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Stability of a strongly anisotropic thin epitaxial film in a wetting interaction with
elastic substrate
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The linear dispersion relation for surface perturbations, as derived by Levine et al., Phys. Rev.
B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a
variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets
occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a
combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone
results in complicated linear stability characteristics of strained and unstrained solid films.

PACS: 68.55.J, Morphology of films; 81.15.Aa, Theory and models of film growth; 81.16.Dn, Self-

assembly.

Accepted for publication in Eur. Phys. Lett. (http://epljournal.edpsciences.org)

I. INTRODUCTION

Studies of the morphological instabilities of a thin solid
films are a first step towards understanding complex phe-
nomena such as the formation of a three-dimensional
nanoscale islands in strained alloy heteroepitaxy. Such
studies became common after the pioneering works of
Asaro and Tiller [1], Grinfeld [2] and Srolovitz [3]. The
classical Asaro-Tiller-Grinfeld instability is one of an uni-
axially stressed solid film on a rigid infinite substrate. Its
variants for the single-component and alloy films on the
rigid as well as on the deformable substrates have been
studied and this research continues. Reviews of works on
the single-component films have been published, see for
instance Ref. [4].

Film-substrate wetting interaction is a relatively new
concept in the field of research on morphological insta-
bility and evolution. When surface slopes are not very
large, this additional wetting energy can be considered a
function of the local film thickness A, but not the slopes
of h [5-7]. In Refs. [8-10, 12] and others it has been
shown that wetting interaction damps long-wave insta-
bility modes in a certain range of film thickness, thus
changing the instability spectrum from long-wave type
to short-wave type. The latter mode of instability is
more relevant to the process of formation of island ar-
rays [13]. In Ref. [9] it is recognized that in the pres-
ence of wetting interaction, the boundary conditions that
describe stress balance at the film free surface and at
the film-substrate interface must be augmented by wet-
ting stress terms - that are proportional to the rate of
change of the surface energy with h. (Wetting stress
is called conjoining (or disjoining) pressure when study-
ing dynamics of thin liguid films on substrates [14, 15].
This pressure is partially responsible for so-called spin-
odal instability, which typically leads to film dewetting
(rupture); for discussions of spinodal instability, see for
instance Ref. [16] and references therein.) Wetting stress

and lattice-mismatch stress have different origin, and the
former may be present even when the latter is absent.
For wetting (non-wetting) films, the solution of the elas-
tic free-boundary problem with boundary conditions that
include wetting stress terms, results in additional desta-
bilizing (stabilizing) contributions in the dispersion rela-
tion. Some stability characteristics have been analyzed
in Ref. [9] within the framework of longwave approxima-
tion, where in addition the surface energy is assumed
isotropic. This communication extends that work by
adding strong anisotropy and considering not only wet-
ting films, but also non-wetting films. Here we recognize
that the film thickness and the wetting length are two
independent characteristic lengths, i.e. the former length
is determined by film deposition, while the latter one is
determined by the molecular structure and properties of
the film-substrate interface. Since wetting length may
be, and normally is, less than the deposited film thick-
ness, the perturbation wavelengths may be comparable to
the film thickness but still much larger than the wetting
length. In this case the long wavelength approximation
may hold with respect to the wetting length, but not
with respects to the film thickness. In Sec. IV we show
that this approach reveals linear stability features that,
we believe, went unnoticed in prior publications.

II. PROBLEM STATEMENT

Following Refs. [9, 17], we consider a dislocation-free,
one-dimensional, single-crystal, epitaxially strained thin
solid film in a wetting interaction with a solid, semi-
infinite elastic substrate. The film surface z = h(x,t)
evolves due to surface diffusion. This evolution is de-

scribed by
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on_apy o [ (o \ om|
ot kT Ox ox ox |’



where () is the atomic volume, D is the adatoms diffu-
sivity, IV is the adatoms surface density, kT is the Boltz-
mann factor, and M is the surface chemical potential
[18]. The latter has contributions from the elastic energy
in the film, the anisotropic surface energy, and a wetting

interaction:
0%y K 0%k
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(% — sign(hz)mge> cos 9] ,(2)
where 6 is the angle that the unit surface normal makes
with the reference crystalline direction, say [01] (cho-
sen along the z-axis, which is normal to the substrate),
v(h,0) is the height- and orientation-dependent surface
energy, k is the curvature of the surface, S is the ar-
clength along the surface and h, is surface slope (note,

0/0S = (cos0)d/dx = (1+h2) >0/0x). The term
proportional to the small positive parameter § is the reg-
ularization that is required in view of ill-posedness of Eq.
(1) for strong anisotropy, that is when €, > 1/(m?—1) in
Eq. (4) below [19-22]. Note also that the mixed deriva-
tive term in Eq. (2) is nonlinear and thus it has no impact
on linear stability.

In this communication we consider the two-layer expo-
nential model for the surface energy [5, 7]:

V(h,0) = 7:(0) + (vs — 1(0)) exp (=h/C),  (3)

where 7 is the surface energy of the substrate when there
is no film, ¢ is characteristic wetting length, and ~:(9) is
the anisotropic surface energy of a thick film:

(4)

Here vy is the mean surface energy, €, is the strength
of anisotropy and m is the integer parameter specifying
anisotropy type (i.e., four-fold, six-fold, etc.) By com-
parison with experimental and ab initio computational
studies the two-layer exponential model has been shown
the most accurate to-date [23, 24]. In the absence of
anisotropy, 7+ = Yo = const., and § vanishes. ¢ is taken
zero also at weak anisotropy, e, < 1/(m? —1). In real-
ity, the maximum of ~;(f) might occur at § = (3, where
the non-zero angle § is a misorientation from the refer-
ence direction. Without significant loss of generality we
assume § =0 in Eq. (4).

The expression for the elastic energy £(h) in Eq. (2)
is derived in Ref. [17] without accounting for wetting
interaction. Wetting interaction is considered in several
papers, including Refs. [8-12, 23, 25, 27] (in Ref. [27] the
wetting effect arises not from the dependence of surface
energy on thickness, but from the thickness-dependent
elastic energy, which cannot be calculated from linear
elasticity theory). To this end, by combining expressions
derived by us in Refs. [9, 25] we state the dimensionless
linear growth rate in the longwave limit, kho < 1 (where

v:(0) = v0(1 4+ ey cosmb), €, > 0.

k is the perturbation wavenumber and hg is the uniform
thickness of unperturbed planar film):

w(ho, ky 1,6, 64) = Ae? (u+ Arhok) k* —
Be [p(ho — 1) + ho (Biho — A1) k] k*aexp (—ho) +
F[(A—(G+ A)exp(—ho)) k* — AKS—

ak? {exp (—ho) — Baaexp (—2ho)}] .(5)

¢ has been chosen as the length scale and ¢2/D as the
time scale. Here € is the misfit strain in the film, and
W= py/ps is the ratio of the film shear modulus to the
substrate shear modulus. Other parameters are:
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In Egs. (6)-(9) v is Poisson’s ratio. Note coupling of
wetting interaction and misfit strain through the term
proportional to € (the second line of Eq. (5)). This term,
responsible for breaking symmetry between compressive
and tensile stress states, drops out of the growth rate
in the absence of wetting interactions, hy — oco. In the
square brackets of this term, —p and —Ajhok are the
contributions from the wetting stress; see also Refs. [9,
25]. Another contribution from the wetting stress is the
term proportional to exp (—2ho) in the square brackets
in the last line of the equation.

Our goal is to elucidate the roles of anisotropy, wetting
interaction and wetting stress and to characterize film
stability in the space of dimensionless parameters hg, k,
i, € and ey. Other material parameters will be fixed to
their most characteristic values. We choose the following
values: D = 1.5 x 1076 em?/s, N = 10* ecm™2, Q =
2 x 1072 em?, kT = 1.12 x 10713 erg, 79 = 2 x 103
erg/cm? vy = 0.198, v, = 0.217, py = 10'? erg/cm?,
§ =5x10712 erg, and £ = 3 x 10~® cm. The value of
the characteristic wetting length is of the order of 1 ML
thickness for InAs or Ge film [23]. We assume strong
anisotropy, i.e. ey > 1/ (m2 — 1) = e,(yc) and thus A >
0. For strained films considered in Sec. IV, we choose
m = 32 as the most characteristic value [26]. However,
as far as the effect of anisotropy on linear stability is of

?



interest, similar results are obtained for other common
values such as m = 4 or m = 6. That is, choosing larger
m simply means that smaller values of e, are above the

critical value e,(yc). Wetting films require a > 0 [25], thus

we choose vs = 27, e(wc)

< €y < 1. For analysis of non-
wetting films (a < 0), we choose v = v0/2, €y > egc). It
is clear that wetting stress terms (pointed out above) are

destabilizing (stabilizing) in wetting (non-wetting) films.

III. FILMS WITH WETTING INTERACTION
AND ZERO MISFIT STRAIN AND WETTING
STRESS

When misfit strain and wetting stress are not present,
Eq. (5) reduces to:

w(ho, k,ey) = F [(A = (G + A)exp (—ho)) k*
—AK® —ak?exp (—ho)] . (1)

First, we consider wetting films. It follows that the
perturbations with the wavenumbers larger than k. =
v/A/A cannot destabilize a film of any thickness. (Here,
k. is not the customary cut-off wavenumber, but is deter-
mined from the condition w < 0 for any hg.) However, in
the opposite case k < k. only the films of thickness that

is less than the critical, h(()cl), are stable:

AK? — Ak*

(Cl):_ 92
ho < hf T R 2)

With A = 25/9 corresponding to the material parameters
stated above, m = 4, and e, = 0.1, we obtain k. = 0.42.
Taking typical k = 0.1k, in Eq. (2) gives h{f") = 6.94,
which translates to the dimensional value of 7 ML. Fig. 1
shows the contour plot of h(()cl) (k,€y). It can be seen that
stronger anisotropy decreases hécl). We notice also that
strong anisotropy destabilizes (that is, the contribution
proportional to k* in the square bracket is positive) only
relatively thick films, such that

A
"GEA ®)

ho > hi™ = —1

For the chosen values, h(()@) = 1.6 ML. Such threshold-
type influence of strong anisotropy is distinctly different
from the simplified model in which wetting interaction
is absent. The latter model can be obtained by taking
ho — oo in Eq. (1), and thus this equation becomes
w(k,ey) = F (Ak* — AkS), from which it is clear that
strong anisotropy has destabilizing influence on a film
of arbitrary thickness. These findings to some extent
echo Refs. [23, 27], where the existence of the critical
perturbation amplitude that is necessary to destabilize a
film in the presence of a cusp in the surface energy ~(9)
(which is the case below the roughening temperature),
has been demonstrated. Thus if a film is thin, critical
amplitude may be unattainable and the film will not be

0.20

0.18f
0.16f
o.14f
o.12f
o.1of

0.08!

FIG. 1. Contour plot of the critical thickness hécl) for strong
anisotropy, e, > €\ = 1/15.

destabilized. However note that models of Refs. [23, 27]
do not allow staightforward separation of the effects of
surface energy and mismatch stress, and thus our results
can’t be easily compared to these papers.

Next, we consider non-wetting films. One example
of such material system may be the energetically-driven
dewetting of silicon-on-insulator [28, 29]. Repeating the
analysis and referring to the critical values shown above,
it follows that film of any thickness is stable with re-
spect to perturbations with wavenumbers larger than

mazx (kc,kgu)), where kéu) =+/—a/(G+A). Ifk. <k <

kﬁ“), then film is stable if hg > h(()cl) and unstable other-

wise. If k") < k < k., then the film is stable if ko < h{*
and unstable otherwise. Finally, if £ < min (kc,kgu)),
then the film of any thickness is unstable. With G = 0.5
and ey = 0.1, k£u) = 0.77 > k., and therefore the second
possibility, Y < k< ke, must be dismissed. Typically,
the first scenario (k. < k < k,(;u)) holds, and thus there is
a critical thickness below which the film is unstable [10].

Results similar to shown above for wetting and
non-wetting films can be obtained (numerically) with
non-zero wetting stress, since the negative exponent
exp (—2hg) decays fast compared to the terms in Eq. (1)
that are proportional to exp (—hg).

IV. WETTING FILMS WITH NON-ZERO
MISFIT STRAIN AND WETTING STRESS

The situation presented in this section is common for
Stranski-Krastanov growth of epitaxial thin films.

As we pointed out in Sec. II, in the presence of mis-
fit strain and wetting interaction, Eq. (5) contains the
term that is proportional to the first power of misfit



strain. Whether this term is destabilizing or stabilizing
(for, say, € > 0) depends on the sign of the expression
f(k’, W, ho) = U (ho —1)+ho (Blho — Al) k. Only for suf-
ficiently small £ and large p this is positive. Then the
second term in Eq. (5) is stabilizing as shown in Fig. 2.
Increasing hg makes the domain of stabilization smaller.
As p is in the range 0.5 - 1.0 for a typical heteroepitax-
ial semiconductor system, the coupling of misfit strain
and wetting interaction has stabilizing effect on an ul-
trathin film of thickness of the order of several wetting
lengths, for longwave perturbations. Note that the stan-
dard e2-term is always destabilizing for all perturbation
wavelengths [17].

ST T

O 4
000 005 010 015 020
K

FIG. 2. Zero level curve of f(k,u,ho) = p(ho—1) +
ho (Biho — A1) k. (a) ho = 2, (b) ho = 3. To the left of each
curve, the symmetry-breaking term in the longwave growth
rate (5) (second line) is stabilizing, to the right - destabilizing
(when a, € > 0).

In order to demonstrate some effects of arbitrary re-
lation between wetting length, film thickness and the
perturbation wavelength, in conjunction with strong
anisotropy, we use next the full dimensional growth rate
expression involving hyperbolic functions of kh, where
k, h are now the dimensional wavenumber and mean
thickness, respectively. (Available on request from au-
thors.) (Eq. (5) emerges upon expansion of this growth
rate in powers of small dimensionless parameter kh, re-
taining the dominant terms of the expansion (longwave
approximation), and non-dimensionalization.) As is Eq.
5, the full growth rate is quadratic in €, allowing one to
explicitly determine the boundaries of neutral stability,
w =0, in the r — € or u — € planes. Here r and v (dimen-
sionless) are defined by h = ¢, k = u(27/¢).

Fig. 3 shows neutral stability curves, in u — € plane, for
€y = 0 and 0.01. (For value m = 32 used in this Section,
eﬁf) = 0.001.) For all three values of a film thickness in
the former (isotropic) case, and for the smallest value in
the latter (strongly anisotropic) case, the film is destabi-

lized by short-wavelength perturbations, u > 0.02, above
some critical value of the misfit parameter e. Increasing
film thickness in the isotropic case to values as large as
50¢ only makes the domain of stability to shrink. How-
ever, for larger film thickness in the strongly anisotropic
case (Fig. 3(c,d)) two stability domains emerge sepa-
rated by the domain of instability. The splitting of a
single domain into two domains occurs at » = 0.5. The
size of stability domains decreases with increasing film
thickness. Overall, the film is less stable with increasing
anisotropy (as expected). Note that instability in Fig.
3(c,d) is present for some u even when misfit is zero. Re-
sponsible for this is the combined destabilizing effect of
anisotropy and wetting stress, which together overweigh
the stabilizing effect of the wetting layer; also see Sec.
III. Similar behaviour is observed for increasing p while
keeping thickness fixed. We also notice that only » = 0.1
case can be (probably) captured by longwave approxima-
tion, as kh = 2nru = 0.38 ~ 1 for » = 0.1,u = 0.6, and
is even larger for other values of r in Fig. 3. In order to

1.0
S

10

0.5

+ 0o v 0.0
" —(1).5 m
10 B '%.00.10.20.30.40.50.6
0.0 0.1 0.2 0.3 04 05 0.6 u
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FIG. 3. Neutral stability curves. (a): ey = 0. r = 0.1 (solid),
r = 1 (dash), r = 3 (dot). (b-d): ey = 0.01. (b) r = 0.1,
(c) r =0.518, (d) r = 1 (dashed), r = 3 (solid). Domains of
surface stability (instability) are marked by S (U).

characterize the horizontal spacing between two stability
domains in Fig. 3(c,d), in Fig. 4 we plot the neutral
stability curve corresponding to the level ¢ = 0. It can
be seen that for all reasonable r this spacing does not
exceed 0.3. For comparison, the case of slightly larger
anisotropy is also shown.

To summarize, we considered all combinations of
wetting interaction (through the exponential two-layer
model), lattice-mismatch and wetting strains, and strong
anisotropy. Our results demonstrate complicated linear
stability of ultrathin films (h ~ 1 : 5 wetting lengths).
In particular, we show that extremely thin (h ~ 1 : 2
wetting lengths), unstressed wetting films are not desta-
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FIG. 4. Neutral stability curves (see text). (a) e, = 0.01, (b)
€y = 0.014. Film is stable below each curve.

bilized by arbitrarily strong anisotropy. Anisotropic,
stressed wetting films are destabilized by any level of
mismatch stress, but only in the narrow range of per-
turbation wavenumbers. Such films can remain sta-
ble with respect to short-wavelength perturbations when

they are very thin and at any reasonable mismatch
stress level. Our final remark concerns two-dimensional
surfaces and corresponding surface energy anisotropies
vV¢(ha, hy) of the generic form (4) (where contribution
in the y-direction is additive, as is commonly assumed).
We conjecture that, if the surface orientation (of a thick
film) is still one of the high-symmetry crystallographic
orientations, such as [001] or [111], then the effect of
such in-plane anisotropy is nonlinear and thus the lat-
ter anisotropy will not affect the results. This can be
qualitatively understood, for instance, by following the
analysis leading to Eq. (15) in Ref. [8] while accounting
for the nonlinear nature of the mixed derivative term in
Eq. (2) and the form of Eq. (3). Due to complexity
of formulation and derivation, the exact proof is beyond
the scope of this note. The results are also unchanged if
the surface is two-dimensional but in-plane anisotropy is
Z€ro.
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