Western Kentucky University
TopSCHOLAR®

Mammoth Cave Research Symposia

10th Research Symposium 2013

Feb 14th, 1:00 PM

A Functional Visual System in the Cave Beetle

Ptomaphagus hirtus

Markus Friedrich
Wayne State University

Rui Chen
Baylor College of Medicine

Elke K. Buschbeck
University of Cincinnati

Stewart Peck
Carleton University

Follow this and additional works at: http://digitalcommons.wku.edu/mc_reserch_symp

Part of the Animal Sciences Commons, Forest Sciences Commons, Geology Commons, Hydrology Commons, Other Earth Sciences Commons, and the Plant Sciences Commons

Recommended Citation

http://digitalcommons.wku.edu/mc_reserch_symp/10th_Research_Symposium_2013/Day_one/10

This is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Mammoth Cave Research Symposia by an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.
A Functional Visual System in the Cave Beetle *Ptomaphagus hirtus*

Markus Friedrich\(^1,2\), Rui Chen\(^3\), Elke K. Buschbeck\(^4\), Stewart Peck\(^5\)

\(^1\) Department of Biological Sciences, Wayne State University
\(^2\) Department of Anatomy and Cell Biology, Wayne State University, School of Medicine
\(^3\) Baylor College of Medicine
\(^4\) Department of Biological Sciences, University of Cincinnati
\(^5\) Department of Biology, Carleton University

Abstract
Cave species exhibit a suite of dramatic differences in comparison to their surface living relatives, commonly referred to as troglomorphy (Christiansen 2005). One hallmark feature of troglomorphy is the severe reduction or complete loss of eyes and functional vision. The two most abundant cave beetle species in Mammoth cave, the 2-3 mm small carrion beetle *Ptomaphagus hirtus* (Packard 1888; Peck 1973; Peck 1975; Tellkampf 1844) and the 6-8 mm long predatory ground beetle *Neaphaenops tellkampfi* are good examples of this (Barr 1979).

P. hirtus tends to hide in crevices and usually goes unnoticed to the regular visitor of Mammoth cave. *N. tellkampfi* by contrast is very active and therefore noticed by most attentive visitors of Mammoth cave as the fast moving insect crossing their path. Neither of these two beetles possesses compound eyes typical for diurnal insects (Barr 1962). In *N. tellkampfi*, external eyes as well as the related regions in the brain are completely absent (Ghaffar et al. 1984). Compound eyes are also missing in *P. hirtus*. However, small lens structures can be noted in the lateral head (Figure 1). *P. hirtus* is also flightless because of the complete reduction of the hind wings (Peck 1973). In his comprehensive study of North American cave animals, Alpheus Spring Packard (1888) studied the anatomy of the lens-like structures in *P. hirtus*. He concluded that *P. hirtus* was blind based on his failure to find an optic nerve connecting from cells underneath the lens structure to the brain.

Figure 1: Head and lens morphology in *P. hirtus*. Scanning electron microscopy image view of the *P. hirtus* adult head. Inset: High power view of the lateral lens, outlined by hatched box in the overview image. Scale bar: 100 μm.

A series of experiments in the 70ies established that *P. hirtus* can be easily cultured in the laboratory (Peck 1975). We therefore chose *P. hirtus* for studying the genetic mechanisms of cave adaptation, complementing similar studies in the Mexican cavefish *Astyanax mexicanus* (Jeffery 2005). As a first step into this endeavor, we readdressed the question of vision in *P. hirtus*. Key rationale for suspecting the conservation of a small but functional visual system in *P. hirtus* came from genetic studies in other insects. These have shown that the formation of lens forming cells is absolutely dependent on the preceding differentiation of light-
sensitive cells (photoreceptors) (Buschbeck and Friedrich 2008). The presence of presumptive lenses in *P. hirtus* therefore suggested the presence of photoreceptive cells in contrast to Packard’s earlier conclusions.

We first took a genetic approach test for light-sensitive cells in the adult *P. hirtus* head, employing a new high throughput sequencing method (Nagalakshmi et al. 2008) to probe for the activity of light perception related genes in this species. In the course of this analysis, we characterized the transcript sequences of over 5000 different genes in *P. hirtus*. In the next step, we used bioinformatics methods to search these transcripts for sequences corresponding to genes that are specifically known for their visual function in the widely used model insect *Drosophila melanogaster* (Wang and Montell 2007). This approach revealed the expression of all genes in *P. hirtus* that are currently known to be essential for light perception in insects (Friedrich M. et al. 2011).

As these results strongly indicated the preservation of vision in *P. hirtus*, we subjected laboratory animals to a classic light-dark choice test (Figure 2). These tests revealed a pronounced avoidance of light (negative phototaxis) by the adult animals (Friedrich M. et al. 2011). After only two minutes observation time, on average at least 70% of the tested animals had withdrawn into the shaded area in these experiments. Thus taken together, both genetic and behavioral data produced unambiguous evidence of a functional visual system in *P. hirtus*. In ongoing studies, we are exploring the anatomy and adaptive function of vision in this inconspicuous cave dweller, now to be considered in microphthalmic (small-eyed).

References:
Barr, T. C., 1979 The taxonomy, distribution, and affinities of *Neaphaenops,*
with notes on associated species of *Pseudanophthalmus* (Coleoptera, Carabidae). American Museum of Natural History, New York, N.Y.

