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ABSTRACT

Chronic wounds plague approximately 1.3-3 million Americans. The treatment

of these wounds requires knowledge of the complex healing process of typical

wounds. With a system of partial differential equations, this project attempts to

model the intricate biological process and to describe oxygen levels, neutrophil

and bacteria concentrations, and other biological parameters with respect to time

and space. Analytical solutions for the model will be derived for various frames of

time in the wound-healing process. The system of equations will be numerically

solved using Matlab. Numerical simulations are performed to determine optimal

treatment strategies for a chronic wound.

Keywords: Mathematical Modeling, Partial Differential Equations, Wound Heal-
ing
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CHAPTER 1

INTRODUCTION

Chronic wounds are wounds that do not heal in the normal, orderly set of

stages, and instead remain in a chronic inflammatory state. These long-lasting

wounds are often linked with diseases such as diabetes. Approximately 1.3-3 mil-

lion Americans are believed to be plagued with these unfortunate wounds per year;

the United States spends about $5-10 billion annually addressing the problems as-

sociated with these wounds and researching how to treat them [10]. To better

understand how doctors can treat chronic wounds, they must first know exactly

what happens during the complex healing process of typical wounds.

A wound that successfully heals progresses through three sequential stages (in-

flammation, proliferation, and remodeling) and also in a predictable measure of

time—typically 30 days or less. The first stage, inflammation, is the body’s initial

response to stop blood loss from the wounded area and is the activation of certain

leukocytes called neutrophils [11]. During this time, usually within 24-to-48 hours

after the injury, neutrophils arrive at the wound site and begin to remove foreign

particles and bacteria and release proteins, called cytokines, that attract more

white blood cells, which in turn become activated macrophages [11]. If the neu-

trophils are successful in removing the foreign particles and bacteria, as they often

are in ordinary, normal healing wounds, then they are removed from the wound

by either a form of “cellular death” called apoptosis or by macrophage phagocyto-

sis, wherein activated macrophages—peaking anywhere from 48 to 96 hours after
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the injury—”digest” the neutrophils [8]. Subsequently, the macrophages produce

a new set of post-inflammatory cytokines and growth factors, beginning the for-

mation of tissue that replaces the tender fibrin cloth that was initially created to

stop blood loss [2, 5]. In chronic wounds, this inflammation stage is prolonged.

Chronic wounds are commonly caused by a type of “localized anemia” called

ischemia, which impairs the process of healing by limiting the oxygen and nutrient

supply in the tissue near the wound. As neutrophils, along with many other cells,

process oxygen, they produce reactive oxygen species (ROS), which is toxic to

bacteria [13]. If bacteria remain in the wound, infection can settle in, prolonging

inflammation.

Mathematical models can mimic reality through the use of mathematical lan-

guage. Mathematical theorems can be generalized to fit the specific problem at

hand and draw broad conclusions. At the same time, modern day computers can

easily provide numerical and specific conclusions for a model. Often real world

experiments are costly, and sometimes impossible. Studying mathematical models

can reduce the need for such experiments. For examples of other mathematical

models and their analysis, see [3, 4, 6, 7, 14]. With regards to chronic wounds, both

broad insights and numerical computations can easily lead to better treatments

strategies for patients.

An ordinary differential equation (ODE) model was developed in [15]. In this

paper, we modify several equations of the model proposed in [14]. We relate

oxygen, neutrophils, and bacteria, considering their change over time and their

spatial variation. By studying a partial-differential-equation (PDE) model, the

spatial variation of these concentrations can be considered.
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CHAPTER 2

MATHEMATICAL MODEL

The model focuses on the interaction during wound healing of three important

species: oxygen, w; neutrophils, n; and bacteria, b. The wound is considered to be

one-dimensional, with x = 0 located at the center of the radial wound site and x =

L located at the edge of the wound nearest healthy dermis. The equations of the

model governing oxygen and neutrophil concentrations in the wound are motivated

by the work done in [14] while the equation governing bacteria concentrations in

the wound are motivated by [15] and are presented below.

Oxygen concentration w(x, t):

∂w

∂t
= Dw

∂2w

∂x2
+ β + γG(t)− λnwnw − λbwbw − λww (1)

Oxygen concentrations are assumed to diffuse into the wound site from the

wound edge at a constant rate Dw. Oxygen also diffuses in from below the wound

region and we assume this creates a constant input of oxygen β. Oxygen therapy

provides oxygen into the wound region in a time-dependent manner G(t). Once in

the wound site, oxygen is consumed by neutrophils and bacteria. The consumption

of oxygen by the neutrophils and bacteria occurs at constant rates of λnw and λbw,

respectively. Oxygen lost in any other fashion, unrelated to the neutrophils and

bacteria, occurs at a constant rate of λw.

3



Neutrophil concentration n(x, t):

∂n

∂t
= Dn

∂2n

∂x2
+ χn

∂

∂x

(
n
∂w

∂x

)
+
kinknibngn(

w
w0
)

λnin+ λi

(
1− n

n0

)
− λnεb0n

εb0 + b(1− ε)
(2)

The dominant movement of the neutrophils is a chemotactic response, in which

the leukocytes detect the concentration gradient created by the diffusion of oxygen

and move accordingly in to the wound. Neutrophils also diffuse in to the wound.

However, the rate of diffusion relative to the neutrophils’ chemotactic response

is small. As bacteria proliferate in the wound, neutrophils are recruited into the

wound site with an environmental carrying capacity of n0. Neutrophil recruitment

also depends on the total oxygen concentration in the wound by the function

gn(
w
w0
) =


2( w

w0
)3 − 3( w

w0
)2 + 2, if 0 ≤ w

w0
≤ 1

1, otherwise
.

This direct correlation between the amount of bacteria in the wound and the

neutrophil concentration also affects the removal of neutrophils from the wound.

Neutrophils are removed from the wound through cellular apoptosis and by an-

other leukocyte, macrophages, which arrive in the wound approximately 48 to 96

hours after injury. However, the rate of neutrophil removal is reduced due to the

presence of bacteria in the wound.

Bacteria concentration b(x, t):

∂b

∂t
= kbb

(
1− b

b0

)
− w

Kw + w

δ + knrn

λrbb+ λr
b− λbb (3)

Bacteria are assumed to proliferate where it is initially concentrated (in this

case at the center of the wound) at a rate of kb. The wound has an environmental

carrying capacity of b0. Bacteria are removed by ROS, a natural byproduct of

neutrophils’ consumption of oxygen. Both an increase in oxygen levels and neu-

trophil concentrations within the wound site will contribute to the destruction of
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bacteria. Other leukocytes enter the wound as time progresses and also create

ROS. These leukocytes, such as macrophages, are assumed to be at a constant

level δ. Thus, whenever there are bacteria in the wound, white blood cells are also

present in the wound. Bacteria also die naturally at a linear rate λb.

Boundary and Initial Conditions

∂w

∂x

∣∣∣∣
x=0

= 0, w(L, t) = ζ(L), w(x, 0) = ζ(x) (4)

∂n

∂x

∣∣∣∣
x=0

= 0, n(L, t) = n0e
−γ2t, n(x, 0) = n0

(
x− L
L

)2

e−(
x−L
εL )

2

(5)

∂b

∂x

∣∣∣∣
x=0

=
∂b

∂x

∣∣∣∣
x=L

= 0, b(x, 0) = b0

(x
L

)2
e−(

L−x
εL )

2

(6)

In equation (4), ζ(x) = sech(
√

λw
Dw

)cosh(0.8
√

λw
Dw
x). The selection of ζ(x) and

the conditions governing oxygen levels on the boundary are discussed in Chapter

4. Due to the symmetric nature of the problem, no-flux boundary conditions

are needed to describe the oxygen, neutrophil, and bacteria concentrations at the

center of the wound (x = 0). At x = L, the neutrophil concentration decays

exponentially due to the transition of the neutrophils from the healthy dermis to

the wounded area. Initially, neutrophil levels are at a normal level near the edge of

the wound, and are negligible away from the wound edge. Bacteria neither enter

nor leave the wound from the healthy skin at x = L, and thus no-flux conditions

are used on this boundary as well.

To nondimensionalize equations (1)-(6), we let

{x∗, t∗, w∗, n∗, b∗} =
{
x

L
,
Dwt

L2
,
w

w0

,
n

n0

,
b

b0

}
,

{D∗w, β∗, λ∗bw, λ∗nw, λ∗w} =
{
1,

L2

w0Dw

β,
λbwb0L

2

Dw

,
λnwn0L

2

Dw

,
λwL

2

Dw

}
,

{D∗n, χ∗n, k∗ni, λ∗ni, λ∗n, e∗} =
{
Dn

Dw

,
χnw0

Dw

, λi
L2b0
Dw

kinkni,
λnin0

λi
, λn

L2

Dw

,
b0(1− ε)
εb0

}
,

{k∗b , K∗w, δ∗, k∗nr, λ∗rb, λ∗b} =
{
kbL

2

Dw

,
Kw

w0

, δ
λrL

2

Dw

, knrn0
λrL

2

Dw

,
λrbb0
λr

, λb
L2

Dw

}
.
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where the asterisks denote dimensionless variables and parameters. Note that the

choice of dimensionless parameters and variables is not unique. Removing the ∗

from the nondimensionalized variables and parameters for notational simplicity,

equations (1)-(3) become

∂w

∂t
=
∂2w

∂x2
+ β + γG(t)− λnwnw − λbwbw − λww, (7)

∂n

∂t
= Dn

∂2n

∂x2
+ χn

∂

∂x

(
n
∂w

∂x

)
+
knibngn (w)

λnin+ 1
(1− n)− λnn

eb+ 1
, (8)

∂b

∂t
= kbb(1− b)−

w

Kw + w

δ + knrn

λrbb+ 1
b− λbb, (9)

and equations (4)-(6) become

∂w

∂x

∣∣∣∣
x=0

= 0, w(1, t) = ζ(1), w(x, 0) = ζ(x), (10)

∂n

∂x

∣∣∣∣
x=0

= 0, n(1, t) = e−γ2t, n(x, 0) = x2e−(
1−x
ε )

2

, (11)

∂b

∂x

∣∣∣∣
x=0

=
∂b

∂x

∣∣∣∣
x=L

= 0, b(x, 0) = (1− x)2e−(
x
ε )

2

. (12)
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CHAPTER 3

ANALYTICAL RESULTS

Analytical results can provide valuable insight to the biological implications

of the model. First, the wound is examined without the presence of bacteria

to provide a biological description for oxygen and neutrophil dynamics. Before

finding solutions to the system, we examine the stability of the steady states, first

without any spatial variation of the neutrophils and oxygen, and then with the

spatial variation (i.e. diffusion of the oxygen and neutrophils and the chemotactic

response of the neutrophils).

To begin our investigation of the system, we consider the ordinary differential

equations satisfied by travelling wave solutions of equations (7)-(8) where b is

assumed to be 0. Travelling waves arise frequently in the context of wound healing.

Biologically, this implies that a wave front of cells move with a constant speed and

constant shape. We assume there is a solution to each equation of the form f(ψ),

where ψ = x + ct, and c is the speed of propagation of the travelling waves.

Without the presence of bacteria, letting w(x, t) = f(ψ) and n(x, t) = g(ψ), this

reduces equations (7)-(9) to

cf ′ = f ′′ + β − λnwfg − λwf, (13)

cg′ = Dng
′′ + χn(gf

′)′ − λng, (14)

where ′ denotes the derivative with respect to ψ. To examine the steady states of
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this system, (13)-(14) is transformed to a system of first order, nonlinear ordinary

differential equations by setting x1 = f , x2 = f ′, x3 = g, and x4 = g′. Removing

the terms with spatial derivatives, substituting this change of variables into the

system, and separating the derivatives to one side, we get a system of two ordinary

differential equations.

x′1 =
β

c
− λnw

c
x1x3 −

λw
c
x1

x′3 = −
λn
c
x3

(15)

Setting these derivatives equal to zero and solving for x1 and x3 we get the steady

state (x1, x3) = ( β
λw
, 0). The Jacobian for the system (15) (without spatial varia-

tion terms) is

J (x1, x3) =

−λnw
c
x3 − λw

c
x1 −λnw

c

0 −λn
c

.
The eigenvalues of our evaluated Jacobian J ( β

λw
, 0) are {−β

c
,−λn

c
}. Because

the real parts of the eigenvalues are negative, we conclude that the steady state

( β
λw
, 0) is stable. The necessary condition that the real parts of the eigenvalues of

the evaluated Jacobian be negative is clarified in Appendix B. Biologically, this

implies that without bacteria in the system, the neutrophil concentration will tend

to zero and the oxygen level in the wound will stabilize naturally to an average

concentration of β
λw

when spatial variation is not considered.

Now we place the diffusion and chemotactic terms back into equations (15) and

perform the same analysis to study the steady states of the unmodified system.

Substituting x1, x2, x3, and x4 in to the system, and separating the derivatives to

one side, we have the following system.

x′1 = x2

x′2 =
λnw
Dw

x1x3 −
c

Dw

x2 +
λw
Dw

x1 −
β

Dw

x′3 = x4

x′4 =
λn
Dn

x3 −
χn
Dn

x2x4 −
c

Dn

x4 +
χn
Dn

x3

(
c

Dw

x2 −
λw
Dw

x1 −
λnw
Dw

x1x3 +
β

Dw

)
8



Setting the derivatives on the left hand side equal to zero, and solving for x1,

x2, x3, and x4 gives the steady state (x1, x2, x3, x4) =
(

β
λw
, 0, 0, 0

)
. Evaluating the

Jacobian of the system at this steady state gives the matrix

J
(
β

λw
, 0, 0, 0

)
=



0 1 0 0

λw
Dw

c
Dw

βλnw
Dwλw

0

0 0 0 1

0 0 λn
Dn

c
Dn


. (16)

To determine the stability of this steady state, we consider the characteristic

polynomial of the matrix and check that it satisfies the Routh-Hurwitz criteria.

The characteristic polynomial of (16) is

P (α) = a0α
4 + a1α

3 + a2α
2 + a3α + a4

= α4 +
cDw + cDn

DnDw

α3 +
c2 − λwDn − λnDw

DnDw

α2 +
−c(λw + λn)

DwDn

α +
λnλw
DnDw

All parameter values are assumed to be positive. Therefore we have that

a1 > 0, a3 < 0, and a4 > 0. By the corollary and theorem presented in Ap-

pendix B concerning the Routh-Hurwitz conditions, we deduce that there exists

an eigenvalue of the above matrix with a non-negative real part. Thus we conclude

that the steady state is stable without the process of diffusion, yet unstable when

spatial variation is considered. This “diffusion-driven” instability is referred to as

a Turing instability, and is quite common in biological reaction-diffusion models.

Biologically, this implies that during the inflammatory stage, oxygen levels in the

wound will vary spatially, even though these levels may temporally settle. This

creates a gradient of oxygen, which is expected biologically.

To have a complete picture of the biological processes that occur during wound

healing, the system is first examined during the first 6 hours after the initial injury.

This is motivated by [7], which attempts to analyze the amount of oxygen needed

during the first day of treatment to promote blood-vessel growth. During the first

6 hours, neutrophils have not entered the wound. Also, because therapy is given

9



only once every day, if any treatment is sought during the first 6 hours, we assume

it is administered at a constant rate α. Without bacteria in the wound, equation

(7) becomes
∂w

∂t
=
∂2w

∂x2
+ β + α− λww, (17)

with the boundary and initial conditions

∂w

∂x

∣∣∣∣
x=0

= 0,

w(1, t) = 1,

w(x, 0) = 1.

(18)

To find a solution for (18), we transform the boundary conditions into homo-

geneous conditions by substituting u(x, t) = w(x, t) − 1. This transforms the

boundary value problem (17)-(18) into

∂u

∂t
− ∂2u

∂x2
+ λwu = κ, (19)

u(1, t) = 0, (20)

∂u

∂x

∣∣∣∣
x=0

= 0, (21)

u(x, 0) = 0, (22)

where κ = β + α − λw. We find the solution for the boundary value problem

(19)-(22) using Green’s functions:

u(x, t) =

t∫
0

1∫
0

κG(x, ξ, t− s)dξds.

where κ is given above, and

G(x, ξ, t) = 2
∞∑
n=0

cos
(
2nπ+π

2
ξ
)
cos
(
2nπ+π

2
x
)
e−((

2nπ+π
2

)2+λw)t,

which is derived in Appendix A. Evaluating the integral and shifting the data back

we have the solution

10



w(x, t) = 1+2
∞∑
n=0

(−1)n (β + α− λw)
λw
(
2nπ+π

2

)
+
(
2nπ+π

2

)3 cos(2nπ + π

2
x

)(
1− e−((

2nπ+π
2 )

2
+λw)t

)
.

To simulate the removal of bacteria from the wound, we must have ∂b
∂t

<

0. Notice that if b = 0 at any time, then b remains zero for all further time.

Assuming that the bacteria concentration is not initially zero and that it reaches

a steady state fairly soon, to begin bacteria removal from the wound during the

first six hours after trauma, we must satisfy the following inequality through the

application of oxygen treatment

w(0, 0.108)(δ − (kb(1− b)− λb)(λrb + 1)) > Kw(kb(1− b)− λb)(λrb + 1). (23)

Time t = 0.108 is a nondimensional value representing 6 hours after the initial

trauma. From here, we present two cases for the amount of oxygen necessary to

stimulate bacteria removal. Recall that δ represents the ROS produced by cells

other than the neutrophils. Inequality (23) reduces to the following cases:

If δ > f(b), then w(0, 0.108) >
f(b)Kw

δ − f(b)
, (24)

and

if δ < f(b), then w(0, 0.108) <
f(b)Kw

δ − f(b)
, (25)

where f(b) = (kb(1− b)− λb)(λrb + 1). For (25), when δ < f(b), we have

f(b)Kw

δ − f(b)
< 0, (26)

which implies that w(0, 0.108)must be negative. However, the range of w is strictly

positive. Thus we conclude that for (25), treatment through oxygen therapy can

never begin the removal of bacteria from the wound. That is, if the total amount

of ROS created by cells other than the neutrophils is less than f(b), where b is the

total concentration of bacteria, the wound will not be able to begin the healing

11



Bacteria Oxygen α
0.639 5.25468 47.7221
0.64 2.83338 21.8377
0.641 1.80359 10.82897
0.642 1.23364 4.73599
0.643 0.871659 0.8663

Table 1: As bacteria concentrations approach their steady state value in the wound
from the left, the amount of treatment needed to apply during the first session decreases.
The closer the bacteria concentration gets to the steady state, the slower the bacteria
concentration grows. That is, when b is much different from the steady state, we have
that ∂b

∂t >> 0. Note that if α becomes 0, after the first 6 hours, with the parameters in
Table (2), the oxygen levels go to 0.790263 at the center of the wound region.

process without the neutrophils.

Given that δ > f(b), by (24) we require w at the center of the wound and

after the first six hours to be at a certain level. As b approaches the steady state,

the necessary amount of oxygen required to stimulate bacteria removal decreases.

Table 1 shows necessary levels of oxygen w and necessary treatment levels α for

different bacteria concentrations b as b approaches the steady state from the left

using nondimensional variables and nondimensional parameter values from Table 2

in Chapter 4.

While δ > f(b) is a sufficient condition to instigate the removal of the bacteria

from the wound, it is not a very efficient condition. There is a small range of

bacteria concentration such that oxygen therapy during the first six hours will

have a beneficial impact. As time progresses, and neutrophils enter the wound,

the range of bacteria that can be eradicated will grow.
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CHAPTER 4

NUMERICAL RESULTS

The system of equations (7)-(9) are solved in MATLAB using the built-in PDE

solver “pdepe”, which utilizes a finite difference scheme to approximate solutions.

The dimensionless parameters in (7)-(9) are fixed at the values presented in Fig-

ure 2. The choice of parameter values is discussed later in this section.

Parameter Non-Dimensional Dimensional References
w0 1 5.4 ∗ 10−6 g · cm−1 [14]
n0 1 1 ∗ 10−3 g · cm−1 [14]
b0 1 3 ∗ 10−9 g · cm−1 [16]
Dw 1 5 ∗ 10−6 cm2 · s−1 oc
Dn 0.02 1 ∗ 10−7 cm2 · s−1 oc
χn 1.08 1 cm5 · g−1 · s−1 oc
β 0.2284 6.1667 ∗ 10−12 cm−1 · g · s−1 oc
λnw 37 0.185 cm · g−1 · s−1 [14]
λw 2.4667 0.01233 ∗ 10−3 s−1 oc
λn 5 2.5 ∗ 10−5 s−1 oc
λbw 22.7872 [15]
kb 14.26 7.13 ∗ 10−5 s−1 [16]
Kw 0.75 4.05 ∗ 10−6 g · cm−1 [15]
δ 0.7992 oc
knr 2 oc
λrb 3.73 [15]
λb 5 2.5 ∗ 10−6 s−1 oc
kni 14.28 [15]
λni 0.1728 [15]
e 100 [15]

Table 2: The order of magnitude of some parameters were collected from other works,
including [14]. Other parameter values were determined through experimentation with
the knowledge of certain biological assumptions. “oc” stands for “our choice.”
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Figure 2: (Left) Without bacteria present in the wound, neutrophils peak around the
first day and are gone from the wound after approximately six days. (Right) With
bacteria present in the wound, neutrophils still peak after approximately one day, but
persist in the wound until the bacteria is removed.

The numerical solutions to the boundary value problem (7)-(12) are produced by

the code in Appendix C and are pictured in Figure 1.

Numerical simulations were performed to justify and choose various parameter

values. Neutrophils peak in the wound region around the first day, and are gone

from the wound sometime between day four and day six, given that there is no

bacteria in the wound [11]. Parameter values for the chemotactic rate, χn, and

decay rate, λn, of the neutrophils were chosen so that the model agreed with

the literature. As seen in Figure 2, when bacteria is not present in the wound,

neutrophils peak in the wound around day one and are effectively gone from the

wound around day five. Figure 2 also relates the neutrophil concentration in the

wound over time when there is bacteria present in the wound.

To determine an appropriate initial condition, we make the assumption that

during the first six hours oxygen levels in the wound stabilize. That is, at the end

of six hours we assume in equation (7) that ∂w
∂t

= 0. Solving the resulting ordinary

differential equation with the boundary conditions w′(0) = 0 and w(1) = 1 gives

w(x) = sech(
√

λw
Dw

)cosh(
√

λw
Dw
x) + β

λw
.
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The boundary condition at x = 1 for the ODE assumes that blood vessels are

located immediately outside of the wound region and close enough to keep oxygen

levels at the skin capacity. However, there is some distance between the wound

region edge and the blood vessels. To accommodate for this oxygen depression at

the wound edge we rescale the solution to the ODE by choosing w(0.8x) to be our

initial condition, as seen in (10).

Figure 3 shows the oxygen concentration, neutrophil amounts, and bacteria

concentrations in a wound receiving topical oxygen treatment. Oxygen was ap-

plied directly to the wound and to the boundary for 90 minutes a day once a

day for 10 days. Simulations were unsuccessful in removing the bacteria from

the wound. This could be attributed to the exponential decay of the neutrophils

on the boundary of the wound. The total amount of neutrophils on the bound-

ary is approaching zero to rapidly, and thus not enough neutorphils are entering

the wound via diffusion and their chemotactic like response. Similar results were

obtained when modeling hyperbaric oxygen treatment regimens. To simulate hy-

perbaric oxygen treatment, we supply oxygen only to the wound edge and at a

greater rate than that of the simulated topical therapy.

With the current model, neutrophils are strongly attracted to gradients of oxy-

gen. Without treatment, the bacteria located at the center of the wound consume

enough oxygen to create a gradient to which the neutrophils are attracted. How-

ever, when oxygen treatment is applied, the gradient of oxygen in the wound varies,

causing the neutrophils to spread throughout the wound instead of gathering in

the center of the wound where the bacteria are located.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The mathematical model presented with equations (1)-(6) represents the rela-

tion between oxygen concentrations, neutrophil levels, and bacteria concentrations

in a wound after injury. Analytical results show that the steady states are biolog-

ically accurate. Analyzing the analytical results to the model with certain biolog-

ical assumptions provided realistic results and potentially useful data for treating

patients with certain oxygen therapy techniques. Numerical solutions and simu-

lations provided motivation for parameter values that were not necessarily known

from the literature.

For more analytical results the model might be solved with various perturbation

methods. Two interesting questions that were raised during this research are (1)

can the model be solved for different time scales—one time scale representing the

first six hours after trauma and a second representing after six hours—and (2)

can the model be treated as a boundary-layer problem with two boundaries—one

being the center of the wound near the localized bacteria and the other being

the remaining wound region? Perturbation methods allow for different analytical

results, like those found in [6].

While analytical methods can provide a variety of results, some conclusions

can only be drawn through numerical methods. The implications of this model

can be further studied through a variety of numerical simulations. Specifically, (1)

how will the wound react differently if bacteria are locally concentrated nearer the
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edge of the wound rather than the center, (2) how much bacteria can be eliminated

from the wound through the use of oxygen therapy techniques, and (3) what is the

optimal treatment strategy for a chronic wound and does it vary with each wound?

Performing these simulations on actual chronic wound patients is unethical.

Simulations are also helpful when determining how accurately the model de-

scribes the biological situation. To further improve the model’s accuracy, the

attraction of the neutrophils to the wound region might be considered. When

dealing only with temporal changes, as in the ODE model in [15], it is appropriate

for neutrophil recruitment to supply the wound with higher concentrations. How-

ever, when spatial variations are considered, as in the PDE model in this work,

is it possible that the neutrophils detect high concentrations of bacteria? Also,

how consistent is the boundary condition concerning neutrophils near the healthy

skin? Should the boundary condition depend on the total bacteria concentration

in the wound? Analyzing an integral equation boundary condition will certainly

require further study.

The ultimate goal for this research is to determine the most favorable oxygen

therapy treatment strategies for wound patients using optimal control techniques.

Before applying such techniques, it is important that the model accurately repre-

sent the biological situation and that parameter values be realistically determined.

19



APPENDIX A

DERIVING GREEN’S FUNCTION

Given the differential equation with inhomogeneous boundary conditions,

∂w

∂t
= Dw

∂2w

∂x2
+ β − λww, (27)

w(L, t) = f(t), (28)

∂w

∂x

∣∣∣∣
x=0

= g(t), (29)

w(x, 0) = h(x), (30)

we first look for a separated solution. Before finding said solution, we make homo-

geneous the boundary conditions by making the substitution u(x, t) = w(x, t) −

f(t)− (x− L)g(t). This transforms the boundary value problem (27)-(30) into

∂u

∂t
−Dw

∂2u

∂x2
+ λwu = r(x, t), (31)

u(L, t) = 0, (32)

∂u

∂x

∣∣∣∣
x=0

= 0, (33)

u(x, 0) = j(x), (34)

where r(x, t) = β − f ′(t) − (x − L)g′(t) − λwf(t) − λw(x − L)g(t) such that ′

denotes a derivative with respect to t, and j(x) = h(x) − f(0) − (x − L)g(0).
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We assume a solution of the form u(x, t) =
∞∑
n=0

An(t) cos(αnx), where αn = 2nπ+π
2L

are the eigenvalues for the homogeneous eigenvalue problem associated with (31).

Substituting this solution in to (31) gives

r(x, t) =
∞∑
n=0

[A′n(t) + (Dwα
2
n + λw)An(t)] cos(αnx). (35)

We assume r(x, t) in equation (31) and j(x) in (34) can be expanded as Fourier

cosine series. That is,

r(x, t) =
∞∑
n=0

rn(t) cos(αnx), (36)

where

rn(t) =
2

L

L∫
0

r(x, t) cos(αnx)dx, (37)

and

j(x) =
∞∑
n=0

Bn cos(αnx), (38)

where

Bn =
2

L

L∫
0

j(x) cos(αnx)dx. (39)

Equating equation (35) with (36) shows that the ordinary differential equation

produced by the arbitrary functions of t in (35) is equal to the Fourier integral in

(37). Solving the ordinary differential equation according to the initial condition

An(0) = Bn gives

An(t) = Bne
−(Dwα2

n+λw)t +

t∫
0

rn(s)e
−(Dwα2

n+λw)(t−s)ds (40)

where αn are the eigenvalues as before. Substituting these functions into the
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assumed solution provides the separated solution

u(x, t) =
∞∑
n=0

Bne
−(Dwα2

n+λw)t cos(αnx) +
∞∑
n=0

cos(αnx)

t∫
0

rn(s)e
−(Dwα2

n+λw)(t−s)ds.

(41)

Substituting Bn and hn(s) in to (41) and interchanging the integrals with the sums

gives

G(x, ξ, t) =
2

L

∞∑
n=0

cos(αnξ) cos(αnx)e
−(Dwα2

n+λw)t, (42)

which is Green’s function for (27).
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APPENDIX B

LINEAR STABILITY CONDITIONS FOR STEADY STATES OF SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS

Given the nonlinear, autonomous system of ordinary differential equations dx
dt

=

F(x), the equilibrium points, or steady states, are the points x0 ∈ Rn which satisfy

the equation F(x0) = 0. There are various classifications for the stability of a

steady state. A steady state x0 is asymptotically stable if for any solution x(t)

satisfying the system we have lim
t→∞

x(t) = x0. To effectively determine the stability

of a given steady state, we should solve the system. However, with a nonlinear

system of equations, this can be difficult, and thus take a different approach. We

linearize the nonlinear terms using a Taylor expansion about the steady state x0.

That is, we let

F(x) = F(x0) +
∂F
∂x

∣∣
x=x0

(x− x0) +
∂2F
∂x2

∣∣∣
x=x0

(x− x0)
2 + · · · .

However, by definition F(x0) = 0. Thus we are justified in linearly approxi-

mating F(x) in the following manner:

F(x) ≈ ∂F
∂x

∣∣
x=x0

(x− x0).

This approximation transforms our nonlinear system of ordinary differential

equations to a system of the form

dx

dt
= Ax, (43)
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where A is the matrix of the linearized nonlinear terms, or the Jacobian of the

system evaluated at the steady state. Solving this system and disregarding the

trivial solution x = 0 gives the solution

x̄(t) = ueλt

where u 6= 0 is a constant vector and λ is a constant to be determined. Substi-

tuting this solution into (43) shows that the constant vector u and the constant

λ must satisfy the equation

|A− λI|u = 0,

where | · | refers to the determinant of the matrix. Because u 6= 0 we must have

|A − λI| = 0. The resulting polynomial P (λ) is referred to as the characteristic

polynomial of the of the matrix A, and all constants λ satisfying the equation

P (λ) = 0 are referred to as the eigenvalues of the matrix A. For the steady state

x0 to be stable, we must have that lim
t→∞

x(t) = x0 for all solutions x to the nonlinear

system. Because of our choice of approximation for F, this means that we must

have x̄(t)→ 0 as t→∞, which will only occur if Re(λ) < 0 for all eigenvalues λ.

The Routh-Hurwitz conditions, presented in the following Theorem, provide a

convenient method for determining the sign of the real part of the eigenvalues of

a matrix.

Theorem. Given the characteristic polynomial,

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an,

where the coefficients ai are real constants, i = 1, 2, ..., n, define n matrices using

the coefficients ai of the characteristic polynomial:

D1 = [a1], D2 =

a1 a3

1 a2

, D3 =


a1 a3 a5

1 a2 a4

0 a1 a3

, ...,
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and

Dn =



a1 a3 a5 a7 · · · a2n−1

1 a2 a4 a6 · · · a2n−2

0 1 a1 a3 · · · a2n−3
...

...
...

... . . . ...

0 0 0 0 · · · an


,

where aj = 0 if j > n. All roots of the polynomial P (λ) are negative or have

negative real part iff the determinants of the defined matrices are positive:

|Dj| > 0, j = 1, 2, ..., n.

For a fourth degree polynomial, P (λ) = λ4+ a1λ
3+ a2λ

2+ a3λ+ a4 = 0 where

each of the ai’s are nonzero, the conditions stipulate that we must have

|D1| = |a1| = a1 > 0

|D2| =

∣∣∣∣∣∣∣
a1 a3

1 a2

∣∣∣∣∣∣∣ = a1a2 − a3 > 0

|D3| =

∣∣∣∣∣∣∣∣∣∣
a1 a3 0

1 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣∣
= a1a2a3 − a23 − a21a4 > 0

|D4| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 0 0

1 a2 a4 0

0 a1 a3 0

0 1 a2 a4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= a1a2a3a4 − a23a4 − a21a24 > 0

for Re(λ) < 0.

Corollary. Given the polynomial

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4

with real coefficients such that a1 > 0, a3 < 0, and a4 > 0, there exists a λ∗ such

that P (λ∗) = 0 and Re(λ∗) ≥ 0.
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Proof. Suppose to the contrary that each root of the fourth degree polynomial P

has a negative real part. Then the polynomial P must satisfy the Routh-Hurwitz

conditions. Therefore, referring to the notation in the previous theorem, we must

have that

|D3| = (a1a2 − a3)a3 − a21a4 = |D2|a3 − a21a4 > 0.

That is, under the assumption that each root of the polynomial P has a negative

real part, it must be that

|D2|a3 > a21a4.

Because a21 > 0 and a4>0, we must have that |D2|a3 > 0. However, because

a3 < 0, we must also have that |D2| < 0. This contradicts the assumption that P

satisfies the Routh-Hurwitz conditions. Therefore, at least one of the four roots

of the polynomial P must have a non-negative real part.
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APPENDIX C

MATLAB CODE

1 function PDE_Thesis
2 wo = 5.4*10^(−6);
3 no = 1*10^(−3);
4 %bo =
5 Lo = 1;
6 Dwo = 5*10^(−6);
7 Dno = 1*10^(−8);
8 chino = 1.08;
9 betao = 6.16667*10^(−12);

10 lambdanwo = 0.185;
11 lambdawo = (0.185/15)*10^(−3);
12 lambdano = 2.5*10^(−5);
13 %lambdaio =
14 %lambdabwo =
15 %kbo =
16 %Kwo =
17 %∆o =
18 %knro =
19 %lambdarbo =
20 %lambdabo =
21 %knio =
22 %kino =
23 %epsilono =
24 m = 0;
25 x = linspace(0,1,1000);
26 t = linspace(0,4.32,800);
27 Dw = 1;
28 Dn = Dno/Dwo;
29 chin = chino*wo/Dwo;
30 %chib = 0.9;
31 beta = betao*Lo^2/(wo*Dwo);
32 lambdanw = lambdanwo*no*Lo^2/Dwo;
33 lambdaw = lambdawo*Lo^2/Dwo;
34 lambdan = lambdano*Lo^2/Dwo;
35 lambdabw = 22.7872; %lambdabwo*bo*Lo^2/Dwo;
36 Db = 1*10^(−5);
37 kb = 14.26; %kbo*L^2/Dwo;
38 Kw = 0.75; %Kwo/wo;
39 ∆ = 0.7992; %∆o*lambdaro*Lo^2/Dwo;
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40 knr = 2; %knro*no*lambdaro*Lo^2/Dwo;
41 lambdarb = 3.73; %lambdarbo*no/lambdaro;
42 lambdab = 5; %lambdabo*Lo^2/Dwo;
43 kni = 14.28; %lambdaio*kino*knio*Lo^2*bo/Dwo;
44 lambdani = 0.1728; %lambdanio*no/lambdaio;
45 ee = 100; %bo*(1−epsilono)/(epsilono*bo);
46 eta = 5;%boundary
47 params = [Dw,Dn,chin,beta,lambdanw,lambdaw,lambdan,lambdabw,Db,kb,...

Kw,∆,knr,lambdarb,lambdab,kni,lambdani,ee,eta];
48 %display(params)
49 %error('end code')
50 sol = pdepe(m,@wound_pde_thesis,@wound_ic_thesis,@wound_bc_thesis,...

x,t,[],params);
51 w = sol(:,:,1);
52 n = sol(:,:,2);
53 b = sol(:,:,3);
54 x = 1 − x;
55 save('chasesdata.mat') %load('chasedata.mat')
56 for i=1:20
57 figure(1)
58 subplot(1, 3, 1);
59 hold on
60 plot(x,w(20*(i−1)+1,:))
61 axis([0 1 0 1])
62 xlabel('position (x)')
63 ylabel('oxygen levels (w)')
64 title('Oxygen levels in the wound')
65 %figure(2)
66 %hold on
67 subplot(1, 3, 2);
68 hold on
69 plot(x,n(20*(i−1)+1,:))
70 axis([0 1 0 1])
71 xlabel('position (x)')
72 ylabel('neutrophil concentrations (n)')
73 title('Neutrophil concentrations in the wound')
74 %figure(3)
75 %hold on
76 subplot(1, 3, 3);
77 hold on
78 plot(x,b(20*(i−1)+1,:))
79 axis([0 1 0 1])
80 xlabel('position (x)')
81 ylabel('bacteria (b)')
82 title('Bacteria in the wound')
83 keyboard
84 end
85 figure(4)
86 %subplot(2, 2, 4);
87 td = t*Lo./(Dwo*24*60*60);
88 %subplot(2, 2, 4);
89 plot(td,sum(n'))
90 xlabel('Time (days)')
91 ylabel('Neutrophils')
92 figure(5)
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93 plot(td,sum(b'))
94 xlabel('Time (days)')
95 ylabel('Bacteria')
96

97

98 %save('chase_run1.mat')
99

100 function [c,f,s] = wound_pde_thesis(x,t,u,DuDx,params)
101

102 Dw = params(1);
103 Dn = params(2);
104 chin = params(3);
105 beta = params(4);
106 lambdanw = params(5);
107 lambdaw = params(6);
108 lambdan = params(7);
109 lambdabw = params(8);
110 Db = params(9);
111 kb = params(10);
112 Kw = params(11);
113 ∆ = params(12);
114 knr = params(13);
115 lambdarb = params(14);
116 lambdab = params(15);
117 kni = params(16);
118 lambdani = params(17);
119 ee = params(18);
120 eta = params(19);
121 %chib = params(19);
122

123 c = [1; 1; 1];
124 f = [Dw; Dn; Db].*DuDx + [0; chin; 0].* u(2).*DuDx(1).*...

heavi_approx3(1 − u(2));% − [0; chib; 0].*u(2).*DuDx(3).*...
heavi_approx3(1 − u(2));

125 s = [beta + eta*hbotherapy(t) − lambdanw*u(1).*u(2) − lambdaw*u(1)...
− lambdabw*u(3).*u(1); (kni*u(3).*u(2).*(gnwrecruitment(u(1)))...
)/(lambdani*u(2)+1).*(1−u(2))−(lambdan*u(2))/(ee*u(3)+1); kb*u...
(3).*(1 − u(3)) − u(3).*(u(1)/(Kw + u(1))).*((∆ + knr*u(2))/(...
lambdarb*u(3)+1)) − lambdab*u(3)];

126

127

128 function u0 = wound_ic_thesis(x,params)
129

130 epsilon = 0.01;
131 Dw = params(1);
132 lambdaw = params(6);
133 beta = params(4);
134

135 u0 = [1; 0; 0].*(sech(sqrt(lambdaw/Dw)).*cosh(0.8*sqrt(lambdaw/Dw)...
.*(1−x)) + beta/lambdaw) + [0; 1; 0].*(1−x).^2.*exp(−((x)/...
epsilon).^2)+[0; 0; 1].*(x).^2.*exp(−((1−(x))/epsilon).^2);

136

137

138 function [pl,ql,pr,qr] = wound_bc_thesis(x1,ul,xr,ur,t,params)
139
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140 Dw = params(1);
141 beta = params(4);
142 lambdaw = params(6);
143 eta = params(19);
144

145 pl = [ul(1) − sech(sqrt(lambdaw/Dw)).*cosh(0.8*sqrt(lambdaw/Dw)) −...
beta/lambdaw − eta*hbotherapy(t); ul(2) − exp(−1.96*t); 0];

146 ql = [0; 0; 1];
147 pr = [0; 0; 0];
148 qr = [1; 1; 1];
149

150 function H = heavi_approx3(x)
151

152 H = atan(1000*x)./pi+1/2;
153

154 function H = heavi_approx2(x)
155

156 H = atan(1000*x)./pi+1/2;
157

158 function g = hbotherapy(t)
159 tf = 4.32;
160 lf = 10;
161 g1 = heavi_approx2(t) − heavi_approx2(t−1.5*tf/24/lf);
162 g2 = heavi_approx2(t−tf/lf) − heavi_approx2(t−tf/lf−1.5*tf/24/lf);
163 g3 = heavi_approx2(t−2*tf/lf) − heavi_approx2(t−2*tf/lf−1.5*tf/24/...

lf);
164 g4 = heavi_approx2(t−3*tf/lf) − heavi_approx2(t−3*tf/lf−1.5*tf/24/...

lf);
165 g5 = heavi_approx2(t−4*tf/lf) − heavi_approx2(t−4*tf/lf−1.5*tf/24/...

lf);
166 g6 = heavi_approx2(t−5*tf/lf) − heavi_approx2(t−5*tf/lf−1.5*tf/24/...

lf);
167 g7 = heavi_approx2(t−6*tf/lf) − heavi_approx2(t−6*tf/lf−1.5*tf/24/...

lf);
168 g8 = heavi_approx2(t−7*tf/lf) − heavi_approx2(t−7*tf/lf−1.5*tf/24/...

lf);
169 g9 = heavi_approx2(t−8*tf/lf) − heavi_approx2(t−8*tf/lf−1.5*tf/24/...

lf);
170 g10 = heavi_approx2(t−9*tf/lf) − heavi_approx2(t−9*tf/lf−1.5*tf...

/24/lf);
171 %g11 = heavi_approx2(t−10*tf/lf) − heavi_approx2(t−10*tf/lf−1.5*tf...

/24/lf);
172 %g12 = heavi_approx2(t−11*tf/lf) − heavi_approx2(t−11*tf/lf−1.5*tf...

/24/lf);
173 %g13 = heavi_approx2(t−12*tf/lf) − heavi_approx2(t−12*tf/lf−1.5*tf...

/24/lf);
174 %g14 = heavi_approx2(t−13*tf/lf) − heavi_approx2(t−13*tf/lf−1.5*tf...

/24/lf);
175 %g15 = heavi_approx2(t−14*tf/lf) − heavi_approx2(t−14*tf/lf−1.5*tf...

/24/lf);
176 %g16 = heavi_approx2(t−15*tf/lf) − heavi_approx2(t−15*tf/lf−1.5*tf...

/24/lf);
177 %g17 = heavi_approx2(t−16*tf/lf) − heavi_approx2(t−16*tf/lf−1.5*tf...

/24/lf);
178 %g18 = heavi_approx2(t−17*tf/lf) − heavi_approx2(t−17*tf/lf−1.5*tf...
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/24/lf);
179 %g19 = heavi_approx2(t−18*tf/lf) − heavi_approx2(t−18*tf/lf−1.5*tf...

/24/lf);
180 %g20 = heavi_approx2(t−19*tf/lf) − heavi_approx2(t−19*tf/lf−1.5*tf...

/24/lf);
181 %g21 = heavi_approx2(t−20*tf/lf) − heavi_approx2(t−20*tf/lf−1.5*tf...

/24/lf);
182 g = g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8 + g9 + g10;% + g18 + g19...

+ g20 + g21;% + g15 + g16 + g17 + g18 + g19 + g20 + g21;
183 %h1 = length(t);
184 %h = zeros(1,h1);
185 %for i = 1:h1
186 % if mod(t(i)*10^6/24/3600,1) < (1.5+10^(−10))/24
187 % h(i) = 1;
188 % else
189 % h(i) = 0;
190 % end
191 %end
192

193 function g = gnwrecruitment(w)
194

195 i = length(w);
196 g = zeros(1,i);
197 for j = 1:i
198 if w(j) < 1
199 g(j) = 2*w(j)^3 − 3*w(j)^2 + 2;
200 else
201 g(j) = 1;
202 end
203 end
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