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Thermocapillary effects in driven dewetting and self assembly of pulsed-laser-irradiated
metallic films

A. Atena and M. Khenner
Department of Mathematics, University at Buffalo, SUNY, Buffalo, New York 14260, USA

�Received 14 October 2008; revised manuscript received 7 May 2009; published 3 August 2009�

In this paper the lubrication-type dynamical model is developed of a molten, pulsed-laser-irradiated metallic
film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is
solved analytically. Using this temperature field, we derive the three-dimensional long-wave evolution partial
differential equation for the film height. To get insights into dynamics of dewetting, we study the two-
dimensional �2D� version of the evolution equation by means of a linear stability analysis and by numerical
simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam
intensity, the film optical thickness, the reflectivity, and the Biot and Marangoni numbers, are elucidated. It is
observed that the film stability is promoted for such parameter variations that increase the heat production in
the film. In the numerical simulations the impacts of different irradiation modes are investigated. In particular,
we obtain that in the interference heating mode the spatially periodic irradiation results in a spatially periodic
film rupture with the same or nearly equal period. The 2D model qualitatively reproduces the results of the
experimental observations of a film stability and spatial ordering of a resolidified nanostructures.

DOI: 10.1103/PhysRevB.80.075402 PACS number�s�: 81.16.Dn, 47.54.Jk, 47.55.nb, 81.16.Rf

I. INTRODUCTION

Studies of dewetting, rupture and pattern formation in thin
liquid films are very important for advanced technologies
and also present an interest for basic physical sciences. How-
ever, most experimental and theoretical results have been
obtained for aqueous and polymer films.

In this paper we report on our modeling studies of a me-
tallic film dewetting by pulsed-laser irradiation �PLI�. In the
experiments on laser-irradiated metal films by Bischof et al.,1

both generic scenarios of dewetting and rupture were ob-
served, i.e., by the growth of surface perturbations �spinodal
regime2–4� and by nucleation and growth of holes.5,6 Very
recently, several groups reported the results of similar experi-
ments on thinner films �thickness h�3–25 nm� that are ir-
radiated by a single pulsed beam,7–11 as in Bischof et al.,1 as
well as by two or more interfering pulsed beams �pulsed-
laser interference irradiation �PLII��.12–14 These experiments
indicate that dewetting in such films is primarily spinodal.

The process of dewetting is analyzed in the cited papers
using a thermal transport modeling7,9,10,12 and the standard
isothermal thin-film partial differential equation �PDE�.8,15

The consensus is that dewetting is driven by a long-range
intermolecular �van der Waals� forces and the thermocapil-
lary forces, with negligible material evaporation. Most inter-
estingly, in the PLII mode the same static interference picture
is formed on the film surface at each pulse �i.e., the alternat-
ing lines of the hot and cold regions in two-beam PLII, or the
rectangular grid of the hot and cold lines in four-beam PLII�.
Through the thermocapillary fluid flow such lateral spatial
nonuniformity of the temperature field allows the fabrication
of one- and two-dimensional �2D� lattices of metal nanopar-
ticles.

While the general picture has been laid out quite clear in
the cited papers, there have been no attempts to develop a
consistent PDE-based model of dewetting in a metallic film
system, which incorporates thermocapillarity and the spatial

and temporal nonuniformities due to laser irradiation. Pre-
sentation of such model is the subject of this paper. The
model allows the studies of dewetting, rupture and nanopat-
terning in three-dimensional �3D� films for a set of laser
parameters, such as the pulse shape and repetition frequency,
the power intensity of the radiation, the arrangement and
separation distance of the interference fringes, and the
strength of interference. Our modeling attempts to capture
the general features and trends of the dewetting process for
the very special material systems and heating conditions. The
model is applicable to thin films of nonreactive metals in-
cluding Co, Fe, Au, Ni, Cu, Ag, and Mo on SiO2 /Si sub-
strates. The experimental papers cited above demonstrate
that generic features of the nanoscale dewetting process un-
der pulsed-laser heating are very similar for all combinations
of these metals and substrates. For our analyses and simula-
tions we take the material parameters values that closely
mimic the Co /SiO2 system8–11,13,14 �see Table I�. Most pa-
rameters are taken directly from these papers. Some param-
eters �the optical-absorption coefficient, laser peak intensity,

heat transfer coefficients, second Hamaker constant �B̃�� are
estimated given the material system and the heating regime;
true values may deviate within one or two orders of magni-
tude from the adopted values. However, these parameters
enter the model in combinations with other physical param-
eters through the dimensionless quantities �Table II�, many
of which we vary in broad intervals about the most typical
values in order to demonstrate their effects. Also it must be
noted that some values �such as the heat capacity and ther-
mal conductivity� are taken for solid Co since our search of
published and Internet databases for values specific to liquid
Co did not yield results. However, very small differences are
expected.

We emphasize that the influence of radiative heating on
fluid dynamics was theoretically studied only in a handful of
papers.16–21 Most notably, Oron and Peles19 studied ther-
mocapillary flows and instabilities of evaporative thin aque-
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ous films with constant internal heat generation. Oron20 ex-
panded this study to the case of irradiation by a single
continuous-wave laser beam. Grigoriev21 analyzed mecha-
nisms of passive and active feedback control of evapora-
tively driven instabilities in irradiated thin films. The primary
conclusion of these studies, which are based on long-wave
theory, is that irradiation can partially suppress the growth of
instabilities. Also, Ajaev and Willis16 studied axisymmetric
dewetting and rupture, in a molten state, of a thin metallic
film, which has been melted by a single energetic laser pulse
with a Gaussian spatial shape. They accounted for evapora-
tion and long-range intermolecular attraction to the substrate
and identified the thermocapillary stresses as the major driv-
ing force of a film evolution. It must be noted that neither of
these papers considers nonuniform irradiation or the film re-
flectivity. The latter, as has been pointed out in Refs. 9 and
10, is often the quantity of key importance for the dynamics
of the ultrathin metallic films.

This paper is organized as follows. In Sec. II we formu-
late the equations of fluid motion for a film irradiated by PLI
or PLII and then obtain the temperature field in the long-
wave approximation. Using this field, we derive the 3D long-
wave evolution PDE for the surface height. In Sec. III we
perform the linear stability analysis of the 2D surface of the
film and the numerical simulations of the 2D surface dynam-
ics. We show how the surface stability, surface shape, rupture
time and nanostructure array formation are affected by key
dimensionless parameters, such as the film optical thickness,
peak laser beam intensity, number of incident pulses and
their duration, Marangoni and Biot numbers, and by the lat-

eral spatial nonuniformity of the heat production in the PLII
mode. Also we compare the qualitative and quantitative char-
acteristics of stability and dewetting in the systems with zero
and nonzero reflectivity. Sec. IV contains the discussion and
conclusions.

II. DERIVATION OF THE TEMPERATURE FIELD AND
EVOLUTION EQUATION

In the PLI or PLII experiments, the solid film is periodi-
cally melted by a laser pulse. Following Refs. 1 and 8–14 we
disregard periodic cycles of the melt resolidification between
laser pulses and assume, for the purpose of the analysis and
nonlinear dynamical simulations of the dewetting process,
that the metallic film is always in the molten �i.e., liquid�
state. This is reasonable since it has been shown that the
mass transport in the solid state is negligible compared to the
one in the liquid state, and so is the film deformation.8 In
other words, our model assumes that between the laser
pulses the film cools down to the temperature that is just
above the solidification temperature, and thus it always stays
liquid. Correspondingly, the dewetting process is treated as a
continuous one in simulations.

Thus we assume a thin film of an incompressible New-
tonian liquid lying on a planar horizontal substrate. The
mean height of the film, H, is assumed much smaller than the
lateral dimension L, thus H /L=��1. The surface tension �̃

is a linear function of the temperature T̃,

�̃ = �̃m − �̃�T̃ − T̃m�, T̃ � T̃m. �1�

Here T̃m is the melting temperature of the film, �̃m is the
surface tension at the melting temperature, and �̃=− ��̃

�T̃
�0.

TABLE I. Material parameters.

Physical parameter Typical values

Film thickness �H� 10 nm

Optical absorption coefficient ��� 108 m−1

Film density ��� 8.92�103 Kg /m3

Heat capacity �cp� 420 J /Kg K

Thermal conductivity �film� �	� 100 W /m K

Thermal diffusivity �
� 2.675�10−5 m2 /s

Melting temperature �T̃m� 1768 K

Ambient temperature �T̃a� 300 K

Substrate temperature �T̃s� 1900 K

Acceleration of gravity �g̃� 9.8 m /s2

Dynamic viscosity ��� 4.45�10−3 Pa-s

Surface tension at melting point ��̃m� 1.88 J /m2

�̃ �at melting point� 5�10−4 J /K m2

Characteristic velocity �U= �̃ /�H� 50 m/s

Laser peak intensity �I� 1010 W /m2

Heat transfer coefficient ��h� 1.41�104 W /m2 K

Heat transfer coefficient ��s� 1 W /m2 K

Hamaker constant �Ã� 1.41�10−18 J

Hamaker constant �B̃� 2.6�10−13 N

Substrate thickness �Hs� 10 nm

Substrate thermal conductivity �	s� 1.3 W /m K

TABLE II. Dimensionless parameters.

Dimensionless group Definition Typical values

Scaling parameter ��� H /L 0.01

Reynolds number �Re� �UH /� 1

Brinkman number �Br� �U2 /HI 0.11

Peclet number �Pe� �cpUH /	 0.019

Capillary number �C� �U /� 0.1184

Gravity parameter �G� ��gH2 /�U 3.93�10−13

Biot number ��� �hH /	 10−6

Biot number ��s� �sH /	 102−�

Surface tension ��m� ��̃m /�U 0.084

Marangoni number �M� �IH�̃ /2�U	 1.125�10−5

Hamaker constant �A� �Ã /6��UH2 3.37�10−5

Hamaker constant �B� �B̃ /�UH 1.17�10−6

Melting temperature �Tm� 	T̃m / IH 1768

Ambient temperature �Ta� 	T̃a / IH 300

Substrate temperature �Ts� 	T̃s / IH 1900

Optical thickness �D� �H 1

Substrate thickness �hs� Hs /H 1

Ratio of thermal conductivities ��� 	s /	 1.3�10−2

Prefactor, reflectivity function r0 0.44

Exponent, reflectivity function ar 0.64
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The tildes mark dimensional quantities. The governing equa-
tions of the melt are the Navier-Stokes, continuity, and the
energy equations,

��ṽt̃ + �ṽ · �̃�ṽ� = �̃ · �̃ + �g̃ , �2�

�̃ · ṽ = 0, �3�

�cp�T̃t̃ + ṽ · �̃T̃� = 	�̃2T̃ + �̃ij
� ũi

� x̃j

+ Q̃ , �4�

where ṽ= �ũ , ṽ , w̃���ũ1 , ũ2 , ũ3� is the velocity field, �̃ij =
−p̃�ij + �̃ij is the full stress tensor for incompressible fluid,

�̃ij =��
�ũi

�x̃j
+

�ũj

�x̃i
� is the viscous stress tensor, � is the dynamic

viscosity, � is the density, 	 is the thermal conductivity, g is

the gravitational acceleration, and Q̃ is the internal heat
source. The internal heat generation is due to the absorption
of radiation from the monochromatic laser beam. We assume
that the free surface of the film is optically smooth, nonscat-
tering, and nonemissive.

Under the stated assumptions the form of the heat source
term is given by Bouguer’s law,22

Q̃ =
�I�1 − R�h̃��

2
f�x̃, ỹ, t̃�exp���z̃ − h̃�� , �5�

where I is the laser power intensity, � is the spatially uniform

optical-absorption coefficient, h̃ is the position of the free

surface, R�h̃� is reflectivity, and f�x̃ , ỹ , t̃� is a positive func-
tion with mean value one whose functional form depends on
the interference mode and the temporal shape of the laser
pulse.

The boundary conditions at the free surface z̃= h̃�x̃ , ỹ , t̃�
are:

�i� the normal and shear stress balances,

n · �̃ · n = − �̃ � · n + �̃ , �6�

t · �̃ · n = t · ��̃, n =
�− h̃x̃,− h̃ỹ,1�

�1 + h̃x̃
2 + h̃ỹ

2
, �7�

where n is the unit outward normal to the surface, t is the

unit tangent vector, and �̃ is the disjoining pressure. The

latter is specified in the form �̃= �Ã /6��h̃−3+ B̃h̃−2 where Ã

and B̃ are the Hamaker constants. The first term is due to the
dispersion �van der Waals� forces and the second term is due
to the contributions from the kinetic energy of the
electrons.23

�ii� The kinematic condition,

w̃ = h̃t̃ + ũh̃x̃ + ṽh̃ỹ , �8�

that balances the normal component of the liquid velocity
with the speed of the interface;

and �iii� the temperature boundary condition is given by
the Newton’s law of cooling,

	T̃z̃ = − �h�T̃ − T̃a� , �9�

where �h is the heat transfer coefficient and T̃a is the air
temperature.

The boundary conditions for velocity of the melt flow at
the solid boundary z̃=0 �the substrate� are no slip, ũ= ṽ=0,
and no penetration, w̃=0. Two types of the temperature
boundary condition at the substrate will be considered.

The boundary condition of the first type �TBC1� is the
Newton’s law of cooling at z̃=0,

	T̃z̃ = �s�T̃ − T̃s� , �10�

where �s is the heat exchange coefficient and T̃s is the tem-
perature of the substrate.24 Note that the usual case of a fixed

temperature at the solid boundary, T̃= T̃s �which corresponds
to perfectly conducting substrate�, can be easily obtained. It
suffices to take the limit �s→� �or equivalently, the limit
�s→�, see the definition of �s below� in the dimensionless
expressions for the temperature and in the evolution PDE for
the film height. It is clear from the form of these equations
that this limit exists and that taking the limit results simply in
some terms dropping out of the equations.

The boundary condition of the second type �TBC2� is the
continuity of the temperature and the thermal flux at z̃=0,

T̃ = �̃, 	T̃z̃ = 	s�̃z̃, �11�

where �̃ is the temperature field in the substrate. The sub-
strate is assumed thin, Hs�H �where Hs is substrate thick-

ness�. Thus the temperature field �̃ can be derived in the
lubrication approximation.21

A. Nondimensionalization

We use the following scalings to nondimensionalize the

problem:25 x̃=xL, ỹ=yL, z̃=zH, h̃=hH, ũ=uU, ṽ=vU, w̃

=w�U, t̃= �L /U�t, T̃= �IH /	�T, p̃= ��U /�H�p, �̃
= ��U /�H��, �̃= ��U /���, and �̃= ��U	 /�IH��, where U is
the characteristic flow velocity. Typical values of the material
parameters are shown in Table I.

B. Temperature distribution in the film

Upon using the scalings, the dimensionless energy equa-
tion is

�Pe�Tt + uTx + vTy + wTz�

= Tzz + �2�Txx + Tyy� + �D/2�f�1 − R�h��exp�D�z − h��

+ �2Br�ux
2 + uy

2 + vx
2 + vy

2 + wz
2� + Br�uz

2 + vz
2�

+ �4Br�wx
2 + wy

2� , �12�

where Pe=�cpUH /	 is the Peclet number, Br=�U2 /HI is
the Brinkman number, and D=�H is the optical thickness of
a film of the uniform thickness H for the incident radiation
with the mean penetration length �−1. Using values of the
material parameters from Table I gives Pe=0.019�1 and
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Br=0.11�1. Thus in the leading order the energy equation
is

Tzz + �D/2�f�1 − R�h��exp�D�z − h�� = 0, �13�

and the energy equation in the substrate is

�zz + �D/2�f exp�D�z − h�� = 0. �14�

The dimensionless boundary conditions for Eqs. �13� and
�14� are

z = h: Tz = − ��T − Ta� , �15�

z = 0: Tz = �s�T − Ts� �TBC1� , �16�

or

T = �, Tz = ��z �TBC2� , �17�

z = − hs: � = Ts, �18�

where �=�hH /	 and �s=�sH /	 are the Biot numbers, �
=	s /	 is the ratio of the thermal conductivity of the substrate
to one of the film, and hs=Hs /H. Of course, boundary con-
dition �18� is not needed when the boundary condition
�TBC1� is used.

Solution of Eq. �13� subject to boundary conditions �15�
and �16� or the solution of Eqs. �13� and �14� subject to
boundary conditions �15�, �17�, and �18� gives the tempera-
ture field in the film,

T�x,y,z,t�

= 	�

2
− exp�− Dh�
�

2
+ K� + K exp�D�z − h�� +

z

2
�

�f�1 − R�h�� + Ts + Ta − Ts + F�h�f�1 − R�h���

��� + z�� , �19�

where K=−1 /2D,

F�h� = −
�

2
+ exp�− Dh�
�

2
+ K� −

h

2
− K , �20�

and �=1 /�s �TBC1�, or �=hs /� �TBC2�. Note that Eq. �19�
results upon the linearization in � of the full solution of the
problem. This is warranted since ��1 �see Table II�.

Substitution z=h in Eq. �19� gives the temperature at the
free surface,

T�h� � T�x,y,h,t�

= Ts − F�h�f�1 − R�h�� + �� + h��F�h�f�1 − R�h��

+ Ta − Ts�� . �21�

In Figs. 1 and 2 we show the typical contour plots of the
temperature field in the film of the uniform dimensionless
height h=1 at a vertical cross section in the middle of the
domain. These figures were obtained with �TBC1�, R�h�=0
and �TBC2�, R�h��0, respectively. �Remarks: the form of
the reflectivity function R�h� is shown in Eq. �22� below.
Unless noted otherwise in the text or in a figure caption, the
parameter values that are used to obtain all figures in the
paper are taken from Table II. Also, the dimensionless quan-

tities are plotted in all figures except Figs. 8 and 11.� In the
top row of Figs. 8 and 11, the film surface is heated by the
spatially and temporally uniform laser beam �f =1�, while in
the bottom row it is heated by the laser beam with the uni-
form temporal intensity distribution but nonuniform spatial
intensity distribution f�x ,y�=1+0.1�cos�4��x−0.5��
+cos�4��y−0.5���, corresponding to four-beam PLII. If the
film is irradiated uniformly, the temperature remains uniform
in any horizontal plane in the film �top rows of Figs. 8 and
11�, but for spatially nonuniform irradiation the temperature
in the film follows the shape of the intensity distribution as
shown in the bottom rows of Figs. 8 and 11.

If the optical thickness D�1 the radiation passes through
the film and such films are called optically thin or transpar-
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FIG. 1. Contour plot of the temperature field in the film at y
=0.5 for the case �TBC1� and R�h�=0. Top row: the surface is
heated by the uniform �spatially and temporally� laser beam. Bot-
tom row: the surface is heated by the temporally uniform but spa-
tially nonuniform laser beam. Left panel: optically thick film. Right
panel: optically thin film. Notice very small vertical temperature
gradient in all cases ��T /�z�0�.
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FIG. 2. Same as Fig. 1 but for the case �TBC2� and nonzero
R�h� given by Eq. �22�. Note that vertical temperature gradient
�positive� is larger than in Fig. 1.
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ent. If D1 the radiation penetrates only into a very thin
boundary layer adjacent to the free surface of the film and in
this case the film is called optically thick or opaque. Note
that in the dimensionless energy equation �Eq. �13�� f char-
acterizes the variation of the heat source in a horizontal
plane, whereas the function a�z�=exp�D�z−h�� describes its
dependence on the depth of the film, z. Since 0�z�h, a�z�
is the increasing function of the height z; however, for the
optically thin film the difference a�h�−a�0� is a small quan-
tity. In other words, the top and the bottom of the film re-
ceive approximately same energy from the laser beam. As a
result the temperature difference across the film is small �see
the right panels of Figs. 1 and 2�. On the other hand, the
bottom part of the optically thick film receives less energy
from the laser beam than the top part, which makes the tem-
perature difference across the film larger �see the left panels
of Figs. 1 and 2�.

Before we proceed further, we state the dimensionless
form of the effective film reflectivity that we use in the paper.
We assume the following form after Refs. 9 and 10:

R�h� = r0�1 − exp�− arh�� , �22�

where r0 and ar are the material dependent parameters �see
Table II�.

C. Derivation of the evolution equation for the film height

In this section we outline the conventional procedure25 of
the derivation of the evolution equation.

The dimensionless Navier-Stokes and continuity equa-
tions read as

�Re�ut + uux + vuy + wuz� = − px + �2�uxx + uyy� + uzz,

�Re�vt + uvx + vvy + wvz� = − py + �2�vxx + vyy� + vzz,

�3Re�wt + uwx + vwy + wwz�

= − pz + �4�wxx + wyy� + �2wzz − G , �23�

ux + vy + wz = 0, �24�

where Re=�UH /� is the Reynolds number �which is of or-
der one in magnitude for the case considered here�, and G is
the gravity number. In the leading order the Navier-Stokes
and continuity equations read as

px = uzz, py = vzz, pz = − G , �25�

ux + vy + wz = 0. �26�

Using the long-wave approximation, �hx�, �hy��1 and the

usual assumption of large surface tension,25 Ĉ=�3C−1 �where
C is the capillary number� in Eq. �6�, the dimensionless nor-
mal stress balance condition is

− p = Ĉ�hxx + hyy� +
A

h3 +
B

h2 , �27�

where A and B are the dimensionless Hamaker constants.
The dimensionless shear stress balance condition reads as

uz = �x + hx�z, vz = �y + hy�z, �28�

where the dimensionless surface tension is given by �=�m
−��T−Tm�.

Taking the cross-sectional averages of u and v over the
film height and integrating Eq. �26� using the no-slip condi-
tion, we obtain a more convenient form of the kinematic
boundary condition,

ht + �hū�x + �hv̄�y = 0. �29�

Integrating the first two equations in Eq. �25� twice in z and
applying the no-slip boundary condition yields

u = 
 z2

2
− hz�px + zuz�z=h,

v = 
 z2

2
− hz�py + zvz�z=h. �30�

Cross-sectional averaging of Eq. �30� results in

ū =
1

h
�

0

h

udz = −
h2

3
px +

h

2
uz�z=h,

v̄ =
1

h
�

0

h

vdz = −
h2

3
py +

h

2
vz�z=h. �31�

Since uz and vz are expressed in terms of the derivatives of
the surface tension �Eq. �28��, which in turn is expressed in
terms of the derivatives of the temperature at the free sur-
face, we need to calculate the latter derivatives. Hence, by
differentiating Eq. �19� and evaluating the derivatives at z
=h we find

Tx�y�
�h� = f�1 − R�h���1 − ��h + ���F1�h�hx�y�

+ fR��h��1 − ��h + ���F�h�hx�y� − F�h��1 − R�h��fx�y�

+ �h + ��F�h��1 − R�h��fx�y�� , �32�

Tz
�h� = ��f�1 − R�h��F�h� + Ta − Ts� , �33�

where

F1�h� =
1

2
+

1

2
��D − 1�exp�− Dh� , �34�

and the prime denotes differentiation. Substituting Eq. �33�
in Eq. �28� through the derivatives of � and using Eq. �27� in
Eqs. �31�, the expressions for the average velocities become

ū = −
Gh2

3
hx +

Ĉh2

3
�hxxx + hyyx� + 
 A

h2 −
2B

3h
− MhTz

�h��hx

− MhTx
�h� + O��fx� ,

v̄ = −
Gh2

3
hy +

Ĉh2

3
�hxxy + hyyy� + 
 A

h2 −
2B

3h
− MhTz

�h��hy

− MhTy
�h� + O��fy� , �35�

where M =� /2 is the Marangoni number.
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Finally, substituting Eq. �35� in kinematic boundary con-
dition �29� and using Eq. �33� result in the evolution equation
for the film height,

ht = � · �− Ĉ

3
h3 � �2h +

G

3
h3 � h − 
A

h
−

2B

3
� � h

+ M��Ta − Ts�h2 � h + MF1�h�f�1 − R�h��h2 � h

+ MR��h�F�h�fh2 � h − M��h + ��R��h�F�h�fh2 � h

+ �M�f�1 − R�h���F�h� − �h + ��F1�h���h2 � h� . �36�

In the following sections of the paper, we assume the laser
irradiation either uniform in the xy plane, or nonuniform
only in the x direction. The former situation corresponds to
the PLI case, i.e., one of a single incident laser beam, where
the interference is absent. �If there is only one beam, we
approximate its spatial intensity distribution on irradiated do-
main by a constant, i.e., f =1 or f = f�t�.� The latter situation
corresponds to two-beam PLII. In both cases the simpler 2D
model provides valuable insight into the dynamics of dewet-
ting. This model is studied in Sec. III.

It must be noted that in Eq. �36� we omitted the term
−M�1−R�h��� · �F�h�h2� f� and the similar term propor-
tional to the small parameter �. In PLII, when f is nonuni-
form in the plane �see Eq. �43��, the omitted terms describe
the surface shape change by thermocapillarity due to in-
plane temperature equilibration by heat conduction. In the
PLII experiments the in-plane heat fluxes are negligible be-
cause each pulse last only a few nanoseconds, heat losses to
the substrate are large, and the distance in the plane between
the interference fringes is much larger than the film thick-
ness. Thus the lateral temperature profile is approximately
static; i.e., it is determined by the geometrical arrangement
of the interference fringes. A few sample computations that
we performed with Eq. �36�, where the omitted terms are
present, show that these terms are indeed much smaller than
the other terms, and their influence on the film dynamics is
negligible. This can be also understood by noticing that in
the experiment �and, correspondingly, in our modeling� the
wave number of the surface perturbation, k, is larger or much
larger than the wave number, q, of the spatially modulated
laser light field f . See, for example, Fig. 12, which is ob-
tained with k=2.2 and q=0.157. Thus �f �qf ��h�kh,
and the terms proportional to �f are smaller than the terms
proportional to �h.

III. 2D MODEL OF FILM DYNAMICS

The 2D reduction of evolution Eq. �36� reads as

ht = 	−
Ĉ

3
h3hxxx +

G

3
h3hx − 
A

h
−

2B

3
�hx

+ M��Ta − Ts�h2hx + MF1�h�f�1 − R�h��h2hx

+ MR��h�F�h�fh2hx − M��h + ��R��h�F�h�fh2hx

+ M�f�1 − R�h���F�h� − �h + ��F1�h��h2hx�
x

. �37�

A. Linear stability analysis

For the purpose of the linear stability analysis, we assume
uniform laser power intensity distribution �f =1� and a small
normal perturbation of the uniform base state, h=h�0�

+��x , t�=1+e�teikx, where h�0� equals to one due to nondi-
mensionalization and � represents the growth rate of the
perturbation having a wave number k. Linearizing Eq. �37� in
� results in the dispersion relation

��k� = −
G

3
k2 −

Ĉ

3
k4 + 
A −

2B

3
�k2 − M��Ta − Ts�k2

+ MR��1�F�1��− 1 + ��1 + ���k2

+ M�1 − R�1���− F1�1� − ��F�1� − �1 + ��F1�1���k2.

�38�

From Eq. �38� we find the critical wave number kc such that
��0 for 0�k�kc,

kc = � 3

Ĉ

−

G

3
+ A −

2B

3
− M��Ta − Ts�

+ MR��1�F�1��− 1 + ��1 + ���

+ M�1 − R�1���− F1�1� − ��F�1� − �1 + ��F1�1�����1/2

�39�

The growth rate � attains its maximum value �max at the
wave number km=kc /�2, which is usually referred to as the
“most dangerous mode.”

The terms at the right-hand side of Eq. �38� describe the
stabilizing effect of gravity, the stabilizing effect of capillary
forces, the destabilizing and stabilizing effects of the van der
Waals component and the electronic component of the dis-
joining pressure, respectively, the stabilizing effect of the
temperature gradient across the film, if Ta�Ts, and destabi-
lizing effect otherwise, and the last two terms are due to the
volumetric heat source. The coefficient of the last two terms
in Eqs. �38� and �39�, MR��1�F�1��−1+��1+���+M�1
−R�1���−F1�1�−��F�1�− �1+��F1�1��� is negative for the
typical parameters values from Table II and for all values of
D. This holds true for both cases of the boundary conditions
��TBC1� or �TBC2�� and does not depend on the presence of
film reflectivity �see Figs. 5 and 6�. Thus the term associated
with the heat source has a stabilizing impact.19–21

1. Results for the case (TBC1) and R(h)=0

In this section �=1 /�s and r0=0 in Eq. �22�. The typical
graphs of ��k� are shown in Fig. 3. The solid curve repre-
sents ��k� calculated with all terms at the right-hand side of
Eq. �38� and the dash-dot curve shows ��k� computed with-
out the last term. �The fifth term is automatically zero since
R��1�=0 due to R�h�=0.� As expected both the maximum
growth rate and the cutoff wave number in the former case
are smaller than the corresponding quantities in the latter
case.

The Marangoni effect is expressed by the two compo-
nents, one responsible for the destabilizing thermocapillary
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effect �the fourth term in Eq. �38� with Ta�Ts, see Table II�,
and another responsible for the stabilizing effect associated
with the heat source �the fifth term�. Figure 4 shows the
Marangoni effect when the stabilizing component is absent
�left panel� and when both components are present �right
panel�. Since the Marangoni number M increases with the
peak intensity I, the irradiation of the film with a high inten-
sity laser has stabilizing influence �below the onset of evapo-
ration�.

The impact of the optical thickness D on the stability of
the perturbation is shown in Fig. 5. It can be seen that kc and
�max both decrease as D increases, while the magnitude of
the stabilizing effect �i.e., the coefficient� increases with D.
Thus in agreement with Refs. 19–21, as the film becomes
more opaque the internal heat generation increases and the
associated Marangoni effect stabilizes the film.

Finally, we discuss impacts of �s and �. The cutoff wave
number increases as �s increases �kc�3.1099 for �s=1 and
kc�3.2257 for �s=104� approaching the constant value
�3.23 as �s→�. The maximum growth rate is very insig-
nificantly affected by the change of �s, increasing slowly and

approaching value 7.65�10−5 as �s→�. Thus the film is
more stable for smaller �s. Similarly, the cutoff wave number
kc and the maximum growth rate increase insignificantly
with increasing � �while � is kept typically small, as re-
quired by Table II�. Clearly, as � or �s increase the amount
of heat in the film decreases due to heat losses to the ambi-
ent, and the film becomes less stable.

2. Results for the case (TBC2) and R(h)Å0

In this section �=hs /� and r0=0.44 in Eq. �22�. The co-
efficient of the two stabilizing terms in the growth rate equa-
tion �38� is plotted in Fig. 6. Unlike Fig. 5, the dependence
of the coefficient on D is nonmonotone for both zero and
nonzero reflectivities when the heat conduction in the thin
substrate is taken into account. The maximum stabilization
occurs in films with D�1, and the minimum one in films
with D�1 or D1.

The corresponding maximum growth rate and the cutoff
wave number are shown in Fig. 7. As D starts to increase
from zero, the film becomes more stable. In the interval
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FIG. 3. Variation in � with k: the dash-dot curve shows ��k�
calculated without the term containing the effect of the heat source
in Eq. �38�; the solid curve shows ��k� calculated with all terms
included.
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0.11�D�3.45 complete stabilization occurs; i.e., the
growth rate is negative for all wave numbers. For D larger
than 3.45, the growth rate is positive for 0�k�kc �where kc
is shown in the bottom right panel�, and as D increases the
film becomes less stable. Such nonmonotonous dependence
of stability characteristics on the optical thickness is, in our
opinion, very interesting and unexpected. When the heat con-
duction in the thin substrate is taken into account, the film
heated uniformly can be completely stabilized against small
perturbations in some interval of the optical thickness pa-
rameter. Of course, the film is still unstable for perturbations
with amplitudes larger than some critical one.

Figure 8 shows the maximum temperature in the film as a
function of the dimensional film height, for f =1. �Of course,
the dimensionless parameters were recalculated for each new
value of H.� The temperature is increasing as the height in-
creases, confirming the observations in Refs. 1, 7–9, and
11–14. The trend in Fig. 8 also signals that higher laser
power intensity is required to melt thinner films.1,7–9,11–14 The
slope of the line is larger in the case of R�h�=0, which shows
that neglecting the reflectivity overpredicts the temperature
in the film. This effect is also discussed in Ref. 9.

It can be easily shown that the total heat generated in the
film, i.e, the integral of the source term Q �Eq. �5�� over the
film height h, is an increasing function of h when D is

greater than ar �see also Refs. 9 and 10�. This is the reason
why the film temperature increases as the film thickness in-
creases.

B. Nonlinear evolution of the film

The 2D evolution equation for the film height �Eq. �37�� is
solved numerically using the method of lines. Integration in
time is performed using the ODE solver RADAU whereas the
discretization in space is carried out in the conservative form
using the positivity-preserving26 second-order-accurate finite
differencing on a spatially uniform staggered grid.

The perturbation

h�x,0� = 1 + A0 cos�kmx� , �40�

where A0 is the small amplitude and km is the wave number
of the fastest growing instability as identified in the linear
stability analysis, is imposed as the initial condition. Equa-
tion �37� is solved in the spatial domain 0�x�2n� /km
�where n is an integer� subject to the periodic boundary con-
ditions.

We performed simulations using different forms of f�x , t�
that characterizes the spatiotemporal power intensity distri-
bution of the PLI or PLII at the film surface.

Firstly, we assume f uniform in both time and space; i.e.,
f �1. This corresponds to a steady heating of the film surface
by a single laser beam with a uniform spatiotemporal shape.
The results of the nonlinear simulations in this regime can be
compared to the linear stability analysis in the previous sec-
tion.

Next, with f still spatially uniform we assign a Gaussian
temporal shape to f so that

f � f�t� = e−��t − T/2�2/2�2� �41�

for a single pulse laser irradiation, and

f � f�t� = �
k=0

N−1

e−�t − �2k + 1�T/2�2/2�2� �42�

for a sequence of N pulses of irradiation, where T is the pulse
duration and � is the standard deviation. �Note that d
=2��2 ln 2 is the Gaussian full width at half maximum.�
Both situations again correspond to heating of the film sur-
face by a single laser beam.

Finally, we consider the case of the two-beam interfer-
ence. The two-beam interference produces a spatially modu-
lated light field having the form12

f � f�x� = 1 + � cos
q
x −
�

km
�� , �43�

where the parameter 0���1 models the strength of the
interference and 2� /q=� is the distance between two neigh-
boring interference fringes. This distance � is given by �
=� /2 sin�� /2�, where � is the wavelength of the primary
laser beam and � is the angle between the two interfering
beams. Note that the subtraction of � /km from x is to make
the beam focused at the center of the domain.

Below we show the numerical results for the case �TBC1�
and zero reflectivity. The numerical simulations for the case
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�TBC2� and R�h��0 give similar shape profiles. The inclu-
sion of the reflectivity in the simulation makes the rupture
time of the film shorter. In this sense the film is more un-
stable when R�h��0. We discuss this issue in more detail at
the end of this Section.

C. Impacts of the different modes of irradiation

f =1. Figure 9 shows the evolution of the film surface
resulting from uniform irradiation, both in time and space, by
a single laser beam. The minimum point of the initial film
surface goes further down and touches the substrate. In the
simulation, the nonlinear dynamics of the film is followed
until its minimum height gets a very small value �0.001� and
then the film is said to be ruptured. Favazza et al.8 estimated
the rupture time Tr of a film �i.e., the time scale of dewetting�
as T̃r=2� /��km�. For a 10-nm-thick film their calculation

gives T̃r�1.25 ms. Our linear stability analysis gives T̃r
�1.9 ms. Note that Tr depends on the amplitude of the ini-
tial surface perturbation. Naturally, perturbations with larger
initial amplitude rupture the film faster. In the nonlinear dy-
namical simulation shown in Fig. 9 the rupture time for A0
=0.01375 is approximately 0.9 ms, which corresponds to the
dimensionless time Tr�43150. It is seen in Fig. 10 that at
the initial stage of the irradiation the nonlinear instability
growth rate matches the one predicted by the linear stability
analysis, but towards the end of the simulation the nonlinear

instability grows much faster. This can be explained by ob-
serving that when the film height gets small the factor A /h in
Eq. �37� becomes very large, signaling that the destabilizing
van der Waals component of the disjoining pressure domi-
nates over stabilizing forces, which results in a faster insta-
bility growth. We also noticed that smaller values of the cap-
illary number, C, sometimes result in a ring rupture, meaning
that the film surface touches the substrate some distance
from the vertical line through the minimum of the perturba-
tion. Such rupture leaves behind an array of small liquid
drops.16

f as in Eq. (41). The shape profile obtained by irradiating
the surface with a single pulse of width d=10787 �200 �s
dimensional pulse width� is similar to the one resulting from
uniform laser beam heating �Fig. 9�. However, Tr�35138 in
this case, which is less than the rupture time for the uniform
heating. The reason is that the energy absorbed from the
Gaussian beam is less than the energy absorbed from the
uniform irradiation, which causes the rapid growth of the
instability leading to fast rupture.

f as in Eq. (42). In this simulation we use several se-
quences of Gaussian pulses. In each sequence, pulses have
same width and also the repetition frequency of pulses is
same for all sequences. Figure 11 shows the rupture time vs
pulse width. The surface morphology is similar to the one
obtained by uniform laser beam heating. It can be seen that
the rupture time increases as the pulse width increases.
Again, this is because the energy generated from a narrower
pulse is smaller than the energy generated from a wider
pulse, and this increases the growth rate of the instability.
Heating the film surface with wider pulses also require more
number of pulses for the film to rupture. For example, 3064
pulses are enough to get the film ruptured when irradiated
with a 1ns pulse, compared to 3293 pulses required for a
50ns pulse irradiation. It must be noted here that in any irra-
diation mode the rupture time increases approximately lin-
early with the peak intensity I. This effect can be seen from
Eqs. �38� and �39�. Indeed, larger I does not change the mag-
nitude of the fourth �destabilizing� term there �see the defi-
nitions of the parameters M ,Ta and Ts in the Table�, but it
increases the stabilizing contribution of the last term. The
inclusion in the model of weak evaporation and the corre-
sponding recoil pressure at the free surface should partially
reverse this trend.16

0 5 10 15 20

0

0.5

1

1.25

x

h

0 1 2 3 4

0

0.2

0.4

0.6

0.8

10−4 t

h m
in

FIG. 9. Profile of the film height �left� and the evolution of the
minimum point on the film surface �right�. The surface is heated by
a uniform laser beam.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−4

−3

−2

−1

0

10−4 t

ln
(1

−
h m

in
)

FIG. 10. Plots of ln�A0�+�maxt �linear theory, dashed-dot curve�
and ln�1−hmin� �nonlinear simulation, solid curve� vs time. The
slope of the solid line equals the growth rate of the instability.

01 10 20 30 40 50

630

640

650

660

670

680

690

Pulse width(nm)

R
up

tu
re

tim
e(

µ
s)

FIG. 11. Variation in the rupture time with the pulse width. �The
curve is only the guide for the eyes.�

THERMOCAPILLARY EFFECTS IN DRIVEN DEWETTING… PHYSICAL REVIEW B 80, 075402 �2009�

075402-9



f as in Eq. (43). Figure 12 shows the film profile after the
two-beam irradiation, together with the interference field
profile, i.e., the function f�x�. Values of the parameters are
�=0.99, q=0.157, and k=2.2. The ruptures first occur in the
low-temperature regions, while the strong heat generated in
the high-temperature regions makes the film surface stay
near the equilibrium position h=1. The rupture time is
600 �s, which is comparable to the time estimate given in
Ref. 10 ��100 �s for a 10-nm-thick film�. If the irradiation
is stopped immediately after the first ruptures occur, the so-
lidification that follows is expected to create the regular array
of metallic ridges �nanowires� with the axes along the
y-direction. In contrast to Fig. 9 where the irradiation is uni-
form, here the ridges have different volume, with the large
�small� volume in the cold �hot� regions. Thus the ridges
volume distribution has the period � of the interference im-
print. This distribution is qualitatively consistent with the
PLII experiments and modeling.11 Since the bulk film tem-
perature is higher for thicker films �Fig. 8�, then increasing
the film height from 10 nm to 15 nm eliminates most ridges,
except the one in the destructive regions �the bottom figure
in Fig. 12�. �Note that scales are very different along the x
and h axes in Figs. 9 and 12, thus the true cross section of
each ridge is closer to the circular than it appears.� It must be
noted that by nature of this model the substrate is exposed
only at the points of film rupture between the ridges in the
cold regions, while in the experiment each ridge terminates
at the substrate. In other words, the simulation with this
model can’t be continued for t�Tr and thus we can’t predict
how the mass will be redistributed if the irradiation persists.

Finally, in Fig. 13 we plot the ratio of the rupture times,
Tr

R�0 /Tr
R=0 vs. D for the case �TBC2�. The simulations were

done, in each case, with the most dangerous wave number km
�for R=0 and R�0 the most dangerous wave numbers are
different�. It can be seen that this ratio is less than one for all
values of D and changes nonmonotonously with D, decreas-
ing first and then increasing. The minimum value is as small
as �10−2. The ratio is less than one because the reflectivity

reduces the heat generation in the film �Eq. �5��, thus reduc-
ing the stabilization. Note that, since the simulation is started
with the small surface deformation �such that the predictions
of the linear stability theory are valid for at least some time�,
the ratio does not give meaningful comparison in the interval
D�1. This is because the surface is linearly stable for R
=0 and R�0 when D�1, as shown in Fig. 7, and both Tr

R�0

and Tr
R=0 are formally infinite. Thus the ratio is not plotted

for 0.085�D�4.1

IV. DISCUSSION AND CONCLUSIONS

In this paper we study the dewetting dynamics of a
pulsed-laser-irradiated metallic films. A lubrication-type
model describing the flow of a molten film and the heat
conduction in the film is developed. The heat absorbed from
the laser beam is included as a source term in the heat con-
duction problem and the temperature field distribution in the
film is obtained by solving this problem analytically. In the
laser interference mode of irradiation, we observe that the
lateral temperature distribution in the film mimics the shape
of the lateral power intensity distribution of the laser. The
temperature difference across the film and the temperature in
the film are higher for optically thick films than for the op-
tically thin ones.

The temperature field is used to derive the 3D long-wave
evolution PDE for the film height. In order to get clear un-
derstandings of the film dynamics, we study the 2D version
of the equation by means of the linear stability analysis and
numerical simulations.

The linearized problem allows us to investigate the stabi-
lizing and destabilizing effects of various system parameters.
Higher peak intensity of the beam and larger Marangoni
number M either delay the rupture time of an initially per-
turbed film or make the perturbation decay, while smaller
surface Biot number � and substrate Biot number �s have the
same effect. The increasing optical thickness D can have
either stabilizing or destabilizing effect, depending on the
magnitudes of the film reflectivity and the ratio of the sub-
strate to film thermal conductivities. As film becomes thin-
ner, the stabilizing effect of the internal heat generation be-
comes smaller as more heat is generated in thicker films.

Impacts of the different modes of irradiation are investi-
gated numerically in the 2D setting. For the spatially uniform
�single beam� irradiation the film rupture is spatially periodic
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with the wavelength of the fastest growing perturbation. The
latter wavelength is determined by values of all system pa-
rameters, including the laser parameters. In the two-beam
interference heating mode the ruptures occur in the �cold�
regions of destructive interference, while at the �hot� regions
of constructive interference the initial surface perturbation is
still developing. Assuming the irradiation is stopped after the
first ruptures, the solidification is expected to create a ridge
�nanowire� array, where the spatial distribution of ridges vol-
umes follows the spatial periodicity of the interference im-
print.

These conclusions do not depend, at large, on the pres-
ence of the thickness-dependent reflectivity. However, quite
unexpectedly we found that reflective films with D�1 can
be completely stabilized against dewetting and rupture, al-
though films with D either small or large are less stable than
the corresponding nonreflective films �due to smaller magni-
tudes of the heat source in the reflective films�. The rupture
time from the simulations is comparable to the estimated and
the experimentally obtained values.13 The rupture time of the
films having nonzero reflectivity is significantly shorter than
the one of the nonreflective films.

Finally, we point out the difference of thermocapillary
mechanisms with and without heat generation in the film due
to laser beam irradiation of the film surface. In standard ap-
plications, when the substrate is heated up �i.e., the situation
where the film surface is not irradiated and thus there is no
heat production in the film� the thermocapillary effect is gov-
erned by the M��Ta−Ts�h2�h term in the evolution equa-

tion, where Ta�Ts. This term is responsible for the fluid
flow from the high-temperature region �the one that is closer
to the hot substrate, i.e. the trough of the surface undulation�
to the low-temperature region, i.e. the crest of the surface
undulation, resulting in instability and ultimate film break up
in the high T region. In that case the temperature gradient
across the film is negative, �T /�z�0. On the other hand,
when the film surface is irradiated and the heat is generated
in the film, the temperature gradient �T /�z�0 �see Fig. 1�,
despite that still Ta�Ts. The heat source term in the evolu-
tion equation counterbalances the standard term, reversing
the direction of the fluid flow. In the multiwavelength non-
linear simulation shown in Fig. 12 this effect manifests as
enhanced surface stability in the hot regions. The linear sta-
bility is also drastically affected �see Figs. 3–5 and 7�. These
results could help understanding the dewetting and rupture
process in ultrathin metal films irradiated by pulsed-laser
beams, including Co, Fe, Au, Ni, Cu, Ag, and Mo films on
SiO2 /Si substrates.1,7–14 Future work will focus on develop-
ment of accurate and efficient numerical methods �finite dif-
ference and spectral� for the 3D evolution equation, simula-
tions of the corresponding film dynamics, and on quantitative
characterization of the 3D structures size and ordering.
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