposition for a sliding
4-second window, which is compared to the origi-
nal pattern’s decomposition with the RMSE. The
RMSE for the different starting times are shown
in Figure 19. Note the low value of the RMSE at
t = 240 seconds, indicating a close match to our
target pattern at that time.

Total
Bytes

Seconds
Figure 18: Accumulated outgoing bytes of a
sample usage period plus the packets in our

pattern.

RMSE

Seconds
Figure 19: RMSE values (less than 50) for
blocks of data with different starting times.
Note the low value of the RMSE at t = 240

seconds, indicating a close match to our target
pattern at that time.

In fairness, this method of finding patterns
has many of the same weaknesses found in other
signature-matching approaches. The pattern has to
be known ahead of time, which means that this de-
tection scheme would still be vulnerable to first-time
attacks. Also, a completely innocuous data flow oc-
curring with very similiar timing and quantities as
our pattern will still cause a low RMSE value, pos-
sibly causing a false-positive alert. We do claim,
however, that we have a greater capacity for finding
patterns in quantifiable amounts that are obscured
by standard network traffic. Also, we can adjust
the sensitivity of the search without changing the
signature for which we are searching, by adjusting
the threshold of the RMSE’s for which an alert
is issued. Thus, statistical techniques and adaptive
learning can be used to help develop optimal thresh-
old levels for a particular pattern.

4. Conclusion

Wavelet analysis holds an as-of-yet untapped
potential for analyzing usage patterns in network
traffic flows, due to their ability to filter out data
up to a given approximation order. Neither sim-
ple character searches nor Fourier analysis has this
capability. Also, while Fourier analysis generally
gives only frequency information within an anal-
ysis window, wavelet analysis gives some amount
of both frequency information and the location of
that frequency activity. The additional information
comes at no additional computational costs, since
the bases are generally applied by convolving matrix
filters over the data (repeated matrix multiplication
over sliding blocks of data). In particular, the mul-
tiwavelet bases introduced in this document should
prove to be particularly useful in pattern-matching
applications, due to

• their short support (that is, non-zero only over
a small interval),

• the inclusion of splines in the approximation
spaces instead of just polynomials, and

• the ability to use them on time series with left
and right boundaries.

The author is currently working with com-
puter scientists at the CyberDefense Lab (CDL)
at Western Kentucky University to develop soft-
ware that will utilize these bases in network secu-
rity, intrusion-detection, and data-extrusion appli-
cations. Once developed, we will study the effective-
ness of this type of analysis in detecting malicious
behavior as compared to the more commonly used
techniques, with the hope of improving detection
capabilities while maintaining a low false-positive
rate. The software will initially be tested in the
CDL’s sandbox while running attacks from its at-
tack library with various background usage scripts
being implemented, but will eventually move to less
controlled network environments.

Acknowledments: This work supported in part
by the NACMAST consortium under contract
EWAGSI-07-SC-0003.
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