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ABSTRACT 

Semiconductor sensors have been important environmental gas detectors since the 

1990s, and are commonly used to detect hydrogen, oxygen, alcohol vapor, and even 

harmful gases such as carbon monoxide. A gas chromatography approach is a well-proven 

and compact separation technique to identify and quantify multiple compounds in a 

complex background such as a true natural gas environment. Real time field monitoring 

implementing classical GC and standard sensors (FID, PID, etc.) have a lot of limitations 

due to its bulky size, heavy weight, and high maintenance. In this study, we developed a 

portable instrument through the utilization of novel solid-state sensors for real-time 

identification and quantification of target compounds in natural gas, which include 

hydrogen sulfide, benzene, mercaptans, ethylbenzene, toluene, xylene, vinyl chloride, and 

trimethylarsine. The initial phase of this project was devoted to the development of our 

portable device prototype, and its testing in methane background. Specific detection limits 

both in methane and in air for each of the gas components, together with the other 

specifications, were explored. The result of these first tests was the successful detection 

and quantification of our compounds of interest diluted in 99% methane. Now that the 

device has been tested in methane background, the goal of this project is to calibrate and 

test the prototype device in a true natural gas environment. 
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INTRODUCTION 

The detection and analysis of gases and vapors is an important part of the modern 

world. Gas sensing technologies improve the self-sustainability of our society, as well as 

the quality of everyday life. A variety of gas analysis techniques and gas detectors are 

regularly used to improve safety and establish more precise product quality control and 

process control.1,2 Some industrial sectors such as the food/medicine, automotive, heavy 

industry, environmental, security, and home appliances sectors have utilized gas analysis 

for a wide range of applications.3-6 This project is devoted to the development of a portable 

instrument for identification and quantification of target compounds in natural gas. The 

target compounds include hydrogen, sulfide, mercaptans, benzene, toluene, ethylbenzene, 

xylene, vinyl chloride, and trimethylarsine.    

 Gas chromatography is useful for separating different components in a mixture for 

identification and quantitative analysis.7 Classical GC with standard sensors (FID, PID, 

etc.) possess fundamental barriers and limitations due to its bulky size, high maintenance, 

heavy weight, and special carrier gases requirement. Special carrier gases require the use 

of bulky tanks, which attach to the instrument for operation. This is the major drawback of 

classical GC, because it limits portability. Natural gas contains trace amounts of impurities, 

and analytes targeted in this study were found at concentrations as low as 3 ppm. In several 

studies, the use of PID as gas sensors have shown less repeatable readings at lower 

concentrations, such as (<50 ppm) and even (<10 ppm).8,9 Therefore, the inability to 

consistently detect low concentrations of target analytes is a key flaw in PID.  

  In order to achieve sufficient portability and optimal sensitivity, this project utilizes 

a novel solid-state metal oxide detector with compact gas chromatography (GC) sampling 
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system. Relatively inexpensive compared to other sensing technologies, the key advantage 

of the novel solid-state metal oxide detector for portable real-time gas chromatography is 

the novel nanocomposite metal oxide MEMS sensors array.10 Nanostructures are defined 

as having at least one dimension between 1 and 100 nm, and are sought after for their 

unique chemical and physical properties compared to bulk counterparts.11 Since the early 

1960’s, the sensing capabilities of metal oxides have been known.12 The gas sensing 

process is strongly related to surface reactions, so the sensitivity of metal oxide materials 

will change with the factors influencing surface reactions, such as chemical components, 

surface modifications, temperature and humidity.13  

The gas sensing process for our detector involves the following. A key component 

of any sensor is a chemiresistor, a device whose electrical resistance can be changed by 

absorption onto its surface. The changes in resistance are directly proportional to the partial 

vapor pressure in the atmosphere, so a chemiresistor converts the concentration of 

chemicals in the atmosphere into a measurable corresponding electrical signal.2 

Chemiresistors work as building blocks for integrated sensors, and metal oxides are 

common chemically sensitive materials. This study’s multisensory detector utilizes metal-

oxides for their unique sensing capabilities, and the catalytic reactions of gaseous species 

with oxygen sites on the surface induce charge transfer from the surface to the bulk, 

changing the electrical resistance of the device and therefore creating a signal.  

The choice of materials for the detector was motivated by a long series of 

experiments conducted by Dr. Dobrokhotov’s lab over ten years. In Phase IIB of this 

project, sensor characteristics such as the optimal operational temperature, response value 

(𝑅"#$/𝑅&"'), time of response (T90), and detection limit upon steady exposure to low 
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concentration of analytes were obtained. As a result of this study, a quasi-orthogonal array 

of sensors was developed, demonstrating high sensitivity, fast response and recovery times, 

and orthogonality of sensors in the detector for separation of chemicals.  

This sensors array demonstrates outstanding performance for detection of ultra-low 

concentrations of gases and vapors, unlike classical GC with standard PID sensors. The 

detector utilizes air as the carrier gas for the GC column, which allows for easy portability 

because it is not burdened with the bulk of compressed zero grade gases required by more 

traditional gas chromatographs. Phase II of this project was devoted to the development of 

a portable device prototype and its testing in methane background. The outcome of Phase 

II was successful detection and quantification of compounds of interest diluted in 99% 

methane background. Phase III of this project is devoted to the calibration and testing of 

the device developed in Phase IIB in a true natural gas environment. The methodology was 

as follows.  

Table 1. Types of background natural gas blends for testing of the device.  

Component Rich Gas  Lean Gas Restek 
Methane (%) 92 96 95 
Ethane (%) 3.10 1.74 2.00 
Propane (%) 0.44 0.19 0.75 
i-Butane (%) 0.10 0.020 0.30 
n-Butane (%) 0.11 0.030 0.30 
i-Pentane (%) 0.080 0.010 0.15 
n-Pentane (%) 0 0 0.15 
n-Hexane (%) 0.060 0 0.10 
n-Heptane (%) 0.040 0 0 
n-Octane (%) 0.020 0 0 
Total c6+ 0.12 0 0 
Nitrogen (%) 2.00 1.8 0 
Oxygen (%) 0.10 0.010 0 
Carbon Dioxide (%) 1.5 0.61 0 
Benzene (ppmv) 95 0 X 
Toluene (ppmv) 103 0 X 
Ethyl Benzene (ppmv) 10 0 X 
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Ortho Xylene (ppmv) 43 0 X 
Hydrogen Sulfide (ppmv) 1.0 0.20 0 
Cyclopentane (ppmv) 29 0 0 
Methylcyclohexane (ppmv) 5.7 0 0 
Cyclohexane (ppmv) 68 0 0 
Dimethylcyclopentanes (ppmv) 23 0 0 
Methylcyclohexane 55 0 0 
Trimethylcyclopentanes 9.5 0 0 
H2O (Ibs/mmscf) 7.0 0 0 
BP Captan (Ibs/mmscf) 1.0 0.20 0 

 

 

METHODOLOGY 

The specifications of gas composition blends were provided by NYSEARCH and 

the blends were purchased directly from third party vendors. The calibration for target 

analytes was conducted in clean dry air, calibration curves were obtained and verified, and 

the ability of the analyzer to conduct measurements in natural gas as tested in three different 

backgrounds as listed in Table 1. The initial testing was conducted in the RESTEK natural 

gas standard, followed by testing in the lean and rich gas. Using calibration curves, the 

target analytes were added to the standard background blends in known concentrations and 

then identified and quantified by the analyzer. The ability to detect and quantify target 

analytes in each of the three blends is summarized. The percent errors for every target 

analyte in each of the natural gas background blends were identified. 
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Device Calibration 

 

Figure 1. Chemical composition, sensitivity and specificity of the integrated detector. 

 

 The structure of the integrated detector is shown in Figure 1. In this project, the 

calibration was accomplished using the sensors as follows. Sensor 1 was only used as a 

background sensor. Sensor 2 was calibrated for hydrogen sulfide and ethyl-mercaptan 

(Group 1). Sensor 3 was calibrated for benzene, toluene, ethylbenzene and o-xylene (Group 

2). Sensor 4 was calibrated for vinyl chloride and trimethylarsine (Group 3). All 

chromatogram plots are presented as 𝑅"#$/𝑅&"' vs time, where 𝑅"#$ is the initial value of 

resistance when zero air is flowing over the detectors. The integrated sensor’s signal is the 

total area under the sensor’s response (𝑅"#$/𝑅&"') curve for particular time interval 

associated with specific gas after the background is subtracted.  
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 Before the calibration of target analytes, the instrument’s background was analyzed 

by using zero grade air from AirGas (Figure 2). The flat background from all four sensors 

indicates there is no contamination inside the GC. The small peak between 350 and 400 

seconds was identified as a water peak based on polarity, boiling point, and molecular 

mass. 

 

Figure 2. Detector’s background signal obtained by analyzing ultra-zero grade air from AirGas  

 

In gas chromatography, separation occurs when the sample mixture is injected into 

a mobile phase. In this experiment, the mobile phase was the carrier gas of the device (clean 

dry air). The mobile phase carries the sample mixture with different target analytes through 

a stationary phase, or the GC column. The mixture of compounds within the GC column 

interact with the stationary phase, and each analyte interacts at a different rate based on 

their adsorption characteristics and volatility. Those that interact fastest will exit the 
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column first, and vice versa. As the analytes are separated, they exit the column and enter 

a detector, which makes an electronic signal whenever the analyte is detected. The greater 

the concentration, the bigger the signal. The retention time is the time from when the 

injection occurs to when the analyte exits the GC column. After the background of the 

analyzer was recorded, the retention time for each gas was found (Table 2) from both 

theoretical calculations and experimental data collected under constant GC operational 

parameters: carrier gas (clean dry air) flow rate of 11 sccm and column temperature of 55 

°C. The width of the integration window was also determined based on experimental data 

for maximum concentrations of detectable gases (Table 2). After the retention time and 

integration window for all detectable analytes were calculated, the calibration of the 

detector to specific gaseous components was performed. 

Table 2. Retention time and the integration widow width for target analytes. 

 

 

 

 

 

 

Gases Retention time (sec) Integration window width 
(sec) 

Hydrogen sulfide 44 17 
Ethyl-mercaptan 61 29. 

Benzene 140 70 
Toluene 240 100 

Ethylbenzene 410 120 
O-Xylene 605 130 

Trimethylarsine 54 15 
Vinyl chloride 85 35 
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Calibration for Group 1 (Hydrogen Sulfide and Ethyl-Mercaptan) 

 

Figure 3. Gas chromatogram for 1. hydrogen sulfide and 2. ethyl-mercaptan (a) A detailed view of 1. 

hydrogen sulfide (5, 10 and 20 ppm) and 2. ethyl-mercaptan (5, 10 and 20 ppm) peaks and (b) full 

chromatogram over the time period of 750 sec. 

 Calibration cylinders of H2S and ethyl-mercaptan at 200 ppm were used to generate 

the 5, 10, and 20 ppm gas samples used in this project. Figure 3 shows the chromatograms 

obtained on the same day for three different concentrations (5, 10, and 20 ppm) of hydrogen 

sulfide and ethyl-mercaptan in zero grade air by using Sensor 2 (SnO2-TiO2). The analysis 

of different concentrations of both analytes in Group 1 in zero grade air was repeated over 

five days. The integrated sensor response for hydrogen sulfide and ethyl-mercaptan was 

calculated by integrating the area under the curve over a specific time interval. In order to 

do that, a Gaussian fit was applied to the desired peaks. The peaks were identified, and the 

refraction windows were specified based off early experimental data (see Table 2 for 

integration window widths). A Gaussian fit was then applied, and if there were multiple 

overlapping peaks, as was the case for later tests in natural gas background, local maxima 
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were specified. This same process was used after calibration, during tests in natural gas 

background.  

Table 3. Summarized results for detection of different concentration (5-20 ppm) of hydrogen sulfide and 

ethyl-mercaptan in zero grade air over five-day period. 

Testing Day Concentration 

(ppm) 

Integrated signal  

(Hydrogen sulfide) 

Integrated signal 

(Ethyl-Mercaptan) 

1 5 3.0 5.8 

1 10 5.1 11 

1 20 10 18 

2 5 3.1 5.5 

2 10 5.8 11 

2 20 12 19 

3 5 3.5 6.1 

3 10 6.0 11 

3 20 11 17 

4 5 3.5 6.2 

4 10 6.0 11 

4 20 11 17 

5 5 4.0 5.8 

5 10 6.0 9.7 

5 20 11 17 

 

 The integrated response of Sensor 2 (SnO2-TiO2) was then plotted as a function of 

gas concentration in Figure 4. The response of Sensor 2 (SnO2-TiO2) to different 

concentrations of Group 1 analytes were found to be stable and repeatable over a five-day 

period. The average integrated signal was then calculated for each gas concentration of 

hydrogen sulfide and ethyl-mercaptan. The calibration curve for hydrogen sulfide and 
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ethyl-mercaptan in the range of 5-20 ppm is best expressed by linear approximation in 

Figure 5.  

 

Figure 4. Graphs of integrated signal vs. corresponding gas concentration for (a) hydrogen sulfide and (b) 

ethyl-mercaptan collected over time period of 5 days.  

 

Figure 5. Calibration curves for detection of (a) hydrogen sulfide and (b) ethyl-mercaptan in a 

concentration range between 5-20 ppm in zero grade air. 
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Calibration for Group 2 (Benzene, Toluene, Ethylbenzene and O-Xylene) 

Among VOCs (volatile organic compounds), BTEX is of immense concern. Even 

a small concentration of BTEX compounds has a significant negative impact on human 

health, and benzene is the most dangerous chemical among BTEX components due to 

its high carcinogenicity.14 Therefore, its detection in natural gas is of immense importance. 

Four different concentrations of BTEX components Mix. 1 – Mix.4 were used for 

calibration of Sensor 3 (Table 4). The analysis of the calibration standard (Mix 1) was first 

and the chromatograms from the sample were stored. Calibration concentrations (Mix. 2 – 

4) with higher amounts of BTEX components were generated from liquid headspace 

concentrations of BTEX. The integrated signals for BTEX analytes were found by 

calculating the area under the curve of the chromatograms (Figure 6). 

Table 4. Actual BTEX concentrations used for calibration of sensor 3. 

Gas Benzene 

Conc. (ppm) 

Toluene 

Conc. (ppm) 

E-Benzene 

Conc. (ppm) 

O-Xylene 

Conc. (ppm) 

Mix. 1 10 10 10 10 

Mix. 2 54 57 6.6 18 

Mix. 3 109 114 13 37 

Mix. 4 163 171 20 55 
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Figure 6.  GC analysis of BTEX mixtures (Mix. 1 - Mix. 4) in zero grade air. Five consecutive peaks 

correspond to: 1. Benzene, 2. Toluene, 3. Water, 4. Ethylbenzene, and 5. O-Xylene. 

 Sensor 3’s (Au/Pd@SnO2) response to different concentrations of BTEX analytes 

were observed over a three-day period. The calculated values of the integrated sensor 

response for each gas are summarized and shown in Table 5. 

Table 5. Summarized results for detection and quantification of different concentrations of BTEX 

components (Mix. 1- Mix.4) in zero grade air over three days. 

Day Concentration 

(ppm) 

Integrated 

signal  

(Benzene) 

Integrated 

signal 

(Toluene) 

Integrated 

signal 

(Ethylbenzene) 

Integrated 

signal 

(O-Xylene) 

1 Mix. 1 13 19 23 18 

1 Mix. 2 60 79 18 22 

1 Mix. 3 85 111 24 30 

1 Mix. 4 96 127 35 43 

2 Mix. 1 14 20 24 19 

2 Mix. 2 68 93 24 33 

2 Mix. 3 89 118 27 37 

2 Mix. 4 103 140 42 51 
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3 Mix. 1 14 20 23 19 

3 Mix. 2 64 86 21 27 

3 Mix. 3 87 115 26 33 

3 Mix. 4 99 133 38 47 

 

 The calibration curves for benzene and toluene are shown in (Figure 7 a,b). 

Calibration curves for benzene and toluene analytes are non-linear, due to the range of 

expected concentrations in natural gas being quite large. Multiple runs were performed and 

variability is shown in the error bars on the curves. The calibration curves for ethylbenzene 

and o-xylene are best represented by a linear approximation (Figure 7 c,d).  

Figure 7. Calibration curves for (a) Benzene, (b) Toluene, (c) Ethylbenzene and (d) O-Xylene. 
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Calibration for Group 3 (Trimethylarsine and Vinyl Chloride) 

 Calibration cylinders of trimethylarsine and vinyl chloride were used to generate 1, 

5, and 10 ppm samples used in this experiment. The chromatograms (Figures 8 and 9) were 

obtained over one day under analysis of three different concentrations (1, 5, and 10 ppm) 

of Group 3 analytes in zero grade air by using Sensor 4 (Pt@SnO2). 

 

Figure 8 (a) Zoomed image of 1. trimethylarsine peak (1, 5 and 10 ppm) and (b) full chromatogram over 
the time period of 700 sec. 

 

Figure 9 (a) Zoomed image of 2. vinyl chloride peak (1, 5 and 10 ppm) (b) full chromatogram over the 
time period of 700 sec. 
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 The analysis of different concentrations (1, 5, and 10 ppm) of Group 3 in zero grade 

air was repeated over a span of three days. The integrated response signal for 

trimethylarsine and vinyl chloride was calculated by taking the area under the curve of the 

chromatograms over a specific time interval, and the final results are shown in Table 6. 

Table 6. Summarized result for detection of different concentration (1-10 ppm) of trimethylarsine and vinyl 

chloride in zero grade air over three days.  

Testing Day Concentration 

(ppm) 

Integrated signal  

(Trimethylarsine) 

Integrated signal 

(Vinyl Chloride) 

1 1 0.72 3.7 

1 5 3.1 8.5 

1 10 5.2 12 

2 1 0.82 3.9 

2 5 2.7 8.7 

2 10 4.7 12 

3 1 0.8 3.8 

3 5 2.7 8.6 

3 10 5.1 12 

 

 Then, the integrated response signal of Sensor 4 (Pt@SnO2) was plotted as a 

function of gas concentration. The average of the integrated signal was then calculated for 

each gas concentration of Group 3. In Figure 10, the calibration curve for trimethylarsine 

and vinyl chloride from 1 – 10 ppm is best expressed by a linear approximation. 
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Figure 10. Calibration curves for detection of (a) trimethylarsine and (b) vinyl chloride in a concentration 

range between 1-10 ppm in zero grade air. 

Testing in Natural Gas Background 

Sample Preparation Procedure 

 For testing in Natural Gas background, calibration cylinders of hydrogen sulfide, 

ethyl-mercaptan, vinyl chloride, and trimethylarsine were used for this report. Calibration 

concentrations for BTEX were obtained from liquid headspace concentrations of benzene, 

toluene, ethyl benzene and o-xylene. A natural gas standard was purchased from RESTEK, 

MESA: Lean Natural Gas, and Rich Natural Gas.  

 Analytes of interest (hydrogen sulfide, ethyl-mercaptan, tenzene, toluene, ethyl 

benzene, o-xylene, trimethylarsine, and vinyl chloride) with known concentrations were 

added to 1L of rich natural gas mixture via gas tight syringes (Hamilton 1, 2.5, 10, and 50 

mL) to obtain the requested concentrations for these analytes in natural gas mixture. The 

gas samples were mixed in 1L tedlar bags and attached to the sampling instrument using a 

Swagelok connector on the sampling system inlet port. The analyzers on the sampling 

pump were used to automatically sample the gases from the tedlar bag.  
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Testing in RESTEK Standard 

 Refer to Table 1 for the composition of RESTEK gas. The chromatogram is shown 

in Figure 11. Sensor 2 (SnO2-TiO2) has a very small response to light hydrocarbons, which 

allowed for an accurate quantification of the hydrogen sulfide and ethyl-mercaptan in 

highly concentrated hydrocarbons even if they are not completely separated in the GC 

column. 

 The RESTEK gas sample contained BTEX compounds according to the analysis, 

even though the composition provided by the vendor stated BTEX was not a part of the 

sample provided. This information regarding BTEX and the RESTEK gas sample was 

confirmed by the vendor, and was unable to provide us the exact concentrations of BTEX 

compounds present, citing them as “expected interferences.” Therefore, the concentrations 

of benzene, toluene, ethylbenzene and o-xylene in the RESTEK blend were calculated 

using the calibration curves generated for each analyte. The results are in Table 7. 

Figure 11.  Gas chromatogram of Natural Gas (RESTEK) (a) magnified image of light hydrocarbons 1. 

methane, 2. ethane, 3. propane; and (b) full chromatogram with additional peaks corresponded to 4. butane, 

5. benzene, 6. toluene, 7. water, and 8. ethylbenzene. 
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Table 7. Concentration of BTEX components in Natural gas (RESTEK). 

Gases Concentration (ppm) 

Benzene 12 

Toluene 9.8 

Ethylbenzene 5.0 

O-Xylene 0.97 

 

 Sensor 2 (SnO2-TiO2) has a very low sensitivity to hydrocarbons even at very high 

concentrations. However, Sensor 3 (Au/Pd@SnO2) responds to light hydrocarbons in the 

RESTEK Natural Gas standard. At the same, Sensor 2 (SnO2-TiO2) has a high sensitivity 

to low concentrations of hydrogen sulfide and ethyl-mercaptan (Figure 12). After 

subtracting the background signal (natural gas signal) from the gas mixture (natural gas 

plus hydrogen sulfide and ethyl-mercaptans), the area under the curve was calculated for 

both gases. The corresponding concentration of each gas was found according to the 

calibration curve (Table 8). 
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Figure 12. (a) Gas chromatogram obtained by analyzing Natural Gas (RESTEK) + hydrogen sulfide 7.5 ppm 

+ ethyl-mercaptan 7.5 ppm with an array of sensors, (b) the chromatogram obtained from a single sensor 

(sensor 2), (c) the response of the sensor 2 to Natural gas (Red) (with a major peak corresponds to 1. methane) 

and Natural gas containing 2. hydrogen sulfide (7.5 ppm) and 3. ethyl-mercaptan (7.5 ppm) (Blue), and (d) 

the response of the sensor 2 to 2. hydrogen sulfide (7.5 ppm) and 3. ethyl-mercaptan (7.5 ppm) after 

subtracting the background. 

 

Table 8. Detection of hydrogen sulfide and ethyl-mercaptan in Natural Gas. 

Gases Actual concentration 

(ppm) 

Detected concentration 

(ppm) 

Hydrogen sulfide 7.5 7.0 

Ethyl-mercaptan 7.5 6.4 
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Following the detection of Group 1 analytes (hydrogen sulfide and ethyl-

mercaptan), the procedure for sample preparation was followed and BTEX Mix. 2 was 

added to the RESTEK standard (Figure 13). Based on the measured concentrations of each 

BTEX component in the Natural Gas sample, the total error during the analysis was 

evaluated to be within +/- 10% of the actual concentrations of BTEX in the sample (Table 

7 and 9). 

 

Figure 13. Gas chromatogram of the Natural gas sample with additional concentration (Mix. 2) of BTEX 
components: 1. Benzene, 2. Toluene, 3. Ethylbenzene and 4. O-xylene 

 

Table 9. Detection of BTEX components in RESTEK Natural Gas 

Gases Actual concentration 
(ppm) 

Detected concentration 
(ppm) 

Benzene 121 113 
Toluene 124 132 

Ethylbenzene 18 19 
O-xylene 38 39 

 

Sensor 4 (Pt@SnO2) was discovered to be sensitive to high concentrations of light 

hydrocarbons (methane, propane, ethane, and butane) in Natural Gas, as well as low 
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concentrations of trimethylarsine and vinyl chloride. Following sample loading procedure, 

after the background signal (Natural Gas signal) was subtracted from gas mixture (Natural 

Gas plus trimethylarsine and vinyl chloride), the area under the curve was calculated for 

both analytes. These concentration values were detected values. Then, the corresponding 

concentrations for each gas were found according to calibration curves (Tables 10 and 11). 

These concentrations were actual values. The corresponding chromatograms can be found 

in Figure 14. 

Figure 14. (a) Zoomed image of the gas chromatogram obtained by analyzing two mixes:  Natural gas 

(Red) and Natural gas containing trimethylarsine (5 ppm) and vinyl chloride (5 ppm) (Blue) and (b) the 

major peaks detected after the background was subtracted (Red - Blue). 

Table 10. Detection of trimethylarsine and vinyl chloride in Natural gas  
 

 

Gases 

 

Actual concentration 

(ppm) 

 

Detected concentration 

(ppm) 

Trimethylarsine 5.0 3.6 

Vinyl chloride 5.0 6.8 
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Table 11. Detection of target analytes in RESTEK standard. 

A complete set of analytes of interest in RESTEK gas with detected concentrations 

and corresponding errors are shown in Table 9. 

Testing in Lean Gas (MESA) 

 The composition of the lean gas is show in Table 1. The chromatogram for this 

background mix is shown in Figure 15. 

Figure 15. Chromatograms of lean gas background. 

Gases Calculated 
Conc. 
(ppm) 

Actual 
Conc. 
(ppm) 

% error 

Hydrogen sulfide 7.5 7.0 7.5 

Ethyl-mercaptan 7.5 6.4 15 

Benzene 120 110 6.8 

Toluene 124 130 6.6 

Ethylbenzene 18 19 2.5 

O-Xylene 38 39 4.2 

Trimethylarsine 5.0 3.6 28 

Vinyl chloride 5.0 6.8 36 
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 Following the procedure for sample preparation, the target analytes of known 

concentrations were added to the background lean gas, resulting in the chromatograms 

shown in Figure 16. 

 

Figure 16. Chromatogram of the lean gas with added target compounds of known concentrations. 

 

 After subtracting the background signal (Natural Gas signal) from the gas mixture 

(Natural Gas plus analytes of interest) the area under the curve was calculated for all the 

compounds of interest. The corresponding concentrations for each gas was found according 

to their calibration curves (Table 12). 
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Table 12. Detection of target analytes in lean gas from MESA. 

Gases Integrated 

signal 

Calculated 

concentration 

(ppm) 

Actual 

concentration 

(ppm) 

error 

% 

Hydrogen sulfide 4.3 7.2 7.5 3.7 

Ethyl-mercaptan 6.7 5.7 5.0 13 

Benzene 94 136 125 8.7 

Toluene 112 105 100 4.5 

Ethyl benzene 31 16 15 3.6 

O-Xylene 36 39 40 1.3 

Trimethylarsine 12 24 10 140 

Vinyl Chloride 10 7.9 7.5 4.6 

 

Testing in Rich Gas (MESA) 

 Similar procedure was followed for testing with rich gas mixture. The composition 

of the rich gas background is shown in Table 1, and the chromatogram for this background 

mix is shown in Figure 17. Figure 18 consists of the chromatograms of rich gas background 

with added target analytes. 

 

Figure 17. Chromatograms of rich gas background. 
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Figure 18. Chromatogram of the rich gas with added target compounds of known concentrations. 

 

After subtracting the background (Natural Gas signal) from the gas mixture 

(Natural Gas plus compounds of interest) the area under the curve was calculated for all 

compounds of interest and the corresponding concentrations for each gas were found 

according to their calibration curves (Table 13). 

 

Table 13. Detection of target analytes in rich gas from MESA. 

 

 

Gases Integrated 
 signal 

Detected 

Concentration 

(ppm) 

Actual  

concentration 

(ppm) 

% error 

Hydrogen sulfide 31 62 7.5 728 

Ethyl mercaptan 32. 38 5.0 667 

Benzene 94 139 125 11 

Toluene 111 103 100 2.7 

Ethylbenzene 30 15 15 2.0 

O-Xylene 40 45 40 12 

Trimethylarsine 21 44 10 340 

Vinyl chloride 9.9 7.3 7.5 3.2 
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DISCUSSION AND CONCLUSION 

 Based on the measured concentrations of each target analyte in the RESTEK gas 

mixture, the total concentration error was evaluated to be within +/- 10% of the actual 

concentration value of most of the compounds, except for ethyl-mercaptan (14.7%), 

trimethylarsine (27.8%) and vinyl chloride (36.4%). A +/- 10% error was also achieved in 

the lean MESA standard, and the exception of trimethylarsine (140.20%) and ethyl-

mercaptan (12.89%). In the rich MESA standard, the total measurement error for benzene, 

toluene, ethylbenzene, o-xylene, and vinyl chloride remained within +/- 10%. However, 

the percent error became very high for trimethylarsine, hydrogen sulfide, and ethyl 

mercaptan. Table 14 summarizes the outcomes of this project. Substantial errors in lighter 

compounds were a result of mixing all the target components together with the rich natural 

gas background, which makes the mix unstable. Individual components can react and form 

light reaction byproducts. There are two ways to overcome this problem and reduce the 

percent error.  

One way is to introduce an additional chromatography column specifically 

targeting lighter compounds. This additional compound will improve the separation 

between the light compounds and will help to eliminate the unwanted reaction byproducts 

from the analyzed data. A second option involves applying a well-known mathematical 

technique of peak deconvolution, which will extract the informative part of the data and 

reduce error. The best results can be achieved by utilizing a complex approach that 

combines both methods.  
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Table 14. Summary of the errors in measuring each analyte for each one of the standards. 

 

Gases  Natural Gas  
RESTEK  
% error 

MESA 
Lean Gas 
%  error 

MESA 
Rich Gas 
% error 

Hydrogen 
Sulfide 7.5 

 
3.7 

 
728 

Ethyl 
Mercaptan 15 

 
13 

 
667 

Benzene 
6.8 

 
8.7 

 
11 

Toluene 
6.6 

 
4.5 

 
2.7 

Ethylbenzene 
2.5 

 
3.6 

 
2.0 

O-Xylene 
4.2 

 
1.3 

 
12 

Trimethylarsine 
28 

 
140 

 
335 

Vinyl chloride 
36 

 
4.6 

 
3.2 
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