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ABSTRACT

Measurements of parity symmetry violation in nuclear reactions with polarized neutrons

can provide valuable information on hadronic weak interaction. We have conducted

an analysis of experimental error in the measurement of the parity violating effect

in the n3He experiment. several experimental parameters have been optimized to

minimize statistical error using numerical simulations. An analysis of systematic

error due to differential cross-section dependence on energy as well as on false parity

conserving asymmetries was also conducted. Our results suggest that the proposed

parameters of the experiment will sufficiently suppress all sources of error under

consideration. Furthermore, these approaches may be effectively applied to examine

potential sources of error in other experiments using neutrons to measure P-violating

or even CP-violating effects.
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ii



iii



ACKNOWLEDGEMENTS

I would like to acknowledge my research advisor, Dr. Ivan Novikov, for his guidance

in my research as well as in the process of developing my thesis. I would also like to

thank the Honors College for helping to guide me through the thesis writing process.

Finally I would like to thank the Applied Physics Institute and the FUSE Award

Program for providing the funding that made my research possible.

iv



VITA

April 14, 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Born - Bamberg, Germany

Spring 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gatton Academy of Math and Science,

Bowling Green, Kentucky

Fall 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FUSE Award

FIELDS OF STUDY

Major Field: Physics

Minor Field: Mathematics

v



TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS iv

VITA v

1 PARITY 1

1.1 Parity Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Parity Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 PARITY VIOLATION IN EXPERIMENTS WITH NEUTRONS 4

2.1 Propagation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Reaction Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The n3He Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Configuration of the Experiment . . . . . . . . . . . . . . . . 9

2.3.2 Simulation of the Experiment . . . . . . . . . . . . . . . . . . 10

3 ANALYSIS OF POTENTIAL SOURCES OF SYSTEMATIC ER-

ROR 16

3.1 Neutron Energy Dependence . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Parity Conserving Asymmetry . . . . . . . . . . . . . . . . . . . . . . 19

4 CONCLUSIONS 22

BIBLIOGRAPHY 34

vi



List of Figures

2.1 Diagram of Reaction Experiment . . . . . . . . . . . . . . . . . . . . 5

2.2 Diagram of n3He Experiment . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Neutron energy distribution at the FNPB at SNS . . . . . . . . . . . 11

2.4 Proton and Triton energy loss as a function of distance calculated using

SRIM software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Deposited energy, parity violating effect, and statistical error as a

function of target depth and proton angle . . . . . . . . . . . . . . . 15

3.1 Parity violating (top) and parity conserving (bottom) R-Matrix elements 17

vii



CHAPTER 1

PARITY

1.1 Parity Symmetry

Parity symmetry describes symmetry under spatial-inversion, or parity transformation.

Under parity transformation all three spatial coordinates are reversed. Parity symmetry

is said to be discrete because it describes a non-continuous transformation of the

system, in which one state changes to another without passing through intermediary

states [1]

P


x

y

z

 =


−x

−y

−z

 (1.1)

Vectors change sign under parity while pseudo-vectors and scalars do not change sign.

Quantities that do not change sign under parity transformation are said to be parity

even while those that do change sign are said to be parity odd. Let us consider

two examples. It is obvious that mass, a scalar, is unaffected by a change in spatial

coordinates. However, consider angular momentum, a pseudo-vector, which is defined

as the cross product of position and momentum. Under parity transformation both

of these quantities change sign, however their vector product does not. Therefore

angular momentum is a parity odd quantity

P
(
~L
)

= P (~r × ~p) = (−~r)× (−~p) = ~L (1.2)

1



Other parity odd quantities include particle spin and magnetic field are also axial-vectors

and as such are parity odd.

1.2 Parity Violation

The three discrete symmetries of the Standard Model are not exact. It is now

known that under certain conditions these symmetries are violated. Theoretical

predictions of parity violation in the weak interaction [2] motivated an experimental

group led by C. S. Wu. In the experiment [3] the angular distribution of electrons

emitted through the β-decay of polarized 60Co nuclei was measured and then measured

again when the polarization of the nuclei was reversed. If parity was conserved the

angular distribution of the electrons would remain unchanged, instead a measurable

asymmetry was observed thus confirming parity violation. It is possible to measure

this parity violating (PV) asymmetry as a result of the dependence of the differential

cross-section on the parity odd correlation. This correlation is given by

P
(
~J · ~ke

)
= −

(
~J · ~ke

)
(1.3)

where ~J is the spin of the cobalt nuclei and ~ke is electron momentum.

Mathematically, the fact that parity is violated in the weak interaction may be

described as

[VW ,P ] 6= 0 (1.4)

where VW is a weakly interacting potential. When considering the time evolution

operator, Û(t, t0) and Hamiltonian, Ĥ, given as

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 (1.5)

Û(t, t0) = exp

(
−iĤ(t− t0)

h̄

)
(1.6)
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Ĥ =
p2

2µ
+ V (1.7)

we can then see that the development of a system in time is determined primarily by

its potential, V , with weakly interacting parity violating component VW [4].

Due to the relatively small contribution of the weak interaction compared to that

of the strong interaction it is sometimes useful to describe the eigenstates of the parity

violating Hamiltonian as a mixing of eigenstates of the strong, parity conserving

Hamiltonian [4] as in

|φ〉 = |ψ+〉+
〈ψ−|VW |ψ+〉

δE
|ψ−〉 = |ψ+〉+ ε |ψ−〉 (1.8)

where δE is the difference in the strong Hamiltonian eigenvalues and psi+ and psi−

are parity eigenstates. With this in mind an observable A of mixed parity, such as a

difference in neutron cross-section, can be written as

A = Aeven + Aodd (1.9)

with an expectation value of

〈φ|A |φ〉 = 〈ψ+|Aeven |ψ+〉+ 2εRe{〈ψ−|Aodd |ψ+〉}+O(ε2) (1.10)

The value of the relative magnitude of the strong interaction and weak interaction

components ε is small. Thus any attempted measurement of ε will require a carefully

designed experiment in which high precision measurements may be taken.
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CHAPTER 2

PARITY VIOLATION IN EXPERIMENTS WITH NEUTRONS

An accurate description of nucleon-nucleon potential is fundamental to our understanding

of physics. In order to better understand the weak interaction component of hadron-hadron

interactions, it is useful to exploit the fact that it uniquely violates parity. An

interest has thus developed in experiments using low energy polarized neutrons to

measure various PV asymmetries in hadron-hadron interactions. The bulk of these

experiments can be divided into two classes, propagation experiments and reaction

experiments

2.1 Propagation Experiments

The strong interaction component in nucleon interactions is many orders of magnitude

larger than the weak interaction component, making measurement of weak interaction

PV effects extremely difficult. One approach to this problem is to exploit resonance

reactions of neutrons in heavy nuclei to enhance value of PV asymmetries [5]. In these

experiments, a beam of polarized neutrons is fired at a thin target of heavy nuclei,

for example 139La [6]. A detector on the other side of the target and in the path

of the incident beam then counts the number of neutrons which propagate through

the target (N+). The polarization of the neutron beam is then reversed and the

experiment is repeated (N−). The number of neutrons propagated through the target

can be expressed as

N± = N0e
−ρσ±x (2.1)

4



Figure 2.1: Diagram of propagation experiments

where ρ is target density ,σ± is the total cross-section and x is the thickness of the

target.

The cross-section of the polarized neutrons given by

σ± = σ0

(
1 + ∆P (~σn · ~kn)

)
(2.2)

where ∆P is the parity violating component of the neutron cross-section. The cross-section

is dependent on the parity odd correlation

P
(
~σn · ~kn

)
= −

(
~σn · ~kn

)
(2.3)

where ~σn is the neutron polarization vector and ~kn is neutron momentum. The

theoretical parity violating effect is then

A
(th.)
P =

σ+ − σ−
σ+ + σ−

(2.4)

In the case of a thin target where x << 1, (2.1) may be reduced to

N± ≈ N0(1 + ρσ±x) (2.5)

From this simplification the experimental parity violating effect may then be measured

5



as

A
(exp.)
P =

N+ −N−
N+ +N−

≈ (1 + ρσ0x(1 + ∆P ))− (1 + ρσ0x(1−∆P ))

(1 + ρσ0x(1 + ∆P )) + (1 + ρσ0x(1−∆P ))
= xρσ0∆P (2.6)

The magnitude of A
(exp.)
P has been measured with a heavy nuclear target to be as large

10−1 relative to strong interaction effects. The many order of magnitude enhancement

of the PV effect was explained in the framework of nuclear resonance theory [5].

The experimentally measured parity violating effect will vary from the theoretical

value as

A
(exp.)
P = A

(th.)
P ± σ(stat.)

AP
± σ(sys.)

AP
(2.7)

where σ
(stat.)
AP

and σ
(sys.)
AP

are the statistical and systematic error respectively. In

order to accurately measure the parity violating effect it is necessary to minimize

the statistical error given by

σ
(stat.)
AP

A
(exp.)
P

=

√
∆(N+ −N−)2

(N+ −N−)2
+

∆(N+ +N−)2

(N+ +N−)2
(2.8)

Knowing that |N+−N−| << |N++N−|, the statistical error may then be approximated

as
σ

(stat.)
AP

A
(exp.)
P

≈

√
∆(N+ −N−)2

(N+ −N−)2
≈

√
N+ +N−

(N+ −N−)2
≈ exρσ0

xρσ0∆P

√
N0

(2.9)

Thus the parity violating effect increases with target depth, x. However, a deep target

decreases the total number of propagated neutrons resulting in a large uncertainty.

Therefore, in order to accurately measure A
(exp.)
P , the target depth must be optimized

in order to minimize the statistical error. We see that this occurs at x = (ρσ0)−1,

which we recognize as the mean free path of the neutrons.
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2.2 Reaction Experiments

Reaction experiments seek to examine simple systems using nuclei with only a few

nucleons. The resonance enhancement of the PV effects is lost in these experiments,

resulting in a relative magnitude of 10−7. As a result, reaction experiments require

extremely precise measurement of the various asymmetries. Two such experiments

are currently in progress, the NPDGamma experiment [7] and the n3He experiment

which consider the reactions given by

~n+ p→ d+ γ (2.10)

~n+ 3He→ p+ t (2.11)

Both experiments are being conducted at the Fundamental Neutron Physics Beam

Line (FNPB) at the Spallation Neutron Source at Oakridge National Lab (SNS

ORNL) [8]. The data collection for the NPDGamma experiment is already complete

while the n3He experiment is still being constructed.

The designs of these two experiments are very similar. In both a beam of polarized

neutrons is fired at a large target chamber filled with gas. The neutrons propagate

through the chamber and interact with the nuclei creating reaction products. The

angular distribution of γ-rays is measured by a detector array in the case of the

NPDGamma experiment. The angular distribution of proton and triton tracks is

measured inside the target in the n3He experiment. Then in both cases the polarization

of the neutrons is reversed and the experiment is conducted again. The difference

in the angular distribution of the reaction products is then used to measure the PV

asymmetry.

The neutron differential cross-section which determines the angular distribution

7



of the reaction products may be written

dσ

dΩ±
=
dσ

dΩ0

(
1 + ∆nf (~σn · ~kf )

)
(2.12)

where ~kf is the reaction product momentum. The differential cross-section is dependent

on the parity odd correlation given by

P
(
~σn · ~kf

)
= −

(
~σn · ~kf

)
(2.13)

where ∆nf is the PV component of the differential cross-section and ~kf is the reaction

product momentum. The number of reaction products in a given solid angle for each

neutron polarization can then be expressed as

dN

dΩ ±
= N0

dσ

dΩ0

(
1 + ∆nf (~σn · ~kf )

)
(2.14)

The experimentally measured parity violating effect, Aexpnf , can thus be extracted

from the normalized difference of the measured angular distribution of the reaction

products for forward and backward neutron polarization as in

Aexpnf =
dN
dΩ +
− dN

dΩ−
dN
dΩ +

+ dN
dΩ−

= ∆n,f cos θn,f (2.15)

where θnf is the angle between ~σn and ~kf .

2.3 The n3He Experiment

Our goal is to use a combination of computational simulation and analytical calculation

to analyse potential sources of experimental error in the ongoing n3He experiment.

With this in mind a more thorough description of the proposed experimental configuration

and an overview of the simulations developed to model it will be given below.
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Figure 2.2: Diagram of n3He experiment

2.3.1 Configuration of the Experiment

The n3He experiment is to be carried out at the SNS ORNL. The neutron flux

reaching the target is anticipated to be 108 neutrons/s/cm and the experiment will

run for 107 seconds. The neutrons will have an energy between roughly 1 meV and 80

meV and a polarization of approximately 96%. It is expected that the polarization

and beam axes will be aligned to the detector axis with a precision of 10 mrad each.

The proposed target chamber is a cube with side lengths of roughly 20 cm. The

chamber is filled with 3He gas and a very small percentage of nitrogen gas at near

room temperature and atmospheric pressure.

The target chamber is filled with a lattice of wires with alternating planes of wires

carrying a high voltage and the others serving as detectors. There will be between 20

and 40 planes of detector wires in the chamber. When the incident neutrons react a

proton and triton are created with kinetic energies of 573 keV and 192 keV respectively

and with anti-parallel momentum. As the proton and triton travel through the target

they ionize the helium creating a current between the high voltage and detector wires

[9].

The purpose of the nitrogen is to suppress showers of ionization that would trigger

detectors far from the proton and triton paths. The detector wires are arranged in

such a way as to divide the chamber into cells, making it possible to track the path of

the reaction products as they pass through the chamber. This process is made easier

by the nature of the proton and triton themselves. Most of the triton energy is lost

9



at the beginning of its track, while most of the proton energy is lost at the end of the

track. These two points of high energy deposition mark the beginning and end of the

proton track, making calculation of its scattering angles easy.

2.3.2 Simulation of the Experiment

Just as in the propagation experiments,
σ
(stat.)
Anp

A
(exp.)
np

must be minmized in order to accurately

measure the parity violating effect. In the n3He experiment, the parity violating

effect, A
(exp.)
np , depends on a large number of experimental parameters in a complicated

way. As a result it is not possible to use analytical calculation, as in the case of

propagation experiments. Therefore, a numerical approach was utilized.

We have developed simulations which model the n3He experiment and analyse

the resulting data. In this way we numerically calculate the PV effect and systematic

error and their dependence on the experimental parameters. The code for these

simulations is included in Appendix A.

Our simulation models the experiment using Markov Chain Monte Carlo methods

[10] to simulate the neutron reactions with the 3He target and to generate the

resulting reaction products. The program uses a coordinate frame aligned with the

target chamber, with the z-axis being into the target chamber. A neutron is generated

by assigning it an x and y coordinate within the beam from a uniform distribution

on a disk of given size. The neutron energy and polar angle, θ, of the proton created

in the reaction are generated by using the Metropolis-Hastings algorithm to sample

from their respective distributions. The algorithm samples from these distributions

by making a random walk over the the parameter space:

1. Choose an initial value xt with high probability in your target distribution P (x)

2. Generate a random number from a Gaussian distribution, N(0, σstep), and add
it to xt to obtain a new proposal value, x′

10



Figure 2.3: Neutron energy distribution at the FNPB at SNS [9]

3. Calculate a = P (x′)
P (xt)

4. If a ≥ 1 let xt + 1 = x′, repeat from 2.

5. If not choose r from a uniform distribution from 0 to 1

6. If a ≥ r let xt + 1 = x′, repeat from 2.

7. If a < r let xt + 1 = xt, repeat from 2.

The neutron energy is chosen from the distribution in Figure 2.3. The angle θ is

sampled from the distribution

f(θ) = 1±∆np cos θ (2.16)

where ∆
(th.)
pn is the theoretical magnitude of the parity violating asymmetry that the

11



simulation will attempt to measure. The distribution uses a plus when the simulation

is running with the polarization defined as σn = +ẑ and minus when the simulation

is running with the polarization defined as σn = −ẑ. The angle φ is sampled from a

uniform distribution.

The depth into the chamber at which the neutron reacts is then calculated using

I = I0e
−Nσz (2.17)

where the neutron cross section, σ, is calculated from neutron energy using values from

the National Nuclear Data Center Evaluated Nuclear Data File [11]. The molecular

density, N , is given by

N =
Naρ

M
(2.18)

where ρ is the density, andM is the molar mass of the target. Exponential distributions

may be calculated analytically and thus do not require the use of MCMC methods.

With the position of the neutron reaction in three dimensional space and the

angles of the proton path defined the program now propagates the proton through

the target. This is simulated by the proton taking a series of small steps through

the chamber. At each step the amount of energy the proton loses is calculated

using stopping power calculations as seen in Figure 2.4. Stopping power is typically

calculated using the Bethe formula. The Bethe formula uses the characteristics of

the particle and medium to determine the stopping power of the particle in the

medium, as in [12]. However, the formula is not accurate enough at the low energies

present in the n3He experiment. For this reason we have used data taken from the

SRIM software package, which combines many equations and experimental data to

accurately calculate stopping power [13]. The program continues to make steps until

the proton’s kinetic energy reaches zero. The same process is repeated for the triton,

which takes a path anti-parallel to the proton path.

12



Figure 2.4: Proton and Triton energy loss as a function of distance calculated using
SRIM software [13]

The target chamber is simulated as an array of cells defined by the detector wires.

Each cell is defined as a region in the chamber and by an energy which is initially zero.

The energy lost at each step of the proton and triton is added to the total energy of

the cell that the particle is currently within. If a particle reaches the predefined edge

of the chamber before all of its energy is lost the energy is not placed in any cell.

The n3He experiment will run for 107 seconds at a flux of 108 neutrons/second/cm.

If we let the beam cross-sectional area be one square centimeter, the total number of

neutrons will be roughly 1015. In order to efficiently simulate such a large number

of neutrons a tremendous amount of computational power is necessary. To meet

this demand, we chose to utilize NVIDIA’s CUDA architecture [14] to implement

our program in parallel on an NVIDIA GTX670 GPU. GPUs have are capable of

achieving a tremendous amount of computing power at a very low cost both in terms of

hardware and energy, however, they can only achieve their full potential in situations

in which it is possible to massively parallel-ize the computation. In our program this

is implemented by utilizing the maximum number of processes a GTX670 can carry

out simultaneously with each process calculating the energy loss and cell position for

an individual step of of 1024 separate particles. This totals to 32768 simultaneous

13



processes.

To analyze the results of these simulations, data is taken of total energy deposited

in each cell for both forward and backward polarization of the neutron beam. The

calculated PV effect, A
(sim.)
np , in the ith cell can then be calculated from the cell energy

using

A
(sim.)
np,i =

Ei,+ − Ei,−
Ei,+ + Ei,−

(2.19)

and the relative statistical error can then be calculated as

σ
(stat.)
Anp,i

A
(sim.)
np,i

=

√
Ei,+ + Ei,−

(Ei,+ − Ei,−)2
(2.20)

where Ei,± is the energy lost in the ith cell for the forward or backward polarization.

With these two values we can observe in which regions of the target chamber the

statistical error is low and the measured effect is near the expected value. Using this

information we have concluded that the most sensitive regions of the chamber are at

a depth of 4 cm to 7 cm and within a centimeter or two of the initial neutron beam

path. These conclusions seem to agree well with those presented in [9]. However, our

results suggest that the proposed target depth of 20 cm could be reduced by several

centimeters without loss of accuracy.

Beyond this primary result, our program has also been used to analyze several

other features of the experiment. For example, temperature and pressure of the

target are defined within our program and it is thus possible to observe the effects on

distribution of neutron reaction depth as well as proton and triton energy loss over a

range of these variables and optimize for desirable results. Cursory exploration has

revealed room temperature and atmospheric pressure are relatively strong choices for

these values.

Another useful measurement is percentage of proton and triton energy deposited

in the cells. It is desirable that this value be large as if the particles are not able to

14



Figure 2.5: Deposited energy, parity violating effect, and statistical error as a
function of target depth and proton angle

lose all of their energy within the chamber before striking the edge statistical accuracy

of the measurement is being lost.

Furthermore, the design of these simulations is very flexible and in the future could

easily be reconfigured to perform similar analysis of statistical error and experiment

optimization on other neutron PV experiments. For example, many propagation

experiments as well as other reaction experiments could readily be examined with

only minor modification to the structure of these programs.
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CHAPTER 3

ANALYSIS OF POTENTIAL SOURCES OF SYSTEMATIC ERROR

In experiments requiring high precision measurements, potential sources of systematic

error must be carefully considered. In order to obtain meaningful results these sources

must be identified and their effect on the measurements taking place must either be

eliminated through modification of the experiment or measured with greater accuracy

than the desired measurement. In the case of the n3He experiment, there are two

major sources of potential systematic error that we have identified. The first is the

dependence of both the strong interaction and weak interaction contributions to the

experimentally measured values on neutron energy. The second is the contribution of

several additional parity even and parity odd correlations to the differential cross-section.

We have examined the potential contribution of both of these sources in detail.

3.1 Neutron Energy Dependence

The dependence of both strongly and weakly interacting terms on neutron energy

is significant primarily because of the small magnitude of the parity violating effect

relative to the strong interaction term. As a result, even a relatively small dependence

of the strong interaction term on neutron energy could overwhelm the parity violating

effect. Consider the differential cross-section given by

dσ

dΩ

(exp.)

±
= 〈B(En)〉+ 〈Cnp(En)〉 (~σn · ~kp) (3.1)
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where B is a parity even term and Cnp is a parity odd term. These quantities are

averaged over the neutron energies of a single measurement. The quantity, given by

(B(〈En〉1) + Cnp(〈En〉1) cos θ)− (B(〈En〉2)− Cnp(〈En〉2) cos θ)

(B(〈En〉1) + Cnp(〈En〉1) cos θ) + (B(〈En〉2)− Cnp(〈En〉2) cos θ)
6= Cnp

B
cos θ (3.2)

is then no longer equivalent to the parity violating effect in the case where the average

neutron energy of the two measurements is not the same.

Figure 3.1: Parity violating (top) and parity conserving (bottom) R-Matrix elements

In order to analyze this potential source of systematic we have used the resonance

approach presented in [15] and [5]. Using this approach the differential cross-section

may be considered in terms of

dσ

dΩ
=

π

k2
Tr(R̂ρ̂R̂†) (3.3)

where R̂ ∝
(
Ŝ − 1̂

)
is the reaction matrix and ρ̂ is the density matrix, whose elements

define each possible state of the system.

Using results derived in [16], the differential cross-section can be calculated from

the PV and PC R-matrix elements given by

〈s′l′|RJ |sl〉 = − iw (Γnl (s)Γpl′(s
′))1/2

(E − El + iΓl/2) (E − El′ + iΓl′/2)
ei(δ

n
l +δp

l′ ) (3.4)
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Er (MeV) Jπ l T Γn (MeV) Γ0
n (eV) Γp (MeV) Γp

-0.211 0+ 0 0 954.4 1.153 1.153
0.430 0- 1 0 0.48 0.05 0.53
3.062 1- 1 1 2.76 3.44 6.20
3.672 1- 1 0 2.87 3.08 6.10
4.702 0- 1 1 3.85 4.12 7.97
5.372 1- 1 1 6.14 6.52 12.66
7.732 1+ 0 0 4.66 4.725 9.89
7.92 1- 1 0 0.08 0.07 3.92
8.062 0- 1 0 0.01 0.01 4.89

Table 3.1: List of resonance energies with associate quantum numbers, partial, and
total widths [16].

〈s′l′|RJ |sl〉 =
i (Γnl (s)Γpl′(s

′))1/2

(E − El + iΓl/2)
ei(δ

n
l +δp

l′ ) (3.5)

where E is neutron energy, El and El′ are resonance energies, the Γ are partial widths

of the resonances, the δ are small phases, and w is the parity violating mixing element

given by

w = −
∫
φlVWφl′dτ (3.6)

as the result of mixing the two resonance states φl and φl′ where VW is the parity

violating weak interaction potential presented in (1.8). These values are given for

the significant reaction resonance energies in Table 3.1. The value of the differential

cross-section is then approximately given by

dσ

dΩ±
∝
∣∣〈s′l′|RJ |sl〉

∣∣2 (3.7)

where the matrix element represents a sum over resonance R-matrix elements.

By examining (3.3) and (3.4) it can thus be seen that the neutron energy dependence

contributes as a term in the denominator of the R-matrix elements. It is thus clear

that for neutron energies near or greater than the resonance energies, neutron energy

dependence will present a significance source of substantial error in the event that

〈En〉1 is sufficiently different from 〈En〉2.
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In the case of the n3He experiment, the distribution of energy in the neutron

beam is from roughly 1 meV to 80 meV as seen in Figure 2.1 and the resonance

energies, shown in Table 3.1, contributing to the differential cross-section range from

0.4 MeV to 8.0 MeV. This gives a minimum value of E
Er

= 2 × 10−7. These values

have been calculated to contribute a maximum systematic error of approximately

AE = 10−9, which is a full order of magnitude less than the desired measurement

precision of 10−8. This value will be further reduced by convergence of the average

neutron energies to be many orders of magnitude less. As a result of these calculation,

it can be concluded that neutron energy dependence is not a significant source of

systematic error in the n3He experiment. However, it is also clear that in other

experiments using higher neutron energies, neutron energy dependence could serve as

a substantial source of systematic error. It would also likely be significant in attempts

to measure CP violating effects, which are typically many orders of magnitude less

than corresponding PV effects.

3.2 Parity Conserving Asymmetry

The second source of potential systematic error is from the additional correlations

contributing to the differential cross-section. The differential cross-section has been

described using (2.10). However, this equation is incomplete, in reality there are a

total of eight parity violating and parity conserving correlations and each one has the

potential to contribute some amount of asymmetry. These correlations are listed in

Table 3.2. Many of these correlations, though, can be eliminated for various reasons.

The correlations which the include nuclear spin, ~I, will all average to zero over

the course of the experiment. The term (~kn ·~kp) will contribute nothing, as it’s value

is initially small and will come close to cancelling for high statistics. The (~σn · ~kn) is

initially small and does not affect the angular distribution of the protons. With these
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PV PC

(~σn · ~kp) (~kn · ~kp)
(~σn · ~kn) (~σ · [~kn × ~kp])
(~I · ~kp) (~σ · ~I)

(~I · ~kn) (~I · [~kn × ~kp])

Table 3.2: List of parity violating and parity conserving quantities contributing to
the n3He reaction [16].

quantities eliminated we are left only with the parity violating asymmetry that is

intended to be measured, and a parity conserving asymmetry given by (~σ · [~kn×~kp]).

the magnitude of the PC effect has been calculated using the nuclear resonance

approach applied to calculating Anp [16]. The effect is energy dependent but has a

maximum value of approximately 10−4. It may then be observed from considering the

correlation that in the case where [~kn×~σ] = 0, the PC asymmetry disappeared. This

observation can then be generalized to say that, for a polarization axis and beam axis

very near the z-axis, the averaged asymmetry can be given by

APC ≈ 10−4(~σ · [~kn × ~kp]) ≈ 10−4θσn,kn sin θkp,ẑ (3.8)

The error on the measurement of this quantity can then be expressed through

δAPC
≈ APCθσn,ẑθkn,ẑ ≈ 10−4θσn,knθσn,ẑθkn,ẑ sin θkp,ẑ (3.9)

From these equations we see that the measured parity conserving asymmetry has a

magnitude of 10−4 and is further suppressed by a factor of θσn,knθσn,ẑθkn,ẑ. Thus we can

conclude that in order to accurately measure the parity violating asymmetry in the

n3He experiment, the product of alignments must be such that θσn,knθσn,ẑθkn,ẑ ≤ 10−4.

Current specifications for the experiment suggest each of these angles can be kept to

10 mrad for a total suppression of 10−6. This value is well within the necessary

suppression and so we may conclude that although the magnitude of the PC effect is
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large relative to PV effect, the alignment of experimental components is sufficiently

precise to accurately measure the PV asymmetry. However, the value of APC is

greater than the value of Anp and thus the parity conserving false asymmetry will

have to be carefully subtracted from the measurements in order to achieve an accurate

measurement of Anp.
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CHAPTER 4

CONCLUSIONS

In conclusion, The class of experiments using cold neutrons to measure parity violation

in hadron-hadron interactions may be described using a nuclear resonance approach.

In this model, the system occasionally transitions between resonances of opposite

symmetry, thus violating parity. When applying this approach to measurement of

a given observable, the parity violating resonance reactions contribute a parity odd

component to the observable. Therefore the measurement of this parity violating

component can be used to examine the parity violating weak interaction contribution

to the hadron-hadron resonance reactions. We have used this approach to minimize

experimental error in the n3He experiment using both analytical and numeric methods.

The statistical error was minimized as a function of experimental parameters using

a numerical MCMC approach. This has led us to conclude that the most accurate

measurements of the PV effect can be taken at a depth of 4 cm to 7 cm into the

target and in a region within a couple centimeters of the path of the incident neutron

beam. We have also demonstrated that systematic error from PC asymmetries and

neutron energy dependence are suppressed sufficiently as to be insignificant through

an analytical consideration of the reaction matrix. Our measurements do, however,

suggest that it is important to make an accurate measurement of the parity conserving

asymmetry so that it may be removed from calculations of the parity violating effect.

In summary, all of our calculations suggest that under the proposed conditions,

it will be possible to measure the parity violating effect in the n3He experiment to

an accuracy of approximately 10−8. The specific methods of calculating systematic

error and for simulating the experiment which we have develop may also be effectively
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applied as constraints when developing future experiments to measure parity violation,

of even CP-violation with neutrons.
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APPENDIX A: SIMULATION CODE

1 // Simulation of the n3He experiment using CUDA

2 #include <iostream >

3 #include <cuda.h>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <math.h>

7 #include <unistd.h>

8 #include "PMrand.h"

9 #include <cuda_runtime.h>

10

11 //point info object

12 typedef struct {

13 float x;

14 float y;

15 float z;

16 float t;

17 float p;

18 float e;

19 } point;

20

21 // probability of a neutron with a given energy in meV

22 float n_energy [61]={7.750276 , 7.480738 , 7.225020 ,

6.982153 , 6.751368 , 6.531802 , 6.322811 , 6.123692 ,

5.933801 , 5.752637 , 5.579646 , 5.414314 , 5.256250 ,

5.105008 , 4.960176 , 4.821445 , 4.688454 , 4.560870 ,

4.438443 , 4.320880 , 4.207909 , 4.099329 , 3.994880 ,

3.894390 , 3.797644 , 3.704444 , 3.614648 , 3.528078 ,

3.444567 , 3.364000 , 3.286227 , 3.211107 , 3.138547 ,

3.068418 , 3.000602 , 2.935021 , 2.871567 , 2.810138 ,

2.750669 , 2.693059 , 2.637249 , 2.583157 , 2.530702 ,

2.479838 , 2.430492 , 2.382597 , 2.336111 , 2.290973 ,

2.247123 , 2.204526 , 2.163130 , 2.122883 , 2.083754 ,

2.045698 , 2.008668 , 1.972641 , 1.937569 , 1.903430 ,

1.870184 , 1.837797 , 1.806250};

23 float n_prob [61]={26.764706 , 26.764706 , 26.705882 ,

26.764706 , 26.882353 , 10.352941 , 25.882353 , 25.294118 ,

25.000000 , 24.411765 , 23.882353 , 23.470588 , 23.058824 ,

22.588235 , 22.352941 , 20.882353 , 15.529412 , 7.294118 ,

2.294118 , 6.882353 , 14.529412 , 16.117647 , 17.823529 ,

18.117647 , 17.470588 , 17.294118 , 17.117647 , 16.411765 ,

16.294118 , 15.882353 , 15.529412 , 15.000000 , 14.529412 ,

14.235294 , 13.705882 , 13.000000 , 12.823529 , 12.470588 ,
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12.294118 , 11.764706 , 11.529412 , 11.294118 , 10.941176 ,

10.470588 , 10.294118 , 10.176471 , 9.941176 , 9.647059 ,

9.411765 , 9.117647 , 8.764706 , 8.705882 , 8.411765 ,

8.117647 , 8.176471 , 7.823529 , 7.647059 , 7.529412 ,

7.235294 , 7.352941 , 6.941176};

24

25

26 // energy deposited at each step for the proton and triton

measured in MeV

27 float p_list [28]={0.013964 , 0.014204 , 0.014463 , 0.014753 ,

0.015050 , 0.015352 , 0.015711 , 0.016081 , 0.016459 ,

0.016897 , 0.017361 , 0.017838 , 0.018401 , 0.019013 ,

0.019675 , 0.020428 , 0.021278 , 0.022243 , 0.023344 ,

0.024603 , 0.026109 , 0.027950 , 0.030005 , 0.032656 ,

0.035326 , 0.035906 , 0.027325 , 0.000606};

28 float t_list [11]={0.035875 , 0.034491 , 0.031680 , 0.027903 ,

0.024764 , 0.017798 , 0.007616 , 0.004060 , 0.002811 ,

0.002830 , 0.001173};

29

30 // target

31 float t_side = 20.0; // target side length in cm

32 float c_side = 1.0; //cell side length in cm

33 float t_temp = 300.0; // target temperature in K

34 float t_pres = 1.0; // target pressure in atm

35 float m3He = 3.016; // target molar mass in g/mol

36

37

38 //other parameters

39 float step = 0.2; // distance between depositions in cm

40 float R = 82.05746; //(atm*cm^3)/(mol*K)

41 float Na = 6.022 e23; //atoms/mol

42 //for box -muller transform

43 float hold = 10.0;

44

45 // method to handle part of x,y positioning using cuda

46 __global__ void define(point *u){

47 int i = (blockIdx.y * 32) + blockIdx.x;

48 int j = threadIdx.x;

49 // calculate initial x and y position

50 if(j == 0)

51 {

52 float u1 = u[i].x;

53 float u2 = u[i].y;

54 float t1 = 2.0* M_PI*u2;

55 t1 = cos(t1);
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56 float t2 = -2.0*log(u1);

57 t2 = sqrt(t2);

58 t1 = t1*t2;

59 float z1 = t1;

60 t1 = 2.0* M_PI*u2;

61 t1 = sin(t1);

62 float z2 = t1*t2;

63

64 u[i].x = z1;

65 u[i].y = z2;

66 }

67 // calculate depth of interaction

68 if(j == 1)

69 {

70 float e = u[i].e * 1.0e-12;

71 float cs = 38528.29128;

72 cs = cs - 1.809682225 e13 * e;

73 cs = cs + 6.077844749 e21 * pow(e,2);

74 cs = cs - 1.206615936 e30 * pow(e,3);

75 cs = cs + 1.295176648 e38 * pow(e,4);

76 cs = cs - 5.809728335 e45 * pow(e,5);

77 cs = cs*1.0e-24;

78 float c = 1.0*((1.0*6.022 e23)/(300.0*82.05746))*cs

;

79 float r = u[i].z;

80 r = 1.0-r;

81 r = log(r);

82 r = -1.0*r/c;

83

84 u[i].z = r;

85 }

86 __syncthreads ();

87 }

88

89 // method to deposit energy in the appropriate cell

90 __global__ void deposit(point *u, float *v, float step ,

float t_side , float c_side , int cd){

91 int i = (blockIdx.y * 32) + blockIdx.x;

92 int j = threadIdx.x;

93 float p_list [28]={0.013964 , 0.014204 , 0.014463 , 0.014753 ,

0.015050 , 0.015352 , 0.015711 , 0.016081 , 0.016459 ,

0.016897 , 0.017361 , 0.017838 , 0.018401 , 0.019013 ,

0.019675 , 0.020428 , 0.021278 , 0.022243 , 0.023344 ,

0.024603 , 0.026109 , 0.027950 , 0.030005 , 0.032656 ,

0.035326 , 0.035906 , 0.027325 , 0.000606};
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94 float t_list [11]={0.035875 , 0.034491 , 0.031680 , 0.027903 ,

0.024764 , 0.017798 , 0.007616 , 0.004060 , 0.002811 ,

0.002830 , 0.001173};

95

96 float r,x,y,z,e;

97 int k1,k2,k3 ,k;

98 if(j < 28){

99 r = (j+1)*step;

100 x = r*sin(u[i].t)*cos(u[i].p);

101 x = x + u[i].x + t_side /2.0;

102 y = r*sin(u[i].t)*sin(u[i].p);

103 y = y + u[i].y + t_side /2.0;

104 z = r*cos(u[i].t);

105 z = z + u[i].z;

106 e = p_list[j];

107 }

108 else{

109 r = -1.0*(j+1-28)*step;

110 x = r*sin(u[i].t)*cos(u[i].p);

111 x = x + u[i].x + t_side /2.0;

112 y = r*sin(u[i].t)*sin(u[i].p);

113 y = y + u[i].y + t_side /2.0;

114 z = r*cos(u[i].t);

115 z = z + u[i].z;

116 e = t_list[j-28];

117 }

118 k1 = 0;

119 while(k1*c_side < x)

120 k1++;

121 k2 = 0;

122 while(k2*c_side < y)

123 k2++;

124 k3 = 0;

125 while(k3*c_side < z)

126 k3++;

127 if( k1 < cd && k2 < cd && k3 < cd){

128 k = k3*cd*cd + k2*cd + k1;

129 v[k] = v[k] + e;

130 }

131 __syncthreads ();

132 }

133

134 // zeroes float array

135 __global__ void cuda_zero(float *v, int n){

136 int i = (blockIdx.y * 32 * 39) + (blockIdx.x * 39) +
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threadIdx.x;

137

138 if(i < n)

139 v[i]=0;

140 }

141

142 // zeroes int array

143 __global__ void cuda_zero(int *v, int n){

144 int i = (blockIdx.y * 32 * 39) + (blockIdx.x * 39) +

threadIdx.x;

145

146 if(i < n)

147 v[i]=0;

148 }

149

150 //box -muller transform for metropolis algorithm

151 float transform(float sigma){

152 float r;

153 if(hold != 10.0){

154 r = hold;

155 hold = 10.0;

156 }

157 else{

158 float u1 = (float)PMrand ()/RAND_MAX;

159 float u2 = (float)PMrand ()/RAND_MAX;

160 float t1 = 2.0* M_PI*u2;

161 t1 = cos(t1);

162 float t2 = -2.0*log(u1);

163 t2 = sqrt(t2);

164 t1 = t1*t2;

165 float z = t1;

166 t1 = 2.0* M_PI*u2;

167 t1 = sin(t1);

168 hold = t1*t2;

169 r = z;

170 }

171 return r*sigma;

172

173 }

174

175 // distributions for metropolis algorithm

176 float funcP(float t, int pm , float ap){

177 float f;

178 int pol = (1 - 2*pm);

179 if(t > M_PI || t < 0.0){
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180 f = 0;

181 }

182 else{

183 //plus or minus to change polorization

184 f = 1.0 + pol*ap*cos(t);

185 }

186 return f;

187 }

188 // neutron energy function

189 float funcN(float e_n){

190 float m,b,f;

191 int i = 0;

192 if( e_n > n_energy [0] || e_n < n_energy [60])

193 f = 0;

194 else{

195 while(n_energy[i] > e_n)

196 i++;

197 m = (n_prob[i-1] - n_prob[i]) / (n_energy[i-1] -

n_energy[i]);

198 b = n_prob[i] - n_energy[i]*m;

199 f = e_n*m + b;

200 }

201 return f;

202 }

203

204 int main(int argc , char **argv){

205

206

207 //seed the random number generator

208 sPMrand ();

209

210 //keep track of how long it takes

211 clock_t begin2 , end2;

212 float time_spent2 , time_sum;

213 time_sum = 0.0;

214 begin2 = clock();

215

216 // magnitude of effect: 1 + ap*cos(t)

217 float ap = 0.1;

218 int pm = 0;

219

220 //n sets of m*1024 neutrons for each polarization

221 int n = 100;

222 int m = 1e6;

223 point *pointsh = (point *) malloc(sizeof(point)
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*1024);

224

225 //make cell array

226 int cd = (int)(t_side/c_side);

227 int cV = pow(cd ,3);

228 float *cellsh = (float *) malloc(sizeof(float)*cV);

229 float *cells2h = (float *) malloc(sizeof(float)*cV)

;

230 int i;

231 for(i=0; i<cV; i++){

232 cellsh[i] = 0.0;

233 cells2h[i] = 0.0;

234 }

235 float *cellsd;

236 cudaMalloc ((void **)&cellsd ,sizeof(float)*cV);

237

238 //setup cuda thread stuff

239 dim3 threadBlockRows (39, 1, 1);

240 dim3 blockGridRows (32, 32, 1);

241

242 // determine theta and neutron energy for points

using metropolis algorithm

243 float t = 1.5;

244 float e = 4.8; //in meV

245 float r,t2,e2,ab ,f1 ,f2;

246 int j,k;

247 long int accept ,reject;

248 accept = 0;

249 reject = 0;

250 cudaMemcpy(cellsd ,cellsh ,sizeof(float)*cV,

cudaMemcpyHostToDevice);

251 point *pointsd;

252 cudaMalloc ((void **)&pointsd ,sizeof(point)*1024);

253 for(k = 0; k < n; k++){

254

255 if(pm == 0 && k == 0){

256 printf("simulating %e neutrons , polarized

parallel !\n", (float)n*m*1024);

257 }

258 if(pm == 1 && k == 0){

259 printf("simulating %e neutrons , polarized

anti -parallel !\n", (float)n*m*1024);

260 }

261

262
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263 //keep track of how long it takes

264 clock_t begin , end;

265 double time_spent;

266 begin = clock ();

267

268 for(i = 0; i < m; i++){

269 for(j = 0; j < 1024; j++){

270 r = (float)PMrand ()/RAND_MAX;

271 t2 = t + transform (2.0);

272 e2 = e + transform (2.0);

273 f1 = funcP(t2 ,pm ,ap)*funcN(e2);

274 f2 = funcP(t,pm ,ap)*funcN(e);

275 ab = f1/f2;

276 if (r <= ab){

277 t = t2;

278 e = e2;

279 accept ++;

280 }

281 else{

282 reject ++;

283 }

284 pointsh[j].t = t;

285 pointsh[j].p = (float)PMrand ()/

RAND_MAX * 2.0* M_PI;

286 pointsh[j].e = e;

287 pointsh[j].x = (float)PMrand ()/

RAND_MAX;

288 pointsh[j].y = (float)PMrand ()/

RAND_MAX;

289 pointsh[j].z = (float)PMrand ()/

RAND_MAX;

290 }

291 cudaMemcpy(pointsd ,pointsh ,sizeof(point)

*1024, cudaMemcpyHostToDevice);

292 define <<<blockGridRows , threadBlockRows

>>>(pointsd);

293 cudaMemcpy(pointsh ,pointsd ,sizeof(point)

*1024, cudaMemcpyDeviceToHost);

294 deposit <<<blockGridRows , threadBlockRows

>>>(pointsd ,cellsd ,step ,t_side ,c_side ,

cd);

295 cudaMemcpy(cellsh ,cellsd ,sizeof(float)*cV,

cudaMemcpyDeviceToHost);

296 for(j = 0; j < cV; j++){

297 cells2h[j] = cells2h[j] + cellsh[j];
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298 }

299 cuda_zero <<<blockGridRows , threadBlockRows

>>>(cellsd ,cV);

300 }

301

302 //write data to files

303 FILE *file1;

304 int index , i2, j2, k2;

305 char str [20];

306 sprintf(str , "cells_%d/cells_%d.txt", pm , k);

307 file1 = fopen(str ,"w");

308 for(i2 = 0; i2 < cd; i2++){

309 for(j2 = 0; j2 < cd; j2++){

310 for(k2 = 0; k2 < cd; k2++){

311 index = i2*cd*cd + j2*cd + k2;

312 fprintf(file1 ,"%d\t%d\t%d\t%f\n",

k2 ,j2,i2,cells2h[index]);

313 }

314 }

315 }

316 fclose(file1);

317

318 //print out run -time

319 end = clock ();

320 time_spent = (float)(end - begin) /

CLOCKS_PER_SEC;

321 time_sum = time_sum + time_spent;

322 if (time_spent < 120.0) {

323 printf("time elapsed for set %d_%d: %f s\n

",pm ,k,time_spent);

324 }

325 else if(time_spent < 60.0*120.0){

326 printf("time elapsed for set %d_%d: %f min

\n",pm,k,time_spent /60.0);

327 }

328 else{

329 printf("time elapsed for set %d_%d: %f hrs

\n",pm,k,time_spent /(3600.0));

330 }

331 if (time_sum < 120.0) {

332 printf("total: %f s\n",time_sum);

333 }

334 else if(time_sum < 60.0*120.0){

335 printf("total: %f min\n",time_sum /60.0);

336 }
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337 else{

338 printf("total: %f hrs\n",time_sum /(3600.0)

);

339 }

340

341 if(pm == 0 && k == 9){

342 pm = 1;

343 k = -1;

344 t = 1.0;

345 e = 6.8;

346 }

347 }

348 printf("accepted/rejected: %f\n",(float)accept/

reject);

349

350 // cleanup

351 free(cellsh);

352 free(cells2h);

353 free(pointsh);

354 cudaFree(cellsd);

355 cudaFree(pointsd);

356

357 printf("simulations completed !\n");

358

359 //print out run -time

360 end2 = clock();

361 time_spent2 = (float)(end2 - begin2) / CLOCKS_PER_SEC;

362 if (time_spent2 < 120.0) {

363 printf("total time elapsed: % fs\n",time_spent2);

364 }

365 else if(time_spent2 < 60.0*120.0){

366 printf("total time elapsed: %f min\n",time_spent2

/60.0);

367 }

368 else{

369 printf("total time elapsed: %f hrs\n",time_spent2

/(3600.0));

370 }

371

372 }
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