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Morphologies and kinetics of a dewetting ultrathin solid film

M. Khenner
Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260, USA

�Received 11 April 2008; published 30 June 2008�

The surface evolution model based on a geometric partial differential equation is used to numerically study
the kinetics of dewetting and the dynamic morphologies for the localized pinhole defect in the surface of an
ultrathin solid film with the strongly anisotropic surface energy. Depending on the parameters such as the initial
depth and width of the pinhole, the strength of the attractive substrate potential and the strength of the
surface-energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to
the quasiequilibrium shape while the rest of the film surface undergoes a phase separation into a hill-and-valley
structure followed by coarsening. Emergence of the quasiequilibrium shape and the termination of a dewetting
are associated with the faceting of the pinhole tip. Overhanging �nongraph� morphologies are possible for deep,
narrow �slitlike� pinholes.

DOI: 10.1103/PhysRevB.77.245445 PACS number�s�: 68.55.�a

I. INTRODUCTION

Recent experiments1,2 with the sub-10-nm silicon-on-
insulator films at 800–900 °C demonstrate Si film dewet-
ting. The mass transport in this system is by thermally acti-
vated surface diffusion, and there is no stress at the film-
substrate interface due to an absence of a lattice mismatch
between the film and the SiO2 substrate. Dewetting starts at
randomly distributed pinhole defects in the Si planar surface.
The pinholes may exist prior to the annealing, or they form
shortly after the temperature is raised. Conditions favoring
pinhole deepening over contraction, where the latter is
caused by minimization of the surface area due to the mean
surface energy �tension�, and the kinetics of the pinhole and
its dynamic shape, are not presently known. While the physi-
cal mechanisms responsible for dewetting and agglomeration
of the islands are the subject of a debate,3 there is little doubt
that the long-range film-substrate interactions �which are also
called wetting interactions� provide a major driving force for
dewetting in the ultrathin, single crystal semiconductor-on-
insulator thin films.4,5

It must be noted that in contrast to liquids, the surface
energy of solid surfaces is strongly anisotropic, leading to
missing orientations in the dynamic or equilibrium surface
shape6–10 and faceting instability.11–18 Anisotropy is certain
to affect the dynamics of the pinhole. Moreover, it is possible
that the nonlinear competition with the attractive wetting po-
tential may even lead to the emergence of an equilibrium and
thus to the suppression of the film dewetting and rupture.

In Ref. 19, following Ref. 20, the partial differential equa-
tion �PDE�-based model is developed, which allows to pre-
dict the wavelength of the fastest growing cosinelike pertur-
bation of the film surface �also called the normal
perturbation�, assuming surface diffusion and the two-layer
wetting potential.20–24 The model also enables computation
of the dynamical, faceted morphologies. Such computations
are performed for the normal perturbation and they demon-
strate the stabilizing impact of the surface-energy anisotropy
on dewetting dynamics. The model can in principle support
any reasonable form of the wetting potential, but the corre-
sponding contribution to the governing PDE for the film
thickness must be rederived.

In this paper, using the model of Ref. 19, the kinetics and
morphologies are computed systematically for the localized
surface defect from the full nonlinear PDE. As has been
made clear above, real surface defects are necessarily local-
ized. We compute for different widths and depths of the pin-
hole and, for all other model parameters fixed, observe very
different dynamics and dewetting outcomes. We also relax
the assumption made in Ref. 19 that the surface height above
the substrate is described by a function h�x , t� �i.e., a one-
dimensional �1D� surface is nonoverhanging� and reformu-
late the model in terms of two parametric PDEs. This allows
computing, say, beyond the surface-phase separation11,12 into
orientations 0° and 90° for some surface-energy anisotropies.
Asymmetric morphologies and different kinetics may arise
when the direction of the maximum surface energy is not the
reference direction for the shape evolution �i.e., for instance,
the z axis perpendicular to the substrate�, which is often the
case. Thus we incorporate such misorientation in the model.
Note that parametric formulations of the geometric surface-
evolution laws are common, see for instance Refs. 25–28.

II. PROBLEM STATEMENT

A two-dimensional �2D� film with the free one-
dimensional �1D� parametric surface ��x�u , t� ,z�u , t�� is as-
sumed, where x and z are the Cartesian coordinates of a point
on a surface, t is time and u is the parameter along the
surface. The origin of the Cartesian reference frame is on the
substrate, and along the substrate �x direction, or the �10�
crystalline direction� the film is assumed infinite. The z axis
is along the �01� crystalline direction, which is normal to the
substrate. Marker particles are used to track the surface
evolution.29 Thus x and z in fact represent the coordinates of
a marker particle, which are governed by the two coupled
parabolic PDEs:25,26,30,31

xt = V
1

g
zu, �1a�

zt = − V
1

g
xu, �1b�

Here the subscripts t and u denote the differentiation, V is the
normal velocity of the surface, which incorporates the phys-
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ics of the problem, and g=ds /du=�xu
2+zu

2 is the metric func-
tion �where s is the arclength�.

The normal velocity of the surface is due to gradients of
the surface chemical potential �, which drive the mass flux
of adatoms along the surface. In other words, the redistribu-
tion of adatoms along the surface changes its shape, which is
equivalent to the surface moving in the normal direction.32–34

The chemical potential is the sum of two contributions, �
=����+��w�, where ���� is the regular contribution due to the
surface mean curvature �, and ��w� is the wetting chemical
potential with the characteristic exponential decay:20,23

��w� = ���p��� − �S�
exp�− z/��

�
cos �, z � 0. �2�

Here � is the atomic volume, � is the angle that the unit
surface normal makes with the �01� crystalline direction,
�S=const. is the surface energy of the substrate in the ab-
sence of the film, � is the characteristic wetting length, and
�p��� is the primary part of the anisotropic surface energy of
the film, i.e., for typical fourfold anisotropy

���� = �0�1 + 	� cos 4�� + 
�� +
�

2
�2 � �p��� +

�

2
�2. �3�

In Eq. �3� �0 is the mean value of the surface energy, 	�

determines the degree of anisotropy, 
 is the misorientation
angle, and � is the small non-negative regularization param-
eter having units of energy. The � term in Eq. �3� makes the
evolution �Eqs. �1a� and �1b�� mathematically well posed for
strong anisotropy.11,12,14,35–37 �The anisotropy is weak when
0�	��1 /15 and strong when 	�1 /15. �=0 in the former
case.� The surface energy has a maximum at 4��+
�=0, i.e.,
at �=−
. For 
=0, this direction is the z axis.

The curvature contribution to � is19,20,23

���� = ����p +
�2�p

��2 	�1 − exp�− z/���� + �S exp�− z/���

−
�

�0
��3

2
+ �ss	
 , �4�

where the subscript s denotes the differentiation with respect
to the arclength. If the wetting potential is zero �z /�→��,
this reduces to the familiar strongly anisotropic form.11,12,14

Finally,

� = g−3�zuuxu − xuuzu� �5�

and

V =
D�

kT
��ss

��� + �ss
�w�� , �6�

where D is the adatoms diffusivity, � is the adatoms surface
density, k is the Boltzmann constant, and T is the absolute
temperature. The only differences of this formulation from
the formulation in Ref. 19, except for accounting for the
surface energy misorientation in Eq. �3� and the parametric
representation, are that in Eq. �4� the wetting �exponential�

contributions are accounted for in full �that is, the approxi-
mation in the form of averaging across the film thickness is
not employed�, and the regularization term is not included in
��w�. ���w� does not contain the surface stiffness �+��� and
thus it does not make the PDE ill-posed for strong aniso-
tropy. Besides, the regularization contribution to ��w� is van-
ishingly small for large surface slopes due to its proportion-
ality to hx

−7, see Ref. 19�.
To nondimensionalize the problem, the thickness of the

planar undisturbed film, h0, is chosen as the length scale, and
h0

2 /D as the time scale. Also, let r=� /h0. The dimensionless
problem is comprised of Eqs. �1a�, �1b�, and �5� �where the
differentiations are with respect to the dimensionless vari-
ables�, and where

V = B��ss
��� + �ss

�w�� , �7a�

���� = ��p +
�2�p

��2 	�1 − exp�− z/r���

+ � exp�− z/r�� − ���3

2
+ �ss	 , �7b�

��w� = ��p��� − ��
exp�− z/r�

r
cos � , �7c�

�p��� = 1 + 	� cos 4�� + 
� , �7d�

cos � =
zu

g
. �7e�

In Eqs. �7a�–�7e�, B=�2��0 / �kTh0
2�, �=�S /�0, and �

=� / ��0h0
2�. For the computational method, using the relation

between s and u,

�

�s
=

1

g

�

�u
, �8�

the problem is written entirely in terms of the independent
variables u and t �not shown�.

In the simulations reported below, the following values of
the physical parameters are used: D=1.5�10−6 cm2 /s,
�=2�10−23 cm3, �0=103 erg /cm2, �S=5�102 erg /cm2,
�=1015 cm−2, kT=1.12�10−13 erg, h0=10−6 cm, and
�=5�10−12 erg. These values translate into B=3.57�10−3,
�=0.5, and �=5�10−3. In this paper we consider strong
anisotropy, 	��1 /15. Also, r=0.02,0.1.

The initial condition in all simulations is the Gaussian
surface

z�x,0� = 1 − d exp�− � x − 5

w
	2
, 0 � x � 10 �9�

where 0�d�1 and w are the depth and the “width” of the
pinhole at t=0, respectively �see Fig. 4�. The length of the
computational domain equals to ten times the unperturbed
film thickness, and the defect is positioned at the center of
the domain. We use values d=0.5,0.9, which correspond to
the shallow and the deep pinhole at t=0, respectively, and
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w=0.15 �the narrow pinhole�, w=1 �the intermediate pin-
hole�, and w=2 �the wide pinhole�.

The method of lines is used for the computation with the
periodic boundary conditions at x=0,10. Equations �1a� and
�1b� are discretized by second-order finite differences on a
spatially uniform grid in u. The integration in time of the
resulting coupled system of the nonlinear ordinary differen-
tial equations is done using the implicit Runge-Kutta method
of the Radau family.38 Initially u�x, but periodically �usu-
ally after every few tens of the time steps� the marker par-
ticles are positioned at the nodes of the uniform grid in s, and
the surface is reparametrized so that u becomes the ar-
clength. �Note that Eqs. �1a� and �1b� are reparametrization
invariant.25� This is done through fitting the surface by an
interpolatory, parametric cubic spline curve, in order to pre-
vent the marker particles from coming too close or too far
apart in the course of the surface evolution.39 Between the
calls to the reparametrization routine, the arclength is chang-
ing as the surface evolves, but the grid spacing in u is con-
stant and equal to the last computed arclength spacing.

III. RESULTS

A. Kinetics

Figures 1 and 2 show the log-normal plots of the pinhole
depth vs time, for d=0.9 and d=0.5, respectively. zm is the
height of the surface at the tip of the pinhole.

Wide and intermediate deep pinholes dewet but the depth
of the narrow deep pinhole decreases until it reaches quasi-
equilibrium at z=0.75 �Fig. 1�. Quasiequilibrium means that
zm �or, equivalently, the depth� changes very slowly or not at

all, while the rest of the shape may change relatively fast.
Correspondingly, we will call the surface shape at the time
when the quasiequilibrium depth is attained the quasiequilib-
rium shape. �Again, this shape is changing, but the height of
its minimum point �the tip� is not changing, or is changing
very slowly.� Also notice in Figs. 1�a� and 1�b� that the
growth rate at the rupture time is finite for r=0.1 but infinite
�or extremely large� for r=0.02, and the time to rupture is
somewhat less for r=0.1. However, from Fig. 1�c�, the time
to reach quasiequilibrium is about ten times larger for
r=0.1 than for r=0.02.

As can be seen in Fig. 2, only the wide shallow pinhole
dewets, and only when r=0.1. In all other cases of w and r
�except w=1, r=0.1, shown by the solid line in Fig. 2�b�� the
quasiequilibrium is achieved. For w=1, r=0.1, the depth is
initially a non-monotonic function of time, but after the tran-
sient phase it monotonically and slowly decreases without
reaching the quasiequilibrium �we computed for t�2�104�.
Also, one can see that for r=0.02 the depth at quasiequilib-
rium decreases as w decreases, and it takes less time to reach
quasiequilibrium as w decreases.

In Fig. 3 the dewetting kinetics is compared for several
misorientations and strengths of the anisotropy. Shown in the
said figure is the case of the deep, wide pinhole and r=0.1.
The time to rupture increases insignificantly with the de-
crease in anisotropy or with the increase in the misorienta-
tion angle. The faster dewetting for stronger anisotropy here
can be attributed to the initial faster shape changes due to
larger gradients of ����, i.e., before the surface orientation
falls into an unstable �spinodal� range and faceting inter-
venes, and to the proximity of the pinhole tip to the substrate.
That the misorientation slows the kinetics is well known; for
instance Liu & Metiu11 in their important study of faceting
call the similar situation an “off-critical quench,” and find
that at sufficiently large misorientations the “crystal surface
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will not phase-separate spontaneously, but will have to over-
come a finite free-energy barrier.”

B. Morphologies

Figure 4 shows the initial and the final surface shapes of
the initially deep pinhole for the three values of w. The ki-
netics of the corresponding dynamical shapes is shown in
Figs. 1�a�–1�c� by solid lines and has been discussed above.
Dewetting of the wide and intermediate pinholes proceeds
through the extension of the tip of the pinhole until it reaches
the substrate at 57°. The quasiequilibrium shape for the nar-
row pinhole is very similar to the one shown in Fig. 6�c�. The

latter shape is discussed in more details below. While evolv-
ing from the initial slitlike shape to the quasiequilibrium
shape, the surface of the narrow pinhole overhangs �Fig. 5�,
until it slowly returns to the nonoverhanging shape later. In
the time interval where the overhanging takes place, the sur-
face slope is large and nonanalytic.

Surface shapes for the initially shallow pinhole are shown
in Fig. 6. Characteristic of these shapes is an emergence of
the hill-and-valley structure,8 which becomes possible even
when the film dewets �case of the wide pinhole in Fig. 6�a��
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	�=1 /8, 
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=0.
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due to the larger time required to reach the substrate in this
case. The angle at rupture is 90°. Figure 6�b� shows coars-
ening of the structure for the intermediate-width case. As has
been pointed out above at the discussion of Fig. 2�b�, in this
case there is no quasiequilibrium �at least for t�2�104�,
and the tip recedes toward the unperturbed height h=1. Note
that the apparent recession rate is slower than the overall
coarsening rate. t=7240 is the time when the two pyramidal
structures appear on the film surface. The slope of their walls
is shown in the inset, and it is almost constant in each of the
four characteristic intervals of x, with each interval corre-
sponding to a facet. For 7240� t�2�104 the walls �facets�
become more straight, and the graph of zx�x� becomes nearly
constant in each of the four characteristic intervals. Figure
6�c� shows the quasiequilibrium shape for the narrow pin-
hole. Formation of the hill-and-valley structure followed by
coarsening continues for t�4, as is evidenced by the surface
slope shown in the inset at the left, but the pinhole depth at
x=5 is constant. �In fact, the difference of depths at t=197
and at t=4 is 0.007.� Note that the formation of the hill-and-
valley structure, its coarsening, and slope selection have
been the subject of many papers, see for instance Refs. 5,
11–18, 20, 21, 23, and 40–46. �Refs. 20, 21, and 23 discuss
the impacts of wetting interactions.� Since in this paper we
are interested in characterizing dewetting and rupture, we do
not further pursue that direction.

Finally, Fig. 7 demonstrates impacts of the misorientation
�
=10°� on morphology. As expected, asymmetrical shapes
emerge for 
�0°. While the wide, shallow pinhole dewets,
only its right sidewall undergoes the phase separation into a
hill-and-valley structure. Kinetics is very similar to the case

=0, see Fig. 2�a� �solid line�.

IV. DISCUSSION

In this paper a fully nonlinear model is used to compute
the complex scenarios of dewetting/equilibration for a local-
ized pinhole defect in the surface of a strongly anisotropic
thin solid film, assuming the two-layer, exponentially decay-
ing wetting potential and zero lattice mismatch with the sub-
strate.

The computed dewetting kinetics can be explained at
large using the magnitude of the dewetting factor. In Ref. 19
it was shown that the dominant dewetting terms in the
mass-conservation evolution PDE are proportional to
exp�−z /r� /r2 �for r�1�. This is plotted in Fig. 8. One can
see that for r=0.1,0.02 the maximum of this factor occurs
for the small values of the film thickness. This explains why
all but one initial conditions in Fig. 1 �deep pinhole� lead to
the pinhole-depth increase until the film dewets, while all but
one initial conditions in Fig. 2 �shallow pinhole� lead to the
decrease of the pinhole depth. In other words, quite naturally
the dewetting is more promoted for larger values of the dew-
etting factor. The dewetting factor can also explain the small
�large� difference in the characteristic time scales for r=0.1
and r=0.02 in Fig. 1�a� �Fig. 2�a��. Indeed, for the case of
Fig. 1�a� the factor is 36.8 �r=0.1� and 16.8 �r=0.02� vs,
respectively, 0.7 and 3�10−8 for the case of Fig. 2�a�. Evo-
lution of the film also depends strongly on the film shape and
whether � is in the unstable range. When it is, as in the cases
shown in Figs. 4–7 then, the faceting instability is energeti-
cally more favorable than dewetting, and most often the
competition of the two processes causes the unusual hill-and-
valley structure, where a shallow pinhole remains despite the
structure coarsening �which takes place separately at the both
shoulders of the pinhole�. Note that the faceting instability
seems to be always initiated where the surface changes from
the horizontal to a sidewall �regions A and B in Fig. 4�.

We also point out that in our computations, the pinhole tip
is always nonfaceted at rupture �see Figs. 4, 6�a�, and 7�. In
fact, dewetting ceases if the facet spreads to the tip. This is
observed in the evolution of the intermediate, shallow pin-
hole �Figs. 2�b� and 6�b��. Also, if the pinhole is not too deep
�Fig. 4�, then the contact angle with the substrate at rupture is
90°. In reality, after the contact this value changes in order to
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FIG. 7. Surface morphology for the shallow, wide pinhole. r
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minimize the total energy of the surface-substrate system.
For instance, for the silicon-on-insulator the measured and
the calculated values of the equilibrium contact angle coin-
cide �73°�.1,3
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