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ABSTRACT 

Automated monitoring of circadian rhythms is an efficient way for gaining insight into 

oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. 

Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the 

green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light 

beam through a culture at regular intervals and determining the decrease in light transmittance 

due to the accumulation of cells in the beam. In this study, the monitoring process was optimized 

by constructing a new computer-controlled measuring machine that limits the test beam to 

wavelengths reported to be specific for phototaxis and by choosing an algal strain, which does 

not need background illumination between test light cycles for proper expression of the rhythm. 

As a result, period and phase of the rhythm are now unaffected by the time a culture is placed 

into the machine. Analysis of the rhythm data was also optimized through a new algorithm, 

whose robustness was characterized using virtual rhythms with various noises. The algorithm 

differs in particular from other reported algorithms by maximizing the fit of the data to a 

sinusoidal curve that dampens exponentially. The algorithm was also used to confirm the 

reproducibility of rhythm monitoring by the machine. Machine and algorithm can now be used 

for a multitude of circadian clock studies that require unambiguous period and phase 

determinations like light pulse experiments to identify the photoreceptor(s) that reset the 

circadian clock in C. reinhardtii. 

 

Keywords: Circadian rhythms, algorithm, phototaxis, Chlamydomonas, phase shift, automated 

monitoring 

Abbreviations: CT unit, circadian time unit or 1/24
th

 of a circadian rhythm’s free-running period.



1. Introduction 

 

Circadian rhythms are oscillations in organismal behavior, physiology or biochemistry 

that continue under constant conditions with a period of about 24 h but that adjust to 

environmental time cues like the daily changes in light or temperature. The first circadian rhythm 

described was that of leaf movements in plants. Circadian rhythms are based on an endogenous 

pacemaker that allows organisms to measure time. Research on these rhythms and their 

underlying pacemaker usually involves repeated measurements at regular intervals for several 

days. Efforts have been made early on to automate the measurements. For example, automated 

monitoring of Drosophila rhythms in eclosion [22] and locomoter activity [2] enabled the 

isolation of the first circadian clock mutants [8]. The measurement of transcriptional rhythms in 

living organisms could be automated based on the reporter gene luciferase [5, 12]. It allowed for 

the isolation of circadian clock mutants in Arabidopsis [11] and the cyanobacterium 

Synechococcus [7]. Since monitoring of the circadian rhythm in leaf movement of Arabidopsis 

had also been automated [?], it could be used to confirm that the isolated mutants were defective 

in this rhythm as well [11] and therefore true clock mutants. 

 

Another rhythm that lends itself to automated measurement is that of phototaxis. 

Phototaxis is a movement of organisms that is oriented with respect to the direction of the light. 

In positive phototaxis, the movement occurs towards the light source, whereas in negative 

phototaxis (usually at high light intensities), it occurs away from the light source. For several 

flagellated algae like Euglena gracilis [16] and Chlamydomonas reinhardtii [1], phototaxis was 

shown to exhibit a circadian rhythm. Automated monitoring of rhythms in phototaxis has been 



accomplished based on a narrow and dim test light beam that is directed through the culture at 

regular intervals [1, 6, 10]. A light sensor records the extent of decrease in transmittance during 

the duration of the beam due to accumulation of cells in the beam when they undergo phototaxis. 

As a consequence, the beam serves the two functions of eliciting the behavior and recording it. 

Analysis of these rhythms for period and phase has been accomplished by determining 

successive minima. This was either done by hand [10] or by fitting a parabola [6]. 

 

When Kondo and coworkers [6] used their phototaxis machine to acquire an action 

spectrum for the resetting of the rhythm by light in C. reinhardtii, they discovered that the simple 

act of placing the cultures into the machine could already cause a phase shift. Depending on 

where in the circadian cycle the culture was at this time, the shift could be considerable (up to 9 

h). The most likely explanation for this phenomenon is the presence of the white background 

illumination the authors used between test light cycles in order to allow their particular strain of 

C. reinhardtii (the cell wall deficient mutant CW15) to exhibit a prolonged rhythm. Additionally, 

their white test light beam, although narrow and dim, could also have contributed to the phase 

shift.   

 

We became interested in determining the photoreceptor(s) that are involved in the light-

induced resetting of the circadian clock in C. reinhardtii. This organism is a unicellular green 

alga that serves as model for research on a number of cellular processes including the circadian 

clock [13, ?]. In addition to automated monitoring of circadian phototaxis rhythms, automated 

monitoring of circadian transcription in the chloroplast of living cultures has recently been 

developed for this organism based on a luciferase reporter gene [?]. In order to make our 



measurements of circadian phototaxis rhythms amenable to resetting experiments by light pulses, 

we constructed and characterized a phototaxis machine that does not cause a measurable phase 

shift when cultures are placed into it. The machine also uses the original basic design of 

monitoring the decrease in transmittance from a small and dim light beam due to accumulation 

of cells in the beam. However, the test light beam originates from LEDs with a narrow 

wavelength spectrum reported to be specific for phototaxis [19]. With this set-up, strain CC124 

of C. reinhardtii displays a rhythm of about five cycles even when energy sources in the form of 

background illumination between test light cycles or organic compounds in the medium are 

omitted. 

 

We also designed an algorithm for analysis of the rhythm data and tested its robustness. 

The algorithm takes every single test light cycle into account by fitting the data to a cosine curve 

that dampens exponentially and shows global parabolic distortion. The algorithm can also 

analyze rhythms derived from various time points during the test light cycle and therefore allows 

for the determination of the optimal time point for a particular strain. 

 

 

2. Results and Discussion 

 

2.1 Algorithm robustness 

 

The rhythm of phototaxis exhibited by strain CC124 of Chlamydomonas reinhardtii in 

autotrophic medium and with no background light between test light cycles usually ceases after 



about 5 days (Fig. 1). This is most likely due to an inability of the cells to replenish their energy 

stores through photosynthesis. Therefore, we decided to test the accuracy of our algorithm in 

determining period and phase of virtual rhythms with only three cycles that have various degrees 

of noise added to their amplitude (Fig. 2). Three full cycles represent the minimum any analysis 

of actual data would be based on. Virtual rhythms with noise were created by sampling a cosine 

curve with a period of 24 h, a phase of 12 h, and an amplitude of 1 at hourly intervals and then 

adding random variables to the amplitude with a mean of zero and a standard deviation that is a 

particular percent of the amplitude. The margin of error for period and phase determinations at 

the 95% confidence level is depicted in Figure 2D. It is based on 250 random data sets per noise 

level. Figure 2D shows that noises with standard deviations of 10, 25, and 50% of the amplitude 

give rise to periods with ±0.170, 0.425, and 0.850 h of error about the correct period of 24 h, 

respectively, and phases with ±0.213, 0.532, and 1.065 h of error about the correct phase of 12 h, 

respectively. We repeated the analysis with five full cycles, which represents a more typical data 

set obtained from the phototaxis machine. The same levels of noise then give rise to periods with 

±0.071, 0.178, and 0.356 h of error about the correct period, respectively, and phases with 

±0.172, 0.429, and 0.858 h of error about the correct phase, respectively. Interestingly, 

increasing the cycle number from 3 to 5 will increase the accuracy of period determination 

considerably but does not increase the accuracy of phase determination to the same extent. In 

general, our results indicate that noises of perhaps up to 25% will give a reasonably accurate 

determination of period and phase, but that rhythms with a higher noise level should be avoided. 

The circadian rhythms of phototaxis actually measured by our machine generally show levels of 

noise that are much below the 25% (compare Fig. 1 and Fig. 2B). (Wouldn’t the correlation 

coefficient say something about the “noise” of the actual data as compared to the virtual data?) 



Since the dampening in our original data is accounted for in our algorithm and therefore does not 

contribute significantly to possible inaccuracies in period and phase determinations, we conclude 

that our algorithm is very robust towards the noise in our original data.   

 

We decided to construct our own algorithm for the analysis of the phototaxis data 

because none of the existing algorithms met our specific needs. The algorithms developed some 

time ago for the analysis of circadian phototaxis data [6, 10] only take into account a limited 

number of the data points collected during each cycle. The algorithms developed for circadian 

bioluminescence data [14, 15, 18] would have been more appropriate for our data, since they 

were designed for the analysis of prolonged rhythms. This is not the case for the algorithms to 

analyze microarray data [3, 9, 17, 20, 21], which were developed for the very limited number of 

cycles and data points necessarily connected with this technique and whose primary function is 

to evaluate whether a circadian rhythm is present or not. However, even the algorithms for 

analysis of bioluminescence data were not optimal for our data, since they do not include the 3 

characteristics that together make our algorithm particularly fitting. These 3 characteristics are as 

follows: (1) Detrending of our data is accomplished with a quadratic polynomial rather than just 

a linear polynomial to allow for a better fit of the periodic components of the data. (2) Because 

we are interested in the most accurate period and phase determination from the data, and not in 

reproducing the general shape of the period components, our model of the data only uses a single 

sinusoidal component. (3) Because the amplitude of the periodic components of our data gets 

smaller over time, our model cosine curve includes an exponential decay factor in the amplitude. 

We find no other algorithm that allows for characteristic 1 and particularly characteristic 3 in its 

model.  



 

The algorithm we developed can also be used for the analysis of other circadian rhythms 

such as bioluminescence rhythms of luciferase reporters or RNA and protein rhythms from 

northern and western blots. 

 

2.2 Effect of data range variability on algorithm 

 

Step (1) in our algorithm for rhythm data analysis is the only step that involves the 

subjectivity of the experimenter. In this step, the valid data range is set by hand. It allows the 

exclusion of phototaxis data at the start of the measurement if they appear noisy and at its end if 

the rhythm has ceased. We therefore analyzed the impact that the choice of different ranges has 

on the calculated period and phase using analysis of variance and Tukey multiple range test 

(α=0.05).  

Based on a data set of 58 replicate samples, we first analyzed various starting times with 

a fixed ending time of 136 hours or about 5.25 cycles into the measurements (Fig. 3, upper 

panel). We found that there was a significant difference in period but not phase when the 

analysis included the first 3 hours of the measurement compared to when they were omitted. This 

difference indicates that there is a short time after the samples have been placed in the phototaxis 

machine during which the cultures adjust to the new condition of having their phototaxis tested 

at regular intervals. There was no significant difference in either period or phase when the 

starting time for the analysis was varied between 4 and 39 hours into the measurements. Only 

when the first 46 hours or more were omitted from the analysis was there again a significant 

difference in period but not phase. The failure to detect a significant difference in phase for the 



latter conditions is most likely due to the large variability among the replicates, since the 

standard deviation rose abruptly to ~5 circadian time (CT) units when the 46 h threshold was 

reached (see Fig. 3). The phase of a rhythm is commonly expressed in CT units rather than in 

absolute hours. A CT unit is equivalent to 1/24
th

 of the free-running period. It generally allows 

for a better comparison of phases between rhythms that differ in their free-running period. For 

analysis of the impact of the ending time, we used a fixed starting time of 20 h into the 

measurements (Fig. 3, lower panel). We found that there was no significant difference in period 

or phase when the ending time was varied between 97 and 142 hours into the measurements at 

quarter period intervals. Since a few of the replicates showed a “cut-off” rhythm (see below) and 

some others might not be considered optimal rhythms, we repeated our analysis by including 

only the 40 best of the 58 replicates and found the exact same significant and non-significant 

differences. 

We therefore conclude that choosing an appropriate start of the data range for the analysis 

is crucial but choosing an appropriate end is not. However, there is also quite a broad window at 

the start of the data range where different starting times yield nearly identical results.  For 

example, for the starting times between 7 and 26 hours into the measurement the difference in 

period has a mean of only 0.05 ±0.02 h for the 58 replicates. The respective difference in phase 

has a mean of only 0.07 ±0.04 CT units. The standard deviation for this range of starting times is 

also nearly identical with a mean of 0.39 ±0.04 h for the period and 0.64 ±0.08 CT units for the 

phase.  

 

2.3 Effect of channel position on rhythms 

 



 We tested whether all channels in the phototaxis machine give rise to rhythms with the 

same period and phase or whether differences between channels, due to possible differences in 

environmental conditions, cause detectable differences in these rhythm parameters. We 

conducted three independent experiments, in which aliquots of the same culture were placed into 

each of 59 channels. The individual experiments differed slightly from each other. The average 

period for each experiment was 25.92, 25.80, and 25.77 h with a standard deviation of 0.32, 0.29, 

and 0.34 h, respectively, and the average phase was 20.35, 20.66, and 20.61 CT units with a 

standard deviation of 0.45, 0.66, and 0.60 CT units, respectively. However, analysis of variance 

revealed no significant difference for either the period or the phase between individual channels 

even when the data were normalized (see materials and methods). This indicates that the 

conditions in the phototaxis machine are fairly similar between the channels. 

 

2.4 Effect of truncated or “cut-off” rhythms on algorithm performance 

 

Although we optimized the amount of neutral density filter between the test light LEDs 

and the cultures to bring the intensity of the test light beam into the range of the light sensor, 

truncated or “cut-off” rhythms may sometimes be measured (Fig. 1, lower panel). These come 

about when the light intensity of the test beam is saturating the light sensor and reductions in 

light transmission due to accumulation of cells in the beam during times of low phototactic 

activity are not recorded. We tested the effect of cut-off truncation on the ability of our algorithm 

to calculate period and phase for aliquots of the same culture. The analysis is based on three 

independent experiments with 3, 9, and 13 cut-off rhythms versus 52, 45, and 41 normal 

rhythms, respectively. The average period and phase calculated for the cut-off versus the normal 



rhythms differed only slightly. The difference was 0.11, 0.30, and 0.09 h for the period and 0.01, 

0.02, and 0.00 CT units for the phase, respectively, in the three independent experiments. The 

standard deviations of the 6 groups (3 cut-off and 3 normal) were also similar with an average of 

0.26 ±0.05 h for the period and 0.51 ±0.12 CT units for the phase. However, when using analysis 

of variance and Tukey multiple range test (α=0.05), we found a significant difference in period 

but not phase for the cut-off versus the normal rhythms. In general, our results suggest that cut-

off truncation of a rhythm significantly influences its analysis by our algorithm but also that the 

period and phase values calculated from such a rhythm are still very close to those from a rhythm 

without cut-off. As a consequence, analysis results from cut-off rhythms should be treated with 

caution and only used as a first estimate. 

 

2.5 Phase variability based on time cultures are put into phototaxis machine 

 

Kondo and coworkers [6] demonstrated that simply placing their cell wall deficient strain 

of C. reinhardtii (CW15) into their phototaxis machine could lead to a phase shift. This is 

obviously problematic when performing experiments designed to determine phase shifts upon 

light pulses. We tested whether an experimental design could be developed that would prevent 

phase shifts caused by placing the cultures into the machine. Accordingly, we monitored 

circadian rhythms of phototaxis without background light between test light cycles. We were 

able to do this by choosing strain CC124. This strain shows an acceptable circadian rhythm of 

phototaxis even without background light (Fig. 1), which is not the case for strain CW15. We 

also avoided as much as possible exciting other photoreceptors besides the ones involved in 

phototaxis when monitoring the circadian phototaxis rhythm by using narrow wavelength LEDs 



for the dim test light beams. Sineshchekov and coworkers [19] demonstrated that phototaxis in 

C. reinhardtii is mediated by the two rhodopsin photoreceptors CSRA and CSRB, which show 

maximal sensitivity in producing receptor currents at 510 nm and 470 nm, respectively. The dim 

test light beams in our phototaxis machine originate from LEDs with a maximum at 507 nm and 

a full width at half maximum of 30 nm.  

 

The upper panel in Figure 4 demonstrates that culture aliquots placed into the phototaxis 

machine at different times during the 12 h dark phase show period and phase changes of their 

rhythms that are close to zero. The data are based on three independent experiments with 

triplicates for each time point per experiment. Analysis of variance revealed that there is no 

significant difference in period or phase between any of the time points. Furthermore, if 

compared to cultures that received a 30 min white light pulse of 2.18 µmol photons m
-2

 s
-1

 at 

various times during their 12 h dark phase (Fig. 4, lower panel), there is a significant difference 

in phase change between most of these cultures and the cultures that were placed into the 

machine at different times (the ones depicted in Fig. 4, upper panel). Statistical significance was 

evaluated using analysis of variance and Tukey multiple range test (α=0.05). In conclusion, our 

results suggest that the phase shifts determined after a light pulse are solely due to the light pulse 

and not a combination of the light pulse and the placement of the culture into the phototaxis 

machine. Our results also suggest that significant phase shifts can be induced with low intensity 

light pulses. 

 

In consequence, our machine and algorithm can now be used for a variety of circadian 

clock experiments that require unambiguous period and phase determinations. These 



experiments are not limited to determining phase shifts upon light pulses but may involve as 

varied studies as the effect of mutations or chemical treatments on either the pacemaker or the 

resetting mechanism. Like the plant model Arabidopsis, C. reinhardtii has the advantage that 

automated monitoring is available of either circadian rhythms of bioluminescence based on the 

reporter gene luciferase [?, ?] or of a natural and complex physiological rhythm, which is that of 

leaf movement in Arabidopsis [?] and that of phototaxis in C. reinhardtii. 

 

 

3. Conclusions 

 

We have shown that the machine we constructed is well suited for automated monitoring 

of circadian phototaxis rhythms exhibited by the model organism Chlamydomonas reinhardtii. 

We also demonstrated that the algorithm we designed for analyzing the data is robust. There is 

no difference in rhythm characteristics recorded by different channels of the machine, but if a 

rhythm shows truncation of its maxima or minima due to sensor limitations, the algorithm is 

significantly affected. A guideline for optimal analysis under our conditions is to include as 

many valid cycles of the data as possible but at a minimum 3 full cycles and to set the start of the 

data range for the analysis anywhere between 7 to 26 h into the phototaxis measurements. This 

guideline might have to be adjusted, if a different strain or species is analyzed. But most 

importantly, we succeeded in developing an experimental design based on the phototaxis 

machine and the algorithm that allows the determination of circadian clock resetting by light 

pulses without interference from placing the cultures into the machine. This will provide a basis 

for the analysis of mutant strains defective in the expression of particular photoreceptors and 



therefore an unambiguous experimental approach for determining the photoreceptor(s) that resets 

the circadian clock in C. reinhardtii. However, the machine and the algorithm will also enable 

the study of many other aspects of the circadian clock in C. reinhardtii. 

 

 

4. Materials and methods 

 

4.1 Strain and growth conditions 

 

Chlamydomonas reinhardtii strain CC124 (137c mt
-
) was obtained from Christoph Beck 

(Albert-Ludwig University, Freiburg, Germany) and used in this study. The strain is also 

available from the Chlamydomonas Center (Duke University, Durham, NC, USA). Cells were 

grown photoautotrophically in 0.3 HSM [4] in a light-proof, temperature-controlled incubator 

(818, Precision). Cells were inoculated from liquid stock into 1 L bottles containing 1 L 0.3 

HSM at a concentration of 10
4
 cells/mL. Cultures were aerated with an aquarium pump and 

grown at 20
o
C under 12 h light/12 h dark cycles.  Light was provided from plant & aquarium 

fluorescent bulbs (F20T12-PL/AQ wide spectrum, General Electric) from opposite sides with an 

intensity of 83 µmol photons m
-2

 s
-1

 per side. For experiments involving the manipulation of 

cultures during the dark phase, the light/dark cycle was set so that the dark phase coincided with 

the workday. When cultures reached late log phase of about 1x10
6
 cells/mL after having been 

exposed to at least 4 light/dark cycles, 3 ml aliquots in 35 mm diameter petri dishes were either 

placed directly into the phototaxis machine or placed into a dark box at the end of the last light 



phase. Cell concentrations were determined with a hemacytometer [4] and light-tightness of the 

incubator and dark box was confirmed with x-ray film. 

 

4.2 Application of light pulses 

 

Light pulses were applied from an Oriel 150 W solar simulator (Spectra-Physics) with a 

420-630 nm dichroic cold mirror, which reflected only the visible portion of the light onto the 

culture sample. Before the collimated light beam reached the culture, it passed through a series 

of seven beamsplitters (Melles Griot Optics Group) and a 30
o
 diffuser (Edmund Optics) reducing 

the light intensity to 2.18 µmol photons m
-2

 s
-1

. Culture samples were removed from the dark 

box, exposed to the light pulse for 30 min starting at the indicated times, and put back into the 

dark box. Finally, all cultures including the controls that did not receive a light pulse were placed 

into the phototaxis machine 12 h after the lights went off. All manipulations before and after the 

light pulse were carried out in complete darkness. 

 

4.3 Construction of the phototaxis machine 

 

The apparatus for assaying the phototaxis rhythm of C. reinhardtii represents a 

modification from the one described by Kondo and coworkers [6]. A partial illustration of the 

set-up is depicted in Figure 5. Two 28 x 38 cm black plastic plates of 1 cm thickness (F in Fig. 5) 

were each counter bored to securely fit 30 petri dishes of 35 mm diameter and 10 mm height 

(Corning) containing 3 ml culture aliquots. The counter bored holes (D in Fig. 5) are arranged in 

six rows of five holes at 5 cm distance from each other. The 0.2 cm thick bottom of each hole 



contains a 3 mm diameter hole in its center for the test light beam (E in Fig. 5). A 45 x 45 x 20 

cm metal test chamber box was constructed for each plate so that the plate can be slid into the 

box from the front much like a drawer. The boxes are temperature controlled via an external 

circulating water bath and heat exchanger coils as well as light proof as confirmed with x-ray 

film. The boxes also contain circuit boards with light sensors, test lights, white background 

lights, and temperature sensors. When a plate is inserted into its test chamber box, each culture 

dish aligns with a test light below and light sensor above (Fig. 5). An LED with a maximum at 

507 nm and a full width at half maximum of 30 nm (RL5-A7032, Super Bright LEDs, K in Fig. 

5) provides the test light from below each culture through the 3 mm diameter hole. The 

transmission intensity of this light beam is detected by a solid state light sensor (TSL257, Taos, 

A in Fig. 5) centered above each culture dish. Permanently installed neutral density filters placed 

in the counter bored holes below the culture dishes bring the maximum intensity of the test light 

beam into the operating range of the light sensor.  Each light sensor produces a DC voltage (0-

5vdc) proportional to the intensity of light it receives.  These 60 light sensor output voltages are 

recorded as 60 channels with a data acquisition module (PCI-6225, National Instruments) and are 

stored in data files on the controlling computer system.   

 

In each test chamber box, twenty white light LEDs (RL5-W45-360, Super Bright LEDs, 

B in Fig. 5) are arranged above the culture board at the intersection of four cultures for possible 

background illumination between test light cycles. The temperature is kept constant by a 

circulating water bath (Isotemp 3016D, Fisher Scientific) that pumps water through copper coils 

inside each test chamber box (J in Fig. 5). A temperature sensor (K-type, Omega, G in Fig. 5) 

contacts the bottom of the sample plates in each test chamber.  This allows for automated real 



time monitoring and recording of the temperature to verify constant conditions.  Temperature 

data are acquired with a thermocouple input module (USB-9211, National Instruments).  The 

two test chamber boxes are stacked on a shaker table (6000, Eberbach).  The shaker speed is 

manually set at a point to maximize redistribution of the sample at the end of each test light cycle 

but below the point of causing spillage.  All of the functions of lighting, timing, shaking, and 

recording of data is accomplished with a custom designed software program written with 

LABVIEW that operates under Windows on a dedicated PC.  The software controls relays in a 

custom designed external electronics interface box that in turn controls the on-off status of 

components such as lights and shaker. The software program menu allows the user great 

flexibility in the control and timing of test parameters.  The software controls the timing of the 

test light cycles, shaking times and duration, white light timing, monitors temperature, and 

records data at user-defined intervals.  

 

We confirmed that the background illumination in our machine was not too bright to 

dampen the phototaxis rhythm by creating a light intensity gradient in one of the two boxes by 

entirely turning off three of the four rows of background LEDs. This did not increase the 

duration of the rhythm for strain CC124 nor for strain CW15 (Chlamydomonas Center) when 

background illumination was supplied for the entire 45 min between each test light cycle.  

 

For all experiments described here, the test light beam was set to come on every hour for 

15 min with light transmission readings taken every minute. All analyses of circadian rhythms 

data reported are based on the light transmission reading obtained 11 min into the test light cycle. 

 



4.4 Algorithm for rhythm data analysis 

 

Period and phase data were generated using an algorithm in Mathematica™ that produces 

a model of the raw data through the following steps:  

(1) The experimenter determines the valid data range to give the original data for the analysis. 

This step allows the exclusion of raw data at the beginning and at the end of the measurement 

period. The valid data range is determined only once for a particular experiment and applied to 

all rhythms that were measured simultaneously.  

(2) The algorithm finds a least-squares quadratic fit to each data set in the form of  

f x( )= ax
2 + bx + c . 

(3) The algorithm subtracts the quadratic fit from the data so that they oscillate around the 

horizontal axis.  

(4) The algorithm takes the discrete Fourier transform of the adjusted data to determine the 

dominant frequency. This provides an "acceptable" window of periods for a least-square fit to a 

sinusoid.  

(5) The algorithm fits the adjusted data to the model  

g t( )= ke
−rt cos

2π
p

t − n( )
 

 
 

 

 
  

by solving for k, n, p, and r to minimize  

Σ adjusteddata t( )− g t( )( )2. 

(6) The algorithm minimizes a second time by fitting the original data to the model  

h t( )= at
2 + bt + c + ke

−rt cos
2π
p

t − n( )
 

 
 

 

 
  



while solving for a, b, c, k, n, p, and r within the constrains set in step 2 and 5. The constraints 

for a, b, c, and r are set to between -0.5 and 2.5 times the previous value, for k to between 0 and 

2 times the previous value, for n to between –π and +π of the previous value, and for p to 

between 0.5 and 1.5 times the previous value. In each cosine equation of step 5 and 6, p  

represents the period, and the phase is given in absolute hours by 
pn

2ππππ
 or in CT units by 

24n

2ππππ
.  

(7) The algorithm generates a table with the period and phase (in CT units) of each data set as 

determined from the model in step 6 together with the correlation coefficient.  

(8) The algorithm expresses the phase with respect to a time chosen by the experimenter prior to 

or after the start of the data range used for the analysis. Thus, the phase can be expressed with 

respect to the time a light pulse was given. This is important, since a light pulse can change the 

period as well as the phase of the rhythm in phototaxis.  

(9) In order to allow the experimenter to visually inspect how well the model fits the original 

data, the algorithm generates a graph of the model from step 6 together with the original data. In 

addition, it generates a graph of the original data versus the model data, which if identical will 

fall on a straight-line diagonal.  

 

The algorithm considers a single data point per test light cycle for the analysis of a 

rhythm. The phototaxis machine, however, is capable of collecting data points at any time 

interval during a test light beam. For example, it can be set to collect data points every minute 

within each test light cycle of 15 min. To obtain rhythm characteristics from different data 

points, the algorithm can be set to analyze a data point range within a test light cycle. It then 

executes the analysis for each data point separately as described and compiles the period, phase, 

and correlation coefficient results in a table. It further calculates the mean of period and phase 



for each channel with standard deviation and compiles it in a separate table. Since this kind of 

analysis requires either more time or greater processing capacity, the algorithm has a default 

setting to execute the analysis in a parallelized fashion, if parallel processing is available.  

 

The Mathematica™ program for the algorithm is available from the corresponding 

author. Raw data can be imported in form of custom-formatted .lvm files from Labview and 

visualized through a graphic function of the program.  

 

4.5 Virtual rhythm data with various noises 

 

In order to test our algorithm in handling noisy data, we created virtual rhythms with 

various degrees of noise. We started with a data set of 73 points sampled from the sinusoidal 

curve  

cos
2π
24

t −π
 

 
 

 

 
 , 

which has a period of 24 hours and a phase of 12 hours, at the values t = 0, 1, ....., 72 hours. This 

is consistent with the hourly samples typically collected by the phototaxis machine. We then 

added to the data set random variables that are normally distributed with mean µ = 0  and 

standard deviation σ , where σ  is the decimal equivalent of a percentage of the amplitude of the 

rhythm, which is 1.  Figure 2 shows three example rhythms where the random variable added to 

the amplitude has a standard deviation of 0.1 or 10%, 0.25 or 25%, and 0.5 or 50%. For each 

value of σ = 0.01, 0.02, ....., 0.5, we generated 250 data sets that were fed into the algorithm to 

calculate period and phase. These 250 results for period and phase for each value of σ  are 

themselves independently normally distributed, with means roughly 24 and 12 hours, 



respectively.  We calculated the width of a 95% confidence window for both the period and 

phase by calculating the value k  such that  

1

2π s
e
−

x−x ( )2

2s
2

dx
24−k

24+k

∫ = 0.95, 

where x  is the mean of the answers for the 250 trials and s is the standard deviation of the trial 

results, calculated separately for both the period and the phase. We also performed the entire 

procedure by sampling 121 hourly points or five full cycles. 

 

4.6 Statistical analysis 

 

Analysis of variance and the Tukey multiple range tests were performed with the 

ANOVA package in Mathematica™ at a significance level of α = 0.05. Prior to analysis, the 

data of each experiment were normalized so that the average was equal to zero for both the 

period and phase in order to allow for a more valid comparison between experiments.  
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Figure Legends: 

 

Fig. 1: Examples for circadian rhythms of phototaxis as monitored by the machine and their 

analysis. Every hour a test light beam came on for 15 min and light transmission data were 

collected every minute. Cultures were kept in photoautotrophic medium with dark conditions 

between test light cycles. In each graph, the transmission data collected 11 min into the test light 

cycle are plotted as a solid black line and the model of the data created by the algorithm as a 

dotted gray line. For each graph, the first seven hours of data collection were omitted for optimal 

analysis. Upper panel: “Normal” rhythm with the light intensity always within the range of the 

light sensor. Lower panel: “Cut-off” rhythm because the light intensity is beyond the range of the 

light sensor during times of low phototactic activity. 

 

Fig. 2: Robustness of the algorithm towards noise. (A) Example graph of an ideal sinusoidal 

curve with 24 h period and amplitude of 1 (dotted gray line), from which hourly points were 

sampled and random variables added to the amplitude (solid black line), whose mean is zero and 

whose standard deviation is 0.1 or 10%. (B) Same as in (A) except that the standard deviation of 

the random variables is 0.25 or 25%. (C) Same as in (A) except that the standard deviation of the 

random variables is 0.5 or 50%. (D) Margin of error at the 95% confidence level for the period 

(gray) and phase (black) for various standard deviations of the random variables. Data were 

derived from 250 random data sets per standard deviation. Standard deviations were evaluated at 

0.01 intervals. Each dotted line represents the linear least-squares fit. 

 



Fig. 3: Rhythm parameters calculated by the algorithm based on various ranges of the raw data. 

The period (in h) is shown in gray with diamond symbols and the phase (in CT units) in black 

with square symbols. Upper panel: Various starting times with a fixed ending time of 136 hours 

or about 5.25 cycles into the measurements. Lower panel: Various ending times with a fixed 

starting time of 20 h into the measurement. All period and phase values represent the average of 

58 replicate rhythms. Bars indicate the standard deviation. 

 

Fig. 4: Effect of the time a culture is placed into the monitoring machine on period and phase 

and the statistical relationship to phase shifts upon light pulses. Upper panel: Aliquots of a 

culture were put into a dark box at the end of the light phase and placed into the phototaxis 

machine at the indicated times. Period (gray) and phase (black) changes are plotted with respect 

to the average of the parameter over all time points. The data in the graph represent the mean of 

three independent experiments with triplicates for each. Bars indicate the standard deviation 

derived from all 9 measurements for each time point. Lower panel: Phase response curve for 

comparison. Aliquoted cultures received a 30 min white light pulse of 2.18 µmol photons m
-2

 

sec
-1

 starting at the indicated times. All cultures were placed into the machine at 12 h into the 

dark phase. The data in the graph represent the mean and standard deviation of the following 

number of independent experiments: 4 for 8 h into the dark phase, 3 for 4, 6, 7, and 9 h into the 

dark phase, 2 for 5, 10, and 11 h into the dark phase, 1 for 3 h into the dark phase. * indicates 

that these phase shifts are significantly different from the phase changes due to placing the 

cultures into the machine at various times during the dark phase from the upper panel according 

to analysis of variance and Tukey multiple range test (α=0.05). 

 



Fig. 5. Break-out illustration of the phototaxis machine setup showing one test cell. (A) Light 

sensor. (B) White LED for background light. (C) Petri dish (35 mm x 10 mm) with culture. (D) 

Counter bored hole for the petri dish with neutral density filter in the bottom. (E) 3 mm hole for 

test light beam. (F) Block of black plastic. (G) K-type thermocouple. (H) Heat exchanger 

consisting of a brass plate with copper coils. (J) Water from a circulating water bath. (K) Blue-

green (507 nm) LED for test light. 
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