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(a) Embryo image image
with another unwanted em-
bryo.

(b) Embryo image with im-
proper alignment, with re-
spect to the horizontal axis.

(c) Embryo image pho-
tographed closely.

Figure 2.1: BDGP embryo images varying in scales and orientations, which are to be
registered to a standard scale and orientation.

shapes of the embryos, the watershed approach with a bad initial state tends to

“over-segment” the embryos. We can perform a shrink-expand processing of the

foreground region, first the region is continuously eroded until we find two separated

regions. The two partitions of the foreground region are then the initial state for the

watershed flooding algorithm. The algorithm “grows” back the regions, until they are

tough again, creating a watershed. For an image with more than two embryos the

“shrink-expand” algorithm is recursively applied over the foreground region, keeping only

the center-most region at each recursion step until the “shrink-expand” algorithm gives

only one region. For our research we applied a straight forward manual method to extract

the main embryo, we used the MATLAB image processing tool to set the boundaries of the

embryo and then extract the region that is highlighted. Points are set along the boundary

of the embryo forming an enclosed polygon which is close to the shape of an ellipse.
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(a) Registered embryo im-
age of 2.1(a)

(b) Registered embryo im-
age of 2.1(b)

(c) Registered embryo im-
age of 2.1(c)

Figure 2.2: Respective Registered images of the embryos shown in Figure 2.1

2.3 Image registration

Embryos extracted could have different position, orientation, scale and shape in the

image. For a better comparison between patterns in the extracted embryos, we can

perform an image registration step to transform the images, so that the comparison can be

performed regardless their original position, orientation, scale and shape. Since our

research is specifically designed, ignoring the orientation of the embryo and considering

all the embryos to be at a standard scale it is very crucial to have all the embryos

pre-normalized with respect to the major axis and the head and tail. Once the embryo is

highlighted in the original image, a new image with required dimensions having a white

background is created and the extracted embryo is placed in the center of the new image

with the major axis along the horizontal. The head and tail normalization is not automated.

Given that embryos at the same developmental stages do not show considerable

differences on shape, special care has to be taken with the orientation of head and tail,

head should be on the left side of the image and tail being on the right side of the image.

We have to take care of the method so that after registration, each embryo will have an
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ellipsoidal shape, predefined size, and with its major axis aligned horizontally. The final

product of our image processing are gray-level images with 320×240 pixels. It is very

important to realize that precise registration of the images is not always achieved by

automated process. One challenge task in the consecutive step of feature extraction is to

design features robust with respect to imprecise registration.



CHAPTER 3: FEATURE EXTRACTION

This chapter contains three parts. In the first part we present a RGB intensity based

feature extraction method. In the second part, we present an orientation histogram method

as the low-level features invariant to illumination. The orientation histogram we

implemented here is basically the same as the one used in SIFT (Scale Invariant Feature

Transform) [10], but note that the input embryonic images for stage recognition are

expected to be standardized in the context of the global appearance based recognition. In

other words, there is no scale variation. To be focused on the illumination variation, we

use the term, orientation histogram, instead of SIFT. In the third part we present another

set of features obtained using the Gabor filter, this technique follows the same setting as

the orientation histogram, a Gabor mask slides over the image obtaining the co-efficients

which populate the image features, the co-efficients are not accumulated. In the next

chapter, we present a statistical learning method to reduce the dimension of the RGB

features, orientation histogram and the Gabor features. The classification of the embryos

is based on these features, a given embryo is classified by finding the nearest embryo

using the k-Nearest Neighbor algorithm.

3.1 RGB Intensity Image Features

RGB intensity is the value of a given pixel which refers the percentages of Red,

Green, Blue in the complete spectrum of the pixel color. The RGB feature of an image is

based on the intensity values alone. It is a straight forward resemblance check of a given

image to another image.

Each pixel in the image is processed to obtain the feature of the image. The image is

sub divided into a number of blocks and each block is processed individually to obtain a

semi feature which becomes a part of the complete image feature. In our experiments we

divided the image in to 4×4 blocks. Each block is then processed and is standardized into

10



11

a 15×15 sized window. The window is a matrix of the given dimension. The matrix is

then converted into a liner vector which form the feature of the image sub block. The

length of the sub block image feature will be 225. All the sub block image features can be

concatenated to obtain a single image feature for the complete image.

When the image is initially read, the image is converted into a double matrix which

is of equal dimensions as that of the image. The double value in the matrix denotes the

RGB intensity value of a given pixel. It is very important to capture as much detail as

possible to attain better results. Starting from the first block of the image, the block of

pixels is standardized to the window. During the standardizing procedure the pixels will

overlap, in that case the intensity is accumulated and then finally the image feature is

normalized to obtain a unit vector which is then compared with the other unit vectors of

the images from the database.

The embryo images are of dimensions 320×240, this image will be divided in to

4×4 blocks which will result in 16 blocks of size 80×60 each. Each block will be

standardized to to a window of 15×15. We start from the first block, go to each

point/pixel of the image and based on the location of the pixel in the block, we find the

corresponding location in the window. Since the block is of dimension 80×60, the first

pixel of the top row of the block will go to the first location of the top row of the window

and the pixel at the 80 location will go to the location 15 of the top row of the window. All

the pixels in between will be adjusted in the window across 1 and 15.

Each block will be represented by a window of dimension 15×15 when converted

to a linear vector it will have a length of 225. This 225 length vector represents the block.

For the total image divided into 4×4 we get 16 such vectors. All the vectors are

concatenated one at the end of the other and we obtain a single long vector of length

16×225. This vector is again normalized to obtain a unit vector for comparisons with

other image vectors.
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The images are now represented in a vector format. This vector is then crosschecked

with the other vectors to find the closest or the most resembling vector thus finding the

image which looks similar. When the images are labeled with their developmental stage

numbers, the developmental stage of the image would be the stage number of the most

closest image.

3.2 Orientation histogram

Orientation histogram works very close to the way the SIFT algorithm works. In

order to preserve the maximum possible detail of the embryo, instead of considering only

the keypoints as SIFT, the orientation histogram processes the entire image pixels and

stores the information in the histogram.

Orientation histogram is a low-level statistical representation of a local region. The

motivation of using statistical representation comes from the texture dominant appearance

of embryos. One implementation of orientation histogram is based on gradient vectors, as

shown in Figure 3.1. The upper 4×4 window is a zoom-in illustration of a sub-block in

the lower window. A rectangle in the upper window represents a pixel, and the associated

arrow denotes the gradient vector of the pixel. Note that the direction of the gradient

vector represents the local orientation of the pixel, and the length of the vector represents

the magnitude of the local variation of pixel values.

A way to construct an orientation histogram is to accumulate the gradient

magnitudes in the same direction, as illustrated in Figure 3.1 (the lower window), and

Figure 3.2. In the lower window of Figure 3.1, an arrow represents the accumulation of

gradient magnitude of the same direction. Similar to [10], we discretize the angular space

from 0◦ to 360◦ by the step of 45◦. Therefore, we have 8 bins, as shown in Figure 3.2, to

accumulate the gradient magnitudes. The algorithm proceeds with taking the gradient and

orientation of each pixel of the image and accumulating the gradient magnitude to the
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respective orientation bin. Each block will have 8 bins representing the 8 angles which are

populated with the gradient magnitudes. Each image is divided in to 16×16 blocks each

block will give out 8 bins. For each pixel in a given block, the gradient magnitude and the

orientation of the pixel are calculated.

The gradient is the square-root of the squares of the pixel value difference around a

given block pixel. The orientation is the arc-tan of the vertical and horizontal pixel value

differences. Once the gradient magnitude and the orientation for a pixel is calculated, the

gradient magnitude of all the pixels is added to the corresponding bin of the block to

which the pixel belongs to. All the bins from all the blocks are then concatenated to obtain

the complete image feature which has a length of 8 times the number of blocks. The

feature is extracted using each pixel of the image which gives an impression that most of

the image detail is preserved in the feature. The more the information preserved the more

distinct is the feature to the other image features. The feature is finally normalized to

convert the feature into a form of unit vector which helps in obtaining the similarity

between the feature vectors. Once the feature vector for an image is obtained, the vector

dot product is applied with the other image features.

The strategy used in the construction of SIFT [10], concatenating multiple

orientation histograms of multiple regions, compared with using a single orientation

histogram, has the following two advantages: i) it is more robust to inaccurate

localization, and ii) it tends to preserve more information. But the second advantage is

somehow subtle, since using a larger number of sub-regions not only increases the

dimension of the low-level feature, but also involves more noisy information.

3.3 Gabor Filter Features

Gabor filter has significant application in the signal processing[28] and it is also

proven in the recent past that it can be applied in image processing for head pose
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Figure 3.1: Demonstration of a block of 4× 4 sub-blocks used to compute an orientation
histogram, where an arrow indicates a gradient vector.

Figure 3.2: An orientation histogram is a 8-dimensional vector, where each dimension
represents a bin associated with a specific directional degree, from 0◦ to 270◦ with the step
of 45◦.

identification[29], scene analysis[30], human identification[31], etc. It is also applied in

bio-medical physics and geophysics to better understand the signals[32].

Texture is an important feature of an image. Spatial frequencies and their

orientations are important characteristics of textures in images. The frequency

characteristics of images can be analyzed using spectral decomposition methods like

Fourier analysis[33]. Recently the multichannel Gabor decomposition has become very

popular for texture analysis. Gabor filter resembles the characteristics of simple visual

cortical cells and is widely used to extract texture features from images for either texture

segmentation or image classification and for image retrieval algorithms, The most

successful results has shown that image retrieval using Gabor features outperforms other
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popular techniques like pyramid-structured wavelet transform (PWT) features[34],

tree-structured wavelet transform (TWT) features[34] and multi-resolution simultaneous

autoregressive model (MR-SAR) features. It is also adopted by MPEG-7 as one of texture

descriptors. A number of parameters are used in the Gabor Filter. We used a number of

scales and orientations. In our experiments numbers run for 1 to 3 scales and 8

orientations. Moreover, there is no research found on how to select filter mask size so far.

In this paper, we investigate the accuracy of classification by extracting the image feature

concatenated by the coefficients obtained by the convolution. We also adopted constant

Gabor filter parameters on texture retrieval. In practice, it is a compromise to choose

number of filters.

Gabor filters have been used in many applications, such as texture segmentation,

target detection, fractal dimension management, fingerprint matching, edge detection,

image coding and image reconstruction. Gabor filter is a linear filter that is created by

modulating a sinusoid with a Gaussian. Figures: 3.3(a)- 3.3(d) show the visualization of

the Gabor function under a constant variables except the orientation varying from−π to π .

g(x,y;λ ,θ ,φ ,σ ,γ) = e(−
(x′2+γ2y′2)

σ2 ) cos(2π
x′

λ
+θ)

where

x′ = xcos(θ)+ ysin(θ)

y′ =−xsin(θ)+ ycos(θ)

where the arguments x and y specify the position of a light impulse in the visual field and

σ , γ , λ , θ and φ are parameters as follows:

• σ is the standard deviation of the Gaussian factor and determines the (linear) size of

its receptive field.

• λ specifies the wavelength of the cosine factor of the Gabor filter.
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(a) Visualization at 0◦ (b) Visualization at 45◦

(c) Visualization at 90◦ (d) Visualization at 135◦

Figure 3.3: Gabor function visualization from 0◦ to 135◦.

• θ specifies the orientation of the normal to the parallel stripes of the Gabor filter.

• φ is the phase offset of the cosine factor and determines the symmetry of the Gabor

filter.

• γ is called the spatial aspect ratio and specifies the ellipticity of the Gaussian factor.

The Gabor filter we implemented follows the same path as the Orientation

Histogram in obtaining the features. Generating the Gabor filter image feature involves

convolution of the image sub blocks with the Gabor mask. The Gabor mask is a simple

matrix of a given dimension. A Gabor mask is created and it slides over the image regions

obtaining a coefficient for each block. The coefficients are placed at a given position in the

image feature. The complete image is convoluted for a total of S×O, where S is the

number of scales considered and O is the number of orientations considered. The mask is

populated using the Gaussian and the COS functions. The center point of the mask is

given more weightage than the points closer to the edges.

Gabor Filter feature is also a low-level statistical representation of a local region and

the motivation of using statistical representation comes from the texture dominant
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appearance of embryos. Our implementation of the Gabor filter features consists of

constructing a Gabor mask and sliding the mask over the image.

A 2D Gabor filter can be realized as a sinusoidal plane wave of some frequency and

orientation within a two dimensional Gaussian envelope. Its spatial extent, frequency and

orientation preferences as well as bandwidths are easily controlled by the parameters used

in generating the filters. However, there is an "uncertainty relation" associated with linear

filters which limits the resolution simultaneously attainable in space and frequency. 2D

Gabor filters are members of a class of functions achieving optimal joint resolution in the

2D space and 2D frequency domains. They have also been found to be a good model for

two dimensional receptive fields of simple cells in the striate cortex[52].

Figure 3.3(a) is the visualization of the Gabor function for the orientation of 0◦ and

the other parameters as constants. The Gabor function is obtained as a convolution of the

Gaussian and the COS functions. The resulting Gabor function depicts the dominating,

orientation and areas of the image.

When constructing a Gabor filter features we consider multiple scales and

orientations. For each scale and orientation combination we create a mask and use the

mask to obtain a co-efficient by the convolution of the mask with the image block which is

of the same size as the mask. The mask is a matrix of size 16×16 and is populated with a

double value obtained from the product of the Gaussian function and COS function for a

given scale and orientation value. The scale varies from 1 to any positive integer. We

considered only 3 scales 1, 2, 3. The orientation varies from 0◦to 360◦ by steps of 45◦

which gives out 8 different orientations the image is sampled with. The image is totally

sampled the number of scales times with the number of orientations. Gabor filter

effectively samples the image with different scale and orientation combinations and does

it for all the given scales and orientations, thus obtaining a very distinctive image feature

for a given image.
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Figure 3.4: Gabor features extraction from the image using the Gabor Mask.

Once the mask for a given set of scale and orientation is populated the mask is slid

over each block of the image resulting in a set of co-efficients from the convolution of the

mask with the image block. All the coefficients resulting from the convolution for all the

combinations of scales and orientations are concatenated to obtain the Gabor filter

features. Since Gabor filter is very close to the way the human vision system works, the

image features obtained using this procedure is highly distinctive for a given image and so

the classification results are better than orientation histogram.

Figure 3.4 shows the setup of extracting the image features using the Gabor mask.

The image is divided in to number of sub-blocks, each of size equal to the Gabor masks

which are of 16×16 pixel size. A coefficient is resulted when the image block is

convoluted with the Gabor mask, this coefficient is used to populate the Gabor image

feature. The complete image is convoluted for all the given Gabor mask each obtained

from a specific combination of scale and orientation. The features are populated with the

coefficient obtained from the convolution of the image block with the Gabor mask.



CHAPTER 4: DIMENSION REDUCTION

High-dimensional datasets present many mathematical challenges[35] as well as

some opportunities, and are bound to give rise to new theoretical developments. One of

the problems with high-dimensional datasets is that, in many cases, not all the measured

variables are “important” for understanding the underlying phenomena of interest. While

certain computationally expensive novel methods can construct predictive models with

high accuracy from high-dimensional data, it is still of interest in many applications to

reduce the dimension of the original data prior to any modeling of the data.

Dimension reduction aims to reduce the dimensionality of data representation in

order to reduce the computational cost in recognition (or other higher level

application)[36]. Principal Component Analysis (PCA)[37] is a popular method for

dimension reduction. PCA transforms the data into a new coordinate system such that the

greatest variance by any projection of the data comes to lie on a subspace consisting of

so-called Principal Components that maximize the data variance. PCA is theoretically the

optimum transform for given data in least square terms. PCA is unsupervised, and

convenient to use in many applications. Singular Vector Decomposition(SVD)[39] is used

for both PCA and Linear discriminant analysis[40].

4.1 Principal Component Analysis

The Principal Component Analysis (PCA)[38] is one of the most successful

techniques that have been used in image recognition and compression. PCA is a statistical

method under the broad title of factor analysis. The purpose of PCA is to reduce the large

dimensionality of the data space (observed variables) to the smaller intrinsic

dimensionality of feature space (independent variables), which are needed to describe the

data economically. This is the case when there is a strong correlation between observed

variables. PCA can be used for prediction, redundancy removal, feature extraction, data

19
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compression, etc. Because PCA is a classical technique which can do something in the

linear domain, applications having linear models are suitable, such as signal processing,

image processing, system and control theory, communications, etc.

The central idea of principal component analysis (PCA) is to reduce the

dimensionality of a data set consisting of a large number of interrelated variables, while

retaining as much as possible of the variation present in the data set. This is achieved by

transforming to a new set of variables, the principal components (PCs), which are

uncorrelated, and which are ordered so that the first few retain most of the variation

present in all of the original variables.

Principal component analysis is appropriate when you have obtained measures on a

number of observed variables and wish to develop a smaller number of artificial variables

(called principal components) that will account for most of the variance in the observed

variables. The principal components may then be used as predictor or criterion variables

in subsequent analyses. Principal component analysis is a variable reduction procedure. It

is useful when you have obtained data on a number of variables (possibly a large number

of variables), and believe that there is some redundancy in those variables. In this case,

redundancy means that some of the variables are correlated with one another, possibly

because they are measuring the same construct. Because of this redundancy, you believe

that it should be possible to reduce the observed variables into a smaller number of

principal components (artificial variables) that will account for most of the variance in the

observed variables.

Specifically, given the data in m-dimensional space. PCA describes the location and

space of the m-dimensional data cloud. There are 2 steps involved, translation and rotation

of the data cloud to and about the origin respectively. Translation is done by mean

clustering the data. If the data is not mean-centered, then the PC axes describes not only

the shape of the data but also the location. Rotation is done by aligning the first PC axis

along with the longest axis through the data set. A principal component can be defined as
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Figure 4.1: Spacial Distribution of the Data

Figure 4.2: Principal Components, Z1 and Z2

Figure 4.3: Projection of the data on to the first PC

a linear combination of optimally-weighted observed variables.

Figure 4.1 shows the visualization of the spacial distribution of a sample data along
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X1 and X2. Each point represents a vector in the space. The data is distributed in the form

of an ellipse to better demonstrate the Principal Components. The idea is to find the axis

passing through the majority of the data, such axis is called the major axis and we also

define a minor axis perpendicular to the axis, which covers lower amounts of the data. As

the major axis passes through the majority of data, the data is projected on to the majority

axis thus representing the complete data. Figure 4.2 shows the visualization of the

majority and minority axes namely Z1 and Z2. Figure 4.3 shows the visualization of the

projects of the data points on to the majority axis.

4.1.1 Covariance

The standard deviation and variance measures are purely 1-dimensional. Data sets

like this could be heights of all the people in the room, marks for an exam etc. Many data

sets have more than one dimension, and the aim of the statistical analysis of these data sets

is usually to see if there is any relationship between the dimensions. For example, we

might have our data set containing both the height of all the students in a class, and the

marks they received for a paper. We could then perform statistical analysis to see if the

height of a student has any effect on their marks. Standard deviation and variance only

operate on 1 dimension, so that you could only calculate the standard deviation for each

dimension of the data set independently of the other dimensions. However, it is useful to

have a similar measure to find out how much the dimensions vary from the mean with

respect to each other. Covariance is such a measure.

Covariance is always measured between 2 dimensions. If we calculate the

covariance between one dimension and itself, you get the variance. So, if we had a

3-dimensional data set (x,y,z), measuring the covariance between and x,y or y,z and z,x

would find the variance of the x,y,z dimensions respectively. The formula for covariance is:

cov(X) =
∑

n
i=1 (Xi− X̄)(Xi− X̄)T

(n−1)
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Figure 4.4: Visualization of Eigen Embryos for 8 different BDGP Embryo images.

The covariance is always measured between 2 dimensions. If we have a data set with

more than 2 dimensions, there is more than one covariance measurement that can be

calculated. A useful way to get all the possible covariance values between all the different

dimensions is to calculate them all and put them in a matrix.

4.1.2 SVD of Covariance

Let xi, i = 1, . . . ,n be a set of training data points, where n be the number of data

points. Matrix X = [x1,x2, . . . ,xn] is the data matrix. Let x̄ be the centroid of the training

data points. By subtracting each data point by the centroid (i.e., the translation), we get the

zero-mean data matrix X given as:

X = [x1− x̄,x2− x̄, . . . ,xn− x̄]

Then we construct the covariance matrix

C = XXT

where T denotes the transpose of a matrix. SVD is now applied to the covariance matrix C

to obtain the eigen-decomposition of C. A projection matrix P consists of a set of

eigenvectors associated with largest eigenvalues. With the projection matrix P, we can
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obtain the subspace representation of a data point x in the original m-dimensional space by

Px.

Figure 4.4 shows the eigen-embryos obtained from the SVD of the covariance

matrix. A set of images are taken, and are converted to to a liner vector. The average of

the considered vectors is computed and a different set of vectors are computed which are

equal to the difference between the average vector and original image vectors. All the

vectors are again grouped as a single matrix. The SVD is then applied on the matrix. By

reshaping the resulting matrix rows which are vectors into the dimensions of the original

image we get the eigen embryos.

The Singular value decomposition (SVD) is a powerful technique in many matrix

computations and analyses. Using the SVD of a matrix in computations, rather than the

original matrix, has the advantage of being more robust to numerical error. Additionally,

the SVD exposes the geometric structure of a matrix, an important aspect of many matrix

calculations. A matrix can be described as a transformation for one vector space to

another. The components of the SVD quantify the resulting change between the

underlying geometry of those vector spaces. The SVD is employed in a variety of

applications, from least-squares problems to solving systems of linear equations. Each of

these applications exploit key properties of the SVD, its relation to the rank of a matrix

and its ability to approximate matrices of a given rank. Many fundamental aspects of

linear algebra rely on determining the rank of a matrix, making the SVD an important and

widely used technique. The ability of SVD to eliminate a large proportion of the data is a

primary reason for its use.

The purpose of singular value decomposition is to reduce a dataset containing a

large number of values to a dataset containing significantly fewer values, but which still

contains a large fraction of the variability present in the original data. Often in the

atmospheric and geophysical sciences, data will exhibit large spatial correlations. SVD

analysis results in a more compact representation especially with multivariate datasets and



25

can provide insight into spatial and temporal variations exhibited in the fields of data

being analyzed. There are a few caveats one should be aware of before computing the

SVD of a set of data. First, the data must consist of anomalies. Secondly, the data should

be de-trended. When trends in the data exist over time, the first structure often captures

them. If the purpose of the analysis is to find spatial correlations independent of trends,

the data should be de-trended before applying SVD analysis.

The first structure is the single pattern that represents the most variance in the data.

The structures are the elements of the eigenvectors of the variance-covariance matrix of

the data. In the data library, the eigenvectors are also known as EOF’s. The first

eigenvector (EOF) points to the direction in which the data vectors jointly exhibit the most

variability. Essentially, a new coordinate system is created, with each axis aligned along

the direction of maximum joint variability.

The second structure is the pattern that describes the second largest amount of

variance, calculated the same way as the first structure. A very important property of the

second structure is that it is completely uncorrelated with the first structure, as well as all

other following structures. The second eigenvector is perpendicular to the first

eigenvector, which is perpendicular to the third eigenvector and so on. This property is

what led Lorenz[49] to call the technique empirical orthogonal function analysis. All

structures are mutually uncorrelated.

The variance of the nth principal component is the nth eigenvalue. Therefore, the

total variation exhibited by the data is equal to the sum of all eigenvalues. In the data

library, eigenvalues are normalized such that the sum of all eigenvalues equals 1. A

normalized eigenvalue will indicate the percentage of total variance explained by its

corresponding structure. Structures have also been normalized so that the root mean

square equals 1. This way, the structures can be expressed in terms of standard deviation.

Singular values are equal to the square root of the eigenvalues. Since eigenvalues are
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automatically normalized in the data library, they do not easily provide information into

the total amount of variance they explain. However, you may calculate the total variance

explained by each EOF by squaring the singular values.

In the data library there is a time series associated with each structure. These time

series are the principal components. The first time series is calculated by projecting the

data matrix onto the first eigenvector of the variance-covariance matrix of the data, the

second time series by projecting onto the second eigenvector, and so on. The time series

values indicate the amount of the given structure needed to complete the data field. It

follows that the structure (dimensionless) multiplied by the time series value at a single

point in time (units of the data), summed over all structures, yields the original data at that

point in time.

Mathematically, there are as many eigenvectors as there are elements in the vector

data set. The first few eigenvectors will point in directions where the data jointly exhibits

large variation. The remaining eigenvectors will point to directions where the data jointly

exhibits less variation. For this reason, it is often possible to capture most of the variation

by considering only the first few eigenvectors. The remaining eigenvectors, along with

their corresponding principal components, are truncated.

Using a superscript T to denote the transpose of a vector or matrix, we say two

vectors x, y are orthogonal if

xT y = 0

In two or three dimensional space, this imply means that the vectors are perpendicular. Let

A be a square matrix such that its columns are mutually orthogonal vectors of length 1, i.e.

xT x = 1

The A is an orthogonal matrix and

AT A = I



27

the identity matrix. For simpler notation, assuming that a matrix A has at least as many

rows as columns (M ≥ N).

A singular value decomposition of an M×N matrix A is any factorization of the

form

A =UDV T

where U is an M×M orthogonal matrix, and D is an M×N diagonal matrix with all the

elements except in the diagonal of the matrix are zeros.

4.1.3 Relation with Eigen-Analysis

Eigenvalue decomposition is defined only for square matrices as only square

symmetric matrices have real-valued eigenvalues where as SVD is defined for all

matrices. Given a matrix M, we consider the eigen decomposition of the correlation

matrices MMT and MT M. SVD is the eigenvectors of

MMT ×P×E

where, P is the Positive square roots of eigenvalues of MMT and E is the eigenvectors of

MT M.

Both MMT and MT M are symmetric (they are correlation matrices). They both will

have the same eigenvalues. Unless M is symmetric, MMT and MT M are different So, in

general their eigenvectors will be different (although their eigenvalues are same). Since

SVD is defined in terms of the eigenvalues and vectors of the Correlation matrices of a

matrix, the eigenvalues will always be real valued (even if the matrix M is not symmetric).

In general, the SVD decomposition of a matrix M equals its eigen decomposition only if

M is both square and symmetric

Any symmetric matrix R can be decomposed in the following way through a
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diagonalization, or eigenanalysis:

Rei = λiei

RE = LE

Where E is the matrix with the eigenvectors ei as its columns, and L is the matrix

with the eigenvalues λi, along its diagonal and zeros elsewhere. The set of eigenvectors,

ei, and associated eigenvalues, λi, represent a coordinate transformation into a coordinate

space where the matrix R becomes diagonal. The square of the eigenvalue from the SVD

is equal to the eigenvalue from the eigen analysis of the covariance matrix.

4.2 Liner Discriminant Analysis

LDA is another very popular dimensionality reduction concept. Suppose there are C

classes in the training data. LDA performs dimensionality reduction while preserving as

much of the class discriminatory information as possible. It seeks to find directions along

which the classes are best separated. It does so by taking into consideration the scatter

within classes but also the scatter between classes. It is also more capable of

distinguishing image variation due to identity from variation due to other sources such as

illumination and expression. Let there are m number of classes C1, C2, C3 . . . Cm are the

local centroids of Class-1 Class-2 Class-3 . . . Class-m. Let C be the global centroid. LDA

computes a transformation that maximizes the between-class scatter while minimizing the

within-class scatter.

Mb = (C1−C,C2−C . . .Cm−C)d∗m

Mw = (P11−C1,P12−C2 . . .P1m−Cm)d∗n

Between-class Scatter is given as:

MbMb
T
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and the Within-class Scatter is given as:

MwMwd∗n
T

The SVD is then applied on:

(MwMw
T )−1MbMb

T

LDA is a supervised technique, the class information is provided along with the

training data. PCA is an unsupervised technique. The next chapter shows few

experimental results we performed on the data reduced using the LDA and PCA

techniques.



CHAPTER 5: EXPERIMENTS

5.1 Classifier

K Nearest Neighbor[48] (KNN from now on) is one of those algorithms that are very

simple to understand but works incredibly well in practice. Also it is surprisingly versatile

and its applications range from vision to proteins to computational geometry to graphs.

KNN is an non parametric lazy learning algorithm[48], it means that it does not

make any assumptions on the underlying data distribution. This is pretty useful, as in the

real world, most of the practical data does not obey the typical theoretical assumptions

made (e.g. Gaussian mixtures, linearly separable etc). Non parametric algorithms like

KNN are of a great use here.

It is also a lazy algorithm, it does not use the training data points to do any

generalization. In other words, there is no explicit training phase or it is very minimal.

This means the training phase is pretty fast. Lack of generalization means that KNN keeps

all the training data. More exactly, all the training data is needed during the testing phase.

This is in contrast to other popular techniques like Support Vector Machines where you

can discard all non support vectors without any problem. Most of the lazy algorithms,

especially KNN makes decision based on the entire training data set (in the best case a

subset of them). The dichotomy is very obvious here. There is a non existent or minimal

training phase but a costly testing phase. The cost is in terms of both time and memory.

More time might be needed as in the worst case, all data points might take point in

decision. More memory is needed as we need to store all training data.

KNN assumes that the data is in a feature space. More exactly, the data points are in

a metric space. The data can be scalars or possibly even multidimensional vectors. Since

the points are in feature space, they have a notion of distance. This need not necessarily be

Euclidean distance although it is the one commonly used. In our experiments we used the

30



31

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Visualization of a BDGP embryo at different stages of its development.

Euclidean distance. Each of the training data consists of a set of vectors and class label

associated with each vector. In the simplest case, it will be either + or - (for positive or

negative classes). But KNN, can work equally well with arbitrary number of classes. We

can also give a single number "k". This number decides how many neighbors (where

neighbors is defined based on the distance metric) influence the classification.

In this chapter, we test the performance of the proposed features for stage

recognition. Our dataset contains 900 BDGP images in 6 developmental stages.

Figure 5.1 shows an example of embryonic images. These images have been standardized

with respect to orientation and scale, and the dimension of the images are 320×240. The

classifier we used is K nearest neighbor (K-NN). We use 2-Fold cross validation to

estimate the recognition accuracy. We will compare the recognition accuracy of RGB

features, orientation histogram, the subspace representation of orientation histogram and
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the Gabor features. We will also study their recognition efficiency.

The experiments are performed on the MATLAB platform using the Image

Processing toolkit. To attain higher performance the classification algorithms were written

in C language and compiled under MEX compiler, which enables using the MATLAB

tools inside the C programs.

5.2 RGB Intensity

RGB intensity based algorithm uses a straightforward pixel to pixel type matching.

This technique uses the image block standardization and tries to find the most similar

image from the opposite set. Figure 5.3 shows the trend of the classification accuracies for

different number of Nearest Neighbors. The optimal accuracy occurs at K=5. In order to

reduce the time cost and possible gain the memory space and accuracy, we applied the

Principal Component Analysis dimensionality reduction algorithm on the RGB Intensity

features. The optimal accuracy for PCA was at N=2 and KNN for 5 nearest neighbors.

When considering a single nearest neighbor the optimal accuracy for PCA was at N=2 as

well. N denotes the number of Principal Components. Figure 5.2 shows the trend of the

optimal PCA values for different N. Figure 5.4 shows the trend of the PCA at optimal PCs

at 5 nearest neighbors.

The RGB intensity values are obtained by combining the R, G, B components of a

pixel. The results will be better if the images are under a steady illumination. Higher

illumination may cover up critical areas of the embryo which might affect the accuracies,

so it is very important to find the correct level of illumination under which the images will

be photographed. The images are standardized and registered manually for our

experiments. The registration involves a procedure where the embryo is first highlighted

and then extracted from the original image and then placed parallel to the horizontal axis

on a white background, resulting in an image of required dimensions. SVD can be used to
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Figure 5.2: The RGB Features reduced by PCA. Accuracy for the number of Principle
Components from 2 to 20 and Nearest Neighbors from 1 to 5.

Figure 5.3: The optimal RGB Feature Accuracies for Nearest Neighbors from 1 to 5.

Figure 5.4: Accuracy comparison of RGB Image features, PCA optimal values when clas-
sification is performed under 5 Nearest Neighbors. Accuracy for PCs = 2 to 20.

determine the major axis and then align the embryo with respect to the horizontal axis.

The images are not aligned with respect to the head and tail in our experiments.

Table 5.1 depicts the accuracy of the RGB feature based classification. Table 5.2
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Table 5.1: Accuracy comparison of RGB, Reduced RGB with PCA at the optimal number
of Principal Components for number of neighbors from 1 to 5

K RGB PCA on RGB features

1 61 24,(2 PCs)

2 43 25,(7 PCs)

3 39 23,(2 PCs)

4 39 24,(6 PCs)

5 37 25,(2 PCs)

Table 5.2: Time cost comparison of RGB features, PCA at the optimal number of Principal
Components for number of neighbors from 1 to 5. Time costs measured in milliseconds,
including the time taken to generate image features

K RGB PCA of RGB features

1 12389 10245,(2 PCs)

2 12324 11324,(7 PCs)

3 12198 12056,(2 PCs)

4 12234 10908,(6 PCs)

5 12985 11200,(2 PCs)

depicts the trends of the time taken to perform the classification on the complete 900

BDGP images.

The RGB image features are extracted in a straight forward manner, no extra

processing of the data is done other than the standardization of the image sub block to the

window matrix. The features length being 225× (16×16) the feature length is generally

longer than the Orientation histogram. The features are then reduced to a length of 2 to 20

using the PCA which should generally take the same time when the orientation histogram

and Gabor features are reduced to the same length. The classification occur at reduced

amount of the image details, resulting in less number of accurate matches. The small

number of training data which is small in the test also effects the classification accuracy.

Figure 5.2 shows the visualization of the RGB features under different nearest

neighbors and the reduced feature accuracies. The images are reduced from a length of
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16×16×225 to a length of principle components we choose which varies from 2 to 20.

The accuracies after the reduction are lower than the original unreduced feature accuracies

as the image detail is reduced, the dimension of the reduced features are drastically lower

than the original features. Figure 5.3 shows the optimal reduced feature accuracies under

different number of nearest neighbors. Figure 5.4 shows the visualization of the

accuracies of the optimal reduced features under different number of nearest neighbors.

Table 5.1 shows the readings of the accuracies of the original features against the

reduced features under different k values of the KNN algorithm. Table 5.2 shows the time

cost readings to finish the classification using the original features against the reduced

features under different k values of the KNN algorithm.

5.3 Orientation Histogram

The orientation histogram builds the features in a very close fashion to the SIFT

features. Figure 5.6 shows that the orientation histogram classification accuracy was very

close for all the Nearest Neighbor values, the optimal accuracy was 70 under K-NN with

K=1. The orientation histograms are reduced using the PCA with PCs varying from 2 to

20. Figure 5.6 shows the optimal classification accuracy for different N. The PCA run

time is considerably lower than the orientation histogram as the length of the features are

reduced. Though PCA is reliable and a robust technique the dimension reduction of

feature from 4×4×128 to less than 20 has resulted in a fewer number of accurate

matches when compared to that of the original orientation histogram. The classification

occur at reduced amount of the image details, resulting in fewer number of accurate

matches. The number of training data, which is small, in the test also effects the

classification accuracy.

Figure 5.5 shows the visualization of the orientation histogram under different

nearest neighbors and the reduced feature accuracies. The images are reduced from a
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Figure 5.5: The Orientation histograms reduced by PCA. Accuracy for the number of Prin-
ciple Components from 2 to 20 and Nearest Neighbors from 1 to 5.

Figure 5.6: The Orientation histograms for Nearest Neighbors from 1 to 5.

length of 4×4×128 to a length of principle components we choose which varies from 2

to 20. The accuracies after the reduction are lower than the original unreduced feature

accuracies as the image detail is reduced, the dimension of the reduced features are

significantly lower than the original features. Figure 5.6 shows the optimal reduced

feature accuracies under K=1 nearest neighbors. Figure 5.7 shows the visualization of the

accuracies of the optimal reduced features under different numbers of nearest neighbors.

Table 5.3 shows the readings of the accuracies of the original features against the

reduced features under different k values of the KNN algorithm. Table 5.4 shows the time

cost readings to finish the classification using the original features against the reduced

features under different k values of the KNN algorithm.

Table 5.3 shows the accuracy results for different N values of the KNN. Table 5.4
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Figure 5.7: Accuracy comparison of Orientation histograms, PCA optimal values when
classification is performed under 1 Nearest Neighbors. Accuracy for PCs = 2 to 20.

Table 5.3: Accuracy comparison of orientation histogram, PCA at the optimal number of
Principal Components for number of neighbors from 1 to 5

K Orientation histogram PCA on Orientation histogram

1 70 59,(12 PCs)

2 51 58,(12 PCs)

3 52 57,(12 PCs)

4 52 58,(12 PCs)

5 52 56,(12 PCs)

Table 5.4: Time cost comparison of orientation histogram, PCA at the optimal number
of Principal Components for number of neighbors from 1 to 5. Time costs measured in
milliseconds, including the time taken to generate image features

K Orientation histogram PCA of Orientation histogram

1 1002 11245,(12 PCs)

2 1134 10264,(12 PCs)

3 1156 10426,(12 PCs)

4 1242 10918,(12 PCs)

5 1211 10290,(12 PCs)

shows the runtime costs for the orientation histogram and the reduced orientation

histogram.

The Orientation histogram generally takes slightly longer time to classify the

images. Orientation histogram involves calculation of the Gradient magnitude and
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obtaining the orientation for each pixel and then populating the histogram in the correct

slot. Each image sub block will populate its 8 bins, which are part of the bigger complete

image histogram. When the orientation histogram is reduced from 128 to a length varying

between 2 and 20 using the PCA algorithm, the time cost remains neutral as the feature

lengths are the same. The orientation histogram outperforms the RGB features as the

orientation histogram obtains the features which distinguishes the image not only with the

appearance but also the orientation of the pixels. Since there is more distinct information

fed into the histogram, the orientation histogram outperforms the RGB features which

depend solely on the appearance.

5.4 Gabor Filter features

The Gabor features builds the features in a very different fashion to the RGB and the

orientation histogram, but in a very effective manner. Figure 5.9 shows that the Gabor

feature classification accuracy was very close for all the Nearest Neighbor values, the

optimal accuracy was 76 under K-NN with K=1. The Gabor features are reduced using

the PCA with PCs varying from 2 to 20. Figure 5.8 shows the classification accuracy of

the reduced features for different N for K values from 1 to 5. The PCA run time is

considerably lower than the Gabor features as the length of the features are reduced.

Dimension reduction is applied on the feature and they are reduced to a length varying

between 2 and 20 . This has resulted in a smaller number of accurate matches when

compared to that of the original orientation histogram. The classification occur at reduced

amount of the image details, resulting in fewer accurate matches. The number of training

data, which is small, in the test also effects the classification accuracy.

Table 5.5 shows the details about the accuracy results for different N values of the KNN.

Table 5.6 shows the runtime costs for the Gabor features and the reduced Gabor features.

Figure 5.10 shows the visualization of the Gabor features under different nearest
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Figure 5.8: The Gabor Features reduced by PCA. Accuracy for the number of Principle
Components from 2 to 20 and Nearest Neighbors from 1 to 5.

Figure 5.9: The Gabor Features for Nearest Neighbors from 1 to 5.

Figure 5.10: Accuracy comparison of Gabor Image features, PCA optimal values when
classification is performed under 5 Nearest Neighbors. Accuracy for PCs = 2 to 20.

neighbors and the reduced feature accuracies. The images are reduced from a length of

20×15× scales×orientations×blocks to a length of principle components we choose
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Table 5.5: Accuracy comparison of Gabor, PCA of Gabor features at the optimal number
of Principal Components for number of neighbors from 1 to 5

K Gabor PCA of Gabor features

1 76 39,(5 PCs)

2 49 40,(4 PCs)

3 47 39,(5 PCs)

4 48 39,(5 PCs)

5 48 37,(5 PCs)

Table 5.6: Time cost comparison of Gabor features, PCA at the optimal number of Principal
Components for number of neighbors from 1 to 5. Time costs measured in milliseconds,
including the time taken to generate image features

K Gabor PCA of Gabor features

1 60234 13245,(17 PCs)

2 60244 15324,(11 PCs)

3 61039 12456,(12 PCs)

4 62372 13958,(04 PCs)

5 61231 13290,(13 PCs)

which varies from 2 to 20. The accuracies after the reduction are lower than the original

unreduced feature accuracies as the image detail is reduced, the dimension of the reduced

features are drastically lower than the original features. Figure 5.9 shows the optimal

feature accuracies under different number of nearest neighbors. Figure 5.10 shows the

visualization of the accuracies of the reduced features under different number of nearest

neighbors.

Table 5.5 shows the readings of the accuracies of the original features against the

reduced features under different k values of the KNN algorithm. Table 5.6 shows the time

cost readings to finish the classification using the original features against the reduced

features under different k values of the KNN algorithm.

The Gabor features involves obtaining the features based on the convolution of the

image blocks with the Gabor mask. The mask is created using the Gaussian and the COS
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functions. The features are more distinct than the orientation histogram and the RGB

features. The feature length is considerably larger than both the orientation histogram and

the RGB features. The Gabor feature based classification outperforms the Orientation

histogram. Gabor filtering is a proven method closely associated with the human vision

mechanism. The computation cost is very high when compared to the Orientation

histogram. Not only the feature length is very large but the computation of the Gabor

mask for a given set of Scale and Orientations involves high computation costs. When the

Dimension reduction is applied on the Gabor features the computation costs come down

but still maintain an edge over the reduced orientation histogram.

5.5 RGB vs Orientation Histogram vs Gabor

The time cost analysis shows that there is a considerable amount of time saved for an

image set of 900 individual images. The PCA will result in much better results as the size

of the image set increases. Reducing the dimensions of the features to less than 20 makes

the computation cost come down. Comparing the RGB Intensity algorithm with the

orientation histogram and Gabor features shows that the Gabor features takes longer time

to run but yields much better accuracies. The computation costs for the RGB Intensity

algorithm is low as the process of populating the feature is straight forward. The RGB

intensity values are concatenated and used to populate the standardizing window which is

converted into the image feature. The orientation histogram involves obtaining the

Gaussian magnitude and the orientation of a given pixel which is an extra computation

needed to be performed with respect to the RGB. The Gabor features take the highest

computation time as it involves sampling the image with a set of scales and orientations,

each iteration involves generating a Gabor mask and performing the convolution of the

Gabor mask with the image sub block which gives a coefficient and this coefficient is used

to populate the Gabor feature.
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Table 5.7: Accuracy comparison of RGB, orientation histogram, Gabor
K RGB Orientation histogram Gabor

1 61 70 76

2 43 51 49

3 39 52 47

4 39 52 48

5 37 52 48

Table 5.8: Time cost comparison of RGB, Orientation histogram, Gabor
K RGB Orientation histogram Gabor

1 12389 1002 60234

2 12324 1134 60244

3 12198 1156 61039

4 12234 1242 62372

5 12985 1211 61231

Figure 5.11: Accuracy comparison of RGB, Orientation histogram, Gabor

Table 5.7 shows the comparison of all the different features. Table 5.8 shows the

computation costs of all the different features.

5.5.1 LDA on Orientation histogram, RGB and Gabor features

Linear discriminant analysis is one of the very popular dimension reduction

techniques we used for testing the classification. The results are much lower when
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Table 5.9: Accuracy comparison of RGB, orientation histogram, Gabor after applying LDA
K RGB Orientation histogram Gabor

1 16 32 18

2 16 32 16

3 16 33 16

4 16 32 15

5 16 34 15

compared to the accuracies of the dimensionally reduced features using PCA. Table 5.9

shows the accuracy comparison when the image features are reduced using the LDA.

The effects of embryo images not being aligned correctly and the normalization of

the embryo respect to the head and tail clearly plays a very major role in the classification

of the embryos. Considering the alignment, an image not properly aligned produces an

image feature varying in values to that of an image properly aligned. As the features are

populated with respect to the image blocks, any varying effects the location of the vector

in the space thus giving an inappropriate result. An image feature incorrectly normalized

with respect to head and tail will produce a feature which is a reverse of what the actual

correctly normalized image would have produced.



CHAPTER 6: CONCLUSION AND FUTURE WORK

Using the orientation histogram features alone provides a decent rate of accuracy.

The Gabor features outperforms the orientation histogram. The performance can further

be improved greatly by implementing the PCA dimensionality reduction technique on the

orientation histogram features and the Gabor features. Training the algorithm with enough

number of image samples may improve the accuracy of classification using the reduced

orientation histogram features. The RGB Intensity algorithm computation cost is lower

than the orientation histogram and Gabor feature algorithms. The subspace representation

of orientation histogram features considerably reduces the computation cost.

In the future, we plan to study stage classification under unconstrained localization

(i.e., without the assumption of orientation and scale normalized embryonic images).
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