








Figure 33. MM5 and RAMS dry experiment minus CTRL of 12-h averaged sensible
heat fluxes (shaded according to scale, 40 m) and horizontal wind velocities (vector, 3

ms-1) centered at 0000 UTC on 23 June.
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Figure 34. MMS5 and RAMS wet experiment minus CTRL latent of 12-h averaged

sensible heat fluxes (shaded according to scale, 40 m) and horizontal wind velocities

(vector, 3 ms1) centered at 0000 UTC on 23 June.
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CTRL captured the displacement of the CTRL maxima southwestward. This
displacement was located over the region where the precipitation maximum for
DP10 and DP15 was relocated. On the other hand, increases in SM resulted in small
differences between the experiments and CTRL. WP05, WP10, and WP15
positioned sensible heat fluxes minima of -100 Wm-2 over western Oklahoma.

Overall, wet experiments did not varied significantly with respect to each other.
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CHAPTER 4

CONCLUDING REMARKS

Based on Quintanar et al. (2008) findings, our study examined and assessed
the efficacy of two mesoscale models due perturbed soil moisture conditions. The
study was conducted using RAMS and MM5 coupled with LEAF2 and Noah-LSM
respectively. Three synoptic events were examined for June of 2006. The events
presented varying synoptic forcing which ranged from weak to strong for 21-22
June, 11-12 June, and 17-18 June, respectively. The suite of experiment for both
mesoscale models consisted of six single deterministic simulations in which
volumetric soil moisture was increased (wet) and decreased (dry) from 0.05 to 0.15
m3m-3 every 0.05 m3m-3. Precipitation accumulation and distribution, 6., vertical
wind velocities, and latent and sensible heat fluxes were examined for each event.

Each CTRL simulation was compared with respect to NARR in order to assess
the efficacy of each mesoscale model when simulating precipitation. RAMS
simulated precipitation accumulation and distribution more accurately for the June

11-12 event. However, for 17-18 June and 22-23 of June MM5 was able to better
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resolve precipitation maxima. Both mesoscale models were able to capture the
warm and cold air advection which characterized the event. In addition, MM5 and
RAMS also simulated the cyclonic circulation observed on 22-23 June.

Overall, the findings were consistent with Quintanar et al. (2008) study.
Increases in the initial conditions of SM resulted in increased precipitation for all
three events. Dry experiments presented the greatest variability of precipitation
accumulation and distribution with respect to CTRL for both RAMS and MM5, with
the exception of 11-12 June event. RAMS wet and dry experiments displaced the
precipitation maxima with respect to CTRL for the 17-18 and 22-23 June events.
This was conducive of varying 2-m horizontal wind velocities around the strongest
regions of displacement. @ MMS5 simulations also revealed more discrete
displacement of precipitation maxima for the 11-12 and 17-18 June.

Negative perturbations of SM resulted in increased 8. for MM5 experiments.
The 6. differences maxima between the experiments and CTRL were located at 700
hPa. Overall, decreases of SM did not produced significant variations of 8. near the
surface for MM5 dry experiments. Increases of SM resulted in increased 6. near the
surface by up to 2 K. RAMS DP experiments, however, produced significant

increases of 6. near the surface between 94°W and 91°W longitude for the 11-12
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and 22-23 June with respect to CTRL. This maximum was coupled with lower 8.
values at the higher levels. Over the same region, RAMS wet experiments resolved
lower 6. for 11-12 and 22-23 June.

Overall, decreases in SM were conducive of increased vertical wind speeds.
This was observed in both mesoscale models for all three events examined.
However, moderate increases of SM of 0.05 m3m-3 also produced increased vertical
wind speeds. This phenomenon was also observed for all events and for both
mesoscale models. In addition, latent and sensible heat fluxes were as expected.
Increases in SM resulted in increased latent heat flux and decreased sensible heat
flux. Both variables were able to capture the precipitation displacement revealing
sharp gradients in these regions.

Positive perturbation of SM produced moderate response with respect to
CTRL for all events. The aforementioned was assumed to be a result of the initial
condition of SM. During each event, the initial conditions of SM were relatively high
ranging from 28 to 36 m3m3 for most of the domain (not shown). Given the
averaged field capacity through the region, SM maximum was established at 0.42
m3m-3. Thus increases beyond this threshold were ignored by the models. On the

other hand, negative perturbations allowed the soil to become drier, further
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affecting the response of the models. In conclusion, 6., vertical wind velocities, and
latent and sensible heat fluxes were found to be good indicative of precipitation

accumulation and displacement.
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APENDIX 1: RAMSv4.4 LEAF2 source code modifications
do k= 1,nzg
nsoil = nint(gsf(i,j,k,ipatch))

if(schar(i,j,1,1).gt.0.80) then

! If percent water > 80%, set wgp to saturation value
!'wgp(i,j,k,ipatch)=slmsts(nsoil)

elseif(k.le.4) then
if (wgptemp4(i,j).gt.slmsts(nsoil))then
wgptemp4(i,j)=slmsts(nsoil)
endif
wgp(ijkipatch) = (wgptemp4(i,j))

elseif(k.eq.5.or.k.eq.6.or.k.eq.7) then
if (wgptemp3(i,j).gt.slmsts(nsoil))then
wgptemp3(i,j)=slmsts(nsoil)
endif
wgp(i,j,kipatch) = (wgptemp3(i,j))

elseif(k.eq.9.or.k.eq.8) then
if (wgptemp2(i,j).gt.slmsts(nsoil))then
wgptemp2(i,j)=slmsts(nsoil)
endif
wgp(i,j,kipatch) = (wgptemp2(i,j))

elseif(k.eq.10.or.k.eq.11) then
if (wgptemp1(i,j).gt.slmsts(nsoil))then
wgptemp1(i,j)=sImsts(nsoil)
endif
wgp(i,j,kipatch) = (wgptemp1(i,j))

end if

! For persistent wetlands (bogs, marshes, fens, swamps), initialize with
if (nint(schar(i,j,11,ipatch)) .eq. 31 .or. &
nint(schar(i,j,11,ipatch)) .eq. 32) then
wegp(i,j,kipatch) = slmsts(nsoil)
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